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Abstract

Designing and implementing a bird’s-eye view interface for a self-driving vehicle’s

teleoperation system

Autonomous vehicles and self-driving technology have big potential to transform the current

transportation system by lessening accidents and optimising traffic flow. In urban

environments many difficult situations may occur, which the self-driving technology cannot

handle on its own. In these circumstances, a remote human operator may take control of the

vehicle via a teleoperation system. To navigate the vehicle through these situations, the

operator needs a good overview of the vehicle's surroundings, which can be achieved by a

multi angle 360 degree view or a bird’s-eye view. At the University of Tartu, the Autonomous

Driving Lab is developing a self-driving vehicle, which currently lacks a multi angle or

bird’s-eye view interface for teleoperation.

The goal of this thesis is to develop a prototype interface that would give the teleoperator a

better situational awareness of the car's surroundings. The interface is created using RViz and

other ROS (Robot Operating System) capabilities and packages.

CERCS: T111 Image processing, T120 Systems engineering, T125 Robotics

Keywords: bird’s-eye view, multi angle view, teleoperation, self-driving vehicles, interface
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Resümee

Isejuhtiva sõiduki kaugjuhtimissüsteemile linnuvaate kasutajaliidese loomine

Autonoomsetel sõidukitel ja isejuhtival tehnoloogial on suur potentsiaal muuta

transpordisüsteemi, vähendades õnnetusi ja optimeerides liiklusvoogu. Linnakeskkonnas võib

ette tulla palju keerulisi olukordi, millega isejuhtivad sõidukid hakkama ei saa. Sellistel

juhtudel võtab kaugoperaator sõiduki juhtimise üle kasutades kaugjuhtimistehnoloogiat.

Selleks, et keerulistest olukordadest sõiduk ohutult välja tuua, on operaatoril vaja head

ülevaadet auto ümbrusest. Hea ülevaate saavutamiseks saab kasutada vaba vaatenurgaga

360-kraadist vaadet või kavaljeerperspektiivi. Tartu Ülikoolis isejuhtivate sõidukite laboris

arendatakse isejuhtivat autot, mille kaugjuhtimissüsteemis puudub selliste vaadetega

kasutajaliides.

Käesoleva lõputöö eesmärgiks on luua kasutajaliides, mis annaks teleoperaatorile parema

ülevaate auto ümbrusest. Liides luuakse RVizi ja teiste ROS-i (Robot Operating System)

võimaluste ja pakettide abil.

CERCS: T111 Pilditehnika, T120 Süsteemitehnoloogia, T125 Robootika

Märksõnad: kavaljeerperspektiiv, linnuvaade, kaugjuhtimine, isejuhtivad sõidukid,

kasutajaliides
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1 Introduction

Autonomous vehicles and self-driving technology has been a popular research target over the

past years as this technology has big potential to change the current transportation systems

and network. These vehicles can be programmed to adhere to traffic regulations, thus

reducing the likelihood of accidents and traffic violations. Unlike human drivers, self-driving

cars have better reaction times and are immune to the effects of alcohol and fatigue, ensuring

consistent and safe operation [1]. With advanced algorithms, these vehicles can optimise

traffic flow, improve fuel efficiency, and reduce emissions [1].

As self-driving cars are becoming more widespread, the need for teleoperation systems,

which are used to control machines remotely from a distance, becomes important because

self-driving technology cannot handle all the unexpected situations on its own [2].

Autonomous vehicles navigate in urban environments and they may encounter incidents like

avoiding and stopping at unexpected obstacles or navigating through busy traffic. In such

situations the autonomous vehicle may not be able to solve the incident and the remote

human operator has to take control of the car to assist the vehicle [3]. To safely get the car out

of these situations, the operator needs a good overview of the environment around the car.

Having multiple views of the surroundings and the ability to change the viewpoint gives the

remote operator a good visual perception. To improve the ability to estimate depth and

distances of objects, a 3D representation of the environment would be helpful [3]. A multi

angle interface, including a bird’s-eye view, becomes a useful tool for teleoperators to get

better situational awareness around the car.

The Autonomous Driving Lab at the University of Tartu has been developing and validating

technologies for self-driving since 2019. Currently the vehicle used is a Lexus RX450h which

is equipped with the necessary hardware and different sensors for basic self-driving. The

software used on the car is mainly built with Python and Robot Operating System [4].

Currently the Autonomous Driving Lab has a basic teleoperation system that has been tested

with the car, however it doesn’t have enough cameras and the software to create real-time

multiple angle views and a 3D representation of the car's surroundings for teleoperation.

The objective of this thesis is to improve the situational awareness for the human remote

operators by creating an interface which allows the teleoperator to look at the vehicle's

surrounding environment from different viewpoints, including a bird’s-eye view.
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2 Literature review

This chapter explains what is teleoperation and bird’s-eye view and what are the main

challenges and problems. Finally an overview will be given of existing solutions and software

to create a bird’s-eye view and improve the situational awareness for teleoperation.

2.1 Teleoperation

Teleoperation is a technology that allows human operators to control machines, vehicles or

other kinds of systems remotely (figure 1). The operator is at a distance from the controlled

object and monitors and operates the machine or vehicle using a control station. The control

station typically consists of a screen and some kind of manipulator like a joystick or a

steering wheel and pedals (figure 2) [5]. The main features of a teleoperation system are to

provide the human operator situational awareness using cameras, radars, LiDARs or other

kinds of sensors and to give commands to the vehicle using a control station [5], [6].

Figure 1: Concept of teleoperation. A human remote operator sees data from the vehicle
and gives commands to vehicle [2].

Teleoperation interface’s design and development has been explored since the 1970’s and

these systems have been used to control robots and vehicles in places that may be dangerous

or inconvenient for a human to be present at. Most commonly teleoperation has been used in

military operations, space and underwater exploration, agriculture and mining [3].
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Figure 2: Teleoperation control station of an autonomous vehicle [3].

Teleoperation systems are also used for controlling autonomous vehicles and it plays an

important part in the development of such vehicles. The Society of Automotive Engineers

have defined the following six levels from 0-5 of driving automation [7], [8]:

● Level 0 - no automation, the human driver performs all the driving tasks.

● Level 1 - the driver assistance system does some of the steering or acceleration and

breaking

● Level 2 - the driver assistance system does some of the steering and acceleration and

breaking

● Level 3 - the automated driving system can execute all driving tasks, the human driver

is still needed and will intervene if needed.

● Level 4 - the automated driving system performs all the driving tasks in certain

circumstances and may request intervention from a remote driver. A human driver is

not required to be in the car.

● Level 5 - the automated driving system performs all and no human interaction is

needed.

Currently, from the defined levels, the highest available level is 4 [9], which states that the

vehicle can drive autonomously and no human driver is required to be in the car. However

7



there has to be a human remote operator available to take control of the car if needed [3]. In

that case teleoperation acts as a fallback system for autonomous vehicles.

2.1.1 Teleoperation methods

Teleoperation methods can be put into three categories: direct teleoperation, supervisory

teleoperation and multimodal teleoperation [10].

In direct teleoperation the human operator controls the vehicle or robot by using some kind of

a controller like a joystick or a steering wheel and relies on visual feedback from the vehicle

like a live camera feed. For direct teleoperation common issues are with communication, data

loss and latency [10].

For supervisory teleoperation, the teleoperator and the vehicle or robot share the control of

the whole system. For this method to work, the vehicle must possess some level of autonomy,

so it can handle lower level tasks like navigation, movement and obstacle detection, and the

teleoperator provides the tasks and goals or takes direct control of the vehicle. To use this

method, the robot needs a higher computation capability than direct control due to the

autonomy requirement [10].

Multimodal teleoperation uses data from more than one sensor and provides the teleoperator

with a multimodal view of the environment around the robot. This method is used if the

robots are in a complex and dynamic environment as feedback from multiple sensors give a

better situational awareness to the human operator. Multimodal teleoperation also requires a

higher computation capability and bandwidth to collect and synthesise data from multiple

sensors [10].

2.1.2 Challenges in teleoperation

Teleoperation systems have been used and tested on autonomous vehicles and multiple

different categories of challenges have been identified [3].

One of the problems is the lack of physical feedback. When a driver is in the car, they can

feel the acceleration, the speed of the car and the state of the road and how it inclines or

declines. For a teleoperator the feedback from the car is visual and they have difficulties with

estimating the aforementioned factors [3].

Another important category is video and communication quality. The biggest problem is the

latency of the camera feed that is displayed to the remote operator. A study showed that if the

8



maximum latency is between 200-250 ms, then teleoperation is possible [3]. If the latency is

higher than that, it can cause the teleoperators to over- and understeer the car and to

accelerate and brake more often. Another factor that also affects the confidence of the remote

operator is the video’s frequency. If the frequency is between 24-30 frames per second, then

the teleoperation can be done smoothly, if it is between 15-20 FPS then it causes the operator

to hesitate and give bad input to the vehicle [3].

Another category of challenges lies in visual perception of the vehicle's environment. Depth

perception, situational and spatial awareness are known problems for teleoperation [3] [11].

Teleoperators struggle with estimating distances and spatial relationships due to the camera

feed being two dimensional and missing the depth cues. This problem mainly affects the

operators when performing manoeuvres or judging the vehicle’s proximity to obstacles,

potentially leading to incorrect decisions about vehicle movements. Another factor that

affects the situational awareness is the camera placement and the field of view. The cameras

have a restricted field of view, they do not cover the entire environment of the vehicle and the

remote operator does not entirely know what objects or events are surrounding the vehicle

[3], [11]. One challenge also lies in changing the viewpoint. When a driver is in the car, they

can change their viewing point and field of view by turning their head but for vehicles the

sensors and cameras are usually mounted in a fixed position [3], [11].
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2.2 Bird’s-eye view

Bird’s-eye view is a view of an object from a high angle as if a bird would see it flying over

it. The usage of a bird’s-eye view is common in Advanced Driving Assistance Systems, as

many car manufacturers like Nissan, Audi, Volkswagen and others include (figure 3) this

360° view to help drivers with parking, manoeuvring in tight spaces and help see objects in

the car’s blind spots [12].

Figure 3: Bird’s-eye view on the Audi system [12].

To achieve this view the vehicle usually has multiple cameras mounted to it, ranging from 3-6

cameras [12]. If the car were to have 4 cameras the placement would be that one camera is at

the front, one for each side of the car and one in the back (figure 4). To create a top down

view, the perspective transformation is applied to the captured video feed and the results are

projected onto a planar surface and blended or stitched together to create a smooth image of

the car's surroundings [10].
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Figure 4: Typical surround-view camera placement on a vehicle [13].

2.2.1 Challenges in bird’s-eye view

To achieve a bird’s-eye view from cameras, a perspective transformation is applied to the

images and it is commonly called inverse perspective mapping [14]. Inverse perspective

mapping assumes that the world is flat, so all the pixels from the image are mapped to a

planar surface and it causes strong visual distortion of objects that are higher than the ground

[14]. Another problem using only a camera-based system is the lack of depth cues and

information [15], [16]. To address this problem, LiDAR and depth cameras are one of the

most popular choices. LiDARs can provide a high field of view and an accurate 3D scene to

understand the surroundings of the vehicle, but the point cloud provided by this sensor does

not provide colour information. Depth cameras also provide the colour information, but their

range, accuracy and field of view are not as good as the LiDARs [16].

To create a bird’s-eye view multiple camera images are usually used and placed so that they

have a little bit of overlap [17]. When stitching these images together, they may produce

ghost artefact, which are visual errors that occur at the seams of the stitched image. Artefacts

may be produced due to the bending of off-centre light that causes mismatch of

corresponding features, cameras are not collocated properly and when stitching together, the

pixel values at the seams are averaged [17], [18].
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2.3 Related work

In this section an overview will be given of existing work, solutions and software packages to

create a bird’s-eye view and give overall better situational awareness.

2.3.1 Fujitsu Multi Angle Vision system

Fujitsu Multi Angle Vision is a commercialised system that is installed on cars and allows the

driver to see a 360-degree view of the vehicle's surroundings (figure 5) [19]. The system uses

four fisheye cameras mounted on the vehicle. The cameras are installed to the front of the car

and back of the car near the licence plates and on each side of the car, onto the side mirrors.

The captured images are projected inside of a 3D curved mesh instead of a conventionally

used 2D plane surface. The projection to a 3D curved surface prevents objects around the

vehicle from being visually stretched and distorted [19]. The 3D scene also allows the driver

to choose any viewing angle, including the bird’s-eye view, by simply rotating the image

[19].

Figure 5: Fujitsu Multi Angle Vision system [19].

In addition to Fujitsu's system, other such 360 degree camera systems can be bought and

installed on vehicles [20]. These systems are meant to be used inside cars and help the driver

to manoeuvre and park their vehicle, so there is not much information if the camera feeds

from these systems can be accessed with a computer or broadcasted over an internet

connection.
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2.3.2 RViz textured sphere

The rviz_textured_sphere package for Robot Operating System is designed to give a better

situational awareness in teleoperation by rendering panospheric vision into RViz [21], [22]. A

sphere mesh is constructed with customised texture mapping where the images from two

fish-eye cameras are projected onto each hemisphere (figure 6). This RViz plugin allows the

user to also change different parameters like image topics and its transport mechanism, the

field of view of both camera feeds and the blending angle to create a seamless image [22].

Currently the limitations with this package are that it only allows the use of two cameras at

the same time and it only has a sphere mesh where the images are projected on. The package

also uses image blending to create a seamless image, which could cause ghost artefacts and

visual errors at the seams [22].

Figure 6: rviz_textured_sphere graphical user interface [22].

2.3.3 Point cloud painter

The pointcloud_painter is a ROS package that integrates the colour information from cameras

with the depth data from a LiDAR and visualises it in RViz where the environment and

objects can be viewed from multiple different perspectives (figure 7) [22], [23]. The plugin

takes two fish-eye camera images and a point cloud from the LiDAR as an input and then

merges them to generate a 3D XYZRGB point cloud. This process starts with the

stereographic projection of the fisheye camera images to correct the spherical distortion,

effectively mapping these images back to real-world coordinates. Then, the colour data from

the corrected images is overlaid onto the depth data received from the LiDAR. The alignment
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of these datasets is achieved using transformation algorithms that place both datasets into a

unified coordinate system, centred between the two camera positions. This integration allows

for the creation of a detailed 3D representation of the environment, providing a good visual

context and depth perception that is essential for accurate teleoperation [22]. The process of

generating and updating the colourised point cloud is computationally intensive [22], which

could affect the quality of teleoperation as computationally heavy tasks can increase latency

and reduce the operator's ability to respond to the changing environment. Urban

environments are quite complex, so if multiple objects occlude each other, mismatches can

appear between the depth and colour data when looking at the generated 3D scene from

different perspectives [22].

Figure 7: Painted point cloud visualised in RViz [23].

2.3.4 Omnidirectional vision

Omnidirectional vision is a framework containing ROS packages to give teleoperators a

better situational awareness of the robots’ environment [16]. By integrating images from

multiple cameras mounted on a robot, the framework creates comprehensive 360° views,

enhancing operators' understanding of complex environments. This system combines camera

feeds with 3D LiDAR data to produce a detailed, colourized point cloud (figure 8), offering a

richer visual representation that aids in object and terrain differentiation [16]. Implemented

using compact omnidirectional cameras, the framework reduces complexity and hardware
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demands, making it suitable for environments where space and weight are limited.

Demonstrations on various robotic platforms, including the Boston Dynamics Spot robot,

have shown the framework’s effectiveness in enhancing situational awareness and

decision-making in teleoperated robot control [16]. Currently the framework has been

evaluated with low resolution cameras, so this approach needs to be tested with higher

resolution cameras, as teleoperators need a good quality camera feed to focus on and

distinguish different objects [3], [16].

Figure 8: Teleoperators’ graphical user interface where the robot's surroundings are
shown as a colourized point cloud [16].

2.3.5 Spatio-temporal bird’s-eye view

Sato et al. propose a method to create a synthesised bird’s-eye view for teleoperation systems

by capturing images from multiple fisheye cameras and use as spatio-temporal data [24]. To

create this bird's-eye view, images are first captured from high-resolution fisheye cameras,

which give extensive and high-quality coverage of the environment but are with significant

distortions [24]. These images are then rectified to perspective images through spherical

mapping, reducing distortion and preparing them for further transformations. Next, the

rectified images undergo perspective transformation to simulate an overhead view using

geometric homography matrices. The transformed images are calibrated and stitched

together, ensuring precise alignment, especially in overlapping areas. This combined image is
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then synthesised into spatio-temporal data, integrating timestamps and localization to allow

for real-time updating and gap filling in the imagery. This process results in a continuous and

accurate bird's-eye view, however the high quality images increase the computation time and

the developed graphical user interface (figure 9) shows the created bird’s-eye view at 4

frames per second [24]. The low video frequency and the usage of past stored images make

this solution unusable for a autonomous vehicles teleoperation system as the teleoperator

needs real-time high video frequency camera feed of the cars surroundings to safely drive the

car.

Figure 9: Teleoperators’ graphical user interface showing the created bird’s-eye view [24].

The reviewed related works provide valuable insights and technologies to enhance situational

awareness in teleoperation systems. Each solution has its own limitations that impact their
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suitability for autonomous vehicle teleoperation, however they provide a good starting point

for creating a new multi angle interface for an autonomous vehicles teleoperations system.

17



3 Implementation

Currently the Autonomous Driving Labs vehicle has a basic teleoperation system installed by

Clevon (figure 10), where the teleoperator can see the video from the cars front facing

cameras and does not have a 360 degree overview of the vehicles environment.

Figure 10: Current teleoperation system used by ADL.

The objective of this thesis is to create an interface for the teleoperator to have a better

situational awareness by displaying multiple viewpoint images including a bird’s-eye view.

During the development, various available software is evaluated and validated. It also

includes modifying or creating new software and features.

3.1 Requirements

The Autonomous Driving Lab’s vehicle is equipped with necessary sensors and hardware that

are required for basic autonomy. The car has 2 LiDAR sensors, cameras, radar and a powerful

onboard computer with the following specifications [4]:

● CPU: Intel Xeon

● Memory: 32GB

● Storage: 1TB SSD

● GPU: NVIDIA RTX 2080 Ti

● Networking: 6x Gigabit Ethernet
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● OS: Ubuntu 20.04

● ROS distribution: Noetic

The software used is Autoware Mini, which is built using Python and ROS (Robot Operating

System) and is based on an open-source software stack for self-driving called Autoware [25].

Robot Operating System is an open source software framework that includes various tools

and libraries to help build applications for robots. The purpose of ROS is to standardise and

to support code reuse in robotics software development [26].

Based on the software and the architecture of the ADL-s autonomous vehicle the following

requirements are:

3.1.1 Functional requirements

● The interface displays a camera-based bird’s-eye view

● The interface displays a 3D scene from LiDAR and camera fusion

● The teleoperator can freely change viewing angles

● The teleoperator has a control panel to snap into different views

● The interface shows the trajectory of the car based on the steering angle

3.1.2 Nonfunctional requirements

● The interface is compatible with ROS Noetic and Ubuntu 20.04

As tasks in image processing can be computationally heavy, a computer with the following

specifications is used for development:

● CPU: AMD Ryzen 5 5600

● RAM: 32 GB

● GPU: NVIDIA RTX 3080

● OS: Ubuntu 20.04

● ROS distribution: Noetic
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3.2 Interface overview

As a part of this thesis a prototype version of the teleoperation interface was developed

(figure 11). The solution uses RViz as the base due to its capability to easily display different

sensor data like camera feeds, point clouds, depth clouds and robot models in a three

dimensional space and create custom control panels [27]. The remote human operator can

view the vehicle's environment from a camera-based view or as a point cloud representation.

Also a panel was created, so with a click of a button the viewing angle would snap in place.

To give the operator a better understanding of where the car is headed, the car's trajectory is

also visualised in the interface.

Figure 11: Created interface displaying the car model and surroundings in a bird’s-eye
view with future trajectory of the vehicle and control panel.

The developed solution can be divided into two main parts: the image processing and getting

data from the sensors, which is done on the vehicle's computer and the multi angle interface

displayed on the teleoperator's computer (figure 12). On the vehicles side, two fisheye camera

feeds are taken and merged together to create a one image that contains spherical images. The

merged image is further processed and transformed into a equirectangular projection that

should be sent to the remote operator’s interface and projected onto a 3D mesh. From the

vehicle side, the point cloud is also created from the data gathered from LiDAR and should

be sent to the teleoperator’s interface where it is displayed as a 3D scene.
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Figure 12: Diagram of the proposed solution displaying the interface and image
processing.

The whole solution is designed to use ROS, which is designed to be modular and uses nodes

which are individual processes. Nodes can communicate with each other through topics. A

node can publish to a topic to send data and also subscribe to a topic to receive data. There

can be multiple publishers and subscribers for one topic and one node can publish and

subscribe to multiple topics [28]. The created interface is formatted as a ROS package called

multi_angle_interface [29]. To easily run the software, the package has two launch files. A

launch file called start_interface.launch needs to be started on the teleoperators machine as it

starts up the RViz interface and a node for creating the vehicle trajectory, a launch file called

start_visual_data.launch needs to be started on the vehicle to get the image feed from the

fisheye cameras and process it to a equirectangular projection. On figure 13 a ROS node

graph describes how each node subscribes and publishes to a topic and what message types

are used.
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Figure 13: ROS node graph of the interface.

3.2.1 Visual perception

To improve situational awareness, the teleoperator can view the car's surroundings from the

camera feed or as a point cloud representation. To visualise the point cloud, RViz’s built-in

capabilities were used. The display type must be set to PointCloud2 and then as the input the

correct ROS topic must be given. The point cloud view allows the teleoperator to inspect any

object from multiple perspectives (figure 11). To display a bird’s-eye view, the RViz’s camera

viewing angle has to be set so that it views the point cloud from the top. It can be done

through the control panel or with a computer mouse.

The teleoperator also has a choice to view the surroundings from a camera-based view (figure

14). For this view, the rviz_textured_sphere [22] package was used as a base and modified to
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use a hemisphere mesh similar to the Fujitsu Multi Angle system. The hemisphere was

created by using the parametric sphere equations:

𝑥 = 𝑟 𝑠𝑖𝑛(ɸ) 𝑐𝑜𝑠(θ)

𝑦 = 𝑟 𝑠𝑖𝑛(ɸ) 𝑠𝑖𝑛(θ)

𝑧 = 𝑟 𝑐𝑜𝑠(ɸ)

where ɸ ranges from 0 to π/2 to limit the mesh vertically from the equator to the bottom pole

and θ ranges from 0 to 2π for a complete circular coverage horizontally. The created mesh

also has a flattened bottom, so that a 3D model of the vehicle can be placed on the mesh and

mimic the view of what would be seen from above.

Figure 14: Dual fisheye camera images projected on a hemisphere mesh at a bird’s-eye
view angle.

Before the image is projected to the hemisphere, it is first blended together to create an

equirectangular projection. Equirectangular projection linearly maps the longitude and

latitude of a sphere image to a rectangular image and produces one 2D 360 degree image.

This method is typically used for 360-degree videos, where the created image is projected

onto a viewing sphere and the viewer can freely choose a viewing direction [30]. This

projection is needed as the circular fisheye image is designed to cover a hemisphere, which in
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a 2D plane is a circle. If the fisheye image is to directly be mapped to one half of a

hemisphere, it would create black borders around the edges (figure 15a) that come from the

circular fisheye image. Equirectangular projection maps the entire panorama onto a

rectangular image and removes the black borders (figure 15b).

(a)

(b)

Figure 15: Dual fisheye camera images (a) projected as an equirectangular
presentation (b).
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The equirectangular projection is done using a ROS package called jsk_perception, which

contains scripts for different kinds of 2D image perception tasks [31]. The created image is

then mapped inside the created hemisphere mesh, where the viewing angle of the hemisphere

can be changed through the control panel or with a mouse.

3.2.2 View control panel

To quickly snap into a different viewing angle of the environment, a small panel was created.

The panel consists of five buttons (figure 16), which allows the operator to pan the view to

the left, right, front and back side of the car or to a bird’s-eye view (figure 17). The panel was

created using C++ and graphical user interface elements that exist in RViz. The panel can be

docked in the main window of the interface or it can be dragged out of the window and

placed anywhere on the screen.

Figure 16: RViz control panel to quickly change between viewing angles.

To change the viewing angle via the buttons, a package called rviz_animated_view_controller

[32] was used. This package allows users to change the RViz’s virtual camera angle by

sending a message to the /rviz/camera_placement topic [32]. The buttons on the panel send a

message to that topic with different predefined parameters for each view.
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(a)

(b)

26



(c)

(d)
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(e)

Figure 17: Different angles that can be snapped to with the control panel: front view (a),
left view (b), right view (c), back view (d) and bird’s-eye view (e).

3.2.3 Vehicle trajectory

To give feedback about the vehicle's path, a future trajectory calculation was implemented

(figure 18). The trajectory of the vehicle was modelled based on the Ackermann steering

geometry, which is designed to trace out circles of different radii for the wheels on the inside

and outside of a turn [33]. The future path of the vehicle is calculated based on the steering

angle, wheelbase and track width of the vehicle. Steering angle is taken from a Logitech G29

steering wheel by using a ROS joy package, which publishes a message that contains the

current state of a controller's joysticks and buttons to a topic (figure 13) [34]. The calculated

points are visualised by using Markers, which allow to display different shapes in RViz by

publishing the marker messages to a topic.
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Figure 18: Vehicle’s future trajectory visualised with blue lines.

3.3 Challenges

During the development of the interface, some issues and challenges were encountered. In

this subsection an overview of the main problems is given and what methods were tried to

solve them.

3.3.1 Image alignment and stitching

The rviz_textured_sphere package’s one main problem is that it assumes that the two fisheye

images are ideal and that the camera centres match. Due to this assumption the combined

spherical image has artefacts (figure 19). The package was also tested in real life with two

KODAK PIXPRO SP360 4K fisheye cameras to test if the artefacts could be lessened by

mounting the cameras back-to-back or putting some distance between the units. The different

positionings did not reduce the artefacts, so to create a better and more accurate seam

between two images, image stitching was tested.
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Figure 19: Body of a car is not aligned correctly on the seam of the combined images.

CS205-ImageStitching is a software library that uses C++ and OpenCV to stitch photos or

live video streams together to create a seamless high-resolution image [35]. The process to

create a stitched image contains several key steps. The first step is to identify the keypoints

on the two images. Usually the keypoints are more distinguished features like corners and

edges of an object. To detect these features the library uses the Speed-Up Robust Features

(SURF) algorithm. Next, the keypoints of the two images are matched using Euclidean

distance to get the best result. Once the matching keypoints have been established, a

transformation matrix is derived by using the Random Sample Consensus algorithm. If the

matrix is created then the image is projected to the right side of the plane where the image on

the left is at and then the image is stitched together by placing pixels from both images to a

blank canvas [35]. Due to the process being computationally heavy, shared memory

parallelization and GPU acceleration methods were also used to speed up the process. The

image stitching libraries were tested with a lower 720p resolution Logitech C270 web

cameras. The results by using shared memory parallelization OpenMP produced an image

with lots of artefacts and a frame rate of 1 - 5 frames per second (figure 20). The results were

a bit better with the OpenACC GPU acceleration as the frame rate ranged from 11 - 15

frames per second, but the stitched image produced a lot of artefacts, especially when there

was movement in the video feed (figure 21). From these results, it can be concluded that

30



stitching is not a good choice for creating a real-time seamless image as it is a

computationally heavy task and affects the video frequency and image quality and can impact

the remote driving negatively.

Figure 20: Stitched camera feed using SURF and OpenMP

Figure 21: Stitched camera feed using SURF and OpenACC

The stitching was also tested by switching out the SURF algorithm with Scale-Invariant

Feature Transform (SIFT) algorithm for keypoint detection. The result was similar compared

to using the SURF algorithm and GPU acceleration with a video frequency of 11 - 15 frames

per second and unstable picture quality when there was movement (figure 22).
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Figure 22: Unstable stitched image using SIFT and OpenACC.

3.3.2 Image and point cloud alignment

Issues also came up while creating the bird’s-eye view by trying to use sensor fusion by

painting the LiDAR point cloud with the colour info from the fisheye cameras. The

pointcloud_painter [22] package was explored. The first problem was that the package only

took input and data from a rosbag. After modifying the code to work in real-time and setting

up the parameters for our setup, the package failed to project colour onto most of the depth

points. For example, out of 92415 depth points, it only assigned colour to 4537 and the colour

of the objects was not correct. Another problem was that the package's performance was quite

slow. After modifying the parameters and enabling image compression the best result was

one painted point cloud was created in 4 - 5 seconds.

Also another point cloud painting package was looked into. The package

color_cloud_from_image is a package part of the aforementioned Omnidirectional Vision

framework and allows to colourize LiDAR point clouds from a 360 degree camera [36]. The

main issue with this package was that there was no documentation on how to use it and the

package would fail at the building stage. From the error messages it seemed that the software

was not compatible with ROS Noetic and Ubuntu 20.04.

Although these problems remain unsolved currently, working to solve these issues gives a

good understanding of what future work needs to be done.

3.4 Testing

During the implementation, the KITTI-360 dataset was used to test the created interface as it

has a similar set of sensors to the ADL self-driving car. KITTI-360 is a suburban driving

dataset, the successor of the popular KITTI dataset, that offers a rich 360° data. The data is
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obtained using fisheye cameras and LiDARs and other sensors that are mounted on top of a

vehicle (figure 23) [37]. The dataset contains over 300 000 images and over 100 000 laser

scans from a driving distance of 73.7 km [38]. To use the dataset with ROS, the

kitti360_ros_player is used to publish all sensors to ROS topics. This package allows to

pause, speed up or go through the simulation frame by frame [39].

Figure 23: Camera and sensor placement on the KITTI-360 vehicle [37].
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4 Discussion

In this section the results and limitations of the created interface are discussed. To improve

the interface and reduce limitations, some ideas are proposed for further development.

During this thesis an interface was developed for a self-driving vehicles teleoperations system

to enhance the situational awareness for the human remote operator. The software is

formatted as a ROS package and can be found on GitHub [29]. Almost all the set

requirements were met, as the operator can freely change the viewing angle and use the

created control panel for it, the vehicle's future path is displayed. The teleoperator can also

change between a camera-based and point cloud view. The requirement that was not met was

that the point cloud and camera feed are fused together to create a colourized point cloud.

Although most of the requirements were met there are still limitations and points of

improvement.

4.1 Limitations and future work

Currently the solution is built on using two fisheye cameras that are mounted on top of the

car. If more cameras are to be added, then one solution would be to modify the

equirectangular projection code so that instead of two fisheye cameras, it takes more than two

cameras as input and creates a one 360 degree image. Also if needed the images could be

projected straight to the 3D mesh, but then the texture mapping should be edited, so that each

camera image would get a section of the hemisphere.

Another problem that exists in the current solution is that the camera-based view has quite a

lot of barrel distortion. Barrel distortion is common with wide-angle fisheye lenses and

causes the image's edges to look curved [40]. One solution to remove barrel distortion is to

replace the fisheye cameras with rectilinear wide angle cameras. This approach might need

more than two cameras as rectilinear lenses have a smaller field of view than fisheye lenses.

Another way to reduce barrel distortion from fisheye images is to use rectilinear projection,

which is a common method used to map a curved surface to a flat plane, where straight lines

in a 3D space are also preserved on the 2D image [41]. This projection limitation is that the

edges of the projection may have extreme distortion, so the field of view of the created image

is limited. To overcome this issue panorama viewers apply the rectilinear transformation in

proportions [41]. So to apply the rectilinear projection in, we would have to get the position
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of the RViz’s virtual camera and apply the transformation to the viewed proportion of the

whole image.

Currently the interface displays a point cloud, which gives the teleoperator a better depth

sense, but it lacks colour, so it may be hard to identify the surrounding objects. Multiple

packages to add colour information to the point cloud were explored, but did not give a

usable result. One approach may be to take the aforementioned packages as a base and create

an improved version that could handle large point clouds in real-time.

Another limitation lies in displaying the vehicle's future path, as currently the path is only

projected to the front of the vehicle. A solution to this problem may be by subscribing to a

Gear report ROS topic from Autoware, which gives information of what gear the car is

currently in [42]. If the gear is known, then the path of the car can be projected to the front or

back, according to the gear.

For further testing and development, the created interface should be migrated to the ADL’s

vehicle. First, two fisheye cameras need to be mounted on top of the vehicle and as the

vehicle already has a frame where other sensors are mounted, the cameras may be also

mounted onto it. Secondly, the car currently also has a teleoperation system that was

developed and installed by Clevon, so it should be explored how the interface could be

integrated to the existing solution [43].
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5 Conclusion

Teleoperation systems are needed to help self-driving vehicles come out of difficult

situations. To give a better overview of complex environments to the human remote operator,

360 degree multi angle view and bird’s-eye view are used. To get the a better understanding

of the surroundings, it is better to use data from multiple sensors and combine them together,

as only camera-based view gives a good overall awareness, but lacks depth cues and

perception and point cloud generated by LiDARs give a better 3D scene and depth

information, but lack colour information.

The goal of this thesis is to create an interface for the teleoperator to have a better situational

awareness by displaying multiple viewpoint images including a bird’s-eye view. As a result, a

prototype interface was created, which allows the teleoperator to view the vehicles

surroundings from a camera-based multi angle view or as a point cloud, the operator can also

quickly change viewing angles by using a control panel.

Despite the created systems limitations and issues, it provides a good starting point for further

development and testing of the current solution.
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