
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Zhaosi Qu

Back-end of Kairos:
A Prescriptive Process Monitoring Tool

Master’s Thesis (30 ECTS)

Supervisor(s): Fredrik Milani, PhD

Mahmoud Shoush, MSc

Kateryna Kubrak, MA

Tartu 2023



Back-end of Kairos: A Prescriptive Process Monitoring Tool

Abstract:
Prescriptive process monitoring is an approach that aims to predict potential failures
and provide recommendations to optimize business processes. It seeks to improve
efficiency and productivity by aiding enterprises in making informed decisions during
process execution. For example, it can be applied to optimize a company’s supply
chain management by predicting delays and suggesting actions based on historical data.
The primary problem that this thesis address is the absence of a comprehensive tool
capable of analyzing data from different sources and offering various types of prescriptive
recommendations. Consequently, the objective of this study is to propose and implement
a software solution that enables the integration of diverse algorithms and plugins in a
seamless manner. The proposed approach includes back-end software that provides APIs
to implement prescriptive process monitoring features. Users can upload event logs to
the tool and receive various prescriptions for ongoing cases, encompassing predictions
of the next activities, scoring the likelihood of adverse outcomes, providing treatment
effects, and allocating resources based on treatment gains. Moreover, the modular
design enhances adaptability and flexibility across various business domains. To evaluate
the effectiveness of the proposed solution, a combination of requirements fulfillment
evaluation and performance evaluation is conducted using datasets from the Business
Process Intelligence Challenge (BPIC). As a result, this thesis contributes to the field
by providing a prescriptive process monitoring tool that can provide multiple types of
prescriptive recommendations.

Keywords:
Prescriptive process monitoring, Process mining, Process optimization

CERCS:
P170 Computer science, numerical analysis, systems, control

Kairose tagumine osa: retseptipõhine protsessi jälgimise tööriist

Lühikokkuvõte:
Preskriptiivne protsessimonitooring on uus lähenemine, mille eesmärk on ennustada
võimalikke rikkeid ja anda soovitusi äriprotsesside optimeerimiseks. See püüab paran-
dada tõhusust ja tootlikkust, aidates ettevõtetel teha informeeritud otsuseid protsesside
täitmisel. Näiteks saab seda rakendada ettevõtte tarneahela haldamise optimeerimiseks,
ennustades viivitusi ja soovitades tegevusi ajalooliste andmete põhjal. Selle väitekirja pea-
mine probleem on kattuva tööriista puudumine erinevate allikate andmete analüüsimisel
ning erinevat tüüpi preskriptiivsete soovituste pakkumisel. Seetõttu on selle uurimistöö
eesmärk välja pakkuda ja rakendada tarkvaralahendus, mis võimaldaks mitmekesiste
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algoritmide ja pistikprogrammide integreerimist sujuvalt. Pakutav lähenemisviis sisaldab
tagasipoolset tarkvara, mis pakub API-sid preskriptiivse protsessimonitooringu funkt-
sioonide rakendamiseks. Kasutajad saavad tööriista üles laadida sündmustepäeviku ning
saada käimasolevate juhtumite kohta erinevaid retsepte, hõlmates järgmiste tegevuste
ennustamist, ebasoodsate tulemuste tõenäosuse hindamist, ravi mõju pakkumist ja res-
sursside eraldamist ravikasumi alusel. Lisaks suurendab mooduldisain kohanduvust ja
paindlikkust erinevates ärivaldkondades. Et pakutud lahenduse tõhusust hinnata, viiakse
läbi nii nõuete täitmise hindamine kui ka jõudluse hindamine Business Process Intel-
ligence Challenge (BPIC) andmekogude kasutamisega. Selle tulemusena annab see
väitekiri panuse valdkonda preskriptiivse protsessimonitooringu tööriista pakkumisel
mitmeid preskriptiivsete soovituste liike.

Võtmesõnad:
Retseptiivne protsessimonitooring, protsesside kaevandamine, protsesside optimeerimine

CERCS:
P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)
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1 Introduction
Business process management (BPM) is a systematic approach to modeling, analyzing,
and improving the efficiency of an organization’s processes [DLRMAR13]. By aligning
an organization’s resources with its strategic goals, BPM enables continuous improve-
ment, enhanced collaboration, and optimized performance across various departments
and functions [DLRMAR13]. Process mining is a sub-field of BPM that aims to discover,
monitor, and improve processes by analyzing historical data from event logs [Aal16]. It
examines data such as ID, activity, and timestamp to discover business processes and
can be used to pinpoint areas of improvement within processes. Process mining has nu-
merous use cases, including compliance checking, bottleneck analysis, and optimization
suggestions [VDA12].

Predictive process monitoring (PPM) is an extension of process mining that utilizes
historical data to predict the outcome of ongoing cases or to forecast the next activ-
ity [DFGMM18]. The primary difference between predicting outcomes and predicting
the next activity is the focus on the entire process outcome (e.g., successful loan ap-
plication) rather than individual activities (e.g., credit check). These predictions can
inform better decision-making and allow organizations to take corrective actions when
necessary.

Prescriptive process monitoring (PrPM) is another advanced form of process mining
that moves beyond predictions to provide practical recommendations for ongoing cases,
and it is based on the idea that predictions are only meaningful if the system can
provide actionable insights for better outcomes [KMND22]. Using live cases, PrPM
can guide necessary interventions by suggesting various types of solutions, such as the
best next activity to improve a specific Key Performance Indicator (KPI) [WDZM20],
recommending an intervention that can improve a given business value [SD22], or
triggering an alarm to prevent negative outcomes [TTdL+18].

Although there have been advancements in PrPM, many existing methods still only
focus on one type of recommendation [KMND22]. There is a gap in the field, as there is
a lack of a comprehensive tool that can analyze data from different sources and offer an
integrated prescriptive solution for process monitoring. The motivation for this thesis is to
address this gap by developing a tool that can seamlessly work with diverse prescriptive
methods and analyze multiple data sources.

To approach this problem, the thesis will follow the design science method to achieve
the following objectives:

1. Design a solution for prescribing different types of recommendations for ongoing
cases by allowing the integration of multiple prescriptive algorithms to be applied
to the same event log.

2. Implement the solution in an application.
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3. Evaluate the application’s functionality using real-life datasets.

The main contribution of this thesis is an artifact that works as a prescriptive process
monitoring tool and provides multiple types of prescriptive recommendations. Such
an artifact is particularly valuable for analysts who work with process mining, as it
expands their capacity to provide actionable recommendations and effectively intervene
in ongoing cases.

The structure of this thesis is as follows: Section 2 presents the background of this
field and existing similar works. Section 3 introduces the methods used to conduct this
thesis. Section 4 provides the details of the developed artifact. Section 5 presents the
evaluation process and the evaluation results. Finally, Section 6 summarizes the results,
discusses the limitations of this work, and suggests future research directions.
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2 Background and related work
This section introduces the relevant background of the research topic of this thesis and
some similar works.

2.1 Background
Dumas et al. describe the concept of a business process as a sequence of interconnected
activities, occurrences, and choices implemented by an organization to generate value
for its clientele [DLRMAR13]. Furthermore, they characterize business process man-
agement (BPM) as a comprehensive framework that encompasses various principles,
methodologies, and instruments to identify, examine, restructure, execute, and supervise
business processes [DLRMAR13]. As more and more companies adopt BPM systems
for management, a large amount of data related to business processes is generated in the
BPM system, which can be utilized by process mining technology.

The idea of process mining is to discover, monitor and improve real processes
by extracting knowledge from event logs readily available in today’s information sys-
tems [AAM+11]. An event log is a set of completed traces, where a trace is a non-empty
sequence of events, all referring to the same case. Each event consists of a case iden-
tifier, activity name, timestamp, and other possible event attributes. Process mining
enables analysis of these data in order to detect trends, identify bottlenecks, investigate
frequencies, and provide insights [VDA12]. For example, in the case of a loan applica-
tion process, process mining techniques can be applied to the collected event log data
to generate a visual representation of the actual process flow, revealing patterns and
providing actionable insights. This can help organizations identify process inefficiencies,
cycle times, and compliance issues, enabling them to streamline their loan processing
workflows, reduce processing time, and ultimately enhance customer satisfaction.

Based on the foundation of process mining, predictive process monitoring (PPM)
emerged as an approach that forecasts the outcomes of ongoing cases. PPM utilizes event
logs to analyze historical data and predict the likelihood of different outcomes for running
cases, such as the completion time, resources required, or chances of success [TDRM19].

Unlike PPM which only provides predictions without offering interventions, the
Prescriptive Process Monitoring (PrPM) is a collection of approaches for recommending
or triggering interventions during the execution of a process to maximize its perfor-
mance [SD22]. For example, some PrPM techniques can use business event logs to
forecast negative outcomes that affect the performance of a process and use these pre-
dictions to determine if and when to initiate interventions to prevent or mitigate these
negative consequences [FPTT+22]. For example, in the loan application scenario men-
tioned earlier, the manager can use intervention recommendations provided by PrPM to
reassign employees handling applications or adjust the application flow for special cases,
thus improving the success rate of cases or shortening processing time.
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In fact, there are various methods to achieve PrPM. Kubrak et al. [KMND22]
summarized three types of methods for giving prescriptive recommendations, which are
guiding methods, correlation-based methods, and causality-based methods.

Guiding methods give suggestions for ongoing cases that are similar to previous
cases, based only on historical traces [KMND22]. For example, Arias et al. used
historical information on the process execution and expertise information to prescribe
recommendations for team formation, which uses the similarity of traces for resource
allocation recommendation [AMGS16].

Correlation-based methods give recommendations to improve the process with respect
to some key performance indicators, such as duration, cost, or the positive outcome of
the case [KMND22]. For example, Fahrenkrog-Petersen et al. proposed a framework for
triggering intervention actions based on the predictions provided by PPM by constructing
a cost model and setting off alarms [FPTT+22].

Causality-based methods rely on causality, and can be used to recommend inter-
ventions and their effectiveness [KMND22]. For example, Bozorgi et al. proposed an
approach to generate case-level intervention recommendations with effectiveness by
discovering causal rules from event logs [BTD+20].

2.2 Related work
Some algorithms are dedicated to providing one kind of recommendation using business
process data. For example, in guiding method algorithms, Abdulhameed et al. proposed
a method that computes the co-working relationships of resources based on the frequency
and processing time of doing a task in previous to suggest the high-ranking resource
that would be best for co-working with others [AHAE18]. In correlation-based method
algorithms, Fahrenkrog-Petersen et al. proposed a method that evaluates the probability of
a negative outcome together with a cost model and the mitigation effectiveness to trigger
an alarm. While in causality-based method algorithms, Shoush and Dumas proposed a
method for allocating resources by building a causal estimation model [SD22]. However,
these algorithms can only provide one type of recommendation. Although Kubrak et
al. collected various PrPM algorithms, summarized them, and proposed a framework to
characterize prescriptive process monitoring methods [KMND22], it does not implement
a solution to combine them. We are looking for a solution to combine different types of
prescriptive algorithms to provide more effective recommendations.

Regarding academic research-based similar software tools, there are also some tools
that implement predictive or prescriptive process monitoring. For example, Nirdizati and
ProLift. Nirdizati is an integrated open-source process monitoring platform that supports
users in selecting and tuning various prediction models and enables the continuous predic-
tion of different process performance measures at runtime [Ver18]. Nirdizati supports a
scalable and modular architecture, provides hands-on configurable performance metrics,
supports explanation, and provides indications on the preprocessing of the event log for
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the user [RDFGM22]. However, Nirdizati only supports predictive process monitoring
and thus does not support prescribing intervention based on causality. ProLift is a causal
rule discovery tool that can help process workers discover cases that may be improved
by an intervention [BKD+22]. Still, the tool only uses one modeling technique and can
only provide one type of recommendation, i.e., whether predefined interventions have
benefits in specific open cases.

In the industry, there are also some analytical tools. Some tools provide predictive
process monitoring, such as Apromore, Rapidminer, and Alteryx. Apromore provides a
predictive process monitoring add-on that uses a training module to analyze historical
data, train predictive models, and uses a runtime monitoring module to provide prediction
results for open cases1. Rapidminer is a data science platform that can provide insights
into user behavior and predict possible results of cases using historical data2. Alteryx is an
analytics cloud platform that offers predictive analytics services, enabling users to select
algorithms and specify parameters to improve processes through training historical data3.
However, these tools are based on predictive methods and cannot provide intervention
recommendations based on causality. In addition, some tools provide prescriptive
analytics functionality, such as FICO, IBM Prescriptive Analytics, and AIMMS. FICO
uses prescriptive analytics to implement data-driven decision-making to improve the
customer lifecycle 4. IBM Prescriptive Analytics solutions use prescriptive optimization
methods to improve operations, increase efficiency, and mitigate risks5. AIMMS focuses
its purpose on using prescriptive analytics to improve supply chain decisions and provides
map-based visual results 6. However, these tools focus on providing a wider method
set, including simulation, optimization, and decision analysis. And some of them are
designed for a specific purpose. There is still a need for more specialized tools that focus
explicitly on prescriptive process monitoring for different industries and contexts.

In summary, although there are some similar works and industry solutions, the gap
that this thesis aims to fill has not been solved by these solutions.

1Apromore: https://apromore.com/predictive-process-monitoring/
2RapidMiner: https://rapidminer.com/solutions/domain-experts/
3Alteryx: https://www.alteryx.com/glossary/predictive-analytics
4FICO: https://www.fico.com/en/fico-platform
5IBM Prescriptive analytics: https://www.ibm.com/prescriptive-analytics
6AIMMS https://www.aimms.com/

10

https://apromore.com/predictive-process-monitoring/
https://rapidminer.com/solutions/domain-experts/
https://www.alteryx.com/glossary/predictive-analytics
https://www.fico.com/en/fico-platform
https://www.ibm.com/prescriptive-analytics
https://www.aimms.com/


3 Method
This study aims to design a feasible solution that allows a single system to provide
different kinds of prescriptive recommendations for ongoing cases. Moreover, the
solution needs to be implemented to explore the methods or technologies that can be
used, assess the feasibility of the solution, and evaluate whether it is generalizable across
different dataset inputs from the perspective of various application scenarios.

Therefore, the goals of this thesis are defined as follows:

1. Design a solution for prescribing different types of recommendations for ongoing
cases by allowing the integration of multiple prescriptive algorithms to be applied
to the same event log.

2. Develop an application to implement the solution.

3. Evaluate the functionality of the application using datasets.

The first goal is primarily concerned with the design of the logical aspects of the
solution. The second focuses on the implementation level of the solution. The problem
is related to how to implement the solution as a system, provide a way to integrate the
system with the user’s existing process mining system, and ensure the system’s ability to
support more types of prescriptions.

In order to answer these goals, this thesis followed the design science research
methodology. Since we aim to solve a problem (how to prescribe different types of
intervention to ongoing cases) by creating and evaluating an artifact (an implementation
of the solution), the design science research method is a suitable approach. According to
Peffers et al., using design science as a research methodology is an effective approach
for creating solutions that address real-world engineering issues [PTRC07].

As Figure 1 shows, this research will take the following steps:

1. Identify the problem domain and the requirements for the artifact;

2. Design, build, and evaluate the artifact based on the proposed solution;

3. Evaluate the artifact;

4. Extend the existing knowledge base by providing new artifacts and new experi-
ences.

Section 3.1 will explain how requirements are collected. Section 3.2 will describe
the factors that will be considered when selecting architecture, technology stack, and
development management methods. Finally, Section 3.3 will explain how artifacts are
evaluated and tested. Section 3.4 declares the use of AI-based tools in paper writing.
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Figure 1. Design science method.

3.1 Requirements gathering
Requirements gathering and prioritizing are the first steps in designing the artifacts. In
this step, we collected and prioritized the requirements based on the following sources.

3.1.1 Collect from related tools

The related artifacts mentioned in Section 2.2 were used as references, which are not
based on specific application scenarios but provide some general approaches that can be
used to solve different application scenarios. The characteristics of these artifacts are
also used as a possible list for the requirements gathering of the artifacts.
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3.1.2 Collect from related researches

We referred to the research of Kubrak et al. on the systematic literature review (SLR) [KMND22]
and user interface concept for prescriptive process monitoring [KMND23] to determine
which types of algorithms should be supported by the tool. We also identified the format
and structure of training data, new data for analysis, and output data that should be
supported by the tool in actual production environments. Additionally, during sprint
meetings, our research team discussed and selected specific algorithms that should be
implemented in the tool as the default example plugins.

3.1.3 Prioritization

In order to first verify the feasibility of the framework, solution, and artifact pipeline, we
prioritized the requirements from the collection of requirements. This study prioritizes the
requirements according to the MoSCoW method and classifies them into four categories.

• Must have: requirements that must be implemented.

• Should have: requirements that should be implemented.

• Could have: requirements that can be implemented.

• Won’t have: requirements that will not be implemented.

In the feasibility verification phase, the study first implements the Must have require-
ments and creates a minimum viable product (MVP) to verify the designed solution.

3.2 Design and development
This section outlines the decision-making process for design choices, including the
factors considered in selecting the architecture and the modeling techniques utilized.
Furthermore, it delves into the rationale behind these selections.

3.2.1 Formulate Solution

This thesis prioritizes high-priority requirements and considers them as must-achieved
goals when formulating the solution. The following aspects are considered in the design:

• The input and output data formats may be different for algorithms.

• The training time may vary significantly for different kinds of algorithms.

• Some algorithms require the labeling work of data, and some do not.
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• Some algorithms may require human involvement to determine the parameters or
intervention candidates.

Also, based on studies related to interventions [WRRM08, KMND22], several main
types of interventions can be treated as desirable types of results:

• Control flow: suggesting the flow or sequence in which activities occur;

• Resources: suggesting specific resources for performing activities;

• Performance: suggesting to perform activities at different points in time.

Moreover, when thinking of the solution, it’s notable that current intervention-based
studies have not yet addressed the problem of automatically identifying available inter-
ventions. As they only predict the impact of taking each action on negative outcomes after
the interventions have been identified, the selection of possible intervention candidates
still requires the involvement of domain experts [KMND22].

3.2.2 Architecture

We have defined this tool as a back-end service utility that is capable of providing
RESTful APIs. In doing so, we considered the following factors:

• The RESTful API provided by the back end, not only can be used by some front-
end applications but also can be integrated with other business systems.

• The tool ultimately provides prescriptive recommendations as result data, rather
than visual representations of the results. The setting and visualization design of
the results is not within the research objectives of this thesis.

When choosing a back-end architecture, this study considers the following factors:

• Coupling between modules. The lower the coupling between different modules,
the higher the maintainability of the system.

• Scalability. The system needs to be able to support an increasing number of
algorithms and therefore needs to be highly scalable.

• Portability. The system needs to be able to run on different platforms, so it needs
to be highly portable.
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3.2.3 Modelling

The implementation used class diagrams and sequence diagrams for modeling, and the
reasons for choosing these two modeling methods are as follows:

• Class diagrams are used to describe the relationship between classes in a system
and are the basis of object-oriented design. In this study, we need to describe the
relationship between classes to understand the system’s logical structure, so class
diagrams are chosen as the modeling method.

• Sequence diagrams are used to describe the interactions between objects in the
system. In this study, we need to describe the interactions between objects in the
system to show the system’s workflow, so we choose sequence diagrams as the
modeling method.

3.2.4 Development

This section describes the artifact’s development process, including the project man-
agement methodology, the sequence of adding algorithms, the data sets used, and the
development of supporting tools.

Project Management Project management uses some agile development methods. We
divided the requirements into sprints based on a list of requirements, and each sprint had
a plan that includes the sprint’s goals and the sprint’s timing. Each sprint had a two-week
cycle. This process can be seen in Figure 2.

Figure 2. Sprint circles.

During the requirements phase, existing requirements might be modified, and new
requirements might be added. These requirement modifications and additions were
documented in the sprint plan so that they can be discussed during the sprint review.
Functional tests are performed at the end of the design and development phase to ensure
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that the modules meet the requirements. At the end of the sprint, the supervisors
conducted a sprint review with the author, including whether the goals of the sprint were
met and whether the tasks of the sprint were completed. The results of the sprint review
were used as a plan for the next sprint.

Adding Algorithms After implementing the MVP pipeline, logic modifications and
additions are made on top of the pipeline, and the new algorithms added drive local design
changes. Before adding an algorithm, the algorithm is analyzed, including its inputs and
outputs. The results of this analysis are documented in the algorithm’s documentation so
that subsequent developers can refer to them.

The order in which the algorithms are added is based on the complexity and difficulty
of the algorithm, and based on the study of Kubrak et al. [KMND22], we added the
algorithms in this order:

1. Guiding algorithm;

2. Correlation-based algorithm;

3. Causality-based algorithm.

3.3 Evaluation
This section describes how to evaluate the system, including acceptance criteria, the data
used in the evaluation, and how the evaluation is done.

3.3.1 List of acceptance criteria

The artifact proposed in this thesis can be accepted if it meets the following criteria:

• The Must have and Should have requirements fulfilled;

• The combination of the algorithms can provide results as a single file;

• The application can be successfully deployed with a demo instance.

3.3.2 Evaluation dataset

We use three datasets that come from BPIC7. In a natural production environment, data
is generated in the form of streams, so we need to develop an event streamer to simulate
the generation of data streams during the evaluation process. The main functions of this
streamer include the following.

7https://www.tf-pm.org/competitions-awards/bpi-challenge
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• Reading data from a specified dataset.

• Sending data to the application in the chronological order of events.

• Sending data to the application at a specified rate.

• Record the results of the application feedback.

3.3.3 Evaluation method

We performed a requirements fulfillment evaluation and a performance evaluation.
For requirements fulfillment evaluation, we used test cases and sample datasets, and

predefined definitions to test the completeness of the features provided by the tool.
For technical evaluation, we measured the performance of the tool. First, we identified

relevant metrics to determine one of the key performance indicators: for example,
response time, throughput, or resource utilization. Then, we created a set of experiments
to measure the identified metric using different datasets. Finally, we run the experiments,
collect data for each metric, and show the results.

3.4 Usage of AI-based tools
This section clearly states the use of AI-based software tools during the writing process
of this thesis. The following tools are used in the writing of this thesis:

• ChatGPT: Used to translate the English abstract of this thesis into Estonian and for
grammar correction.

• Grammarly: Used for grammar correction and to improve readability.
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4 Results
This section will introduce the requirements collection results of the developed artifacts,
the architecture used during development, an introduction to the functions of each
component, implementation details of each component, deployment methods for the
artifacts, and an introduction to supporting documentation.

4.1 Requirements
This section will introduce the specific sources and results of requirement collection, as
well as the priority we assign to these requirements.

4.1.1 Functional requirements

As we discussed in Section 3, the collected functional requirements came from references
to similar tools, such as Nirdizati [RSF+19] and ProLift [BKD+22], and references
to SLR paper [KMND22] and prescriptive process monitoring user interface concept
research of Kubrak et al. [KMND23] Also, some requirements were derived from the
discussions within the research team.

These requirements are presented in Table 1, each requirement has a unique identifier
and corresponding description.

Table 1. Functional requirements

ID Description

FR-1
Support for processing uploaded historical event log files in CSV,
XES8, and ZIP formats.

FR-2 Ability to provide column definitions for the uploaded log file.

FR-3
Creation of a project based on the event log file by providing
outcome and treatment definitions.

FR-4
Ability to update basic information of the project, such as name
and description.

FR-5
Ability to connect to multiple machine learning plugins to train
models based on the created project.

FR-6 Support for setting plugins’ parameters.

8About XES: https://www.tf-pm.org/resources/xes-standard/about-xes

18

https://www.tf-pm.org/resources/xes-standard/about-xes


Continuation of Table 1

ID Description

FR-7
Support for providing additional information for custom-developed
plugins.

FR-8 Ability to disable or enable plugins after creating a project.

FR-9
Support for redefining column definitions or outcome and treatment
definitions.

FR-10
Ability to re-upload a new log file while keeping parameter settings
and additional information.

FR-11 Support for deleting a project.

FR-12 API for getting a list of all existing projects.

FR-13
Support for uploading new datasets for ongoing cases and obtaining
results with different types of prescriptive recommendations.

FR-14
Ability to stream new event data to the system and obtain SSE-
based data stream results with different types of prescriptive rec-
ommendations.

FR-15 Support for simulating events stream for testing conveniently.

FR-16
API for downloading preprocessed data, originally uploaded files,
generated test files that only contain ongoing cases, and the dataset
used for simulating streaming data.

FR-17
Support for loading, enabling, and disabling plugins during the
deployment phase. This feature can be used for adding more
custom plugins to provide other types of prescriptions.

4.1.2 Non-functional requriements

When proposing non-functional requirements, the following aspects were mainly consid-
ered:

• With respect to usability, it is crucial that the system processes transaction logs,
trains models, and predicts results within an acceptable time frame to ensure
efficiency and utility.

• Given that the artifact developed in this research constitutes backend software and
offers Application Programming Interfaces (APIs) for integration with frontend ap-
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plications, it is essential to provide comprehensive documentation or user manuals
for frontend developers to facilitate seamless integration.

• Considering the primary value of the artifact, the time and development costs
associated with developing new plugins should be relatively minimal. Ideally,
plugin developers should focus on algorithm implementation without needing
extensive knowledge of the overall system logic.

Consequently, we put forth an array of non-functional requirements as depicted in
Table 2. In this context, we employ the BPI Challenge 2012 dataset 9 processing time as
a benchmark. The specified time constraints are established based on executing programs
on a computing system equipped with an AMD Ryzen™ 9 5900HX Mobile Processor 10

and 32GB of RAM.

Table 2. Non-functional requirements

ID Description

NFR-1
When calling the API locally, the time used for a training phrase
on the BPIC-2012 dataset should be under 60 seconds.

NFR-2
When calling the API locally, the duration required for predicting
outcomes on an ongoing cases dataset, derived from the BPIC-
2012 dataset, should not exceed 60 seconds.

NFR-3
The plugin system should allow for easy modification, replacement,
or addition of prescribing and predicting plugins.

NFR-4
Comprehensive documentation should be provided for core appli-
cation’s usage and plugin development details.

NFR-5
the service should ultimately be deployed to a publicly accessible
server for others to test and integrate with the visualization layer.

4.1.3 Requirements prioritization

In order to achieve rapid iteration and validate design concepts first, it is necessary to
prioritize requirements during the development process. Here, we organize functional
requirements according to the MoSCoW model mentioned in Section 3, as shown in
Table 3.

9BPIC 2012: https://data.4tu.nl/articles/BPI_Challenge_2012/12689204
10AMD 5900HX processor: https://www.amd.com/en/products/apu/amd-ryzen-9-5900hx
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Table 3. Requirements prioritization

Priority Requirements

Must have FR-1, FR-2, FR-3, FR-5, FR-12, FR-14, FR-15, FR-17

Should have FR-4, FR-6, FR-7, FR-8, FR-11, FR-13

Could have FR-9, FR-10, FR-16

4.2 Architecture design
The tool implemented by the thesis is used as one of the backend services of Kairos 11.
The overall architecture of Kairos is shown in Figure 3. The dashed gray area represents
the visualization layer application of Kairos, which is designed and developed by another
thesis’s author12. The architecture of the artifact developed in this thesis is shown below
that area. As we can see, the back end consists of several main components: core
application, dataset processor, event streamer, plugins, database, and message broker.

Microkernel architecture. The backend design adopts the microkernel architecture
pattern. This is because modular design should be used to facilitate the addition of more
algorithms. The optional architectures are:

• Microservice architecture: breaking down a large application into multiple in-
dependent, loosely coupled small services that can be developed and deployed
separately to improve system flexibility, scalability, and maintainability.

• Event-driven architecture: based on event-triggered and processing mechanisms,
decoupling various system components for responsive interaction to improve
system scalability and flexibility.

• Microkernel (plugin) architecture: core functions provided by a small kernel while
other functions are extended through pluggable add-ons to achieve a flexible and
easy-to-maintain system structure.

Considering that the data granularity of microservices requires each service to have
its own database, it is unnecessary for this application and increases the development
and maintenance burden; therefore, it will not be adopted. In addition, considering
generality requirements we want to provide HTTP-based APIs for any possible external
consumer programs including the visualization layer so that external programs inter-
act with this application via API calls directly processed by business logic without

11Kairos: https://kairos.cloud.ut.ee
12Karios visualization layer: https://github.com/visualpm
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Figure 3. Overall architecture of Kairos.

abstracting events which would otherwise be cumbersome given current needs; hence
full adoption of event-driven architecture is not necessary. Finally, considering the need
to add more plug-and-play machine learning algorithms for providing more prescription
types we adopt microkernel architecture for adding functionality in isolation but at the
same time borrowing ideas from both microservices and event-driven approaches by
independently encapsulating different components achieving functional decoupling as
well as asynchronous processing capabilities enabling distributed deployment.

Core application. The core application is responsible for coordinating the workflow of
the entire system. The core application mainly collaborates with the dataset processor to
preprocess event logs, provide APIs to the visualization layer of Kairos, store necessary
data in the database, communicate with plugins through the message broker, provide data
required by plugins, and process the results returned by plugins. Some components of
the core application also serve as a common code library for plugins, which can be used
by plugins to automatically handle some common tasks, reduce the difficulty of plugin
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development, and allow plugin developers to focus solely on implementing the plugin
algorithm.

Dataset processor. The dataset processor is an independent worker that is responsible
for processing event log files and converting them into data formats that can be used
by plugins. It utilizes a multi-process approach to effectively use multi-core CPUs and
improve processing efficiency.

Event streamer. Event streamer is used to simulate the process of an external business
management system sending new events to the application. After event logs have been
processed, analyzed, and trained, the system can accept push notifications for new events
and provide prescription recommendations in a timely manner for ongoing cases. Event
streamer is designed specifically for this purpose: if the application has not yet been
integrated into the business management system but users want to test its functionality,
they can enable simulation mode. In this case, the event streamer will use test data and
call the application’s API to push new events. The system will generate results based on
these new events and be consumed by external programs.

Plugin system. Plugins are independent modules that are responsible for providing
a specific type of prescription for ongoing cases. Four distinct example plugins have
been developed to extend the application’s capabilities. The first plugin is responsible
for predicting the next activity in the ongoing case, while the second plugin assesses
the likelihood of negative outcomes. The third plugin provides a score that indicates the
need for intervention. The fourth plugin, in turn, allocates resources based on the gains
of the ongoing case.

4.3 Implementation
This section introduces the specific details and technical choices for artifact development.

4.3.1 Technology stack

This section will introduce the technology stack used in implementing the artifact, as
well as the reasons for choosing them.

The programming language is Python 3. The choice of language is mainly based on
the following reasons:

• Support for machine learning algorithms. As a general-purpose programming
language, Python has a rich set of third-party libraries, including those related to
machine learning, such as scikit-learn, numpy, and so on. These libraries can help
us implement machine learning algorithms quickly.
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• Concise and interpretative. The Python language has a concise syntax and is easy
to understand, which helps improve readability.

• The authors have experience using the language.

The database is PostgreSQL, and the choice of database is mainly based on the
following reasons.

• Relational database, which has a data structure that can support process mining
systems well.

• It supports multi-platform deployment, and can be deployed on Linux, Windows,
macOS, etc., for evaluation and testing.

• Support JSON data type, which can well support the data structure of process
mining system.

• The ORM (Object-relational mapping) library SQLAlchemy for Python supports
the integration of this database.

• The authors have experience with this database.

The back-end API framework uses FastAPI, and the framework was chosen mainly
for the following reasons.

• Support for asynchronous programming, which can improve the system’s perfor-
mance.

• Swagger documentation can be provided to facilitate front-end development and
integration with other systems.

• Fast responsiveness to achieve better performance. According to the web frame-
work benchmark provided by TechEmpower13, FastAPI is one of the fastest frame-
works for the Python language.

4.3.2 Core application

We will introduce its specific functions and technical details from several aspects, includ-
ing the workflow of the core program, object modeling, and interaction with external
programs.
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Figure 4. Simplified flowchart of core application.

Flowchart. The simplified flowchart is shown in Figure 4. Please refer to Figure 23 in
the appendix for the complete flowchart.

According to the flowchart, the first stage involves uploading the event log file, which
should contain only completed cases, and defining the columns and project parameters.
This stage also includes parsing the log file and checking for its validity. If the log file is
valid, basic information is returned to the API consumer, while an invalid file result at
the end of the process.

The second stage of the process is preprocessing and training. After defining the
columns and project parameters, the system preprocesses the data according to the
definitions provided. The outcome and treatment definitions are also defined in this stage,
which the system uses to train the models. The system validates the project definition
and checks if it is valid or not. If the definition is valid, the models are trained; otherwise,
the process ends.

The third stage of the process involves sending new data to the system. Users can

13https://www.techempower.com/benchmarks/
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either upload a new dataset or stream new event data to obtain prescriptions for ongoing
cases. If users choose to upload a new dataset, the system validates the dataset and
prepares it for processing. If the dataset is valid, the system provides prescriptions for
valid cases; otherwise, the process ends. Alternatively, if users choose to continuously
push new event data to the system, the system validates the data and saves it to the
database. If the data is valid, the system provides prescriptions for valid cases in a
streaming manner; otherwise, the process ends.

Finally, in the fourth stage, the system returns the prescriptions to the user. The user
can then use these prescriptions to improve their processes.

Class diagram. The system is structured using several core classes, as depicted in
Figure 5.

The EventLog class represents the event log file and contains details such as the
file name, saved name, and associated Definition object. The Definition class contains
definitions necessary for system training, such as column definitions, case attributes,
outcome definitions, and treatment definitions, among others.

The Project class represents a project that uses the system for prescriptive process
monitoring. It contains details such as the project name, description, and associated
EventLog object, as well as a list of associated Plugin objects.

The Plugin class represents a plugin in the system and contains details such as the
plugin name, description, and status.

The Event and Case classes are used to represent events and cases in the stream
data. By utilizing these classes for storing stream data, the system can provide timely
and prescribing recommendations for ongoing cases, allowing users to make informed
decisions about their processes.

Overall, the system design is highly structured and organized, with each class con-
taining details essential for efficient prescriptive process monitoring.

Sequence diagram. Figure 6 shows the interaction between the front-end and back-end
during the project creation phase. Upon successfully training the project, new data can be
incorporated into the project to retrieve prescriptions. This can be done via two channels,
viz. uploading a new dataset to the project or streaming new events data via API calls
to the project. In addition to this, the simulation feature embedded in the tool can be
leveraged to test this functionality effortlessly without the need for any coding.

Figure 7 assumes that the user will first use a new test dataset to obtain all prescrip-
tions in one call. Upon successfully uploading a new dataset, the API response will
include a result_key. In the event that a new test dataset was already uploaded during
project creation, a result_key would have been provided in the response as well. The
result_key can be utilized to retrieve the dataset result.

26



Figure 5. Class diagram of the core application.
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Figure 6. Interactions between frontend and backend when creating a project.
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Figure 7. Interactions between frontend and backend when uploading new ongoing cases
dataset.

Subsequently, Figure 8 assumes that the user will use the streaming API to post new
events and receive new prescriptions in a streaming manner. If the client subscribes to
the SSE endpoints, A message will be sent to the client every time a new prescription is
available.

4.3.3 Dataset processor

This section will introduce the workflow and necessary technical details of the dataset
processor.

Technical choices. Due to our use of Python for development, and the global interpreter
lock in Python limiting its ability to utilize multi-core processing, although we can use
the multiprocessing library to start new processes within the program, potential issues
with data processing and recognition between processes may result in additional costs for
development and maintenance. Therefore, we have separated the component responsible
for preprocessing data from the core application. This has three benefits:

1. Running in an independent environment allows us to fully utilize multi-processes
and multi-core processing programs without worrying about performance issues
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Figure 8. Interactions between frontend and backend when streaming new data.

caused by occupying uvicorn’s worker compared to integrating it into the core
application.

2. It improves fault tolerance as pre-processing services run separately and are not
affected by other services.

3. It provides possibilities for distributed deployment where multiple instances can
be run for load balancing.

Given that we will be using RabbitMQ14 as the message broker to facilitate com-
munication between plugins and core application, the communication between dataset
processor and core application will also be done through RabbitMQ. This is illustrated
in Figure 9. The Core application sends a PROCESS_REQUEST request to the dataset
processor which includes an event log file, definitions for each column, and conditions
used for labeling outcomes and treatments. Once the dataset has been preprocessed, the
dataset processor returns a PROCESS_RESULT data which includes processed files along
with processing time statistics.

14RabbitMQ: https://www.rabbitmq.com
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Figure 9. Communication between core application and dataset processor.

Workflow. When processing files, the dataset processor performs operations in the
following steps:

1. Automatically identify timestamp text within files and convert it into a datetime
object.

2. Calculate the duration of each case from the first event to the last event ended as a
case attribution column.

3. If XES file is being processed with transition information included, automatically
filter events based on timestamps within the XES file.

4. Convert values belonging to numeric columns from strings into integers or floating
point numbers according to user-provided column definitions.

5. Convert values belonging to boolean columns from strings into boolean values
according to user-provided column definitions.

6. Analyze each case based on user-provided column definitions along with out-
come and treatment definition/conditions in order to generate labels for outcome,
treatment, and treatment resource.

7. Finally rename columns according to predefined conventions so that plugins can
select necessary data for training purposes.

31



Event timestamp recognization When processing an XES file as an event log, the
processor assumes that it conforms to the standard lifecycle transition model15. As
the core application requires identification of a timestamp for each event, the dataset
processor will utilize transition and timestamp information to extract it.

Initially, the tool checks if all rows in the event log lack a start transition. If any row
does not contain this information, the processor uses the timestamp of the row that has a
complete transition to identify the timestamp for each event. Alternatively, if there is no
complete transition present in the event log, the processor uses the start transition to
identify the timestamp for each event. If start transition and complete transition are
absent in the event log, the processor preserves the timestamp of the row as is, and thus
all rows remain unmerged.

When the fast mode is enabled, which is the default setting, the processor uses the
complete transition and ate_abort transition to identify the timestamp for each event
if both start transition and complete transition are present in the event log.

However, when the fast mode is disabled by the user, the processor uses the start
transition to identify the start timestamp for each event and uses the complete transition
to identify the end timestamp for each event if both start transition and complete
transition are present. In this mode, two timestamps are obtained for each event. It is
important to note that non-fast mode may take a long time to process depending on the
size of the event log. If the event log is too large, the system may not allow users to
disable fast mode. In such a case, it is recommended to pre-process the event log to
obtain the timestamp for each event and convert the file to CSV before uploading, or
simply use the fast mode.

In certain cases, the XES file may not adhere to the lifecycle standard or may not
fulfill the unique demands of some business domains. In these scenarios, the tool grants
the flexibility to specify the start, complete, and ate_abort transitions in alignment
with the prerequisites.

Generation of outcome and treatment labels. The dataset processor accepts nested
conditions for identifying multiple outcomes and treatments to label them. For example,
Figure 10 shows how the processor determines the category of an outcome based on its
nested conditions when a user specifies the definition of a positive outcome. Similarly, the
developed tool also allows users to specify negative outcomes’ definitions, and treatment
categorization works similarly. Additionally, if a user specifies a resource column, then
the processor identifies the first resource that triggers treatment in a case and adds it as
case attributes to the dataset.

15Standard lifecycle transition model: https://www.tf-pm.org/resources/xes-standard/
about-xes/standard-extensions/lifecycle/standard
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Figure 10. Dataset processor determines the label of outcome based on conditions.

Usage of multiple CPU cores. When processing the dataset, the dataset processor will
split it into several parts according to the number of CPU cores and use a process pool
for parallel processing to speed up the processing speed.

4.3.4 API service

This section introduces the details of the API services provided by the core application.

RESTful API. This tool mainly interacts with external programs through RESTful
API. REST stands for representational state transfer16, and RESTful API refers to web
services that follow the REST style.

The following considerations were taken into account when choosing HTTP-based
web APIs:

• More flexible compatibility: most API management tools and programming lan-
guage ecosystems have very mature implementations for calling RESTful APIs, so
using a RESTful API has better compatibility.

• Simple integration, which is conducive to collaboration between visualization layer
authors.

• The front end can directly call the API in the browser to display some data.

The CRUD-based functionality provided by this tool’s API fully follows the REST
style. Table 4 shows some examples of API endpoints for the project resource, and

16What is a REST API? https://www.redhat.com/en/topics/api/what-is-a-rest-api
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the complete table can be found in Appendix Table 24. We can see that in the case
of uploading the entire new dataset and obtaining all prescription suggestions, the
program will provide an interface for uploading data and obtaining results to external
parties through RESTful API. In the case of obtaining prescription suggestions through
streaming data, the client will also use RESTful API to send new events to the server.
This is because new events may come from various systems rather than the visualization
layer. Therefore, HTTP-based APIs that are generally applicable to various network and
system environments are our preferred method for receiving events.

Table 4. API endpoints partial example

Method Endpoint Description

POST /project
Create a new project based on
uploaded event log

GET /project/{project_id} Get an existing project by ID

PUT /project/{project_id}
Update a project’s name and
description

DELETE /project/{project_id} Delete an existing project

POST
/project/{project_id}
/result

Upload a new ongoing dataset
to a trained project to start pre-
scribing

GET
/project/{project_id}
/result/{result_key}

Get the prescription result from
a uploaded dataset

POST
/project/{project_id}
/stream/event

Push a new event to a trained
project under streaming mode

SSE API. Considering the scenario where the prescription result is obtained through
streaming data, there is a need for some time to analyze the case of new events by the
program and its plugins. As a result, the server does not immediately return results to
the client upon receiving new events. Therefore, it is necessary to establish a way for
clients to continuously receive prescription result stream data. There are four common
solutions: polling RESTful API on the client side to obtain new data, using message
broker systems such as Kafka to transmit data, establishing client-server connections
through WebSocket for bidirectional transmission of data, and subscribing clients with
Server-Sent Events (SSE) API and sending them streaming data afterward. We chose
SSE API mainly because of its following advantages:
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• Compared with the polling method, the HTTP overhead of SSE API is low. In
low-event frequency situations, unnecessary polling calls will not be made.

• Compared with using the Kafka method, SSE API follows HTTP web standards
and is consistent with other APIs provided by this tool for external applications
which reduces integration complexity.

• Compared with the WebSocket method, the SSE API protocol is lighter weight
and supports automatic reconnection by default.

As shown in Figure 11, after establishing a connection between the visualization
layer (client) and the back end (server), this connection will be kept alive continuously
while the server sends messages unidirectionally to pass available prescriptions.

Figure 11. Client and server using SSE.

4.3.5 Event streamer

Considering that the interval for sending data by the system during streaming data
simulation is an integer number of seconds, ranging from 1 second to several seconds, the
I/O of hard disk and memory is not frequent and the system load is relatively low when
executing tasks. In this case, threads can be used directly in the core application instead
of processes, and there is no need to run this component in a separate environment. This
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component uses the requests package to directly call API services running locally.
For user-uploaded training datasets, 80% of the dataset is used for model training and
validation while the remaining 20% is reserved for simulating stream data.

It should be noted that the term "percentage" is being used in reference to the
percentage of cases, as opposed to the percentage of events, within this particular context.
Hence, there is no reason to be concerned about the inclusion of incomplete cases in the
partitioned datasets.

As shown in Figure 12, when sending data to the system, the event streamer sends
them according to the occurrence time order of all events in the simulation dataset, rather
than grouping them by case. Thus, this component can simulate multiple ongoing cases.
When all events in a case have been sent, the streamer attaches an indicator to the data of
the last event, representing the end of a case. This flag is also passed on to the consumer
of prescription results.

Figure 12. Event streamer sends events continuously to the core application.

4.3.6 Plugin system

This section will introduce the plugin system and the details of the default plugins
equipped in the system.

Communication between core and plugins. Each plugin has its own independent
runtime environment and runs in a separate Docker container. This is based on the
following considerations:

• Different plugins may have different dependencies based on their algorithm imple-
mentation. Some dependencies have specific requirements for Python version and
package dependencies. Running various plugins in the same environment can lead
to dependency conflicts.

• Separating environments and processes will better utilize the CPU’s multi-core
capabilities.
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• Not only are the plugins and core programs independent of each other, but also
independent from one another, which improves overall system fault tolerance and
availability.

The plugin communicates with the core program through RabbitMQ. There are
several types of communication: online reporting, communication related to training
models, communication related to obtaining prescription results, and error reporting. Let
us now explain each type of communication.

Online reporting: The purpose of the plugin reporting its online status to the core
program is to allow the core program to select plugins and determine analysis completion
based on the plugin’s online status when creating projects, sending data for analysis, and
waiting for analysis results. This also improves system fault tolerance. If some plugins go
offline due to certain reasons, the core system will not wait endlessly for result returns but
automatically handle workflow processing according to their offline status. As shown in
Figure 13, the core program sends an ONLINE_INQUIRY request to all registered plugins
every 5 minutes and updates plugin state records based on ONLINE_REPORT response
bodies. Additionally, when the core application starts up or a plugin service restarts after
an interruption, it will automatically send an online report to update its status.

Figure 13. Communication between core and plugin: online reporting.

Communication related to training models: As shown in Figure 14, when a new
project is created by an API consumer, the core firstly starts preprocessing the dataset
in the background. Once preprocessing is done, the core sends a request asking if this
dataset can be shared with the specific plugin. The plugin responds with whether it can
work on that dataset or not. Then, the training task is added to the queue. During training,
the plugin actively reports back progress information. After training ends, the plugin
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returns the path where the model file is stored locally so that it can be saved into the
database.

Figure 14. Communication between core and plugin: during training phrase.

Communication related to obtaining prescription results: According to the user’s
choice, there are two ways to finish this workflow. One way is to prescribe on an ongoing
dataset, and the other is to prescribe by receiving streaming data. If the user has uploaded
a test dataset that only contains ongoing cases, the workflow is shown in Figure 15. The
core will send the uploaded dataset to the plugin, and the plugin will process the data
and send the results back to the core. On the other hand, if the project is ready, the API
consumer can activate the project to start the prescribing workflow (Figure 16). The
activation means that in some cases, the plugin may need to load the model file into
memory, especially after the system restarts. This can also help the system save resources.
Upon receiving the new event data from the API consumer, the core will forward the
data to the plugin, which will process the data and send the results back to the core.
This routine will continue until the streaming mode is disabled, and then the plugin will
release the resources.

Error reporting: In the event that the plugin encounters an error, the error message
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Figure 15. Communication between core and plugin: prescribing by dataset.
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Figure 16. Communication between core and plugin: prescribing by the stream.
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will be promptly relayed to the core (Figure 17). Subsequently, the core will update the
status of the plugin to reflect the ERROR status, with the error message attached to the
plugin. This implies that the plugin would be rendered unusable unless certain project
definitions are modified by the user. In the event that all plugins have been marked with
the ERROR status, the core will designate the entire project as being in an error state,
necessitating intervention by the user.

Figure 17. Communication between core and plugin: error reporting.

Default plugins. To ensure the compatibility of different algorithms in terms of prepro-
cessing data, providing information, and aggregating results, we developed four plugins
with different algorithms and functions to test and verify design concepts and workflows
for the plugin system.

As described in Section 3, the algorithms we used are all based on machine learning,
discussed and selected within the research team, and we referred to relevant papers for
each algorithm’s specific implementation. The selection of algorithms took into account
the following points:

• The selected algorithms should cover at least the categories of guiding, correlation-
based, and causality-based.

• Since our focus is on testing the integration of different types of algorithms in a
toolset rather than researching the algorithms themselves, the implementation of
each category’s algorithm should not be too complex.

• Ideally, the algorithm has already provided code implementation in its correspond-
ing paper or has an open-source package that can be called upon.
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Each plugin necessitates and utilizes three fundamental data types from the event
log file for training: Case ID, activity, and timestamp. When encoding data based on
activity, this tool uses three widely recognized encoding methods suitable for analyzing
event logs with machine learning algorithms, as mentioned by Leontjeva et al.: boolean
encoding, frequency-based encoding, and simple index encoding [LCDF+15]. Users
can customize each plugin’s parameters to select one of these three encoding methods
according to their requirements.

Next, we will introduce the basic functions and principles of each plugin as well as
the additional data required for training and prediction. We will also briefly describe how
adding each plugin contributes to improving functionality.

• Plugin-1: This plugin uses guiding methods to predict possible events in ongo-
ing cases based on historical data as feedback suggestions for users. Le et al.
introduced a method using k-nearest neighbors (kNN) to train models based on
sequences composed of certain lengths of events from all traces [LGN17]. The
outcome is defined as the next activity (if any) in each sequence so that predicting
the next activities can be achieved by implementing this method into our plugin.
Adding this plug-in verifies the feasibility of providing training data sets, and
datasets waiting for predictions while obtaining results through core programs.

• Plugin-2: This plug-in belongs to the correlation-based methods category, which
provides probabilities about negative outcomes when an ongoing case reaches its
current state. Teinemaa et al. mentioned constructing a probabilistic classifier
using the random forest algorithm to obtain the likelihood of undesired outcomes
based on partial traces [TTdL+18]. This plugin implements this method and
automatically labels each case according to user-defined outcome definitions
before providing them for classifier training. The probability obtained through
this plugin can be used by the visualization layer to trigger alarms for cases that
require intervention based on a threshold set by users. Adding this plug-in helps
test and verify the workflow of identifying outcome categories defined by users,
and passing them to plugins for correlation-based algorithms.

• Plugin-3: This plug-in belongs to the causality-based methods category, which
provides conditional average treatment effect (CATE) scores for interventions in
ongoing cases. Minami developed CasualLift 17 using machine learning methods
proposed by Athey et al. [AI15] and pylift 18 as references. This plugin calls
the CausalLift package and uses a two-model approach with historical data and
new cases’ partial trace data to calculate the CATE score when intervening in a
case. The visualization layer can provide intervention suggestions based on the

17CasualLift: https://github.com/Minyus/causallift
18pylift: https://github.com/rsyi/pylift
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CATE score provided by this plugin depending on user settings at the front end.
Adding this plug-in helps test and verify the workflow of identifying outcome
and treatment categories defined by users, providing data, and defining treatments
passed onto plugins for causality-based algorithms.

• Plugin-4: This plug-in belongs to the causality-based methods category, which con-
siders resource constraints while allocating resources automatically among cases
requiring interventions. Shoush et al. proposed a prescriptive monitoring technique
that triggers interventions under resource constraints [SD22]. This plugin refers
to their method where it allocates resources among cases requiring intervention
whose CATE score exceeds a certain threshold under stream mode considering
resource constraints. Since this algorithm requires additional information such
as an available resources list during runtime along with the time required for
executing an intervention, we adjusted the plugin system to support core programs
in providing additional data beyond what users have provided during training.
Adding this plug-in helps improve the plugin system by enabling it to pass on extra
information to meet a wider range of algorithm requirements.

Adding a new plugin. The process of adding a new plugin to the plugin system
is straightforward and highly customizable. The system is designed to be extensible,
allowing developers to easily integrate new plugins to enhance its functionality. The
root directory of the entire tool code contains a plugins directory for placing common
library code and plugin code for the plugin system. The structure of this directory
is shown in Figure 18. For a plugin, only six files need to be created: __init__.py,
algorithm.py, config.py, Dockerfile, main.py, and requirements.txt. Except
for /algorithm.py, the other files are relatively short and provided with common tem-
plates, so developers can copy and modify them according to actual situations in just a
few minutes. As shown in Figure 19, only one class about a specific algorithm needs
to be added in /algorithm.py file, which implements four functions. The message
broker communication with the core application, model saving/loading, memory resource
release, etc., are all handled by the common library of plugins so that developers do not
need to pay attention to these contents but focus on implementing algorithms specifically.
At the same time, some built-in methods provided by parent class Algorithm allow
FooBarAlgorithm to directly obtain training dataset, user-defined parameters, and addi-
tional information required by algorithms as well as models. This allows developers to
obtain and save the required data without having to pay attention to the implementation
logic of these methods.
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plugins/

common

plugin_1

__init__.py

algorithm.py

config.py

Dockerfile

main.py

requirements.txt

plugin_2

plugin_3

Figure 18. File structure of plugins folder.

c l a s s FooBarAlgor i thm ( Algo r i t hm ) :
d e f _ _ i n i t _ _ ( s e l f , a l g o _ d a t a : D i c t [ s t r , Any ] ) :

s u p e r ( ) . _ _ i n i t _ _ ( a l g o _ d a t a )

d e f p r e p r o c e s s ( s e l f ) −> s t r :
# Pre − p r o c e s s t h e d a t a
p a s s

d e f t r a i n ( s e l f ) −> s t r :
# T r a i n t h e model
p a s s

d e f p r e d i c t ( s e l f , p r e f i x : L i s t [ d i c t ] ) −> d i c t :
# P r e d i c t t h e r e s u l t by u s i n g t h e g i v e n p r e f i x
p a s s

d e f p r e d i c t _ d f ( s e l f , d f : DataFrame ) −> d i c t :
# P r e d i c t t h e r e s u l t u s i n g a DataFrame
p a s s

Figure 19. Class definition for an algorithm.
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4.4 Deployment
According to the requirements of NFR-5, the tool developed in this article needs to be
deployed on a publicly accessible server. To ensure portability, we chose Docker to
deploy the service. Docker is a software technology that allows developers to create,
deploy, and run applications in containers, which are self-contained environments isolated
from the host system and other containers. We used Docker Compose tool to define
the required services and ultimately deployed 8 containers on the server 19, including
one PostgreSQL database container, one RabbitMQ message broker container, one core
application container, one dataset processor container, and four plugin containers.

4.5 Documentation
According to the requirements of NFR-4, corresponding documentation should be pro-
vided when delivering this tool, so that front-end developers can integrate it. The
documentation 20 is presented in the form of a static website, generated using the Hugo 21

static website generation framework and continuously published using GitHub Actions 22.
The documentation is divided into four main parts that introduce the usage methods for
all APIs and necessary internal logic and principles:

1. Getting started: This part introduces the basic methods of using this tool, detailed
steps for the complete process, and provides a Postman 23 collection for testing
purposes, which includes usage examples for all API endpoints.

2. Workflow: This part provides a detailed introduction to uploading event logs,
training projects, sending new event data, and receiving prescription results APIs
for a complete basic usage flow. It also covers important considerations and calling
methods.

3. Advanced usage: This part introduces some advanced operations including con-
tinuous sending of new events to the system, redefining event logs and projects,
enabling/disabling plugins, updating plugin parameters and additional information.

4. Development: This part describes the basic development details of the tool and
provides a detailed description on how to add new plugins to facilitate plugin
development by developers.

19API service: https://prcore.chaos.run
20Documentation: https://prcore-docs.chaos.run
21Hugo: https://gohugo.io
22GitHub Actions: https://github.com/features/actions
23Postman: https://www.postman.com
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In addition, the document is equipped with a chat assistant specifically designed to
answer document-related questions 24. This document assistant is presented in the form
of a web page and implements knowledge-based question-answering using ChatGPT 25

and embeddings 26 technology, developed using Streamlit 27 and Langchain 28.

24Documentation assistant: https://prcore-assistant.chaos.run
25ChatGPT: https://openai.com/blog/chatgpt
26Embeddings: https://platform.openai.com/docs/guides/embeddings
27Streamlit: https://streamlit.io
28Langchain: https://python.langchain.com/en/latest/index.html
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5 Evaluation
This section will demonstrate the process and results of testing for the developed artifacts.

5.1 Evaluation setup
We conducted two types of evaluations: requirements fulfillment evaluation and perfor-
mance evaluation.

Requirements fulfillment evaluation. We conducted evaluation tests for both func-
tional and non-functional requirements. During these tests, BPIC 2012 dataset was
utilized.

For functional requirements, we designed test cases for each requirement based on
the functional requirements table. As shown in Table 5, the test case table includes
requirement ID, preconditions, and acceptance criteria. The tables for other requirements
are displayed in the appendix from Table 8 to Table 23. If all the acceptance criteria are
met, then the requirement is deemed to be satisfied. Except for the test cases of FR-17,
requests from Postman collection 29 were used to obtain results and compare them with
expected behaviors during testing. For FR-17, manual testing was conducted using the
docker-compose tool by modifying parameters in .env file in order to disable or enable
plugins.

Table 5. Test case for FR-1.

Requirement FR-1

Preconditions The dataset is prepared in CSV, XES, and ZIP formats.

Acceptance
criteria

1. A new event log object is created and returned in
the response.
2. The event log ID is returned.
3. The response body must contain the header of all columns,
the inferred definition of each column, and the data from the
first five rows in the dataset.

For non-functional requirements, we tested NFR-1 and NFR-2 using an automated
Python script that called the API to trigger project training and prescribing, while
automatically recording time-consuming tasks. The system conditions used for testing
were 8 cores, 16 threads CPU (3.3 GHz), and 32GB RAM. To evaluate NFR-3, we used
the time taken by the author to add Plugin-4 as a reference.

29https://prcore-docs.chaos.run/getting-started/test-with-postman/
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Performance evaluation. To further evaluate the performance limitations of this arti-
fact, we conducted performance testing. In the performance test, we used task processing
time under specified computing resource conditions as the key performance indicator.
First, we tested the time consumed for preprocessing and training on different datasets
separately. Also, during the training process, all four default plugins are enabled. We
used BPIC 2011, BPIC 2012, and BPIC 2017 datasets for testing. Please refer to Table 6
for basic information and the size of these datasets.

Table 6. Datasets information.

BPIC 2011 BPIC 2012 BPIC 2017

Number of traces 1143 13087 31509

Number of events 150291 262200 1202267

Events per trace 131.488 20.035 38.156

Min events per trace 1 3 10

Max events per trace 1814 175 180

Number of attributes 128 7 19

There are two modes of data input supported by this tool during the prescribing stage:
one is to continuously push new event data to the tool, with only one event included
each time. The tool will analyze the case to which the new event belongs and return
prescriptions. The other mode is to upload a dataset containing only ongoing cases to
the tool. The tool will analyze all cases included in the dataset and return prescriptions
for all cases at once. Since the former mode analyzes only a single case each time with
small amounts of data, and requires little time for prescribing, it is not meaningful to
evaluate its performance in terms of time consumption. Therefore, we chose to use the
latter mode of data input for evaluating prescribing performance. Thus, in addition to the
time used in training, we generated a test set containing only ongoing cases from projects
trained on three BPIC datasets using built-in functionality of this artifact and tested how
long it took to prescribing these data sets respectively. The ongoing cases datasets used
in these tests account for 20% of the original dataset in terms of the number of cases.

5.2 Evaluation results
In this section, we presented the results of the evaluation and conducted some analysis
and discussion on the outcomes.
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Requirements fulfillment results. We conducted the testing following the steps men-
tioned in Section 5.1. As shown in Table 7, after testing, all functional requirements
collected during the requirements collecting phase have been evaluated as fulfilled.

Table 7. Fulfillment of functional requirements.

Requirements Fulfillment

Must have
All 8 requirements fulfilled: FR-1, FR-2, FR-3, FR-5, FR-12,
FR-14, FR-15, FR-17

Should have
All 6 requirements fulfilled: FR-4, FR-6, FR-7, FR-8, FR-11,
FR-13

Could have All 3 requirements fulfilled: FR-9, FR-10, FR-16

Moreover, we have evaluated or tested the non-functional requirements:

• NFR-1: It took a total of 14.3 seconds to preprocess and train the BPIC-2012
dataset, which meets the requirement.

• NFR-2: We uploaded new simulated data generated from BPIC-2012 based on
20% of already trained projects through BPIC-2012 and waited for processing
results. Finally, it took a total of 20.3 seconds for prescribing, which meets the
requirement.

• NFR-3: The author spent a total of 90 minutes adding Plugin-4 30, including
testing and debugging of the new plugin. This time can be used as a reference for
assessing the difficulty of adding a new plugin.

• NFR-4: As discussed in Section 4.5, we completed the document addition, and
therefore, it meets this requirement.

• NFR-5: As described in Section 4.4, we successfully deployed this service; hence,
it satisfies this requirement.

Therefore, except for NFR-3, which cannot be accurately quantified, all other non-
functional requirements have been met.

Performance results. Regarding the training time for different datasets, the results are
shown in Figure 20. BPIC-2012 had the shortest processing time which may be due to
fewer attributes included in each event.

30From commit a736209 to commit 8dd4457, the duration is about 90 minutes.
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Figure 20. Preprocessing and training time used on BPIC datasets.

Regarding the prescribing time for different ongoing cases datasets, the results are
shown in Figure 21. It can be seen that BPIC-2011 took the longest but still within 60
seconds.

Furthermore, to identify reasons for performance bottlenecks, we enabled and dis-
abled different plugins one by one and performed the prescribing tests again using only
the dataset with the highest processing time (BPIC 2011) mentioned above. We then
recorded the prescribing times of different plugins against the same test dataset. It
is worth noting that the function of Plugin-4 is only applicable when operating under
stream data mode, so it was not included in this round of tests. As shown in Figure 22,
Plugin-3 consumed three times more time compared to Plugin-1. After analyzing the
time consumption of different key nodes in this plugin, we found that the performance
limitation was caused by an external package called CausalLift, which was referenced
by this algorithm and had nothing to do with the core program or plugin system itself.
Additionally, the impact of CausalLift on performance is minimal under stream data
mode because there is a certain time interval for external programs to push new events
of the same project into the system, and it is not expected to have high frequency under
normal usage scenarios. Moreover, our system processes requests from different projects
in parallel, so CausalLift has less impact on performance issues under stream data mode.

According to the acceptance criteria mentioned in Section 3.3, all criteria have been
met.
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Figure 21. Prescribing time used on different BPIC datasets.

Figure 22. Prescribing time used on BPIC 2011 dataset by different plugins
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6 Conclusion
The thesis demonstrates the development and usage of Kairos’ backend, a versatile
and customizable tool that can train models using business event log files to provide
predictive and prescriptive recommendations for ongoing cases in various domains. By
utilizing the tool on Kairos, the user is capable to upload their files, define columns,
create projects, and set parameters to effectively generate results for their business event
logs. Furthermore, the developed artifact offers key features such as plugin integration,
enabling users to enhance the functionality with their custom plugins or modify existing
plugins to suit their needs. The provision for redefining definitions, re-uploading files,
and the support to carry out various project-related tasks, such as project deletion and
retrieval, display the flexibility and adaptability of the tool. For the getting prescriptions
phase, the tool allows for the submission of new data for live prescriptions on ongoing
cases, providing two methods for uploading new events data and obtaining results.

However, there are still some limitations to this tool. These limitations include the
risk of incomplete requirements collection, the risk that the adopted architecture may
not be compatible with the processing of certain special event logs, and we have only
tested and evaluated it using BPIC datasets without fully exploring the problems that
real data from other fields may bring. Although it passed the functional tests using the
BPIC dataset, the system did not evaluate the prediction accuracy of utilizing real data
processed results with outcome and treatment definitions that conform to real domain
situations under the testing of domain experts. However, the algorithm or package used
by the plugin has been peer-reviewed, so its accuracy can be guaranteed to a certain
extent. It should also be noted that the core value of the entire artifact is as a unified
interface and aggregator, while plugins themselves are only for verifying design concepts
and can be added, replaced, or deleted as needed.

In future work, more plugins can be added to expand functionality. By adding
different types of plugins, adjustments can be made to the core program and plugin system
to make them more universal and compatible, meeting the operational requirements of
various algorithms. At the same time, existing plugin performance can also be optimized
by replacing packages such as CasualLift. Also, cloud-based file and model storage can
also be supported to enable distributed deployment, making the system more scalable. In
addition, support for more types of APIs in data uploading and result retrieval can be
provided. For example, supporting Kafka usage will meet the needs of more different
systems.

Overall, the development as part of this thesis showcases a flexible tool with an
easy-to-use API design and integration capabilities, enabling users to access valuable
predictive analytics and prescriptive recommendations to optimize cases’ performance.
Future research and development efforts can further enhance the tool’s functionality and
capabilities by adding more plugins, ensuring its continued relevance and applicability
across a wide range of industries and domains.
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Appendix

I. Test reports

Table 8. Test case for FR-2.

Requirement FR-2

Preconditions The event log has been uploaded and the created object was suc-
cessfully returned.

Acceptance
criteria

1. Return a list of all activities that appear in the log, including
a count of how many times each activity appears.
2. If the RESOURCE column is defined, return a list of all resources
and include a count of how many times each resource appears.
3. Return a list of column names that can be used to define
outcome and treatment.

Table 9. Test case for FR-3.

Requirement FR-3

Preconditions The event log has been uploaded and the column definition has
been successfully configured.

Acceptance
criteria

1. A project object has been successfully created and returned in
the response body.
2. The response body contains information such as the status of
the project, associated event log, list of plugins, etc.
3. If test event log is uploaded along with the upload of regular
logs, then result_key must not be null.
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Table 10. Test case for FR-4.

Requirement FR-4

Preconditions The project has been created.

Acceptance
criteria

1. The API belonging to this function can be called at any time,
regardless of the project’s status.
2. The name and description of the project have been successfully
updated as requested.

Table 11. Test case for FR-5.

Requirement FR-5

Preconditions
The project has been created and the event log has completed pre-
processing. Column definitions for event logs, as well as outcome
and treatment definitions, have been provided.

Acceptance
criteria

1. Can access the project and view the plugins that are
automatically added to it.
2. Can check the training status of each plugin.
3. All plugins will eventually reach a state of training completion.

Table 12. Test case for FR-6.

Requirement FR-6

Preconditions The plugin object has been created and its status is TRAINED.

Acceptance
criteria

1. Can modify the parameters of the plugin.
2. If retraining is required after modifying the parameters,
the plugin will automatically start the training process and
complete it successfully.

Table 13. Test case for FR-7.

Requirement FR-7

Preconditions The plugin object has been created and its status is TRAINED.

Acceptance
criteria

1. Can modify the additional information of the plugin.
2. If retraining is required after modifying the additional
information, the plugin will automatically start training and
complete it successfully.
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Table 14. Test case for FR-8.

Requirement FR-8

Preconditions The plugin object has been created and its status is TRAINED.

Acceptance
criteria

1. It is possible to successfully enable or disable plugins under
a certain project.
2. Disabled plugins will not participate in the prescribing
activities of that project.

Table 15. Test case for FR-9.

Requirement FR-9

Preconditions
The project has been created and all plugins have been trained.
The new definitions for outcome and treatment are valid for the
event log.

Acceptance
criteria

1. The relevant definition can be successfully modified, and the
updated project object is returned.
2. The project automatically starts retraining and successfully
completes training.

Table 16. Test case for FR-10.

Requirement FR-10

Preconditions
The project has been created and all plugins have been trained. The
new event log file to be uploaded contains all the columns from
the old file.

Acceptance
criteria

1. The Event log object has been updated and the updated data
has been successfully returned.
2. A list of all activities appearing in the log is returned,
including a count of how many times each activity appears.
3. If the RESOURCE column is defined, return a list of all resources
and include a count of how many times each resource appears.
4. Return a list of column names that can define outcome and
treatment.
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Table 17. Test case for FR-11.

Requirement FR-11

Preconditions The project has been created.

Acceptance
criteria

The project has been successfully deleted, and the associated event
log has also been deleted at the same time.

Table 18. Test case for FR-12.

Requirement FR-12

Preconditions Several projects have already been created.

Acceptance
criteria

Return a list of projects in pagination style, which allows viewing
other pages of the projects list based on path parameters.

Table 19. Test case for FR-13.

Requirement FR-13

Preconditions The project has been created and its status is TRAINED.

Acceptance
criteria

1. After uploading a new dataset, the result_key was returned.
2. The prescription results for all cases in the dataset can be
obtained through the result_key.

Table 20. Test case for FR-14.

Requirement FR-14

Preconditions The project has been created and its status is TRAINED.

Acceptance
criteria

1. New event data can be successfully pushed to the system.
2. When the number of events in a case exceeds a certain
amount, prescription results messages can be received through
SSE endpoints.
3. Prescription results for multiple plugins can be included in
the result message.
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Table 21. Test case for FR-15.

Requirement FR-15

Preconditions The project has been created and its status is TRAINED.

Acceptance
criteria

1. Can enable simulation mode by calling the API and
receive a response indicating success.
2. Can receive messages containing simulated data
prescription results at SSE endpoints.

Table 22. Test case for FR-16.

Requirement FR-16

Preconditions The project has been created and its status is at least PROCESSED.

Acceptance
criteria

1. Preprocessed datasets can be downloaded through the API.
2. Test datasets containing only ongoing cases can be generated
and downloaded.
3. Original log files can be downloaded.
4. Datasets for conducting data stream simulations can be
downloaded.

Table 23. Test case for FR-17.

Requirement FR-17

Preconditions None

Acceptance
criteria

1. Can use environment variables to decide whether to globally
load certain plugins when the core program starts.
2. Globally enabled plugins can be queried through APIs.
3. Globally disabled plugins are not available in the list of
plugins provided by the API.
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II. Figures and tables

Table 24. API endpoints

Method Endpoint Description

POST /event_log Upload an event log file

GET /event_log/{event_log_id} Get an existing event log object

PUT /event_log/{event_log_id}
Define columns of the event log
by ID

PUT
/event_log/{event_log_id}
/upload

Re-upload the event log file, but
keep all existing definitions

GET /event_log/all Get all uploaded event logs

GET
/event_log/{event_log_id}
/definition

Get the definition of the event
log by ID

GET /plugin/all Get all created plugin objects

GET /plugin/available
Get all available online plugin
containers

GET /plugin/{plugin_id} Get plugin information by ID

PUT /plugin/{plugin_id}
Set parameters and additional
information for the specified
plugin object

PUT
/plugin/{plugin_id}
/{trigger_type}

Disable or enable plugin object
by ID

POST /project
Create a new project based on
uploaded event log

GET /project/all Get all existing projects

GET /project/{project_id} Get an existing project by ID

PUT /project/{project_id}
Update a project’s name and de-
scription

DELETE /project/{project_id} Delete an existing project

PUT
/project/{project_id}
/definition

Update the project definition by
project ID
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Continuation of Table 24

Method Endpoint Description

POST
/project/{project_id}
/result

Upload an new ongoing dataset
to a trained project to start pre-
scribing

GET
/project/{project_id}
/result/{result_key}

Get the prescription result from
a uploaded dataset

PUT
/project/{project_id}
/stream/start
/{streaming_type}

Start the project’s stream mode
by ID and streaming type

PUT
/project/{project_id}
/stream/start

Start the project’s stream mode
using default streaming type

PUT
/project/{project_id}
/stream/stop

Disable the stream mode

PUT
/project/{project_id}
/stream/clear

Disable the stream mode and
clear all streamed data

POST
/project/{project_id}
/stream/event

Push a new event to a trained
project under streaming mode

GET
/project/{project_id}
dataset/{dataset_type}

Download project datasets by
dataset type
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Figure 23. Flowchart of the core application.
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III. Resource links
Here we list the resource links for the artifact and related documents developed in this
thesis, including web pages and code repositories.

Backend code repository: https://github.com/prcore/prcore

Documentation: https://prcore-docs.chaos.run

Public demo API: https://prcore.chaos.run

API Swagger UI: https://prcore.chaos.run/docs

Documentation AI-assistant: https://prcore-assistant.chaos.run

Documentation AI-assistant code repository: https://github.com/prcore/assistant
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