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Fault-Tolerant Distributed Database for Public Key Infrastructure

Abstract:
This thesis presents a practical study focusing on improving service level availability
(SLA) and reducing maintenance costs of distributed SQL database clusters by migrating
from a traditional manually-managed virtual machine (VM) architecture to a Kubernetes-
based one. The original architecture suffers from complex manual recovery processes
during node malfunctions, leading to increased downtime. Three failure modes inherent
to the original architecture are investigated: 1. primary node failure; 2. replica node
failure; 3. split-brain mode.

The proposed architecture leverages Kubernetes to automate cluster recovery from
primary and replica node failures, significantly reducing downtime compared to manual
processes. Furthermore, Kubernetes’ architectural features eliminate split-brain mode
entirely.
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Tõrketaluv hajutatud andmebaas avaliku võtme infrastruktuuri jaoks

Lühikokkuvõte:
See väitekiri esitab praktilise uuringu, mis keskendub teenindustaseme kättesaa-

davuse (SLA) parandamisele ja hajutatud SQL andmebaasiklasterite hoolduskulude
vähendamisele, migreerides traditsiooniliselt käsitsi hallatavast virtuaalmasina (VM)
arhitektuurist Kubernetesel põhinevale. Varasemalt kasutusel oleva arhitektuuri peamine
probleem on kererukate käsitsi tehtavate taastamisprotsesside vajadus, mis viib suurte
seisakuaegadeni. Uuritakse kolme algsele arhitektuurile omast rikete tüüpi: 1. peamise
sõlme rike; 2. koopia sõlme rike; 3. lõhestunud aju (split-brain) olekut.

Töös välja pakutud arhitektuur kasutab Kubernetest, et automatiseerida klastri taas-
tumist peamise või replikaat sõlme riketest, oluliselt vähendades seisakuaega võrreldes
käsitsi tehtavate protsessidega. Lisaks kõrvaldab Kubernetese arhitektuur täielikult lõhes-
tunud aju oleku tekkimise võimaluse.

Võtmesõnad:
Kubernetes, pilvearvutus

CERCS: P170
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1 Introduction
Public Key Infrastructure PKI is an operational system that employs asymmetric cryptog-
raphy, information technology, operating rules, physical and logical security, and legal
matters. Big organizations have their private PKI servers in order to sign their own appli-
cations and issue internal certificates. For such organizations, PKI is one of their core
services since its failure could risk downtime of other services, compromising business
continuity. Moreover, exposure of private keys could allow attackers to impersonate an
organization’s identity, for example to fraudulently sign applications. Therefore, PKI
components need to have strict security protection. The 3 relevant segments of PKI sec
are Confidentiality, Integrity, Availability, which is also CIA triad [19].

This thesis initially highlights an issue within the PKI architecture of a specific
organization, specifically addressing its impact on the fault tolerance of the system. For
instance, it explores challenges like the unavoidable occurrence of split-brain scenarios
in organizations with only two sites, as well as the complications associated with manual
intervention during primary switching events.

Since the database is a key component of the PKI system, this thesis focuses on the
benefits of transitioning databases from virtual machines to Kubernetes, an orchestrated
environment. This analysis is relevant to all high-availability systems.

2 Motivation
The research is driven by the emergence of Kubernetes, a cluster orchestration tool, and
its operator resource, which offers the potential to automatically recover clusters without
manual intervention during node failures. Additionally, it presents an opportunity to
improve the split-brain scenario within the organizational use-case.

Split-brain is the scenario when a network partition causes the database to become
partitioned into multiple independent instances that are unaware of each other’s state.
This situation can occur in distributed database systems where multiple nodes are inter-
connected, and communication between them is interrupted. In the organization case,
split-brain scenario happens to the organization because it only has 2 sites.

Unlike traditional methods that depend on quorum for primary node selection, Ku-
bernetes operator facilitates centralized election management, thereby preventing the
occurrence of multiple primary pods within a cluster simultaneously. This study explores
whether Kubernetes operator based approach would be capable of addressing this issue,
as well as conducts experiments to evaluate the cluster’s ability to self-heal following
primary and replica node failures.
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3 Research question and contribution
This thesis identifies challenges within the organization’s specific use-case and examines
state-of-the-art potential solutions. It progresses to assess whether Kubernetes can
effectively address these challenges through a detailed study of Kubernetes and its
operators, subsequently proposing a Kubernetes-based architecture for the application.
To validate the efficacy of this design, the thesis conducts experiments designed to answer
the following research questions:

1. How Kubernetes (operator) improves the availability of the cluster during database
node failure. Particularly, what is the recovery time for read and write operations
in the event of:

(a) a primary node failure

(b) a replica node failure

2. How can the split-brain problem in high-availability systems be alleviated with
Kubernetes?

This thesis is structured as follows: it begins with a background study of Kubernetes,
followed by an examination of the current architecture’s challenges. Subsequently, it
presents the proposed architecture leveraging Kubernetes. The thesis then evaluates the
effectiveness of this proposed architecture through experimentation. Finally, it concludes
with a discussion on potential future work aimed at enhancing the operator.

The thesis findings reveal that the new architecture, utilizing a Kubernetes operator,
allows the cluster to automatically recover, eliminating the manual intervention required
in the current setup. Additionally, the operator inherent mechanism of active/active
configuration effectively addresses the critical issue of split-brain failure mode.
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4 Background

4.1 Kubernetes
As the demand for running containers not only for development purposes but also for
production increases, so is the need for a tool to manage these containers in a large
scale manner. Kubernetes is designed to solve this problem and while there are several
approaches to this problem such as Docker Swarm, Kubernetes is a success because of
its design principles that allow easy integration (migrating to Kubernetes doesn’t require
code rewrite) and customization (users could write operators for their own applications).

4.1.1 Kubernetes design principles

Kubernetes API are declarative rather than imperative — In Docker, the deployment
process is done by the developers gaining remote access to the server, starting the
container and deploying it by himself. Hence, the process has to be repeated by
the developer when he wants to deploy the container again. This process is called
imperative. In Kubernetes, the developer only needs to define the desired state
and lets Kubernetes find out how to reach that state. This style of configuration
is called declarative and is similar to the way infrastructure-as-code tools such as
Ansible and Terraform works. This not only saves developers a lot of time, but
also better guarantees that the container is deployed correctly.

There are no internal hidden APIs in Kubernetes control plane. — We tend to think
the control plane is the brain of the cluster, so it requires a lot of complex logic
in order to make all decisions. However, giving the control plane too many
responsibilities will introduce a central point of failure, as the cluster couldn’t
function correctly if the master node isn’t available. Instead, what they do in
Kubernetes is to store only the desired states of pods inside the master node.
Worker nodes constantly watch the API server to see compare between their
current state and the desired state. If the desired state is different, the worker node
will work to reach that state. Additionally, all components monitor their health and
report to the master node.
This approach where the system operates to reach a state is called level-triggering.
Compared to edge-triggering, where a system responds to events so when the
system doesn’t work correctly, developers are responsible to send the events again,
level-triggering has self-healing benefits. If a component crashes, when coming
back up, it can look at the API server to restore the current state. Hence, there is
no missing events issues.
The same API is used by internal components, is exposed to the outside. Hence,
when writing an application, developers could fetch secret object, configmap
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information, or information about the pod that the application is running on from
API server.

Meet the user where they are — Kubernetes creators understand that not every organi-
zation is open to make modifications to their applications in order to accommodate
new technologies. For example, for applications that are old but critical to the orga-
nizations such as PKI, requiring modifications in order to integrate with Kubernetes
API is a major hinder to adoption because the cons of breaking the application
are much greater than the pros of successfully migrating it. Hence, in order to
encourage transition, it’s possible to consume objects such as secrets, configmaps,
downward API as files or environment variables within the containers. Information
about dependent objects could be specified under pod definition, which Kuber-
netes will make sure to be mounted as a file or as an environment variable to the
containers and hence the applications only need to be able to read from files or
from environment variables.

Workload portability — Kubernetes is comparable to an operating system OS in in-
frastructure level. In the old days, applications were written to work on specific
hardware. Then OS came along to remove the trouble of considering hardware
specification for developers by providing interfaces. The similar case is happening
in distributed system world, where instead of deploying applications to fit certain
cluster implementations, Kubernetes exposes its API so that applications could
be deployed against it, making Kubernetes an abstraction layer for application
deployment. This approach successfully separates application development from
cluster implementation.
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4.1.2 Kubernetes components

Figure 1. Kubernetes architecture [18]

Core components of a Kubernetes cluster:

etcd — key-value store inside control plane to store the components’ states.

api-server — the most important component of the cluster because all interactions from
outside or from other components to the cluster go through api-server.

scheduler — the scheduler monitors the kube api server looking for unscheduled pods.
These are API objects of type pods that don’t have the Node field filled in. So it
starts to look for the best placement for that object, then update the API server
accordingly.

controller-manager — there needs to be a component to continuously watch the API
server for the shared states in order to bring the current state towards the desired
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ones. Controller manager is such component, that operates as a non-terminating
loop to regulate the state of the system. [14]

kubelet — exists in every node to act like a communication point between node and the
cluster. Kubelet is responsible to self-report node health and current states to API
server for monitoring.

kube-proxy — component that runs on each node for maintaining the network rules.
These rules allow communication to pods from inside or outside network.

API server — is the central component and is the only component that talks to Etcd to
store and retrieve cluster states. Other components such as kube-proxy, scheduler,
controller manager and kubelet are API server clients. API-server, scheduler,
controller manager, and Etcd are control plane components while kube-proxy and
kubelet belong to worker. [15]

4.1.3 Kubernetes Storage

In traditional bare-metal setups, storage provisioning and management were typically
manual processes. Administrators had to manually allocate and configure storage vol-
umes for individual servers, which was time-consuming, error-prone, and lacked automa-
tion. Managing persistent storage for containerized workloads on bare-metal servers
required custom scripting and integration efforts. Furthermore, many storage solutions
designed for cloud environment are not easily adaptable to the bare-metal environment.
These problems prevent bare-metal environment to become production-ready easily.
Longhorn is a storage provisioner that mitigates such problem by enabling Kubernetes to
provision storage dynamically.
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Figure 2. Kubernetes storage [17]

Figure 2 shows the relationship between Storage Provisioner (here is Longhorn)
with the Persistent Volume (PV) and Persistent Volume Claim (PVC). Through the CSI
integration, when a PVC is created in Kubernetes, Longhorn dynamically provisions a
PV to meet the claim. This process involves creating a new volume within Longhorn,
which automatically becomes available to Kubernetes for binding to the PVC.
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Figure 3. Longhorn data replication [1]

For each volume, Longhorn creates multiple replicas across different nodes based
on the specified replication factor. This replication ensures that even if a node fails, the
volume can continue operating using the remaining replicas. Longhorn’s engine manages
the replication logic, keeping the data consistent across replicas.

Longhorn allows for creating volume snapshots, which are point-in-time copies of
the volume. Snapshots can be used for quick recovery and cloning volumes. They are
stored locally with the volume’s data.

Unlike snapshots, backups are stored in secondary storage, which can be off-cluster
(like S3 or NFS). Backups provide a way to recover data in case of severe failures,
including total cluster loss.

If a replica fails (due to node failure or disk issues), Longhorn automatically initiates
a rebuilding process for the affected volume by creating a new replica on a healthy
node. This process ensures that the volume returns to its desired state of replication and
availability without manual intervention.

4.1.4 Database Replication

One motivating factor for transitioning to Kubernetes is its robust replica storage capabil-
ities. While lightweight virtualization technologies, such as containerization, address
the performance-reliability trade-off in fog computing and offer built-in fault tolerance
mechanisms, they often fall short in providing fault-tolerant persistent storage [3]. Initial
reservations about running databases in Kubernetes arose due to perceived limitations in
handling stateful storage. Several potential failures that could cause state loss [9]:
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• Node Failure: A node can completely fail due to disconnection or any hardware
failure. [9]

• Application Execution Failure: The application stops working due to an unde-
fined internal reason.[9]

• Application Deployment Failure: The application is not correctly initially de-
ployed or re-deployed. Several reasons are possible, such as no available resources,
losing communication to available nodes, or improper resource management.[9]

• File Access Failure: Applications fail to access required files, states, and other
necessary data to continue working. This encompasses the loss of volumes in pods,
e.g., due to Node Failure.[9]

• Management failure: This includes all failures caused by functions required to
run a container environment.[9]

In database, state persistence needs to be replicated in multiple locations by either
following strategies:

1. storage-level replication Kubernetes native database replaces cloud native database
[13]

In the past, distributed storage could only achieve by using cloud environment such
as Amazon S3 or vSAN. With Kubernetes, it’s now possible to have distributed
block storage for bare-metal environment. Hence, organizations could now enjoy
the high availability that cloud databases offer while still having the fault tolerance
of distributed block storage inside their premises. Because of this feature, the rise
of Kubernetes native databases that used to live outside Kubernetes such as Apache
Cassandra and DynamoDB are now adopting to the new environment.

2. application-level replication Differ ent databases have different ways to achieve
high availability through replication. Here, CloudnativePG way is focus as it’s the
solution used for the implementation.

Physical data replication is Postgres database main way to achieve high availability.
Replication also allows scale of read-only workloads to offload work from the
primary node. [7]

4.2 Kubernetes Operators
Although Kubernetes offers the advantage of scalability to users, this also introduces
increased complexity and a heavier maintenance burden [8]. Moreover, the distributed
nature of these workloads inherently increases the number of potential points of failure,
which can result in costly and time-consuming repairs [8].
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The introduction of Kubernetes operators has shifted this paradigm, enabling op-
erational knowledge that was confined to administrators, shell scripts, and declarative
configuration tools like Ansible and Terraform to be embedded directly into software.
An operator extends Kubernetes by automating the entire life cycle management of a
particular application, including monitoring, maintenance, recovery, and upgrades. They
serve as a sophisticated packaging mechanism for distributing applications on Kuber-
netes, ensuring that applications are not only deployed but also continuously optimized
according to the dynamic conditions of the cloud environment. This integration of opera-
tors into Kubernetes represents a significant evolution in the deployment of distributed
applications on containerized platforms. It underscores the widespread acceptance and
adoption of such tools in state-of-the-art cloud orchestration environments, marking a
pivotal shift towards more autonomous cloud management solutions [11].

The operator framework defines five levels of operator maturity like below.

Figure 4. Operator capability level [10]

4.2.1 CloudNativePG operator

Cloudnative-PG represents a Kubernetes-native database operator that could potentially
replace traditional cloud-native databases. In terms of operator capability, it has reached
level 5 of autopilot. Key features relevant to this study include replication and automatic
failover

1. Replication

Synchronous replication: To further prevent data inconsistencies, CloudNativePG
supports configuring synchronous replication. In synchronous replication, the
primary waits for one or more replicas to confirm that they have received and
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applied a write operation before the operation is considered complete. This ensures
data consistency but may impact write performance.

2. Automatic Failover [6]

When the readiness probe on the primary fails, the controller’s reconciliation
loop automatically detects it and the operator immediately elects the new primary
among the available replicas. The operator ensures that all nodes are aware of the
new primary to prevent multiple primaries from emerging.

When the old primary comes back, the instance manager detects it, preventing
split-brain from happening. Once the pod is ready, the operator assigns it to the
read-only replica.

In the event of unexpected errors lasting longer than the specified failover delay,
the PostgreSQL cluster initiates failover. This could occur due to disk failure, pod
deletion, or sustained failures in the primary pod’s PostgreSQL container. During
failover, the readiness probe for the primary pod fails, triggering the controller’s
reconciliation loop.

The failover process occurs in two steps:

(a) Pending marking of target primary: The controller marks the target primary
as pending, forcing the primary pod to shut down. This ensures the Write-
Ahead Logging (WAL) receivers on replicas stop. The cluster enters the
failover phase.

(b) Leader election and promotion: Once WAL receivers stop, a leader election
takes place, and a new primary is named. The chosen instance initiates
promotion to primary, and normal cluster operations resume. The former
primary pod restarts as a replica.

During the shutdown of the failing primary:

(a) A fast shutdown is attempted with a specified switchover delay, attempting to
archive pending WALs.

(b) If fast shutdown fails or times out, an immediate shutdown is initiated,
aborting all PostgreSQL server processes immediately.

During the primary’s failure and before failover starts, queries, WAL writes, and
checkpoints may fail. Fast shutdown stops connections but preserves data. If it
fails, immediate shutdown may lead to data loss. While the new primary hasn’t
started, the cluster operates without a primary, impairing but not losing data.
The switchover delay affects recovery time objective (RTO) and recovery point
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objective (RPO). A low value may prioritize RTO but risk data loss, while a high
value minimizes data loss but delays normal operation.

A delayed failover option exists to postpone failover after detecting primary un-
healthiness, preventing premature failover due to short-lived network or node
instability. The default failover delay is set to 0, triggering immediate failover.

4.3 Organization use case
A specific organization relies on a critical application where consistency and availability
are crucial. To enhance resilience, the organization deploys a database cluster spanning
two sites, each hosting three instances. When a host returns from a shutdown state,
another host aids in synchronizing its state, while the remaining one continues serving
requests.

To enable an instance to handle read or write requests, it must confirm its ability
to communicate with a majority of nodes in the current cluster. Nodes stay in touch,
determining the size of the network partition they can reach. This strategy ensures that if
one site is lost, the other can function normally as long as it has the majority of instances.
However, if both sites lose connection, both sites continue accepting requests, leading to
the split-brain problem.

Figure 5 shows the present setup of the application. Each site contains 2 application
instances and 3 database instances, which synchronize via a high bandwidth connection.

Figure 5. Current use case

To prevent split-brain in this application, the organization decides to disable one
instance on one site. Yet, during an outage or maintenance in site A, site B can’t
automatically assume the primary role as it has only two out of five instances. In order
for site B to assume the primary role, the organization needs to flip the secondary and
primary states manually by turning off one Galera node on the primary site and activating
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the spare Galera node on the secondary site. This process effectively prevents split-brain,
albeit requiring manual intervention.

Hence, during site A’s outage, the service remains non-operational until manual
intervention occurs. While this setup mitigates the split-brain problem by preventing
outdated data from being served, it compromises service availability.

4.3.1 Galera and split-brain failure mode

Galera is implemented as a multi-master cluster for MySQL and MariaDB [2]. In this
architecture, all nodes are fully operational, enabling them to handle write requests
independently. This feature enhances high availability by eliminating single points of
failure and enabling the scaling of write operations.

The split-brain failure mode arises when database instances operate independently of
one another. In such scenarios, data corruption can occur as two separate database nodes
may make conflicting updates to the same data row in a table. As is the case with any
quorum-based system, Galera Cluster is subject to these conditions when the quorum
algorithm fails to select a primary component [12].

To prevent split-brain issues, Galera requires that each transaction receive a majority
of acknowledgments from other nodes before it is committed. If a network partition
occurs such that no single group holds a majority, the cluster will halt all write operations
to maintain data consistency until a majority is reestablished.
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5 Proposed solution

5.1 General approach
The main problem that this work aims to address is that the current design requires
manual intervention to address node failures. This chapter outlines how Kubernetes and
related technologies can be efficiently applied to automate most of the failure recovery
scenarios that are of interest to the application at hand.

The split-brain failure mode that affects the existing cluster design is addressed with
the help of the CloudNativePG postgres database operator that is able to seamlessly
hand off the primary role from one node in the cluster to another such that the handover
process is transparent to the client.

The delegation of the primary election function to the CloudNativePG operator is not
expected to affect the reliability of the cluster as from the standpoint of Kubernetes itself,
the operator itself is an ordinary application executed in a separate Kubernetes pod. In
the event of a failure of the pod that executes the operator, the self-healing capabilities of
Kubernetes will automatically reschedule the operator on a new pod, thus avoiding the
single point of failure in the cluster1.

Failure modes related to a cluster node failure (i.e., disappearance of a primary or
a secondary node from the database cluster) are addressed by the aforementioned self-
healing capabilities similarly, with the exception that the “healing” action is performing
not by the Kubernetes core itself but by the CloudNativePG operator.

The system outlined above is extended with several auxiliary components that are
inessential for the purposes of this high-level overview. The resulting capabilities include
instantaneous and fully automatic recovery from all relevant failure modes. The following
sections provide an in-depth technical review of the resulting system.

5.2 Cluster architecture
This section aims to describe the optimal architecture for a two-zone setup given the
present conditions. It will cover recommended configurations for CloudNativePG (the
database operator used in the experiment) to balance operational efficiency with robust
disaster recovery strategies.

I not only think that we can run databases on Kubernetes because “it’s
fundamentally the same as running a database on a VM”, but I believe that
through the CloudNativePG operator we all can run Postgres databases better
than on a VM [4].

Gabriele Bartolini - VP of Cloud Native at EDB
1Kubernetes itself is a distributed fault-tolerant peer system devoid of a single point of failure; see

chapter 4 for the background.
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Kubernetes is designed to run across data centers given that these centers are linked
by high bandwidth, low latency, and redundant networking [4]. In this case of stretched
cluster, the recommendation is that the latencies between clusters shouldn’t exceed 5
milliseconds (ms) round-trip time (RTT) between nodes in different location, with a
maximum round-trip time (RTT) of 10 ms [16].

It’s recommended to use a single Kubernetes cluster across multiple availability
zones instead of isolating resources in separating data centers within distinct Kubernetes
clusters [4].

Figure 6. Single cluster over two zones [4]

The primary PostgreSQL database streams its transaction logs (WAL) to the syn-
chronous standby in a different availability zone to ensure data consistency and high
availability. In case the primary database fails, the standby can use the WAL archives and
base backups from the object store to rebuild the database state up to the last consistent
transaction. This helps ensure that the data on the standby is as current as possible,
minimizing data loss and recovery time.

Another aspect to consider is the sharing of workloads and storage between nodes.
It’s recommended that the database has its own dedicated nodes instead of sharing storage
with applications. This allows separation between shared storage for applications and
local storage for PostgreSQL. This approach is also known as shared-nothing architecture
under distributed systems [4].
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Figure 7. Shared-nothing architecture [4]

If data centers do not qualify for a stretched cluster, the last resort is that one data
center serves as the primary cluster, while the other acts as disaster recovery. In such case,
the operator’s replica cluster is used to create a symmetrical PostgreSQL cluster in the
secondary data center, which can be manually promoted to be primary when necessary
[4]. One disadvantage of this setup is the lack of automatic failover, unlike stretched
cluster.

Figure 8. Replica cluster [4]

In this setup, the backup (replica) cluster mirrors the architecture of the main cluster.
It includes a designated primary, which is a standby ready to take over in case of main
cluster failure. Synchronization with the main cluster is maintained by retrieving WAL
archives and base backups from the origin’s object store, allowing a recovery point
objective (RPO) of approximately 5 minutes for cross-regional disaster recovery. By
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enabling streaming replication between the primary and replica clusters, the RPO can
potentially be reduced to nearly zero across regions [4].

Similarly, a replica cluster could serve as an additional layer of backup for a stretched
cluster scenario over multiple regions.

It’s crucial to be aware that adding storage level replication doesn’t increase business
continuity but degrading performance because it introduces write amplification, where
the number of write operations increases.

In summary, for an optimal two-zone setup, it’s recommended to employ a stretched
cluster across two data centers with latency not exceeding 10ms. Additionally, databases
should have their own dedicated nodes to maintain isolation from application.

5.3 Comparison between organization use case and proposed archi-
tecture

This subsection compares the use of active/active setup in Galera with the active/passive
setup of Postgres operator as used in the proposed architecture.

Active/active refers to Galera multi-master property, where all nodes accept write
requests while active/passive refers to Postgres one primary node active at a time for
writing operations.

In Galera, even though it operates in an active/active configuration, the changes
made are not immediately committed across the database until a sufficient quorum is
achieved. This quorum mechanism is what protects the cluster from having split-brain
failure. However, this also means that if the number of nodes falls below the quorum
threshold, the cluster becomes inaccessible until enough nodes are available again to
meet the quorum requirement.

In Postgres operator, because it’s an active/passive setup, the failover process is
initiated when the liveness probe detects a failure in the master node. This also means
that even if only one node remains operational, the cluster can continue functioning by
promoting the surviving replica to become the new master.

Another difference is that Galera utilizes a proprietary method called certification-
based replication, while PostgreSQL relies on its native streaming replication. When
PostgreSQL is deployed within Kubernetes using CloudnativePG, it also benefits from
Raft, which helps ensure consistent orchestration and scheduling of pods, services, and
other Kubernetes resources.
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6 Evaluation

6.1 Experiment design
In this setup, a Kubernetes cluster consisted of 1 master and 3 workers was deployed in a
private cloud environment. The host information of the VMs are presented in table 1,
while table 2 presents the chosen technology and their purposes.

Host Name Role System Core

master1 control plane, etcd CentOS 9, 100GB, 8G Memory 4 vCPUs
worker1 worker CentOS 9, 100GB, 8G Memory 4 vCPUs
worker2 worker CentOS 9, 100GB, 8G Memory 4 vCPUs
worker3 worker CentOS 9, 100GB, 8G Memory 4 vCPUs

Table 1. Hosts information

Technology Purpose

CloudNativePG Operator Highly available Postgres database
Cilium Container networking

Longhorn Block storage for persistent storage
MetalLB L2/L3 load balancing
Traefik Reverse proxy also known as ingress controller

kubeadm Provision Kubernetes master nodes

Table 2. Technology and its purposes

For these experiments, the Longhorn storage operator’s replica count is adjusted to 1
instead of the default of 3. As the experiment will involve intentionally create database
failure, having 3 replicas as default could slow down the time of the cluster responding
to failure because Longhorn needs to delete and recreate 3 times number of storage for
each instance.

In practice, the number of copies of data depends on:

1. replication at CSI layer (Longhorn)

2. replication at database layer (CloudnativePG)

3. RAID or regional replication at the block storage layer

The Kubernetes manifests for Postgres cluster and Longhorn adjustment could be found
in Appendix B, while the python script used to connect to the cluster is described in
Appendix C.
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1 # kubectl get pods
2 NAME READY STATUS AGE IP NODE
3 pod/cnpg-cluster-1 1/1 Running 12d 10.0.3.51 worker3
4 pod/cnpg-cluster-2 1/1 Running 12d 10.0.2.64 worker2
5 pod/cnpg-cluster-3 1/1 Running 12d 10.0.1.199 worker1

6 # kubectl get endpoints
7 NAME ENDPOINTS AGE
8 cnpg-cluster-r 10.0.1.199:5432,10.0.2.64:5432,10.0.3.51:5432 12d
9 cnpg-cluster-ro 10.0.1.199:5432,10.0.2.64:5432 12d

10 cnpg-cluster-rw 10.0.3.51:5432 12d
11 kubernetes 172.17.89.167:6443 45d

6.1.1 Working mechanism overview

The purpose of this subsection is to explain how the Kubernetes components used in the
experiment works together. The photo below describes a working cluster composed of
the similar components

Figure 9. Experiment implementation
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On the master node, the cluster is first created with kubeadm. Kubeadm is the
command line tool that helps initialize a production-ready Kubernetes cluster by installing
basic components of the master node as described in Background Kubernetes core
components part 4.1.2.

After creating the primary components, the cluster needs a networking layer to serve
the internal communication between them. Cilium serves as the layer 2 technology
facilitating such communication.

Next, the cluster needs a storage provisioner to persist the application data and
provide replication for the distributed system. Longhorn is a distributed block storage
solution for bare-metal cluster. Previously, it has been a challenge to host an application
for bare-metal setup. Longhorn’s ability to provide replication and dynamic storage
provisioner helps bare-metal environment achieve fault-tolerance just like cloud solutions.
More about Longhorn replication is described in 4.1.3.

After installing the networking and storage layers, the worker nodes could then join
the cluster by kubeadm. All the commands and configuration file for the cluster is
provided in the Appendix A.

MetalLB serves as the network load balancer, acting as a reverse proxy for the cluster
and exposing the service of a bare-metal cluster to the network. When a client sends
a request to the application’s external IP, MetalLB forwards the request to the Traefik
ingress controller, which acts as an application-level load balancer for the cluster by
routing requests to the correct endpoints.

As the request traverses the cluster’s networking layer, it encounters Cilium, which
provides networking, security, and observability features for Kubernetes. Cilium may
enforce network policies, such as allowing or denying traffic based on predefined rules,
before allowing the request to proceed further.

If the request involves storage operations, such as accessing or updating persistent
data, Longhorn comes into play. Longhorn provides persistent storage for stateful appli-
cations running within the Kubernetes cluster, ensuring data replication and availability
across multiple nodes for resilience and fault tolerance.

For requests involving interaction with a database managed by a Kubernetes operator,
such as a database operator, the operator manages the lifecycle of the database instance.
It ensures the database service is running, scales it as needed, and handles tasks like
backups, restores, and configuration changes.

Finally, the request reaches the appropriate service pods within the Kubernetes cluster,
where the actual application logic resides.

Upon generating a response, the response is routed back through the reverse proxy
Traefik. Traefik ensures the response is sent back to the user through the appropriate
route, based on the initial request’s ingress configuration.

MetalLB also participates in distributing the response traffic back to the user, particu-
larly if there are multiple replicas of the application pods across different nodes in the
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cluster.
Ultimately, the response exits the Kubernetes cluster through the internet gateway

and traverses back to the user.

6.1.2 Monitoring and visualization

The following tools have been used during the experiment in the attempt to monitor the
behavior of the experiment. In production, these tools could also be used for monitoring
and alerting of the cluster and application.

1. Prometheus

For example, here promQL query below is used to capture the pod switching label
from replica to primary label during primary database instance failure experiment

1 sum(kube_pod_status_phase{namespace=~"default", phase="Running"} * on(uid) \

2 group_left(label_cnpg_io_instance_role) kube_pod_labels{}) \

3 by (label_cnpg_io_instance_role)

Figure 10. Pod switching labels

2. Grafana dashboard helps visually present the data originating from Prometheus.
Dismissing the need for typing promQL queries to learn about the monitored target,
Grafana provides preconfigured dashboards, encapsulating metrics from custom
queries. For example, kube-state-metrics and CloudNativePG dashboards could be
used in the case of the implementation cluster.

3. Kubernetes Dashboard is the hardest to access as it requires Role Based Access
Control (RBAC) to be set up. Nonetheless, compared to Prometheus and Grafana,
the Dashboard setup is quicker and demands minimal configuration, primarily
RBAC for authentication.
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6.2 Experiments
In order to prove that the proposed solution is more fault-tolerant than the original use
case, the following experiments are designed to investigate how the cluster responds
during failures. The purpose of the first two experiments is to demonstrate the recovery
speed of the application in response to anticipated failures, specifically those involving
primary and replica pod failures. The final experiment aims to simulate a split-brain
scenario by writing to the primary pod and reading from the replica during the primary
failure.

6.2.1 Scenario 1: Primary instance failure

Figure 11. Experiment 1

The primary pod is deleted by the following command

1 kubectl delete pod -l role=primary --grace-period=1

Here, the grace period signifies that the kubelet will wait 1 second before forcibly
terminating the pod, which simulates a scenario similar to an unexpected primary instance
failure. In this case, the database operator is expected to perform automatic failover, as
detailed in 4.2.1.

The experiment showed that it took about 133 seconds for the cluster to resume
functionality. This represents a substantial enhancement in self-recovery from primary
pod failure compared to the original use case. The script and results of this test are
documented in Appendix C.
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6.2.2 Scenario 2: Replica instance failure

Figure 12. Experiment 2

The second experiment involves all the replicas that the script is connected to. The
following command will delete all the replicas so that the replica endpoint couldn’t
function completely

.

1 kubectl delete pod -l role=replica --grace-period=1

The outcome shows that recovery from the failure took approximately 132 seconds. This
represents a significant enhancement in self-recovery from replica pod failure compared
to the original use case. The script and output for this test are documented in Appendix
D.
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6.2.3 Scenario 3: Reading from replica when removing primary

Figure 13. Experiment 3

The goal of this experiment is to simulate the split-brain issue, where the primary
risk is that the client may receive incorrect data due to reading from a replica while the
primary is experiencing an unexpected failure.

The testing procedure involves initially connecting to the primary (rw endpoint)
of the cluster to write a random number. Subsequently, it connects to the replica (ro
endpoint) to read the value. If the written and read values differ, the database has failed to
maintain the cluster’s state. Conversely, if the values match, it indicates that the database
successfully blocked read and write operations during the primary’s failure and replicated
data to all standbys using synchronous replication.

Details of the script and output are provided in Appendix E. The test results show
that recovery took about 135 seconds. This indicates that the application prevents any
operations until the primary is restored, effectively avoiding split-brain failures.

6.2.4 Summary

These experiments demonstrate that the new setup significantly enhances recovery times,
thereby reducing the need for on-call interventions. With optimal configuration, it is
conceivable that the cluster could recover in under two minutes.

28



7 Conclusions
The primary objective of the thesis is to explore whether a Kubernetes-based architecture
can enhance the recovery time compared to the existing VM-based architecture. Initially,
it provides a detailed overview of Kubernetes and the Kubernetes operator. The thesis
then proposes a new architecture based on Kubernetes and conducts experiments utilizing
this architecture to evaluate recovery times following a range of unexpected failures.

The thesis identifies a problem in the current architecture, which requires manual
intervention when switching to the primary to recover from a failure. Additionally, since
the architecture is based on a 2-site setup, the split-brain failure mode becomes an issue.

Subsequently, the thesis explains how employing a Kubernetes operator resolves
these issues. The application not only benefits from Kubernetes’ self-healing capability,
but also from the operator’s inherent characteristic of avoiding split-brain failure. The
primary/standby architecture ensures the cluster has only one primary at a time.

The narrative continues with experiments demonstrating how the cluster behaves
during unexpected primary and replica failures. These experiments reveal that the cluster
takes approximately 120 seconds to recover from such failures. The final experiment
involves reproducing a split-brain situation. The result indicates that the cluster’s service
remains inaccessible until the primary node is restored and data is replicated to all stand-
bys. This experiment is conducted by writing to the read-write endpoints while reading
from the replicas to discern any differences between the writes and responses.

Further research should investigate methods to enhance the cluster’s recovery speed
to less than two minutes. According to the cloudnativePG documentation, reducing the
switchoverDelay parameter could enable quicker recovery by minimizing the delay in
the cluster failover process, thus not exceeding the permissible outage duration.

Additionally, the integration of Hardware Security Modules (HSM) into a Kubernetes
cluster presents another challenge. It is crucial to explore how these security components
can be effectively integrated into Kubernetes. This includes assessing their compatibility
with database operators to ensure seamless functionality within the cluster.
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A Node preparation
1 # Delete snapd (resource utilization)
2 sudo su
3 snap list
4 snap remove lxd
5 snap remove lxd
6 snap remove core20
7 snap remove snapd
8 systemctl stop snapd
9 systemctl stop snapd.socket

10 systemctl disable snapd
11 systemctl mask snapd
12 apt purge snapd -y
13 apt-mark hold snapd
14 cat << EOF | sudo tee /etc/apt/preferences.d/nosnap.pref
15 Package: snapd
16 Pin: release a=*
17 Pin-Priority: -10
18 EOF
19 rm -rf /snap
20 rm -rf /var/snap
21 rm -rf /var/lib/snapd

22 # Disable swap
23 swapoff -a

24 # Install containerd
25 apt-get install ca-certificates curl gnupg
26 apt install -m 0755 -d /etc/apt/keyrings
27 curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
28 | gpg --dearmor -o /etc/apt/keyrings/docker.gpg
29 chmod a+r /etc/apt/keyrings/docker.gpg
30 echo "deb [arch=$(dpkg --print-architecture) \
31 signed-by=/etc/apt/keyrings/docker.gpg] \
32 https://download.docker.com/linux/ubuntu \
33 $(. /etc/os-release && echo "$VERSION_CODENAME") stable" \
34 | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
35 apt-get update
36 apt-get install containerd.io
37 systemctl start containerd
38 systemctl enable containerd

39 ## Disable Ubuntu caching DNS resolver
40 systemctl disable systemd-resolved.service
41 systemctl stop systemd-resolved
42 rm -fv /etc/resolv.conf
43 cat > /etc/resolv.conf << EOF
44 nameserver 1.1.1.1
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45 nameserver 8.8.8.8
46 EOF

47 ## Change timezone to UTC
48 timedatectl set-timezone UTC

49 ## Open firewall ports
50 ufw enable
51 ufw allow 4240/tcp # for CNI
52 ufw allow 6443/tcp # for control plane communications
53 ufw allow 8472/udp # for CNI
54 ufw allow 10250/tcp # for kubelet communication
55 ufw allow 30000-32767/tcp # for publishing services

56 ## Load kernel modules
57 cat << EOF | sudo tee /etc/modules-load.d/modules.conf
58 br_netfilter overlay
59 EOF
60 modprobe overlay
61 modprobe br_netfilter

62 ## Enable sysctl settings
63 cat << EOF | sudo tee /etc/sysctl.d/99-sysctl.conf
64 net.bridge.bridge-nf-call-iptables = 1
65 net.bridge.bridge-nf-call-ip6tables = 1
66 net.ipv4.ip_forward = 1
67 EOF
68 sysctl -p

69 Install kubernetes tools (Kubeadm, kubelet and kubectl)

70 ## Install Kubectl, kubelet, kubeadm
71 apt-get update
72 apt-get install -y apt-transport-https ca-certificates curl

73 curl -fsSL \
74 https://pkgs.k8s.io/core:/stable:/v1.29/deb/Release.key | \
75 sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg

76 echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] \
77 https://pkgs.k8s.io/core:/stable:/v1.29/deb/ /' \
78 | sudo tee /etc/apt/sources.list.d/kubernetes.list

79 apt-get install -y kubelet kubeadm kubectl
80 apt-mark hold kubelet kubeadm kubectl

81 ---
82 # Cluster initialization with kubeadm [20]
83 cat << EOF | sudo tee cluster-init.yaml
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84 apiVersion: kubeadm.k8s.io/v1beta3
85 kind: ClusterConfiguration
86 controlPlaneEndpoint: "193.40.103.161:6443"
87 networking:
88 dnsDomain: cluster.local
89 podSubnet: "10.217.0.0/16"
90 serviceSubnet: "10.96.0.0/12"
91 apiServer:
92 extraArgs:
93 advertise-address: "193.40.103.161"
94 ---
95 apiVersion: kubeadm.k8s.io/v1beta3
96 kind: InitConfiguration
97 nodeRegistration:
98 name: "master1"
99 criSocket: "unix:///run/containerd/containerd.sock"

100 ---
101 kind: KubeletConfiguration
102 apiVersion: kubelet.config.k8s.io/v1beta1
103 cgroupDriver: "systemd"
104 shutdownGracePeriod: 5m0s
105 shutdownGracePeriodCriticalPods: 5m0s
106 EOF

107 kubeadm init --config=cluster-init.yaml

108 # Install cilium [5]
109 CILIUM_CLI_VERSION=$(curl -s

https://raw.githubusercontent.com/cilium/cilium-cli/main/stable.txt)↪→

110 CLI_ARCH=amd64
111 if [ "$(uname -m)" = "aarch64" ]; then CLI_ARCH=arm64; fi
112 curl -L --fail --remote-name-all

https://github.com/cilium/cilium-cli/releases/download/${CILIUM_CLI_VERSION}/cilium-linux-${CLI_ARCH}.tar.gz{,.sha256sum}↪→

113 sha256sum --check cilium-linux-${CLI_ARCH}.tar.gz.sha256sum
114 sudo tar xzvfC cilium-linux-${CLI_ARCH}.tar.gz /usr/local/bin
115 rm cilium-linux-${CLI_ARCH}.tar.gz{,.sha256sum}

116 # Install Longhorn
117 apt-get install open-iscsi
118 modprobe open-iscsi

119 # Check NFSv4.1 support is enabled in kernel
120 cat /boot/config-`uname -r`| grep CONFIG_NFS_V4_1

121 # Check NFSv4.2 support is enabled in kernel
122 cat /boot/config-`uname -r`| grep CONFIG_NFS_V4_2

123 apt-get install nfs-common
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B Kubernetes Manifests
1 # cnpg-cluster.yaml

2 apiVersion: postgresql.cnpg.io/v1
3 kind: Cluster
4 metadata:
5 name: cnpg-cluster
6 spec:
7 maxSyncReplicas: 2
8 minSyncReplicas: 2
9 enableSuperuserAccess: true

10 superuserSecret:
11 name: superuser-secret
12 monitoring:
13 enablePodMonitor: true
14 instances: 3
15 bootstrap:
16 initdb:
17 database: app
18 owner: app
19 secret:
20 name: app-secret
21 primaryUpdateStrategy: unsupervised
22 storage:
23 storageClass: longhorn
24 size: 1Gi
25 walStorage:
26 size: 512Mi
27 # replicationSlots:
28 # highAvailability:
29 # enabled: true
30 # postgresql:
31 # parameters:
32 # max_slot_wal_keep_size: '500MB'
33 # hot_standby_feedback: 'on'
34 ---
35 apiVersion: v1
36 data:
37 username: cG9zdGdyZXM=
38 password: cGFzc3dvcmQ=
39 kind: Secret
40 metadata:
41 name: superuser-secret
42 type: kubernetes.io/basic-auth
43 ---
44 apiVersion: v1
45 data:
46 username: YXBw
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47 password: cGFzc3dvcmQ=
48 kind: Secret
49 metadata:
50 name: app-secret
51 type: kubernetes.io/basic-auth

52 ---
53 apiVersion: v1
54 data:
55 username: YXBw
56 password: cGFzc3dvcmQ=
57 kind: Secret
58 metadata:
59 name: app-secret
60 type: kubernetes.io/basic-auth

61 # Prometheus manifest
62 ---
63 apiVersion: v1
64 kind: ServiceAccount #
65 metadata:
66 name: prometheus
67 namespace: monitoring
68 ---
69 apiVersion: rbac.authorization.k8s.io/v1
70 kind: ClusterRole #
71 metadata:
72 name: prometheus
73 rules:
74 - apiGroups: [""]
75 resources:
76 - nodes
77 - services
78 - endpoints
79 - pods
80 - nodes/metrics
81 - nodes/proxy
82 - nodes/stats
83 verbs: ["get", "list", "watch"]
84 ---
85 apiVersion: rbac.authorization.k8s.io/v1
86 kind: ClusterRoleBinding #
87 metadata:
88 name: prometheus
89 roleRef:
90 apiGroup: rbac.authorization.k8s.io
91 kind: ClusterRole
92 name: prometheus
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93 subjects:
94 - kind: ServiceAccount
95 name: prometheus
96 namespace: monitoring
97 ---
98 apiVersion: v1
99 kind: ConfigMap

100 metadata:
101 name: prometheus-config
102 data: #
103 prometheus.yml: |
104 global:
105 scrape_interval: 15s
106 evaluation_interval: 15s
107 scrape_configs:
108 - job_name: 'postgres-cluster'
109 kubernetes_sd_configs:
110 - role: pod
111 relabel_configs:
112 - source_labels: [__meta_kubernetes_namespace]
113 action: keep
114 regex: default
115 - source_labels: [__meta_kubernetes_pod_label_cnpg_io_instanceRole]
116 action: replace
117 target_label: instance_role
118 - source_labels: [__meta_kubernetes_pod_container_port_number]
119 action: keep
120 regex: 9187
121 - job_name: 'kubernetes-node-exporter'
122 kubernetes_sd_configs:
123 - role: pod
124 relabel_configs:
125 - source_labels: [__meta_kubernetes_pod_label_app]
126 action: keep
127 regex: node-exporter
128 - job_name: 'kubernetes-kube-state-metrics'
129 scrape_interval: 1s
130 kubernetes_sd_configs:
131 - role: pod
132 relabel_configs:
133 - source_labels: [__meta_kubernetes_pod_label_app_kubernetes_io_name]
134 action: keep
135 regex: kube-state-metrics
136 ---
137 apiVersion: apps/v1
138 kind: StatefulSet
139 metadata:
140 name: prometheus
141 spec:
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142 serviceName: prometheus
143 replicas: 1
144 selector:
145 matchLabels:
146 app: prometheus
147 template:
148 metadata:
149 labels:
150 app: prometheus
151 spec:
152 serviceAccountName: prometheus #
153 initContainers:
154 - name: prometheus-data-permission-setup
155 image: busybox
156 command: ["/bin/chown","-R","65534:65534","/data"]
157 volumeMounts:
158 - name: data
159 mountPath: /data
160 containers:
161 - name: prometheus
162 image: prom/prometheus:latest
163 args:
164 - "--config.file=/etc/prometheus/prometheus.yml"
165 - "--storage.tsdb.path=/data"
166 - "--web.enable-lifecycle"
167 ports:
168 - containerPort: 9090
169 name: http-metrics
170 volumeMounts:
171 - name: config
172 mountPath: /etc/prometheus
173 - name: data
174 mountPath: /data
175 volumes:
176 - name: config
177 configMap:
178 name: prometheus-config
179 volumeClaimTemplates:
180 - metadata:
181 name: data
182 spec:
183 accessModes:
184 - ReadWriteOnce
185 resources:
186 requests:
187 storage: 2Gi
188 ---
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C Primary failure testing script

C.1 Script
1 import psycopg2
2 from psycopg2 import OperationalError
3 import time
4 import random

5 postgres_rw, postgres_ro = "10.96.188.11", "10.101.123.167"
6 dbname, username, password = "app", "app", "password"

7 def connect_to_database():
8 # Modify these parameters with your PostgreSQL database information
9 try:

10 conn = psycopg2.connect(
11 dbname=dbname,
12 user=username,
13 password=password,
14 host=postgres_rw,
15 port="5432"
16 )
17 return conn
18 except OperationalError as e:
19 return None

20 def execute_write_read_query(conn):
21 try:
22 cursor = conn.cursor()

23 try:
24 # Create a table if not exists
25 create_table_query = """
26 CREATE TABLE IF NOT EXISTS test_table (
27 id SERIAL PRIMARY KEY,
28 column_name INTEGER
29 )
30 """
31 cursor = conn.cursor()
32 cursor.execute(create_table_query)
33 conn.commit()

34 # # Generate a random value
35 random_value = random.randint(0, 1000000)

36 # # Execute write query
37 start_time = time.monotonic()
38 cursor.execute("INSERT INTO test_table (column_name) VALUES (%s)",

(random_value,))↪→
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39 conn.commit()
40 end_time = time.monotonic()
41 write_latency = end_time - start_time

42 # Execute read query
43 start_time = time.monotonic()
44 cursor.execute("SELECT column_name FROM test_table ORDER BY id DESC

LIMIT 1")↪→

45 result = cursor.fetchone()
46 end_time = time.monotonic()
47 read_latency = end_time - start_time

48 # Check if read is successful
49 if result is not None:
50 read_success = True
51 else:
52 read_success = False

53 # Check if write is successful (compare the written value with the read
value)↪→

54 if result is not None and result[0] == random_value:
55 write_success = True
56 else:
57 write_success = False

58 return write_success, write_latency, read_success, read_latency

59 except psycopg2.Error as e:
60 conn.rollback()
61 print(f"{e}")
62 return False, None, False, None
63 finally:
64 cursor.close()
65 except:
66 print("no connection")
67 return False, None, False, None

68 def main():
69 while True:
70 conn = connect_to_database()

71 if conn is None:
72 print("Lost connection to the database")

73 # Wait until the connection is re-established
74 while True:
75 print("Attempting to reconnect...")
76 conn = connect_to_database()
77 if conn is not None:
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78 break
79 write_success, write_latency, read_success, read_latency =

execute_write_read_query(conn)↪→

80 print(f"{time.monotonic()}; Write Success: {write_success}, Latency:
{write_latency}; Read Success: {read_success}, Latency:
{read_latency}")

↪→

↪→

81 if __name__ == "__main__":
82 main()

C.2 Output
1 Current time: 4363537.877782201; Write Success: True, Latency:

0.009144876152276993; Read Success: True, Latency: 0.0014316439628601074↪→

2 Current time: 4363537.910006191; Write Success: True, Latency:
0.010425306856632233; Read Success: True, Latency: 0.003867696039378643↪→

3 Current time: 4363537.950310707; Write Success: True, Latency:
0.011125799268484116; Read Success: True, Latency: 0.0015683574602007866↪→

4 Lost connection to the database
5 Attempting to reconnect...
6 Attempting to reconnect...
7 Attempting to reconnect...
8 cluster takes 132.62531081866473 to recover
9 Current time: 4363670.610451287; Write Success: True, Latency:

0.018396921455860138; Read Success: True, Latency: 0.002729536034166813↪→

10 Current time: 4363670.639573601; Write Success: True, Latency: 0.00948651134967804;
Read Success: True, Latency: 0.002178587019443512↪→

11 Current time: 4363670.668656484; Write Success: True, Latency:
0.009290928021073341; Read Success: True, Latency: 0.0015430273488163948↪→
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D Replica failure testing script

D.1 Script
1 import psycopg2
2 from psycopg2 import OperationalError
3 import time

4 REPLICA_IP, dbname, username, password = "10.101.118.101", "app", "app", "password"

5 def connect_to_database():
6 # Modify these parameters with your PostgreSQL database information
7 try:
8 conn = psycopg2.connect(
9 dbname=dbname,

10 user=username,
11 password=password,
12 host=REPLICA_IP,
13 port="5432"
14 )
15 return conn
16 except OperationalError as e:
17 return None

18 def execute_read_query(conn):
19 try:
20 cursor = conn.cursor()

21 try:
22 # Execute read query
23 start_time = time.monotonic()
24 cursor.execute("SELECT column_name FROM test_table ORDER BY id DESC

LIMIT 1")↪→

25 result = cursor.fetchone()
26 end_time = time.monotonic()
27 read_latency = end_time - start_time

28 # Check if read is successful
29 if result is not None:
30 read_success = True
31 else:
32 read_success = False

33 return read_success, read_latency

34 except psycopg2.Error as e:
35 conn.rollback()
36 print(f"{e}")
37 return False, None
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38 finally:
39 cursor.close()
40 except:
41 print("no connection")
42 return False, None

43 def main():
44 while True:
45 conn = connect_to_database()

46 if conn is None:
47 print("Lost connection to the database")
48 failure_start_time = time.monotonic()
49 # Wait until the connection is re-established
50 while True:
51 print("Attempting to reconnect...")
52 conn = connect_to_database()
53 if conn is not None:
54 print(f"cluster takes {time.monotonic() - failure_start_time} to

recover")↪→

55 break
56 read_success, read_latency = execute_read_query(conn)
57 print(f"{time.monotonic()}; Read Success: {read_success}, Latency:

{read_latency}")↪→

58 if __name__ == "__main__":
59 main()

D.2 Output
1 4360728.066286806; Read Success: True, Latency: 0.002768927253782749
2 4360728.089979115; Read Success: True, Latency: 0.005216777324676514
3 Lost connection to the database
4 Attempting to reconnect...
5 Attempting to reconnect...
6 cluster takes 132.5847332375124 to recover
7 4360860.731599201; Read Success: True, Latency: 0.011759408749639988
8 4360860.745601946; Read Success: True, Latency: 0.002377951517701149
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E Split-brain testing script

E.1 Script
1 import psycopg2
2 from psycopg2 import OperationalError
3 import time
4 import random

5 postgres_rw, postgres_ro = "10.0.3.138", "10.0.1.104"
6 dbname, username, password = "app", "app", "password"

7 def connect_to_database(host):
8 # Modify these parameters with your PostgreSQL database information
9 try:

10 conn = psycopg2.connect(
11 dbname=dbname,
12 user=username,
13 password=password,
14 host=host,
15 port="5432"
16 )
17 return conn
18 except OperationalError as e:
19 return None

20 def execute_write_read_query(primary_conn, replica_conn):
21 primary_cursor, replica_cursor = primary_conn.cursor(), replica_conn.cursor()

22 try:
23 # Create a table if not exists
24 create_table_query = """
25 CREATE TABLE IF NOT EXISTS test_table (
26 id SERIAL PRIMARY KEY,
27 column_name INTEGER
28 )
29 """
30 primary_cursor.execute(create_table_query)
31 primary_conn.commit()

32 # # Generate a random value
33 random_value = random.randint(0, 1000000)

34 # # Execute write query
35 start_time = time.monotonic()
36 primary_cursor.execute("INSERT INTO test_table (column_name) VALUES (%s)",

(random_value,))↪→

37 primary_conn.commit()
38 end_time = time.monotonic()
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39 write_latency = end_time - start_time

40 # Execute read query
41 start_time = time.monotonic()
42 replica_cursor.execute("SELECT column_name FROM test_table ORDER BY id DESC

LIMIT 1")↪→

43 result = replica_cursor.fetchone()
44 end_time = time.monotonic()
45 read_latency = end_time - start_time

46 # Check if read is successful
47 if result is not None:
48 read_success = True
49 else:
50 read_success = False

51 # Check if write is successful (compare the written value with the read
value)↪→

52 if result is not None and result[0] == random_value:
53 write_success = True
54 else:
55 write_success = False
56 print(f"random_value is {random_value}, result[0] is {result[0]}")

57 return write_success, write_latency, read_success, read_latency
58 except psycopg2.Error as e:
59 print(f"{e}")
60 return False, None, False, None
61 finally:
62 primary_cursor.close()
63 replica_cursor.close()

64 def main():
65 while True:
66 primary_conn, replica_conn = connect_to_database(postgres_rw),

connect_to_database(postgres_ro)↪→

67 if primary_conn is None or replica_conn is None:
68 print("Lost connection to the database")

69 # Wait until the connection is re-established
70 while True:
71 print("Attempting to reconnect...")
72 primary_conn, replica_conn = connect_to_database(postgres_rw),

connect_to_database(postgres_ro)↪→

73 if primary_conn is not None and (replica_conn is not None):
74 break

75 else:
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76 write_success, write_latency, read_success, read_latency =
execute_write_read_query(primary_conn, replica_conn)↪→

77 print(f"{time.monotonic()}; Write Success: {write_success}, Latency:
{write_latency}; Read Success: {read_success}, Latency:
{read_latency}")

↪→

↪→

78 if __name__ == "__main__":
79 main()

E.2 Output
1 4362370.219541379; Write Success: True, Latency: 0.01057056151330471; Read Success:

True, Latency: 0.0023303302004933357↪→

2 4362370.273977052; Write Success: True, Latency: 0.010082093998789787; Read
Success: True, Latency: 0.0029499325901269913↪→

3 4362370.333786897; Write Success: True, Latency: 0.01132146641612053; Read Success:
True, Latency: 0.0023874007165431976↪→

4 Lost connection to the database
5 Attempting to reconnect...
6 Attempting to reconnect...
7 cluster takes 132.8893731413409 to recover
8 4362503.311456433; Write Success: True, Latency: 0.019097312353551388; Read

Success: True, Latency: 0.0028968779370188713↪→

9 4362503.36329722; Write Success: True, Latency: 0.010089441202580929; Read Success:
True, Latency: 0.003241436555981636↪→

10 4362503.416680352; Write Success: True, Latency: 0.012647973373532295; Read
Success: True, Latency: 0.005675826221704483↪→

11 4362503.464382069; Write Success: True, Latency: 0.009269298054277897; Read
Success: True, Latency: 0.0037214430049061775↪→

12 4362503.508715628; Write Success: True, Latency: 0.011828869581222534; Read
Success: True, Latency: 0.0033265361562371254↪→
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F Useful commands
1 # List all pods sort by node name
2 kubectl get pods -A -o wide --sort-by=.spec.nodeName

3 # How to join second node as control plane node
4 ## In the first master node run:
5 kubeadm init phase upload-certs --upload-certs

6 ## Take note of the certificate key
7 ## Add the certificate key to parameter --certificate-key
8 ## to the end of the output of
9 kubeadm token create --print-join-command

10 ## Example of a complete command:
11 kubeadm join 193.40.103.161:6443 \
12 --token puoa01.a5oxbafba7k2pyns \
13 --discovery-token-ca-cert-hash \
14 sha256:5c185a27adfba2940f50d247c66de45b9e5bd35ed00d709c59ec40a5591b5bf0 \
15 --control-plane --certificate-key \
16 8d3c989c8fd311a1ed7640992648bbec729b267103b4a62cc6cb33fa85b79035

17 # Remove taint on master nodes so that they could act as worker
18 kubectl taint nodes master1 node-role.kubernetes.io/control-plane:NoSchedule-
19 kubectl taint nodes master2 node-role.kubernetes.io/control-plane:NoSchedule-
20 kubectl taint nodes master3 node-role.kubernetes.io/control-plane:NoSchedule-

21 # Use Helm to generate Kubernetes resource files
22 helm template eppki traefik/traefik \
23 --create-namespace --include-crds -n traefik > traefik.yaml

24 # forward Longhorn service to access the UI
25 kubectl port-forward service/longhorn-frontend -n longhorn-system 2222:80
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