
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Karl-Johan Pilve

Lane Centerline Detection from
Orthophotos using Transformer Networks

Master’s Thesis (30 ECTS)

Supervisors: Tambet Matiisen, MSc

Edgar Sepp, MSc

Tartu 2024

Lane Centerline Detection from Orthophotos using Transformer Net-
works

Abstract:
A high-definition (HD) map containing accurate lane network data is essential for
autonomous driving. Yet, the creation of an HD map for a larger area is often a time-
consuming and labor-intensive process. Recently, neural networks utilizing the trans-
former architecture have shown promising results in the field of computer vision. One
such example is RNGDet, which uses aerial images to iteratively generate a road network
graph. This thesis explores the viability of fine-tuning the RNGDet model with lane
network data to generate a lane network graph for the entire city of Tartu based on
high-resolution orthophotos. The obtained results show that RNGDet could be used in
principle to generate a lane network graph. However, the model’s architecture likely
requires more extensive modifications to accommodate the differences between road and
lane network data. Since the orthophotos may not contain all the necessary information
for correct lane network generation, the best-performing model used orthophotos with
rasterized raw GPS trajectories, which were collected by a survey vehicle. The obtained
results also indicate that additional training data is needed to increase the quality of the
generated lanes enough that they could be used in HD maps.

Keywords:
Computer vision, High-definition maps, Transformer, Lane network graph detection

CERCS:
T111 - Imaging, image processing; P176 - Artificial intelligence

2

Sõiduraja keskjoonte tuvastamine ortofotodelt transformeriga
Lühikokkuvõte:
Sõiduradade andmeid sisaldav täppiskaart on isejuhtivate sõidukte opereerimisel väga
oluline komponent. Samas on täppiskaardi loomine suurema ala kohta sageli ajakulukas
ning töömahukas protsess. Hiljuti on transformeri arhitektuuri kasutavad tehisnärvivõr-
gud näidanud paljulubavaid tulemusi masinnägemise valdkonnas. Üks selline näide on
RNGDet, mis genereerib iteratiivselt teedevõrgu graafi aerofotode põhjal. Käesolevas
töös uuritakse võimalust peenhäälestada RNGDet mudelit sõiduradade andmetega, et
genereerida kogu Tartu linna kattev sõiduradade graaf kasutades kõrge resolutsiooniga
ortofotosid. Töös saadud tulemused näitavad, et RNGDeti on põhimõtteliselt võimalik
kasutada sõiduradade graafi genereerimiseks. Samas oleks mudeli arhitektuuris vaja tõe-
näoliselt teha suuremaid muudatusi, et võtta arvesse teedevõrgu ja sõiduradade andmete
vahelisi erinevusi. Kuna ortofotodel ei pruugi alati olla kogu vajaliku informatsioon sõi-
duradade õigesti genereerimiseks, siis kõige paremaid tulemusi andis mudel, mis kasutas
ortofotodele rasterdatud mõõdistussõiduki poolt kogutud töötlemata GPS trajektoore.
Saadud tulemused näitavad veel, et täppiskaardi jaoks sobiva kvaliteediga sõiduradade
genereerimiseks oleks vaja koguda täiendavaid treeningandmeid.

Võtmesõnad:
Masinnägemine, Täppiskaardid, Transformer, Sõiduradade graafi tuvastamine

CERCS:
T111 - Pilditehnika; P176 - Tehisintellekt

3

Contents
1 Introduction 6

2 Background 8
2.1 Road or lane network extraction . 8

2.1.1 Segmentation-based methods 8
2.1.2 Iterative graph-generation methods 10
2.1.3 Whole graph-generation methods 11
2.1.4 Vehicle sensors based methods 12

2.2 Transformer . 13
2.2.1 Vision transformer . 16
2.2.2 DETR . 17

3 Models 19
3.1 RNGDet . 19

3.1.1 Model architecture . 19
3.1.2 Agent . 21
3.1.3 Loss functions . 22

3.2 RNGDet++ . 23

4 Datasets 25
4.1 Road detection dataset . 25
4.2 Lane detection dataset . 27
4.3 Generation of training samples . 28

5 Experiments and results 30
5.1 Evaluation metrics . 30
5.2 General training details . 31
5.3 Experiments . 31

5.3.1 Retraining the RNGDet model 31
5.3.2 Road network extraction with Estonia dataset 32
5.3.3 Additional backbone . 32
5.3.4 Lane network extraction . 35
5.3.5 Images with trajectories . 39

6 Discussion 40
6.1 Limitations of aerial images . 40
6.2 Post-processing . 41

7 Conclusion 43

4

8 Acknowledgments 44

References 45

Appendix 51
I. Source code and training data . 51
II. Licence . 52

5

1 Introduction
High-definition maps (HD maps) are an integral part of autonomous driving. HD maps
can be referred to as the most intelligent sensor of the autonomous vehicle, as they
offer unlimited range and enable the vehicle to maintain adequate situation awareness
in occluded areas and during poor weather conditions [18]. Additionally, HD maps are
essential for localization, journey planning, and trajectory calculation [26]. HD maps
can also be used to predict the trajectories of other vehicles and pedestrians [17] and to
anticipate obstacles or other potential hazards. Common characteristics of an HD map
are lane-level accuracy, at least centimetre-level precision, and highly detailed semantic
information.

Creating high-definition maps can be costly and a labor-intensive process [18, 24].
Boa et al. [5] describes the general HD map creation pipeline. First, data must be
collected with survey vehicles, which are usually equipped with GPS, IMU, LiDAR,
and cameras. The following steps in HD map creation are point cloud map generation
to create a geometric HD map layer used for localization, and the extraction of lane
network and other semantic features for the semantic HD map layer, which is mainly
used for journey planning and navigation. Finally, the extracted semantic features can
be integrated into HD map frameworks, such as Lanelet2 [38] or OpenDRIVE [1], to
ensure compatibility with existing autonomous driving software.

The feature extraction process usually involves a large amount of labor by human
annotators, who use the data gathered by survey vehicles as well as aerial images. Tra-
ditionally, the task of lane network extraction was automated with segmentation-based
methods, which can yield good pixel-level results but suffer from network connectivity
and topological correctness issues. Recently, with advancements in deep learning algo-
rithms, graph-based road and lane generation methods have shown comparable or even
greater accuracy than segmentation-based methods. Some state-of-the-art graph genera-
tion models have successfully incorporated the transformer [46] into their architecture.

The transformer is a deep learning architecture which has shown exceptional results
in natural language processing, computer vision, and multi-modal processing. Since
transformers are intended for predicting sequential data with non-uniform length, they
should be ideal for directly predicting road or lane network graphs, where the individual
roads or lanes could be represented as a sequence of coordinates. Additionally, the
attention mechanism should allow the transformer to focus on important areas of the
aerial images and relevant past predictions. Therefore, the task of lane generation from
aerial images is similar to an image captioning task, where visual transformers have
dominated the benchmarks.

The Autonomous Driving Lab (ADL) at the University of Tartu has mapped the lanes
on a few test roads in Tartu and Tallinn. Each lane on ADL’s HD map is represented by
its centerline, a sequence of two-dimensional points at the center of the lane’s drivable
area. Individual lane geometries are connected if they contain a point with exactly the

6

same coordinates. The mapping process at the ADL relies mostly on human annotators,
although there have also been experiments with heuristics-based algorithms. The human
mappers have drawn the lanes based on the survey vehicle’s GPS trajectories and geo-
metrically corrected aerial images, named orthophotos. As previously mentioned, many
methods are available to automate the lane network creation process, and the ADL is
actively researching which method could deliver the most accurate results.

This thesis explores the viability of generating the lane network from orthophotos
with a deep-learning model utilizing the transformer architecture. Our main contributions
are as follows:

• The creation of Estonian road and lane detection datasets. As part of creating the
lane detection dataset, a large area in Tartu was mapped to supplement the ADL’s
existing lane data.

• Training a well-performing road detection model with the RNGDet [49, 51] deep-
learning network.

• Modifying the RNGDet for the lane detection task and fine-tuning the road detec-
tion model with multiple lane detection datasets.

Excluding the introduction, conclusion, and acknowledgments, this thesis is divided
into five sections. Section 2 overviews existing road or lane network extraction methods
and the transformer architecture. The models used for training are described in Section 3.
Section 4 gives an overview of the training datasets and their creation process. Section 5
presents the quantitative and qualitative results of the trained models. Section 6 discusses
the overall results, limitations of aerial images, and post-processing steps required to
make the model’s output suitable for HD maps.

This thesis was written using the Overleaf1 text editor. The text was checked with the
Grammarly2 writing assistant to catch typos and other grammatical errors.

1Overleaf: https://www.overleaf.com
2Grammarly: https://www.grammarly.com

7

2 Background
This section presents the background information related to detecting lane networks with
a transformer. In the first subsection, past work on the task of road or lane extraction from
aerial images is discussed. The second subsection describes the transformer architecture.

2.1 Road or lane network extraction
Road and lane detection from bird’s-eye-view (BEV) images is an extensively researched
topic, with the first attempts dating back to the 1970s [3]. Earlier works mainly focused
on road network detection, as high-resolution aerial imagery was not widely available
and usually employed a segmentation-based approach. However, with the adoption of
deep learning algorithms in the 2010s, graph-based methods and methods extracting
BEV features from data gathered by survey vehicles have also shown promising results.

2.1.1 Segmentation-based methods

Segmentation-based methods [4, 8, 13, 14, 19, 36, 37, 52] usually generate the road or
lane network in two steps. First, the probabilistic segmentation map of the road or lane
network is predicted. Secondly, the network graph is extracted with post-processing
algorithms. Traditional segmentation algorithms used geometric-stochastic models
[6], which predicted the segmentation mask based on the color intensity, texture, and
assumption about the road width and trajectory.

Since the mid-2010s, convolutional neural networks (CNNs) have started to replace
the stochastic models for the segmentation map prediction task. Models utilizing power-
ful CNNs, such as U-Net [41], ResNet [22], and DeepLabv3+ [12], have demonstrated
excellent accuracy and robustness in predicting the segmentation map. However, extract-
ing the road network graph from the predicted segmentation map is still challenging.
Classical skeletonization algorithms have struggled to produce a connected road network
in areas occluded by trees, buildings, or intense shadows or in areas of high road intensity
[36, 49].

DeepRoadMapper, proposed by Máttyus et al. [36], utilizes the A* search algorithm
to fill gaps in the network and connect disconnected segments. DeepRoadMapper uses a
ResNet-inspired CNN with a custom loss function developed by the authors to generate
the segmentation maps. Then, the skeletonization algorithm is applied, and small curves
and loops are removed from the road graph. Next, segments connecting leaf nodes to
other nodes are generated if their distance is less than 50m. Each connecting segment
is weighted based on the likelihood of it being a road. Finally, the likeliest segment is
chosen with the A* algorithm.

Batra et al. [8] proposed a connectivity task called Orientation Learning, inspired
by how humans connect disjointed road segments. The Orientation Learning approach

8

calculates an orientation vector for each consecutive point pair in a road segment. A
convolutional model was trained to fill in the gaps in the road network extracted with a
segmentation model by tracing the connecting segment based on the calculated orientation
vectors. The authors use a multi-task learning approach [27] to combine the orientation
and the segmentation tasks into one CNN model. However, the model still struggled
with complex intersections, minor roads, and parking lots, which prompted the authors to
employ an additional connectivity refinement step in the final stage of their road detection
approach.

SPIN Road Mapper, proposed by Bandara et al. [4], introduced a Spatial and Interac-
tion Space Graph Reasoning (SPIN) module, which performs reasoning over graphs built
on spatial space and a projected latent interaction space from feature maps. Graph reason-
ing on spatial space improves the connectivity between road segments, and reasoning on
interaction space helps distinguish roads from other topographic elements. This improves
the segmentation accuracy and increases the convergence rate of the network by half.
SPIN module is intended to be easily added into a CNN model after a convolutional block.
The authors employ a SPIN pyramid in their experiments to perform graph reasoning
at multiple scales and increase the network’s receptive field. The proposed SPIN Road
Mapper is depicted in Figure 1.

Figure 1. An overview of the SPIN Road Mapper. Graph reasoning is done (a) on spatial
space to improve the road connectivity and (b) on a projected latent interaction space to
delineate roads from other topographies [4].

9

2.1.2 Iterative graph-generation methods

Although there have been many proposals to increase the performance of the segmentation-
based method in complex and occluded zones, none have produced robust results in these
problematic areas. A fundamental problem with the segmentation-based method is that it
only utilizes local information at the segmentation map generation stage. At the same
time, the actual network graph is constructed in a post-processing stage, which often
relies more on heuristics than machine learning [7].

Iterative graph-generation methods [7, 9, 31, 42, 49, 51] use deep learning models to
generate a road or lane network graph directly from the aerial image. The method starts
from a given vertex on the network and continuously predicts the following vertices based
on the current vertex, the surrounding area, and past predictions. The algorithm stops
after exploring the whole input image. Road segments are guaranteed to be connected in
each network component, and the maximum number of disconnected components cannot
be greater than the number of initial vertices. However, due to the iterative nature of
the method, inference can be considerably slower compared to the segmentation-based
methods. The method is also prone to drifting away from the ground truth during the
generation of a single road segment.

RoadTracer, proposed by Bastani et al. [7], is considered to be the first road network
extraction model utilizing the iterative graph-generation method. RoadTracer uses a CNN
decision function at each vertex to predict the next vertex, to stop, or to walk back along
the already generated graph to some other vertex. The CNN makes its decision based on a
4-channel n×n window around the current vertex. The first three channels of the window
are the RGB values from the aerial image, and the fourth channel contains information
about the already generated graph. The model is initialized with a single vertex obtained
from the ground truth. RoadTracer outperformed many segmentation-based methods and
produced results comparable to those of DeepRoadMapper. RoadTracer showed strong
topology performance while doing poorly with intersection detection.

VecRoad, proposed by Tan et al. [42], introduced a flexible step size while predicting
the next vertex. This improves the detection accuracy of intersection points and other non-
trivial vertices (see Figure 2). VecRoad uses segmentation-cues, i.e., segmentation maps
predicting the location of road centerlines and intersections, to generate a probabilistic
distribution of adjacent vertices of the current vertex. Also, the authors extracted starting
vertices from the local peaks of these segmentation maps. VecRoad outperformed
RoadTracer, but the prediction of the segmentation maps still requires post-processing
algorithms, which make end-to-end usage hard.

Since the graph-generation models RNGDet [49] and RNGDet++ [51] are used for
lane network detection in this thesis, their architecture is described in Section 3.

10

Figure 2. The flexible step size of VecRoad improves the accuracy of non-trivial vertices,
such as (a) intersections, (b) road ends, and (c) points linking road segments [42].

2.1.3 Whole graph-generation methods

Whole graph-generation methods [23, 48] try to simultaneously predict the entire road or
lane network graph. With this method, a neural network encodes aerial images into vector
representations and then decodes these representations into a road or lane network graph.
This method should have a much greater receptive field than the segmentation-based
and iterative graph-generation methods. However, directly predicting the whole graph
is a much more difficult task for the neural network because the relationships between
vertices and the pixel values of the input image can be somewhat ambiguous.

Sat2Graph, presented by He et al. [23], is believed to be the first application of the
whole graph-generation method on the road network extraction task. Sat2Graph employs
a novel graph-tensor encoding scheme (GTE), which encodes the road network into
a 19-dimension tensor. This enables the training of a simple neural network, which
predicts graph structures from the input image. Sat2Graph can match the state-of-the-art
methods, but the authors also discuss two problems regarding the Sat2Graph method.
Firstly, the heuristics-based GTE might not be able to represent all road network graphs,
and secondly, the GTE produces isomorphic encodings, which makes supervised training
difficult.

csBoundary, proposed by Xu et al. [48], detects road boundaries from aerial images.
The model outputs a continuous city-wide road-boundary graph based on the input image.
csBoundary uses a novel adjacency matrix prediction network (AfANet) based on the
transformer architecture [46]. According to the authors, csBoundar is the first model that
uses the transformer for automatic HD-map annotation. Before the input image is sent to
the AFANet, a feature pyramid network (FPN) [33] is used to predict the segmentation
map and the keypoint segmentation map. These maps are added to the original aerial
image as additional channels. Separately, a heuristics-based algorithm extracts the key-
points from the keypoint map, which are also given to the AfANet. Finally, the adjacency

11

Figure 3. Overview of the csBoundary method [48]. (a) The keypoint and segmentation
maps are predicted based on the 4-channel input aerial image. These maps are concate-
nated with the aerial images to form a 6-channel feature tensor. (b) Vertex coordinates of
the resulting graph are extracted from the keypoint map. (c) In AfANet, a global feature
vector is calculated based on the 6-channel tensor, and a local feature vector is calculated
based on a small area around each extracted vertex. The vertex coordinate vector and the
feature vectors are concatenated into the vertex embedding. (d) The adjacency matrix is
predicted based on the vertex embeddings, and the road boundary graph is constructed
from the extracted vertices and the adjacency matrix.

matrix of extracted vertices is obtained from the AfANet, and the road-boundary graph
is constructed from the adjacency matrix and the extracted keypoints. Figure 3 gives an
overview of the csBoundary pipeline. csBoundary showcased comparable performance
to other state-of-the-art methods.

2.1.4 Vehicle sensors based methods

Many HD map creation methods use data gathered by survey vehicles instead of aerial
images. The main advantage of survey vehicle data is the availability of rich multi-
source geometric information with millimeter-level precision, making the method more
suitable for lane network detection. Even if vehicle sensor data is not used by a road
or a lane detection method, the literature on vehicle sensors-based methods contains
many interesting approaches for converting BEV features into a road or a lane network
graph. Some past works have tried to extract the road network from 3D LiDAR point
clouds [25, 45], others have used images from vehicle cameras [10], cameras and point
clouds [29, 32, 50] or fused the survey vehicle’s data with aerial images to generate BEV
features from which a road network graph is predicted [30, 35].

12

HDMapNet, proposed by Li et al. [29], is a semantic map learning method that
predicts the BEV lane segmentation map from six vehicle camera images, from a point
cloud, or both. The camera images are encoded into a perspective view feature map with
a CNN and then transformed into BEV features with a natural view transformer. The 3D
point cloud is divided into multiple pillars, and BEV feature maps are predicted from
the pillar-wise features with a variant of the PointNet model [39]. Based on the features
obtained from the camera images and point cloud, a fully convolutional BEV decoder
predicts the segmentation map, instance embedding, and each lane’s direction value.
Finally, the resulting segmentation map is vectorized with a skeletonization algorithm
using the instance embedding and direction values to produce the lane network graph.

BoundaryNet, presented by Ma et al. [35], is a road boundary detection model that
makes its predictions based on vehicle trajectory data, point clouds, and satellite imagery.
The model consists of four sections. In the first section, heuristics-based algorithms
extract noisy road boundaries containing gaps from the point cloud. The noise is removed
with a modified U-net network, and the gaps are closed with a CNN in the second section.
The third section contains the D-LinkNet model [53], which extracts road centerlines
from the satellite images. Road centerlines assist the further refinement of boundaries in
the fourth section with a conditional deep convolutional generative adversarial network
(c-DCGAN).

2.2 Transformer
The Transformer is a deep learning model architecture introduced in the paper "Attention
is All You Need" by Vaswani et al. [46]. First developed for machine translation, it has
quickly become the state-of-the-art approach in the natural language processing (NLP)
domain. The best-performing large language models (LLMs), including BERT [15],
OpenAI’s GPT series [40], and Meta’s LLaMA family [44], all use the Transformer in
their architecture. The Transformer’s ability to handle variable-length sequential data and
its parallelization capabilities have led to its adoption in other machine learning domains,
such as computer vision, audio, robotics, and multi-modal processing.

A vital component of the Transformer is the multi-head self-attention (MSA), which
uses the attention mechanism to calculate the relationship between each element in the
input sequence. MSA allows the model to selectively focus on different parts of the input
when producing an output sequence. The amount each element should attend to some
other element is represented with an attention score. The attention score is calculated
with three vectors referred to as query (q), key (k), and value (v). These vectors are
created by multiplying the embedding xi of each element in the input sequence by weight
matrices WQ, WK , WV that are trained during the training process:

qi = xi ×WQ ki = xi ×WK vi = xi ×WV (1)

13

Attention can be calculated on the embedding matrix X =

[
x1...
xn

]
of the whole input

sequence with the following formula:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2)

where Q, K, and V are the matrices consisting of queries qi, keys ki, and values vi of
the whole sequence, and dk denotes the dimension of the key vector. This particular
attention is called scaled dot-product attention (Figure 4) because the attention weights
are computed from the dot product of query and key vectors and scaled down by

√
dk to

stabilize gradients during the training. Finally, the attention weights are normalized with
softmax.

The original Transformer paper feeds the input embeddings into h different attention-
heads that each have independently trained weight matrices for queries, keys, and values.
The outputs from each head are concatenated and linearly projected into the output
embedding of the MSA layer. The paper argues that multiple heads help the model focus
on multiple positions simultaneously and capture different aspects or representations of
the input data. Additionally, the calculations for each attention head can be performed in
parallel, which speeds up training. Multi-head attention is depicted in Figure 4.

The original implementation of the Transformer uses an encoder-decoder structure
without any convolutional or recurrent units (Figure 5). The task of the encoder is to take
the vector representations of the input sequence, i.e., input embeddings, and transform
them into encodings that can be passed to the decoder’s encoder-decoder attention blocks.

Figure 4. The calculation of scaled dot-product attention is depicted on the left, and the
structure of multi-head attention is shown on the right [46].

14

Figure 5. Architecture overview of the Transformer [46].

The encoder consists of N number of identical encoder layers. Each layer has two
sub-layers – multi-head self-attention and a feed-forward network. A residual connection
exists around both sub-layers, followed by layer normalization [2].

The decoder iteratively generates the output sequence elements based on the previous
steps’ output embeddings and encodings from the encoder. The decoder has N number
of identical decoder layers, and each layer has three sub-layers – masked multi-head
self-attention, encoder-decoder attention, and a feed-forward network. The masked multi-
head self-attention is similar to the attention block in the encoder – it can only attend to
the preceding elements in the input sequence. The encoder-decoder attention takes the
queries from the previous sub-layer, and the keys and values come from the output of the
encoder. Similar to the encoder, each decoder sub-layers has a residual connection and a
layer normalization. Finally, the output of the decoder is passed through a linear and a
softmax layer to obtain the probabilities for the next element in the sequence.

Since the Transformer model does not have any information about the order of the
elements in the input sequence, a vector representing the positional information of the
elements is added to each input embedding before they are passed to the Transformer
layers. These vectors are called positional encodings, and multiple options exist to
create them [21]. The original Transformer used sine and cosine functions of different
frequencies to calculate the positional encodings.

15

Figure 6. Architecture overview of the Vison Transformer (ViT) [16].

2.2.1 Vision transformer

Transformers designed for computer vision are named Vision Transformers (ViT). Many
variants exist, but the original architecture was proposed in a 2020 paper by Dosovitskiy
et al. [16]. It was the first transformer to achieve state-of-the-art performance on image
classification tasks while not relying on CNNs to extract and process the relevant features
from the input image. Since the release of the original ViT, several Vision Transformer
architectures have been proposed, including Swin Transformer [34], DeiT [43], and
Pyramid Vision Transformer (PVT) [47].

The original Vision Transformer follows closely the design of the original Trans-
former proposed by Vaswani et al. [46]. Since the transformer takes only 1-dimensional
sequences as input, the input images are divided into non-overlapping square patches,
which are then flattened to 1-dimensional vectors with a trainable linear projection.
These flattened patches are called patch embeddings and serve as input tokens for the
transformer. Learnable position embeddings are added to the patch embeddings to retain
spatial information. Also, a special embedding, used for predicting the class label, is
added to the input sequence.

The encoder layers of the ViT are the same as those in the original Transformer:
multi-head attention, feed-forward network, and layer normalization. The only difference
is that in ViT, the normalization is done before the attention and the feed-forward network.
The output from the last encoder layer is passed through a classification head to predict
the label of the input image. The architecture of the ViT is shown in Figure 6.

Although the original ViT matched the state-of-the-art on many image classification
datasets, it performed poorly on other computer vision tasks, such as object detection
and segmentation. One reason might be that ViT has much less image-specific inductive

16

bias than CNNs. The 2-dimensional structure of the image is implicitly included in
CNN’s architecture, which allows it to recognize spatial patterns much more easily.
Additionally, the 16 × 16 pixel patch size of the original ViT makes it hard to learn
pixel-level information. Many architectures developed from the original ViT, such as the
Swin Transformer, aim to fix these shortcomings.

2.2.2 DETR

A popular approach for detecting objects from images is to combine the transformer
with CNNs to leverage the strengths of both designs in tandem. DEtection TRansformer
(DETR) proposed by Carion et al. [11] is a simple end-to-end object detection model
that processes the input images with CNNs before using the transformer to predict the
location and class label of the objects in the image.

DETR treats the object detection task as a set prediction problem and employs a
unique loss function that performs bipartite matching between predicted and ground-truth
objects. Since DETR predicts exactly N number of objects where N is larger than the set
of ground truth objects, it can be hard to score the predictions with respect to the ground
truth. The aforementioned loss ensures that each predicted object is associated with the
most appropriate ground-truth object, and the matching can be efficiently calculated with
the Hungarian algorithm [28].

Figure 7. Architecture overview of the DEtection TRansformer (DETR) [11].

The overall architecture of DETR is relatively simple (Figure 7). It consists of a CNN,
an encoder-decoder transformer, and a feed-forward network (FFN). First, the input image
is passed through a conventional CNN backbone, which reduces the spatial information
of the image into a lower-resolution activation map. Before the activation map is fed
into the encoder, it is flattened, and fixed positional encodings are added. The encoder
features a standard architecture with a multi-head self-attention block and a feed-forward
network. The decoder is also similar to the design in the original transformer paper,
the only difference being that it decodes N objects in parallel instead of predicting one
element at each step. The decoder is also permutation-invariant, meaning the order of the

17

decoder input embeddings does not matter, and they have to be distinct from each other to
produce different results. Thus, these input embeddings are learned positional encodings
and are referred to as object queries. The decoder produces an output embedding from
N number of object queries.

From the decoder output, an FFN predicts the bounding box’s center coordinates,
height, and width. A simple linear layer with a softmax function predicts the class label.
Since the transformer always predicts N number of objects, often more than in the input
image, a special class label is used to denote "empty" detections with no actual objects
of interest.

In the original paper, DETR showed comparable results to the optimized Faster
R-CNN baseline on the COCO dataset and outperformed the Faster R-CNN with larger
objects. It has a simple architecture, meaning the individual components, like the CNN,
transformer, and FNN, can easily be replaced with improved versions. Other advantages
of DETR include parallel processing and the effective self-attention mechanism to capture
complex spatial relationships. However, DETR’s performance is weaker on small objects,
and its training can be more computationally expensive.

18

3 Models
This thesis uses the RNGDet [49] and RNGDet++ [51] models to experiment with lane
centerline detection from orthophotos. These models were developed to detect roads
from aerial images, but the intention is to fine-tune them on lane network data. RNGDet
and RNGDet++ models were selected for the following reasons:

• RNGDet and RNGDet++ are only among the few road detection models that
incorporate the transformer into their architecture. One objective of this thesis is
to assess the viability of the transformer architecture for HD map creation based
on aerial images.

• RNGDet and RNGDet++ models make predictions only based on aerial images.
Many previous works have additionally used LiDAR data or images from vehicle
cameras. Collecting or purchasing this kind of data for large areas can be expensive,
but up-to-date, high-quality orthophotos can be obtained from the Estonian Land
Board free of cost.

• The models’ code is open-source3. Therefore, there is no need to implement the
model and the data processing pipeline from scratch.

This section gives a detailed description of RNGDet and RNGDet++. The first
subsection gives an overview of the architecture of RNGDet. The second subsection
discusses the additional features of the RNGDet++ model compared to the original
RNGDet.

3.1 RNGDet
RNGDet was proposed by Xu et al. in the 2022 paper "RNGDet: Road Network Graph
Detection by Transformer in Aerial Images" [49]. It uses an iterative graph approach
to detect the road network from aerial images. It showed comparable results to the
state-of-the-art on multiple public benchmarks.

3.1.1 Model architecture

RNGDet is developed on DETR’s architecture. The model takes an aerial image IA as
an input and outputs a road network graph G = (V,E), where V is a set of vertices
representing the coordinate points on the road network, and E is a set of road segments as
edges. RNGDet consists of two CNN backbones, two FPN heads, a transformer encoder,
and a transformer decoder. The architecture of RNGDet is depicted in Figure 8.

3RNGDetPlusPlus: https://github.com/TonyXuQAQ/RNGDetPlusPlus

19

Figure 8. Architecture overview of RNGDet [49].

The model starts by padding the input image IA with L number of black pixels and
dividing IA into L× L sized patches. Next, one CNN backbone predicts a feature tensor
FI from each patch. Each tensor FI is sent to a segmentation head and an intersection
segmentation head, both of which have the structure of an FPN [33]. The segmentation
head predicts the road segmentation map S, and the intersection segmentation head
predicts the intersection segmentation map I . Vertex vi ∈ V is considered an intersection
if its degree is equal to 1, marking the endpoint of a road, or it has a degree greater than 2,
marking an actual road intersection. A set of initial candidate vertices C is extracted from
I. The model uses those extracted vertices as starting points for road graph generation.

The model chooses a random vertex from C and starts iteratively generating the road
network graph G. At each time step t, the model takes the current vertex vt and crops out
a region of interest (ROI) with the size L× L around the vertex vt. One CNN backbone
extracts the visual tensor FI from the ROI. The other CNN backbone takes the rasterized
past road trajectories within the ROI and predicts a deep feature tensor FH. Tensors FI

and FH are then concatenated into F .
The tensor F is split into a sequence of smaller tensors, and positional encodings

are added before it is fed into the transformer encoder. Positional encodings are also
added to the encoder’s output sequence. The transformer decoder takes the encoder
output and a set of N vertex queries Q = {qi}Ni=1 to produce N number of potential
adjacent vertices and N probabilities. Based on each vertex query qi, which itself is
a learned embedding, the decoder predicts a coordinate tuple for a potential adjacent
vertex vit+1 and a probability pit+1 of vertex vit+1 being a valid vertex. The invalid vertices
are filtered out with some custom threshold pth to obtain the valid adjacent vertices V .
Finally, the current graph G is updated by adding each vertex vjt+1 ∈ V to V and edge
ejt+1 = {vt, vjt+1} to E.

20

Figure 9. Architecture overview of the transformer in RNGDet [49].

The transformer block of RNGDet has the same structure as DETR’s transformer.
It has 6 encoder layers and 6 decoder layers. As usual, the encoder comprises multi-
head self-attention and FFN blocks, both followed by layer normalization. The decoder
includes multi-head self-attention, encoder-decoder attention, and FFN blocks, each also
followed by layer normalization. The output from the final decoder layer is passed to
two FFN layers that predict the potential adjacent vertex coordinates and probabilities.
The transformer’s architecture is in Figure 9.

3.1.2 Agent

The RNGDet approach aims to train a decision-making agent that iteratively annotates
every road on the input image by imitating an expert annotator. The agent starts by taking
an initial candidate vertex from C and makes a prediction based on the ROI cropped out
around the current vertex. Based on the number of predicted adjacent vertices M = |V|,
the agent can continue in three different ways:

1. If M = 0, then the agent has reached the end of the current road segment. It pops
a new vertex from C and starts generating a new road segment. If C is empty, the
algorithm stops and outputs the final road network graph.

2. If M = 1, then the generation of the current road segment continues. The agent
moves to the predicted vertex v1t+1.

3. If M > 1, then the agent has reached an intersection. It pushes all the predicted

21

vertices vjt+1 ∈ V into C. The agent then pops a random vertex from C and
continues the road generation from that vertex.

The agent’s algorithm is illustrated in Figure 10.

Figure 10. Algorithm of the RNGDet’s agent [49].

3.1.3 Loss functions

Since RNGDet predicts a segmentation map, intersection segmentation map, vertex coor-
dinates, and probabilities, the final training loss L is a weighted sum of the segmentation
loss Lseg, coordinate loss Lcoord, and probability loss Lprob:

L = Lseg + αLcoord + βLprob (3)

Here α and β are custom weights to balance the losses.
Binary cross-entropy loss is used for the segmentation maps S and I . Let Ŝ and Î be

the predicted segmentation maps and S∗ and I∗ be the ground-truth segmentation maps.
The segmentation loss is calculated as follows:

Lseg = BCELoss(Ŝ,S∗) + BCELoss(Î, I∗) (4)

Here the BCELoss between a predicted map Ŷ and a ground-truth Y∗ is defined as:

BCELoss(Ŷ ,Y∗) = − w

L2

L2∑
i=1

wpy
∗
i · log(ŷi) + (1− y∗i) · log(1− ŷi) (5)

22

where ŷ and y∗ are the predicted and ground-truth pixel values, respectively. L is the
width and height of the ROI, w is a rescaling weight, and wp is a positive weight used to
balance the positive and negative pixels.

Before the coordinate loss calculation, a bipartite matching is done between the
predicted vertices {v̂i}Ni=1 and the ground-truth vertices {v∗j}Mi=j . Given that N ≥ M ,
some predicted vertices will be left unmatched. The optimal matching can be found by
finding the minimal value of the following function:

σ̂ = argmin
σ

N∑
i=1

∥(v̂i − v∗σ(i))∥ (6)

where σ(i) is the index of ground-truth vertex matched to the prediction v̂i. The Hungar-
ian algorithm [28] is used to find the optimal assignment σ̂. After obtaining the optimal
matching, pairwise Euclidean distances can be calculated to get the coordinate loss:

Lcoord =
1

M

M∑
i=1

∥(v̂i − v∗σ̂(i))∥ (7)

In addition to vertex coordinates, RNGDet also predicts valid probabilities {p̂i}Ni=1 for
each predicted vertex v̂i. The probability prediction is treated as a classification task -
each vertex can be valid or invalid. The predicted vertex v̂i is labeled as valid if it was
matched with some ground-truth vertex v∗j . Otherwise, it is labeled as invalid. The final
vertex probability is the predicted probability score for the valid class. Cross-entropy
loss is used to obtain the probability loss between the predicted valid probabilities P̂ and
ground-truth P∗:

Lprob = CELoss(P̂ ,P∗) = − 1∑N
i=1wp∗i

N∑
i=1

wp∗i
· log e

p̂i,p∗
i

ep̂
+
i + ep̂

−
i

(8)

Here p̂i,p∗i is the predicted log probability of the ground-truth class for vertex v̂i. p̂+i
and p̂−i are the log probabilities of v̂i being valid or invalid, respectively. wp∗i

is a
custom rescaling weight of the ground-truth class, which ensures that both classes remain
balanced.

3.2 RNGDet++
The original RNGDet model performed well but still failed in some complicated areas,
such as multi-level interchanges and very occluded streets. Therefore, the authors
published a follow-up paper [51], which introduced an improved version of RNGDet,
named RNGDet++. The proposed model is similar to the original RNGDet with two
significant changes (Figure 11):

23

• RNGDet++ extracts deep visual features from all four layers of the backbone to
better capture the visual information from the input image. RNGDet only took the
feature from the fourth backbone layer.

• An instance segmentation head is added to RNGDet++ to better supervise the
training. At each step, the network predicts an instance segmentation map for
each predicted vertex together with the vertex coordinates and probabilities. The
instance segmentation map depicts the shape of the road section between the
current vertex vt and the predicted vertex vit+1.

Figure 11. Architecture overview of RNGDet++ [51].

With the addition of instance segmentation head to the RNGDet++ network, an
instance segmentation loss Lins is added to the final training loss:

L = Lseg + αLcoord + βLprob + γLins (9)

Here γ is the custom weight for the instance segmentation loss. All other variables are
the same as in Equation 3. Instance segmentation loss itself is a binary cross-entropy loss
that was defined in Equation 5:

Lins =
1

N

N∑
i=1

BCELoss(ŜIi,S∗
Ii) (10)

where ŜIi is the predicted instance segmentation map for the predicted adjacent vertex
v̂it+1 and S∗

Ii is the ground-truth segmentation map of a road segment between the
ground-truth of the current vertex v∗t and the ground-truth of the adjacent vertex v∗t+1.

24

4 Datasets
Since the Autonomous Driving Lab at the University of Tartu has mapped only a few
areas in Estonia and, to the best of the author’s knowledge, there are no publicly available
lane detection datasets for Estonia, the RNGDet model was trained on a custom road
detection dataset, and it was later fine-tuned with a lane detection dataset. This section
gives an overview of both datasets and the training samples generation pipeline.

4.1 Road detection dataset
The first road detection models were trained with the dataset created by the authors of
the Sat2Graph model [23], as the authors of RNGDet used this dataset for both training
and evaluation. The Sat2Graph dataset consists of 180 satellite images from 20 cities in
the United States. However, a custom road detection dataset was created for this thesis
because the Sat2Graph dataset had a much smaller resolution than the imagery from the
Estonian Land Board. Also, a model trained on an Estonian dataset will likely predict
lanes from Estonian aerial images more accurately.

Table 1. Overview of orthophotos in the road detection dataset.

Country No. of images Date Source
Estonia 243 2020-2023 Estonian Land Board4

Latvia 85 2016-2018 Latvian Geospatial Information Agency5

The Netherlands 70 2022 Beeldmateriaal Nederland6

Switzerland 70 2020-2022 Federal Office of Topography (Swisstopo)7

Total 468

The road detection dataset used in this thesis consists of 243 orthophotos across
all major towns and cities in Estonia. Since Estonia is a small country, some areas
appear twice in the dataset, but in that case, one is a summer image, and the other
is from spring before trees have leafed out. However, initial training results showed
that there was not enough training samples in the Estonian data, so the dataset was
augmented with orthophotos from Latvia, The Netherlands, and Switzerland. Those
countries were chosen because the images are freely available and in the GeoTIFF format,
which contains the necessary geospatial metadata for pre-processing. Table 1 gives an
overview of the road detection dataset’s final composition.

4https://geoportaal.maaamet.ee/eng/spatial-data/orthophotos/download-orthophotos-p662.html
5https://www.lgia.gov.lv/en/color-orthophoto-map-2016-2018-cycle-6
6https://www.beeldmateriaal.nl/data-room
7https://www.swisstopo.admin.ch/en/orthoimage-swissimage-10

25

(a) Input (b) Segmentation (c) Intersection seg- (d) Ground-truth
orthophoto IA map S∗ mentation map I∗ visualization

Figure 12. Top row: images from road detection dataset. Middle row: images from
lane detection dataset. Bottom row: images with trajectories from the lane detection
dataset. Orthophotos are from the Estonian Land Board. The road network is from
OpenStreetMap. Best viewed with digital zoom.

Each image in the dataset was cropped and rescaled to cover a square of 1 km × 1 km
with the height and width of the image being 2048 pixels. Therefore, the images have
a resolution of 48.8 cm/pixel. The gound-truth road network data was obtained from
OpenStreetMap8 (OSM). The imported roads from OSM did not include minor service
roads and unpaved tracks. Based on the extracted road network, a ground-truth road
segmentation map and intersection segmentation map were also generated. Example
images from the road detection dataset are shown in Figure 12.

8https://www.openstreetmap.org/

26

(a) Before. (b) After.

Figure 13. ADL lane trajectory map of Tartu before and after the mapping effort.
OpenStreetMap is used as the basemap.

4.2 Lane detection dataset
The lane detection dataset only contains data from Tartu. The source of the orthophotos
is, again, the Estonian Land Board. Each original image had a resolution of 10 cm/pixel,
but it was rescaled to 20 cm/pixel for the purpose of covering a larger area with ROI.
The height and width of the orthophotos remained at 2048 pixels. Each area had spring
and summer images, effectively doubling the size of the dataset without the need for
additional lane trajectories. The dataset had 106 images in total.

The ground-truth lane trajectories came from the ADL’s own HD map. Since the
ADL had only mapped a few routes on larger roads, smaller streets intersecting with the
mapped roads were annotated by hand based on the latest orthophoto and a GPS track
recorded by a survey vehicle. However, during the experiments, it became clear that
more lane data was needed, hence an effort was made to map the entire Raadi-Kruusamäe
district of Tartu. The lane trajectories added as part of this thesis are visualized in
Figure 13. The dataset with Raadi-Kruusmäe had 112 images.

At intersections, the model usually does not have any visual guide on how to generate
the left turn lanes, and at some intersections, left turns are not allowed at all. In some
experiments, raw GPS trajectories were added to the input orthophotos to give the model
more information about the trajectories along which the vehicles are actually driving.
Each trajectory was rasterized to the orthophoto with a black color at 20% opacity. The
opacity should make it easier for the model to ignore trajectories that deviate from
the average trajectory too much. Unfortunately, most of the existing trajectories were
recorded on the same few routes on larger streets, and smaller streets were only covered
during lane data collection for this thesis. The data was balanced a bit by the deletion of

27

some trajectories, but several streets and turns remained without trajectories. Also, the
trajectories from smaller streets were usually collected only once, making them more
susceptible to noise, often caused by bypassing parking cars and other obstacles.

Example images from the lane detection datasets are depicted in Figure 12.

4.3 Generation of training samples
The training dataset is obtained by extracting samples from each 2048 × 2048 pixel
image and the associated road or lane network. The authors of the RNGDet [49] proposed
to generate the training samples with two steps:

1. All vertices with degree 2 are removed from the road or lane network graph, but
the shapes of the individual lane segments are preserved.

2. The road or lane network is iteratively traversed by the sampling agent, and one
training sample is generated at each time step.

Figure 14. Generation of training samples [49]. (a) Road-segment mode, straight segment.
(b) Road-segment mode, curved segment. (c) Road-segment mode, connecting with other
candidate vertex. (d) Intersection mode.

The agent has two modes during the graph traversal - road-segment and intersection
modes. The road-segment mode is used when the agent travels along one continuous
road segment. If the agent is in road segment mode, a radius τ is defined around the
current vertex vt. If there is no other candidate vertex or a large curve within τ , then the
ground-truth adjacent vertex v1t+1 is added τ distance away from vt (Figure 14 (a)). If
there is a large curvature within τ then v1t+1 is added on that curvature (Figure 14 (b)). If
another candidate vertex vi ∈ C is within τ then the agent connects vi with vt and moves
to some other candidate vertex from C (Figure 14 (c)). If there are multiple curves or
other vertices within τ then the closest to vt is chosen.

28

If the agent reaches an intersection, then a smaller radius τ ′ is defined around the
current vertex vt (Figure 14 (d)). All adjacent ground-truth vertices vit+1 ∈ V are added
τ ′ distance away from vt.

At each timestep t, ROI with size L × L is cropped around the current vertex vt
from the orthophoto. Random rotations and color augmentation are applied to the ROI
image. Based on the already traversed ground-truth graph, image H, depicting the past
rasterized trajectories, is generated at the location of ROI. The ground-truth segmentation
map S∗ and intersection segmentation map I∗ are cropped from the large segmentation
maps in the dataset. The agent uses the previously described algorithm to generate the
ground-truth adjacent vertices V∗ as well as the valid probabilities P∗. After one training
sample (ROI,H,S∗, I∗,V∗,P∗) is obtained, Gaussian noise is added to the trajectory
between vt and vit+1 ∈ V to make the model more robust.

In experiments conducted for this thesis, the size of τ was set to 30 or 40 pixels,
depending on whether the size of ROI was 128 or 256 pixels. Because of the larger
agent step size, datasets where ROI = 256 have fewer training samples than those where
ROI = 128. τ ′ was always half of τ (τ ′ = τ

2
). The custom road detection dataset had

over 300K samples, similar to the amount in the original RNGDet paper. The lane
detection dataset had over 30K training samples. With the addition of images from
Raadi-Kruusamäe, the number of training samples increased beyond 40K. The exact
sizes of the training datasets are given in Table 2.

Table 2. Training set sizes

Dataset No. of training
images ROI size No. of training

samples

Road detection dataset 438
128 390 357
256 308 129

Lane detection dataset 97
128 40 453
256 33 602

Lane detection dataset
with Raadi-Kruusamäe

112
128 54 171
256 42 589

29

5 Experiments and results
Several experiments were conducted to train a well-performing road detection model,
which could then be fine-tuned on the lane detection dataset. This section discusses the
evaluation metrics and general training details, describes the experiments, and presents
the quantitative and qualitative analysis of the results.

5.1 Evaluation metrics
This thesis uses the same seven evaluation metrics used in the original RNGDet paper [49].
Pixel-precision (P-P), pixel-recall (P-R), and pixel-F1-score (P-F1) evaluate accuracy on
the pixel level. Intersection-precision (I-P), intersection-recall (I-R), and intersection-F1-
score (I-F1) evaluate the accuracy of intersections. Finally, average path length similarity
(APLS) [20] is used to evaluate topology correctness.

Pixel-level metrics are calculated by rasterizing the ground-truth into a binary image
B∗. Similarly, the predicted graph is rasterized into B̂. Pixel-precision (P-P) is calculated
by finding how many pixels p ∈ B̂ have a corresponding pixel q ∈ B∗ that the Euclidean
distance between p and q is smaller than some threshold δP :

P-P =
|{p|∥p, q∥ < δP ,∃q ∈ B∗ ∀p ∈ B̂}|

|B̂|
(11)

Pixel-recall (P-R) is calculated by finding how many pixels q ∈ B∗ have a pixel p ∈ B̂
within the distance of δp:

P-R =
|{q|∥q, p∥ < δP ,∃p ∈ B̂ ∀q ∈ B∗}|

|B∗|
(12)

After obtaining P-P and P-R, the F1-score can be calculated:

P-F1 =
2 · P-P · P-R
P-P + P-R

(13)

Intersection-level metrics I-P, I-R, and I-F1 are calculated similarly to P-P, P-R, and
P-F1. The only differences are that the intersection points are rasterized on the binary
images instead of the whole graph, and threshold δI can have some different value from
δP .

The APLS metric samples NS number of vertex pairs (u∗, v∗) from the ground-truth
graph G∗ and finds the length of the shortest path between them. Next, the corresponding
vertex pair (û, v̂) from the predicted graph Ĝ is found, and the length of the optimal path
is again calculated. The APLS metric takes the average difference between the shortest
paths of the prediction and ground truth over all NS samples:

APLS = 1− 1

NS

NS∑
min(1,

|L(u∗, v∗)− L(û, v̂)|
L(u∗, v∗)

) (14)

30

where L(a, b) is the length of the shortest path between some vertex pair (a, b). If no
corresponding vertices (û, v̂) exist, then the difference is equal to 1.0.

In the carried out experiments, the thresholds δP and δI were both set to 5 pixels.
The number of samples NS varied as the ground-truth graphs had different numbers of
vertices. However, short paths with less than 100 pixels were filtered out.

5.2 General training details
The experiments mostly used the hyperparameters defined in the original RNGDet and
RNGDet++ training scripts. Each model was trained for 50 epochs with a batch size of
10 or 20, depending on the machine used for training. AdamW was used as an optimizer.
The initial learning rate for RNGDet was 10−4 and 9 · 10−5 for RNGDet++ if ROI = 128.
The learning rate was always 10−4 if ROI = 256. The initial learning rate was 10−5

during fine-tuning. The decay rate was always set to 10−5.
The parameters α, β, γ in the loss function were set to 10, 1, and 1, respectively.

The weight w in BCELoss was set to 1, and the positive weight wp to 3. The only
exception was intersection segmentation map loss, where w = 3 and wp = 6. The class
weights in probability loss were 1 for the positive class and 0.2 for the negative class.
The probability threshold pth to consider a predicted vertex as valid was 0.75, and the
threshold for extracting a candidate vertex from the intersection segmentation map Î was
set to 0.55.

When the model was trained on Estonian datasets, gradient clipping was added to the
training pipeline to combat the exploding gradients problem. Gradient clipping had been
used in the original DETR models but was missing from RNGDet. In all experiments
with datasets created for this thesis, the max norm of the gradients was set to 0.5.

Resnet101 architecture is used as backbones. The backbones are initialized with
default pre-trained weights from the PyTorch torchvision.models package. Models
were trained on 4 GPU cores. Depending on the memory requirements, Nvidia GeForce
RTX 2080, Nvidia V100-SXM2-32GB, or Nvidia A100-SXM4-80GB GPUs were used.

5.3 Experiments
This subsection presents the results of a selection of key experiments. For a fair compari-
son of results, only models trained for 50 epochs are listed here. Experiments conducted
for hyper-parameter tuning or testing some new idea were usually trained for 10 or 30
epochs to reduce computational costs.

5.3.1 Retraining the RNGDet model

The first experiment was retraining the RNGDet model on Sat2Graph’s dataset [23],
which was included with the model’s source code. This experiment would test if the

31

model would work as advertised and if it is suitable for lane detection. The first experi-
ment’s results are in Table 3.

The models trained as part of this thesis showed better pixel-level accuracy but worse
intersection accuracy than the RNGDet model in the original article. The APLS score
was very similar. The reason for these differences might be slight modifications in the
architecture between the model used in the original article and the model released to the
public, different values for hyper-parameters, and changes in the training dataset. The per-
formance of RNGDet++ on intersections was disappointing, but as it still showed better
pixel-level accuracy, it was decided to focus more on RNGDet++ in future experiments.

Overall, the experiment showed that the RNGDet and RNGDet++ models could
predict road network graphs from aerial imagery with high accuracy, and fine-tuning the
model on lane detection tasks should be possible.

Table 3. Road network detection results on Sat2Graph’s dataset [23]. The best score for
each metric is highlighted in bold.

P-P P-R P-F1 I-P I-R I-F1 APLS
RNGDet in the original article 72.31 75.08 73.67 65.30 66.50 65.89 67.88
RNGDet trained for this thesis 80.13 87.44 83.48 56.29 58.74 57.30 65.74

RNGDet++ trained for this thesis 84.28 88.04 86.02 56.19 58.13 56.96 67.64

5.3.2 Road network extraction with Estonia dataset

The first experiments on the custom road detection dataset used only data from Estonia.
However, it became apparent that additional data from other countries is required to
achieve satisfactory performance. Except the experiment marked with EST, the results
reported in Table 4 and visualized in Figure 15 were achieved with the augmented dataset.

Even with the augmented dataset, the accuracy of the plain RNGDet++ model
remained significantly lower than that of the Sat2Graph’s dataset. This was expected
as the RNGDet model was likely specifically tuned to show its best performance on
Sat2Graph’s dataset. Another reason for the reduced performance might be that road
detection in Europe is more challenging than in the United States because in Europe,
roads tend to be narrower, occlusion due to buildings tends to be greater, roads are not
arranged in a uniform grid pattern, and intersections might not be in a 90° angle.

5.3.3 Additional backbone

The initial road detection models with ROI = 128 had a satisfactory pixel-level perfor-
mance but struggled with initial intersection detection. Several intersections were not
detected, so there were fewer initial candidate vertices. This meant fewer overall road
detections. The issue became especially severe during initial lane detection experiments.

32

Table 4. Road network detection results on the custom road dataset. Number 128 or 256
denotes the ROI size. EST indicates that the model was trained only on Estonian data.
Models with letters AB had an additional backbone for intersection detection. The best
score for each metric is highlighted in bold.

P-P P-R P-F1 I-P I-R I-F1 APLS
RNGDet 128 EST 54.14 45.34 48.07 20.33 10.18 12.88 47.90

RNGDet 128 62.04 60.57 58.41 28.16 26.73 24.24 37.16
RNGDet++ 128 57.03 82.07 66.54 24.37 42.03 30.16 45.33

RNGDet++ 128 AB 51.63 89.09 64.44 23.44 40.57 28.89 44.60
RNGDet++ 256 AB 64.48 89.64 74.18 36.17 41.00 37.78 54.47

(a) RNGDet (b) RNGDet++ (c) RNGDet++ (d) RNGDet++ (e) Ground-
128 128 128 AB 256 AB truth

Figure 15. Sample predictions from different road detection models. Number 128 or 256
denotes the ROI size. Models with letters AB had an additional backbone for intersection
detection. Orthophotos are from the Estonian Land Board. Ground-truth road network is
from OpenStreetMap. Best viewed with digital zoom.

33

Figure 16. The architecture of RNGDet++ with additional backbone. Best viewed with
digital zoom.

A third backbone was added to the model to improve intersection detection, which
would be supervised with intersection segmentation maps I∗. The features obtained
from the third backbone would only contain the visual information about the intersection
locations and not be diluted by the information from segmentation maps S∗. Intersection
backbone features were completely separated from the features of the segmentation
backbone to make the intersection loss only dependent on the accuracy of the predicted
intersection map Î . Therefore, the transformer would receive the intersection information
only from Ŝ. However, this was not a big concern as the ablation studies in the original
RNGDet paper showed that removing the intersection segmentation would have only
a minuscule effect on the model’s performance. The architecture of RNGDet with the
additional backbone is depicted in Figure 16.

However, the quantitative results of the road detection model with an additional
backbone show a slight decrease in performance. Only the pixel-recall score increased
compared to the model without the additional backbone. The decrease in pixel-precision
can be explained by an increase in the number of roads being generated due to improved
detection of initial candidate intersections. Thus, a larger share of false positives was

34

observed. Because some false positives are small service roads around shopping centers
or industrial areas, detecting more roads than was in the ground truth is not as big
of a problem as not detecting an actual street. The slight decrease in intersection-
level accuracy score can be explained by the removal of intersection features from the
transformer.

As an additional measure, the size of the ROI was increased to 256 pixels to capture
more spatial information from the surrounding area. The RNGDet++ model with addi-
tional backbone and ROI = 256 achieved the best overall performance on the custom
road dataset but still did not match the model’s performance on Sat2Graph’s dataset. With
some hyper-parameter tuning, the model’s performance could probably be increased.
However, that was not done due to the model’s large memory consumption and the
roughly five-day training time.

5.3.4 Lane network extraction

The results of lane detection experiments are reported in Table 5 and visualized in
Figure 17. Lane network extraction models gave sensible results when the ROI size
was set to 256 pixels, corresponding to 51.2 meters in real life. This implies that using
input images with a higher resolution (lower pixel size) than 20 cm/pixel is difficult in
RNGDet since that would require an increase in ROI size and thus make the training
even more expensive. Currently, training models with ROI = 256 requires more than 40
GB of GPU memory.

The intersection-level metrics are all very low. Models with ROI = 128 did not
predict any intersection within δI pixels of the ground-truth, thus the intersection accuracy
for those models was 0. Models with ROI = 128 and without the additional backbone
struggled to predict any intersections at all. Intersection prediction is hard for the model

Table 5. Number 128 or 256 denotes the ROI size. Models with letters AB had an
additional backbone for intersection detection. FT indicates that the models were fine-
tuned on the road detection model. TRAJ denotes the model that used raw lane trajectories
on input images.

P-P P-R P-F1 I-P I-R I-F1 APLS
RNGDet++ 128 24.72 5.06 8.12 0.00 0.00 0.00 4.25

RNGDet++ 128 AB 20.35 8.61 11.76 0.00 0.00 0.00 1.90
RNGDet++ 128 FT 15.09 18.16 16.14 0.00 0.00 0.00 1.27

RNGDet++ 128 AB FT 21.68 22.90 21.70 0.00 0.00 0.00 1.18
RNGDet++ 256 AB 91.66 34.86 48.74 3.89 1.59 2.15 44.44

RNGDet++ 256 AB FT 63.63 65.91 64.11 5.66 2.05 2.99 23.62
RNGDet++ 256 AB FT TRAJ 69.28 77.50 72.30 10.10 4.27 5.95 40.96

35

(a) RNGDet++ (b) RNGDet++ (c) RNGDet++ (d) Ground-truth
256 AB 256 AB FT 256 FT AB TRAJ

Figure 17. Sample predictions from lane detection models with ROI = 256. Models with
letters AB had an additional backbone for intersection detection. FT indicates that the
models were fine-tuned on the road detection model. TRAJ denotes the model that used
raw lane trajectories on input images. Orthophotos are from the Estonian Land Board.
Best viewed with digital zoom.

36

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. Sample predictions of RNGDet++ 256 AB FT around the city of Tartu.
Orthophotos are from the Estonian Land Board. Best viewed with digital zoom.

because, in the lane network graph, intersection nodes are only at places where the
lanes split or merge but not where they intersect each other. The human annotator
somewhat arbitrarily chooses the location of the split or merge depending on whether the
divergence of lanes is drawn more gently or sharply. This causes the model to predict
larger intersection areas where individual pixels have lower probability scores than the
threshold for intersection extraction. Even when the model can recognize the approximate
location of the intersection with high enough confidence, the detected intersection often
falls outside of the 5-pixel evaluation threshold δI .

Out of the models with ROI = 256, the model that was not pre-trained achieved
the best pixel-precision, but its pixel-recall was the worst. This discrepancy is because
the model detected relatively few lanes, but the lanes detected were very accurate. The
accurate lane detections meant this model had the highest APLS score.

The fine-tuned RNGDet++ model with ROI = 256 had similar P-P and P-R scores,
indicating that the model was well-balanced. The overall pixel-F1 score of 64.11 can be
considered satisfactory, given the amount of training data available. However, the APLS
score of 23.62 was relatively low. To analyze the model’s performance and identify
common failure cases, lanes from 612 aerial images were extracted, encompassing the
entire city of Tartu.

The fine-tuned model can generally detect both lanes from an ordinary two-way

37

street. The model is considerably less accurate at intersections. At simple intersections,
the model can predict right turns with acceptable accuracy but still struggles with left
turns (Figure 18 (a)). Predicting right turns is easier because the model can use the
edge of the road as guidance, but there are usually no guiding features for left turns.
The lack of guidance for left turns also makes the ground-truth trajectories varied in
shape. Sometimes, the driver of the survey vehicle has cut the corner too much, making
it even harder for the model to "understand" how left turns should be predicted. If the
intersection has more incoming lanes and not many guiding features, then the model’s
performance degrades quickly (Figure 18 (b) and Figure 18 (c)).

Because the model does not predict the direction of the generated lanes, it often
connects turning lanes to the lane in the opposite direction. The lane detection model
needs a direction prediction module, but that can cause issues with pre-training on the road
network dataset. Another problem at large intersections is that there are multiple lanes in
a small, cramped area right at the center. This makes the prediction of segmentation maps
hard and also confuses the agent, which does not know which lane it should connect to.
This results in very messy and inaccurate intersections (Figure 18 (c)), and therefore,
the usefulness of the model is even further reduced as drawing intersections is the most
time-consuming part for a human in the HD map creation pipeline.

The model can predict lanes at an occluded street, but the prediction’s accuracy
depends on the severity of the occlusion. In Figure 18 (d), it can be seen that the street
with minimal occlusion has a more accurate prediction than the street that has substantial
occlusion by trees. The gaps in the lane segments are caused by the border between
two input images. The post-processing required to remove these gaps is discussed in
Section 6.2.

In areas with single-family houses, the streets tend to be relatively narrow, which
often results in the detection of only one lane (Figure 18 (e)). The detected lanes are also
more wobbly, and intersections do not have turning lanes. The ground-truth trajectories
in these areas are often very near or even on top of each other, making the prediction
much more complicated. The lack of turning lanes indicates that the model could not
extract initial intersection vertices, possibly because the intersection area is small and
turning lanes are short and very close to each other.

There were also issues with lane detection on large streets (Figure 18 (f)), even
though these streets have clearly marked lanes. The problem might be the lack of training
data from large multi-lane streets. The only street sections with a similar number of lanes
shown in the figure were relatively short ones near the Riia-Turu intersection. The model
also failed at two-level interchanges (Figure 18 (g)), but this was to be expected as the
lane detection dataset did not contain any orthophotos of grade-separated interchanges.

As indicated by the low pixel-precision, the model produced many false-positive
detections. Some of these detections were caused by parallel straight lines not related
to any roads (Figure 18 (h)) or by the model just hallucinating. However, false-positive

38

detections are not a big concern as they could be easily filtered out using the road surface
area data from the Estonian Land Board.

5.3.5 Images with trajectories

The model fine-tuned with images that included raw lane trajectories had the best pixel-
level and intersection-level performance, although the intersection accuracy was still
quite poor (Table 5). However, the APLS score was much higher than the fine-tuned
model without trajectories. Again, the lane network of the entire Tartu was generated to
analyze the model’s performance. Since raw trajectories were available for less than half
of Tartu streets, improvements were not expected in every area, but examples shown in
Figure 19 had at least partial lane trajectory coverage.

The lane trajectories did not significantly improve intersection areas. Even if the
lane splitting points were correctly detected, the agent tended to drift off course and
connect to the opposite driving direction (Figure 19 (a)). Also, the model still struggled
with detecting all the turning lanes at an intersection (Figure 19 (b)). One reason for the
undetected turning lanes might be that some did not have a corresponding raw trajectory.
This can mean the model is more confident in not predicting a splitting point on the
existing trajectory.

Another problem is again the high density of lanes at the center of the intersections
(Figure 19 (c)). The model has a hard time deciding if it should connect to a lane or if it
should go over it. A higher resolution input image would separate the lanes more, but
then the ROI covers a smaller area, meaning the model has less spatial information at
each step.

On visual inspection, the model using raw lane trajectories performed similarly to
the model without trajectories at occluded areas (Figure 19 (d)). This was not very
reassuring, but the accuracy in occluded areas could possibly be increased by adding
more trajectories to the input images during the training and inference phases.

(a) (b) (c) (d)

Figure 19. Sample predictions of RNGDet++ 256 AB FT TRAJ around the city of Tartu.
Orthophotos are from the Estonian Land Board. Best viewed with digital zoom.

39

6 Discussion
The experiments did not yield results that were accurate enough for HD maps. A more
extensive training dataset would undoubtedly improve the performance of the lane
network prediction model, similar to how the road detection model improved after adding
data from other countries. With enough lane data, fine-tuning would not be necessary,
and some lane data-specific modifications to the RNGDet model could be made. Adding
a lane direction prediction module would be the most useful change in the architecture
of RNGDet. Further modifications to improve the initial vertex detection and mitigate
the drifting issue at intersections are also essential for achieving high enough accuracy
for HD maps. However, even with a well-performing model, there are still many cases
where the model cannot get enough information from the aerial image to generate the
lanes correctly. Also, generated lanes would still need post-processing before adding
them to an HD map.

6.1 Limitations of aerial images
Aerial images offer limited information about the traffic rules of each road or intersection.
Restricted left turns and one-way streets are two of the most common cases that are
almost impossible for the model to figure out. Larger intersections with multiple turning
lanes are generally challenging because the only clues the model would have are the
arrows, ruts, and tire marks on the road surface and the number of lanes leaving the
intersection. However, the road surface could have been freshly replaced, or the arrows
could be worn out or covered by waiting vehicles. Lanes allowing cars to drive in
multiple directions are tricky, even for a human mapper. Often, in these cases, the human
annotator would need to use images taken from the street level to double-check the
correctness of the turning lanes. Figure 20 depicts an intersection, which would be nearly
impossible for humans to figure out only based on the orthophoto.

Another problem is the occlusion of roads by trees and especially buildings. Satellite
images are less susceptible to this problem than orthophotos, but the problem still exists.
Mid-rise buildings, common in European cities, can cover the right-most lane almost
entirely for tens of meters. As the ROI is limited in size, it might not see both ends of
the building and decide to stop generating the lane. Even when the lane can be seen,
the dark shadow cast by a high building can make the lane difficult for the model to
recognize. Narrow streets with parking vehicles can also cause problems. Sometimes,
parking vehicles take up one lane of the road for a long stretch. In areas with primarily
single-family houses, roads are often narrow and do not have any markings, meaning
parking vehicles can make it hard for the model to assess the width of the street.

A solution for the ambiguity of turning lanes at the intersections and the occluded
lanes is to include raw vehicle trajectories with the input images. However, obtaining
the vehicle trajectory data in large quantities with good coverage is difficult. GPS

40

(a) Plain orthophoto. (b) Correct lane network.

Figure 20. An example of a challenging intersection to map only based on the plain
orthophoto. In subfigure (b), note the one-way street with multiple turning lanes at the
top-right and the straight bus lane going over the right turning lane on the left of the
image. Orthophotos are from the Estonian Land Board. Best viewed with digital zoom.

receivers would need to be installed on multiple vehicles, and these vehicles would
have to drive around the city for an extended period. A smaller, Tartu-sized city can be
covered once with one survey vehicle relatively quickly, but then the model would have
only one guidance trajectory for each street. In that case, the model would predict the
same trajectory that already has been collected. Alternatively, the trajectories that were
collected only once could be cleaned and prepared with heuristics-based algorithms and
added to HD maps as lanes with relatively low human effort. That would mean using a
computationally expensive neural network, which produces very similar trajectories that
would still likely require human adjustments, is not justified.

6.2 Post-processing
The post-processing of the predicted lane network was out of the scope of this thesis, but
to make the lanes suitable for deployment on an HD map, a post-processing pipeline is
necessary.

The first post-processing step would be the removal of all false positives. This could
be quite easy as the road network data from OpenStreetMap can be employed to generate
approximate road areas, and these areas could be used to filter out lanes that are far away
from any roads. Estonian Land Board has published a road surface area dataset, which
could also be used for the filtering task.

The current model works with images sized 2048×2048 pixels. With high-resolution
orthophotos, this size covers a relatively small area. The lanes generated based on

41

different input images must be stitched together with heuristics-based algorithms to
generate a lane network graph for a large area. Images forming a non-overlapping grid
covering the entire Tartu were used during the qualitative performance evaluation of the
trained models. This method left noticeable gaps in the resulting lane network. Hence,
some overlapping between images should be introduced. Then, in the overlapping area,
an algorithm could match the lane segments and vertices in one image with the segments
and vertices in the other and average them. However, a grid-based method may not be
the best, as intersection areas, which are the most difficult to predict, are often divided
between multiple images. This can degrade the model’s performance a lot. Therefore,
a better idea might be to take the intersection locations from the road network graph
and crop the orthophotos around the intersection first so that intersections would always
be entirely in one image. Then, start cropping input orthophotos along roads between
intersections with some overlap, given that the input images around intersections do not
overlap already. Only lanes on the road along which the cropping was done need to be
stitched together afterward.

Another critical step is determining if the lane segment goes straight or turns left or
right because currently, the ADL’s autonomous vehicle uses turn signals based on the
information it gets from the HD map. A simple method that measures the angle between
the lines defined by the first two points and the last two points of short lane segments
could be employed. If the angle is close to 90°, the lane is classified as a right or a left
turning lane.

However, no neural network or post-processing method would produce a completely
correct lane network, as any road or intersection can have a unique design or be an
edge-case situation. Therefore, every automatically generated lane network requires
human validation and modifications.

42

7 Conclusion
Autonomous vehicles need accurate maps for journey planning and localization and to
increase situational awareness. As creating accurate HD maps requires substantial human
labor, this thesis explored the possibility of predicting the lane network graph, an integral
part of any HD map, from orthophotos with deep-learning neural networks. RNGDet,
a DEtection TRansformer (DETR) inspired road network detection model, was used
to predict a lane network graph for the city of Tartu. For this, a custom road detection
dataset was created first to train a road network detection model. The road detection
model was then fine-tuned on ADL’s lane data to create a lane detection model. ADL’s
Tartu HD map had to be significantly expanded to generate enough training samples for
fine-tuning. An additional CNN backbone was added to the original RNGDet network to
increase intersection detections. Finally, raw GPS trajectories were added to the input
orthophotos to give the model more guidance in occluded areas and intersections.

The lane network obtained with the best-performing models was not accurate enough
for use on HD maps. One reason for this was the difficulty in predicting initial intersection
vertices and generating lanes correctly in a small area. Another limiting factor was still
the shortage of lane training data. The results showed that the model could detect lanes
from simple two-way streets and right turns on easier intersections but struggles with
large roads, long occluded areas, and intersections in general. The model which used
raw GPS trajectories achieved better quantitative results than the model which did not.

All in all, with additional lane data, the RNGDet model could yield better results.
Therefore, a potential future experiment could be to train the lane detection model again
once the lanes in all of Tartu have been mapped. Future work should also focus on making
the overall design of RNGDet more suitable for the lane detection task. Refining the
initial candidate vertex extraction pipeline and adding a lane direction prediction module
are essential tasks in possible future work. In addition, establishing a post-processing
pipeline will also be needed before importing the generated lane network onto the HD
map. In the future, the RNGDet model could also be tested with other road elements that
can be represented by a linestring, such as road borders, curbs, and road markings.

43

8 Acknowledgments
This thesis was funded by the Autonomous Driving Lab, a collaboration project between
the University of Tartu and Bolt. I would like to express my sincere gratitude to my
supervisors, Tambet Matiisen and Edgar Sepp, for their guidance and support throughout
this project. Special thanks to Kertu Toompea for collecting the GPS lane trajectories
from the streets of Tartu.

44

References
[1] ASAM OpenDRIVE. [Online]. Available: https://www.asam.net/standards/

detail/opendrive/. Accessed: 2024-02-17.

[2] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016.

[3] Ruzena Bajcsy and Mohamad Tavakoli. Computer recognition of roads from
satellite pictures. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
6(9):623–637, 1976.

[4] W. G. C. Bandara, Jeya Maria Jose Valanarasu, and Vishal M. Patel. Spin road
mapper: Extracting roads from aerial images via spatial and interaction space graph
reasoning for autonomous driving. 2022 International Conference on Robotics and
Automation (ICRA), pages 343–350, 2021.

[5] Zhibin Bao, Sabir Hossain, Haoxiang Lang, and Xianke Lin. A review of high-
definition map creation methods for autonomous driving. Engineering Applications
of Artificial Intelligence, 122:106125, 2023.

[6] M. Barzohar and D.B. Cooper. Automatic finding of main roads in aerial images by
using geometric-stochastic models and estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(7):707–721, 1996.

[7] F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden,
and D. DeWitt. Roadtracer: Automatic extraction of road networks from aerial im-
ages. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4720–4728, Los Alamitos, CA, USA, jun 2018. IEEE Computer
Society.

[8] Anil Batra, Suriya Singh, Guan Pang, Saikat Basu, C.V. Jawahar, and Manohar
Paluri. Improved road connectivity by joint learning of orientation and segmenta-
tion. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10377–10385, 2019.

[9] Davide Belli and Thomas Kipf. Image-conditioned graph generation for road
network extraction. ArXiv, abs/1910.14388, 2019.

[10] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Topol-
ogy preserving local road network estimation from single onboard camera image.
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 17242–17251, 2021.

45

 https://www.asam.net/standards/detail/ opendrive/
 https://www.asam.net/standards/detail/ opendrive/

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers,
2020.

[12] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image
segmentation. arXiv:1802.02611, 2018.

[13] Guangliang Cheng, Feiyun Zhu, Shiming Xiang, and Chunhong Pan. Road center-
line extraction via semisupervised segmentation and multidirection nonmaximum
suppression. IEEE Geoscience and Remote Sensing Letters, 13(4):545–549, 2016.

[14] Dragos Costea and Marius Leordeanu. Aerial image geolocalization from recogni-
tion and matching of roads and intersections, 2016.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In North
American Chapter of the Association for Computational Linguistics, 2019.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. ArXiv, abs/2010.11929,
2020.

[17] Babak Ebrahimi Soorchaei, Mahdi Razzaghpour, Rodolfo Valiente, Arash Raftari,
and Yaser Pourmohammadi Fallah. High-definition map representation techniques
for automated vehicles. Electronics, 11(20), 2022.

[18] Gamal Elghazaly, Raphaël Frank, Scott Harvey, and Stefan Safko. High-definition
maps: Comprehensive survey, challenges, and future perspectives. IEEE Open
Journal of Intelligent Transportation Systems, 4:527–550, 2023.

[19] Adam Van Etten. City-scale road extraction from satellite imagery v2: Road
speeds and travel times. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), March 2020.

[20] Adam Van Etten, David Lindenbaum, and Todd M. Bacastow. Spacenet: A remote
sensing dataset and challenge series. ArXiv, abs/1807.01232, 2018.

[21] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin.
Convolutional sequence to sequence learning. ArXiv, abs/1705.03122, 2017.

46

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[23] Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, H. Balakr-
ishnan, Sanjay Chawla, Mohamed Mokhtar Elshrif, Samuel Madden, and Mo-
hammad Amin Sadeghi. Sat2graph: Road graph extraction through graph-tensor
encoding. In European Conference on Computer Vision, 2020.

[24] Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu Wu, Jack Fan, and
Raquel Urtasun. Dagmapper: Learning to map by discovering lane topology, 2020.

[25] Muhammad Ibrahim, Naveed Akhtar, Mohammad A. A. K. Jalwana, Michael Wise,
and Ajmal Mian. High definition lidar mapping of perth cbd. In 2021 Digital Image
Computing: Techniques and Applications (DICTA), pages 01–08, 2021.

[26] Jinseop Jeong, Jun Yong Yoon, Hwanhong Lee, Hatem Darweesh, and Woosuk
Sung. Tutorial on high-definition map generation for automated driving in urban
environments. Sensors, 22(18), 2022.

[27] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7482–7491, 2017.

[28] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955.

[29] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map
construction and evaluation framework. 2022 International Conference on Robotics
and Automation (ICRA), pages 4628–4634, 2021.

[30] Yali Li, Longgang Xiang, Caili Zhang, and Huayi Wu. Fusing taxi trajectories and
rs images to build road map via dcnn. IEEE Access, 7:161487–161498, 2019.

[31] Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. Topological map extraction
from overhead images. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1715–1724, 2018.

[32] Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu,
Chang Huang, and Xinggang Wang. Maptrv2: An end-to-end framework for online
vectorized hd map construction. ArXiv, abs/2308.05736, 2023.

[33] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In 2017 IEEE

47

Conference on Computer Vision and Pattern Recognition (CVPR), pages 936–944,
2017.

[34] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pages 9992–
10002, Los Alamitos, CA, USA, oct 2021. IEEE Computer Society.

[35] Lingfei Ma, Ying Li, Jonathan Li, José Marcato Junior, Wesley Nunes Gonçalves,
and Michael A. Chapman. Boundarynet: Extraction and completion of road
boundaries with deep learning using mobile laser scanning point clouds and satellite
imagery. IEEE Transactions on Intelligent Transportation Systems, 23(6):5638–
5654, 2022.

[36] Gellert Mattyus, Wenjie Luo, and Raquel Urtasun. Deeproadmapper: Extracting
road topology from aerial images. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[37] Volodymyr Mnih and Geoffrey E. Hinton. Learning to detect roads in high-
resolution aerial images. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios,
editors, Computer Vision – ECCV 2010, pages 210–223, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[38] Fabian Poggenhans, Jan-Hendrik Pauls, Johannes Janosovits, Stefan Orf, Maxim-
ilian Naumann, Florian Kuhnt, and Matthias Mayr. Lanelet2: A high-definition
map framework for the future of automated driving. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pages 1672–1679, 2018.

[39] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation, 2017.

[40] Alec Radford and Karthik Narasimhan. Improving language understanding by
generative pre-training. 2018.

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim Hornegger,
William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015.
Springer International Publishing.

[42] Yong-Qiang Tan, Shang-Hua Gao, Xuan-Yi Li, Ming-Ming Cheng, and Bo Ren.
Vecroad: Point-based iterative graph exploration for road graphs extraction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

48

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Herve Jegou. Training data-efficient image transformers amp;
distillation through attention. In Marina Meila and Tong Zhang, editors, Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 10347–10357. PMLR, 18–24
Jul 2021.

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample.
Llama: Open and efficient foundation language models. ArXiv, abs/2302.13971,
2023.

[45] F. Tsushima, N. Kishimoto, Y. Okada, and W. Che. Creation of high definition
map for autonomous driving. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLIII-B4-2020:415–420, 2020.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[47] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang,
Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile back-
bone for dense prediction without convolutions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 568–578, October
2021.

[48] Zhenhua Xu, Yuxuan Liu, Lu Gan, Xiangcheng Hu, Yuxiang Sun, Lujia Wang, and
Ming Liu. csboundary: City-scale road-boundary detection in aerial images for
high-definition maps. IEEE Robotics and Automation Letters, 7:5063–5070, 2021.

[49] Zhenhua Xu, Yuxuan Liu, Lu Gan, Yuxiang Sun, Xinyu Wu, Ming Liu, and Lujia
Wang. Rngdet: Road network graph detection by transformer in aerial images.
IEEE Transactions on Geoscience and Remote Sensing, 60:1–12, 2022.

[50] Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Meilin Liu, and Lujia Wang. Centerlinedet:
Centerline graph detection for road lanes with vehicle-mounted sensors by trans-
former for hd map generation. 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 3553–3559, 2022.

49

[51] Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lujia Wang. Rngdet++:
Road network graph detection by transformer with instance segmentation and multi-
scale features enhancement. IEEE Robotics and Automation Letters, 8(5):2991–
2998, 2023.

[52] Gaodian Zhou, Weitao Chen, Qianshan Gui, Xianju Li, and Lizhe Wang. Split
depth-wise separable graph-convolution network for road extraction in complex
environments from high-resolution remote-sensing images. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–15, 2022.

[53] Lichen Zhou, Chuang Zhang, and Ming Wu. D-linknet: Linknet with pretrained
encoder and dilated convolution for high resolution satellite imagery road extrac-
tion. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 192–1924, 2018.

50

Appendix

I. Source code and training data
The source code is available at https://github.com/Karljohan99/lane_centerline_
detection. The training data can be obtained on request from the author (e-mail: karljo-
han30@gmail.com).

51

https://github.com/Karljohan99/lane_centerline_detection
https://github.com/Karljohan99/lane_centerline_detection

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Karl-Johan Pilve,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Lane Centerline Detection from Orthophotos using Transformer Networks,
(title of thesis)

supervised by Tambet Matiisen and Edgar Sepp.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Karl-Johan Pilve
15/05/2024

52

	Introduction
	Background
	Road or lane network extraction
	Segmentation-based methods
	Iterative graph-generation methods
	Whole graph-generation methods
	Vehicle sensors based methods

	Transformer
	Vision transformer
	DETR

	Models
	RNGDet
	Model architecture
	Agent
	Loss functions

	RNGDet++

	Datasets
	Road detection dataset
	Lane detection dataset
	Generation of training samples

	Experiments and results
	Evaluation metrics
	General training details
	Experiments
	Retraining the RNGDet model
	Road network extraction with Estonia dataset
	Additional backbone
	Lane network extraction
	Images with trajectories

	Discussion
	Limitations of aerial images
	Post-processing

	Conclusion
	Acknowledgments
	References
	Appendix
	I. Source code and training data
	II. Licence

