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Machine learning for assessing toxicity of chemicals identified with mass 
spectrometry  

Abstract: 

Real-world samples can contain hundreds to thousands of chemicals, with endocrine-
disrupting chemicals (EDCs) posing a severe threat to human health. Unfortunately, 
reliable and rapid methods for detecting these compounds from complex mixtures are 
lacking. One of the potential solutions could be to leverage the capabilities of non-target 
liquid chromatography high-resolution mass spectrometry (LC/HRMS) combined with 
machine learning methods. This study aimed to investigate whether the biochemical 
activity of compounds can be estimated based on chemical fingerprints calculated from 
HRMS spectra and thereby flag the compounds that require further analysis due to the 
potential risk they pose to human health. For that, several classification models based on a 
variety of machine learning algorithms were trained, and their accuracy was evaluated 
using chemical fingerprints derived from experimental mass spectra. As a result, it was 
found that the proposed methodology has great potential in the field of in silico 
toxicology. 
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Massispektromeetriliselt määratud ühendite toksilisuse hindamine 
masinõppe abil 

Lühikokkuvõte: 

Looduslikud proovid võivad sisaldada tuhandeid ühendeid, millest mitmed on inimestele 
kahjulikud. Viimase kümnendi jooksul, on leitud, et eriti suurt riski kujutavad endast 
kemikaalid, mis avaldavad mõju endokriinsüsteemile. Kahjuks aga puuduvad seni 
usaldusväärsed ja kiired meetodid, mis suudaksid neid keerulistest ainete segudest 
detekteerida. Üheks lahenduseks võiks olla tundamatute ühendite analüüsimeetodite, mis 
põhinevad kõrglahutus-massispektromeetrial (HRMS), rakendamine koos masinõppega. 
Antud töös uuriti, kas HRMS spektri põhjal leitud keemiliste sõrmejälgede alusel on 
võimalik hinnata proovis sisalduvate ühendite biokeemilist aktiivsust ja seeläbi märgistada 
ühendeid, mis vajaksid edasist analüüsi, kuna võivad avaldada potentsiaalselt kahjulikku 
mõju endokriinsüsteemile. Selleks treeniti mitmeid erinevatel algoritmidel põhinevaid 
klassifitseerimismudelid ning hinnati nende täpsust kasutades eksperimentaalsetest 
massispektritest arvutatud keemilisi sõrmejälgi. Töö tulemusena leiti, et selline meetod on 
rakendatav ning omab suurt potentsiaali in silico toksikoloogias. 

 

 

Võtmesõnad:  

Kõrglahutus-massispektromeetria, keemilised sõrmejäljed, endokriinsüsteemi kahjustavad 
ained, Tox21, mitme ülesandega õpe 
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1 Introduction 
Over the last decade, the importance of human exposomics has been rising. Exposomics is 
a study that investigates how all the exposures of individuals during their lifetime affect 
their health. [1] As a result of these studies, it has become clear that most real-world sam-
ples, such as wastewater and food, contain hundreds to thousands of chemicals, with en-
docrine-disrupting chemicals (EDCs) posing a particularly serious threat to human health 
[2]. Meanwhile, the advent of non-target liquid chromatography high-resolution mass 
spectrometry (LC/HRMS) has made it possible to detect thousands of chemicals in real-
world mixtures [1,3,4]. However, due to many limitations, gaps still remain in the down-
stream evaluation of their toxic effects.  

Firstly, although thousands of chemicals, more precisely molecular features, are detected 
during an LC/HRMS analysis, a tiny fraction (up to 2%) of them are typically identified 
[4]. For example, in the analysis of household dust, around 5000 molecular features (2000 
and 3000 in negative and positive ionisation mode, respectively) were detected, but only 
33 were distinctly identified [1]. Secondly, the toxicity information about identified chem-
icals is incomplete or entirely unavailable. For instance, the PubChemLite database [5], 
which is a "shortlist" of 400,000 chemicals that humans are most likely to be exposed to 
through food, agriculture, pharmaceuticals, etc., only contains comparable toxicity data for 
around 3000 of these chemicals for mice in the EPA CompTox database [6]. (For other 
species, the data is even more scarce.)  

Alternative approaches that comprise both in vitro and in silico methods have been devel-
oped to address these problems. Proposed techniques offer the possibility to efficiently 
generate toxicity information for many chemicals simultaneously without the need for 
animal testing, which is one of the main shortcomings of classical toxicity testing meth-
ods. One such approach is the measurement of bioassay endpoints [7], which has been 
suggested as an in vitro method for obtaining experimental data rapidly. The potential of 
this methodology is illustrated by the EPA ToxCast project [8]. During this project, the 
endpoint values for around 10,000 chemicals (Tox21 10K library) were observed and are 
readily available for toxicity evaluation. 

The increase in available toxicity data is complemented by the advances in the field of in 
silico toxicology. In silico methods, including read-across [9], structural alerts [10], quan-
titative structure-activity relationship (QSAR) [11], and other machine learning [12,13] 
models, have made it feasible to screen a large number of compounds efficiently and are 
therefore valuable tools, for prioritising the chemicals, that need further testing or fill the 
data gaps for untested chemicals. Unfortunately, these methods are limited by the re-
quirement for the known structure of the compound under investigation as input, which is 
a crucial drawback while analysing real-world samples. However, there is a promising 
workaround.  

The molecule's toxicity relates to specific structural patterns, so-called toxicophores. For 
example, a phenolic functional group is found to be associated with oestrogenic and an-
drogenic endocrine-disrupting activity [14]. While analysing the chemical mixtures with 
LC/HRMS, that kind of structural information about unidentified substances can be ob-
tained by utilising the capabilities of tools such as SIRIUS+CSI:FingerID [15], which 
maps the structural patterns present in spectra to molecular fingerprint features. Thus, this 
study aimed to investigate the potential of HRMS data in predicting the toxicities of com-
pounds without the need for their identification by using the data from the Tox21 10K 
library.  
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The following hypotheses were formulated: 

 The fingerprint features computable by SIRIUS+CSI:FingerID from HRMS are 
characteristic enough (representing meaningful toxicophores) to predict the toxici-
ty of compounds with different machine learning algorithms. 

 The real-life HRMS data (together with SIRIUS+CSI:FingerID) can be employed 
with sufficient accuracy as an input of the trained models. 

 Since biological pathways are often correlated, multitask learning may be benefi-
cial in applications where several toxicity endpoints for the same compound are 
predicted. 
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2 Abbreviations 
AHR  aryl hydrocarbon receptor 

AR  androgen receptor 

ARE  antioxidant response element 

ATAD5 ATPase family AAA domain-containing protein 5 

DNN  deep neural network 

ED  endocrine disruptor 

EPA  US Environmental Protection Agency 

ER  oestrogen receptor 

ESI  electrospray ionisation 

FDA  US Food and Drug Administration 

FPR  false positive rate 

HRMS  high-resolution mass spectrometry 

HSE  heat shock element 

HTS  high-throughput screening 

kNN  k-nearest neighbours 

LBD  ligand binding domain 

LC  liquid chromatography 

MMP  mitochondrial membrane potential 

MOA  mode of action 

MS  mass spectrometer/spectrometry 

NB  naïve Bayes 

NCATS National Center for Advancing Translational Sciences 

NTS  non-target screening 

p53  tumor protein p53 

PBDE  polybrominated diphenyl ether 

PPARg peroxisome proliferator-activated receptor gamma 

(Q)SAR (quantitative) structure-activity relationship 

RF  random forest 

ROC-AUC area under the receiver operating characteristic curve 

ROSE  random over-sampling 

SA  structural alert 

SHAP  Shapley Additive exPlanations 

SMARTS SMILES arbitrary target specification 
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SMILES simplified molecular-input line-entry system 

SMOTE synthetic minority over-sampling 

SR  stress response 

SVM  support vector machine 

TPR  true positive rate/recall 

t-SNE  t-distributed stochastic neighbour embedding 
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3 Background 

3.1 Endocrine disruptors 

In recent decades the chemicals called endocrine disruptors (ED) have globally become 
the focus of risk assessment and management plans [16,17]. Based on the definition 
phrased by R.T. Zoeller et al., the ED is an exogenous chemical or mixture of chemicals 
that interferes with any aspect of hormone action [18].  

The endocrine system, also called the hormone system, is one of the most important regu-
latory systems in the body, along with the central nervous system. It controls several phys-
iological processes, including growth and development, metabolism, reproductive func-
tions, immunity, and the capability to deal with light cycles, temperature fluctuations and 
other stressors by releasing hormones. [19] 

Hormones are organic molecules with diverse structures (proteins and peptides, steroids, 
catecholamines, eicosanoids, etc.) that act as chemical "messengers". They are primarily 
produced in glands (hypothalamus, pituitary gland, pineal gland, thyroid gland, parathy-
roid gland, thymus gland, adrenal glands, pancreas, ovary, and testis) and act via binding 
to nuclear receptors and cell membrane receptors. Due to this high-affinity interaction, 
they can significantly impact the body's processes even at low concentrations. Based on 
the receptor type, there are two main mechanisms of how hormones exert their effects. 
Steroid and thyroid hormones that bind to the nuclear receptors regulate the gene expres-
sion (slow response), and peptide and amine hormones that bind to cell membrane recep-
tors activate the different signalling pathways, such as cyclic adenosine monophosphate 
(cAMP), guanosine 3,5-cyclic monophosphate (cGMP), and Ca2+ pathways (rapid re-
sponse). [19,20] 

Endocrine disruptors can mimic or block the actions of hormones or interfere with their 
synthesis, transport, or metabolism through receptor-mediated and non-receptor-mediated 
mechanisms [21,22]. In the next chapter, the main concepts of these mechanisms are dis-
cussed. 

3.1.1 Mechanisms of endocrine disruptors 

Recently, the ten key characteristics [21] through which endocrine disruptors can modify 
the normal functioning of the endocrine system. Of the numerous mechanisms, the most 
well-known and studied are the receptor-mediated mechanisms, where the main mode of 
action (MOA) involves EDs acting directly as ligands for hormone receptors. In these 
mechanisms, EDs can either function as agonists or antagonists.  

Agonists are substances that bind to receptors and activate them, leading to a response 
similar to that of natural ligands. For instance, dichlorodiphenyltrichloroethane (DDT), an 
insecticide, can function as an agonist by activating both the nuclear oestrogen receptor 
(ER) [23,24] and the cell membrane receptor human follitropin receptor (FSHR) [25]. ER 
is a transcription factor that has a crucial role in the development of the mammary gland, 
among other functions. Thus, the binding of ED to ER (α or β subtype) alters the gene 
expression, which leads to potential adverse effects such as the increased risk of breast 
cancer. [26] The binding to FSHR, which is a G protein-coupled receptor (GPCR), on the 
other hand, triggers the signalling cascade, where cAMP serves as a secondary messenger. 
Upon ED interaction with FSHR, intracellular cAMP concentration rises, stimulating pro-
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tein kinase A (PKA), which then modifies the activity of target proteins by phosphory-
lating them. [27] 

Antagonists are structural analogues of natural ligands that bind to receptors but do not 
activate them, thereby blocking or inhibiting the effect of natural ligands. It is important to 
note that even though EDs can act as antagonists for nuclear and cell membrane receptors, 
the research focuses mainly on the first category because many of them tend to be promis-
ing drugs. For example, flutamide is a nonsteroidal antiandrogen (NSAA) used to treat 
androgen-dependent severe health conditions, primarily prostate cancer but also other 
conditions such as acne. As an antagonist to the androgen receptor (AR), after binding, it 
blocks the activity of natural androgens, e.g. testosterone and dihydrotestosterone. How-
ever, it has been found that this compound may be hepatotoxic and cause other side ef-
fects, like a decrease in libido. [28] 

Besides activating or antagonising the hormone receptors, EDs can also alter their expres-
sion level. Such up- or downregulation of specific receptors can impact the amount of 
hormone needed to initiate a response and/or the strength of the response. For instance, 
exposure to bisphenol A (BPA), which is widely used in plastic production, has been 
linked to altering ER expression in the heart (decreasing ERα and increasing ERβ), leading 
to heart dysfunction and cardiovascular diseases [29]. In addition, EDs can also modify 
signal transduction, a process where extracellular signal triggers a series of intracellular 
events that ends with the ultimate response. An illustration of this is the study of fungicide 
tolylfluanid (TF). The study found that TF reduces a concentration of insulin receptor sub-
strate 1 (IRS-1) and, thereby, the protein kinase B (PKB) activation, which is like other 
protein kinases, is a key element in regulating the properties of proteins. [30] 

The non-receptor-mediated mechanism can be divided into two groups: MOAs directly 
related to the hormones and MOAs where EDs exert their effect via transgenerational epi-
genetic inheritance. Due to the wide variety of hormones with distinct characteristics, the 
former group encompasses many different mechanisms that involve the effects of EDs on 
hormone biosynthesis, transport, and metabolism, all having a commonality of EDs im-
pacting hormone concentration and availability. [21] 

The biosynthetic pathways of hormones are determined by their structure (see Appendix 
I). Because of the multitude of reaction mechanisms employed, EDs have numerous op-
portunities to interfere with hormone production. In steroidogenesis, several enzymes are 
required for catalysing the reactions: cytochrome P450 family enzymes (CYPs) for hy-
droxylations, hydroxysteroid dehydrogenases (HSDs) for dehydrogenation and steroid 
reductases for reduction reactions. All of these enzymes can be targets for endocrine dis-
ruption, which alters the hormonal balance in the body. For instance, research has shown 
that parabens, commonly used as preservatives in cosmetics, inhibit the 17β-HSD enzyme 
[31], while agricultural insecticides, neonicotinoids, hinder the aromatase (CYP19) ex-
pression and catalytic activity [32]. These examples also illustrate the EDs capability to 
modify the metabolism of the hormones.  

In order to pass on information that they carry, hormones have to reach their target tissue. 
Based on the way they travel to their receptors, hormones can be classified as endocrine 
(hormones that travel in the bloodstream to distant tissues; distant-signalling), paracrine 
(hormones that, after the secretion to extracellular space, diffuse to neighbouring cells; 
adjacent-signalling) and autocrine (hormones that are synthesised in their target cells; self-
signalling) hormones. Solubility is the major factor that defines how hormones circulate in 
the body or pass through the cell membranes. Hydrophilic hormones that are easily dis-
solved in the blood travel freely in the bloodstream. However, they are unable to diffuse 
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through the phospholipid bilayer. Lipophilic hormones, on the other hand, can passively 
move through the cell membranes but need special protein carriers for transportation 
throughout the body. [27] 

This diversity of transportation mechanisms makes it possible for EDs to have a wide 
range of MOAs to exert their effects. For example, imidazolines, a class of organic com-
pounds derived from imidazoles that hold promising potential in the pharmaceutical field, 
have been linked to influencing insulin exocytosis [33]. The commonly used plasticisers 
phthalates can interfere with steroid hormones transportation by interacting with sex hor-
mone-binding globulin (SHBG) that are responsible for carrying them [34]. 

Finally, research has demonstrated that exposure to EDs can also result in epigenetic 
changes. These modifications include DNA methylation, regulation of non-coding RNA 
expression, and histone modifications that ultimately affect gene expression and occur via 
mechanisms that either target the epigenetic machinery globally (for instance, through 
changes in the levels or activity of epigenetic regulators [35]) or at specific gene loci [36]. 

In conclusion, EDs, commonly present in many everyday items, have a complex and far-
reaching impact on biological systems. The discussed mechanisms highlight how diverse 
the impact of EDs can be on the endocrine system and the wide range of physiological 
processes they can therefore disrupt, leading to various negative outcomes. Thus, it is es-
sential to continue researching and addressing the consequences of EDs in order to miti-
gate their effects on human health and the environment. 

3.2 Toxicity testing 

In order to determine whether a compound possesses any harmful effects on living organ-
isms, a relevant toxicity testing methodology is needed. The first approved methods were 
based on animal testing (in vivo testing) and utilised lethal dose/concentration for 50% of 
the tested population (LD50/LC50). However, increasing concerns about the ethics and reli-
ability of using animals in research have led to the development of more cost-effective and 
less time-consuming in vitro and in silico techniques. [37,38] 

In vitro methods use isolated biological matter, such as cells, tissues, and organs, as model 
systems to assess chemicals' toxicity and shed light on their MOAs. Even though in vitro 
methods are much faster and cheaper compared to in vivo testing, it is still not feasible to 
measure the properties of all the chemicals under every set of conditions experimentally. 
Thus, to fill the gaps in the data, the use of computational methods has proliferated. [38] 

In silico approaches are mainly applied for the preliminary screening of chemicals, for 
instance, in drug development or in time-critical tasks. They aim to help identify the com-
pounds that may possess any risk and thereby prioritise the substances that need further 
testing. The fundamental principle of in silico toxicology is that the biological activity of 
the compound is the function of its chemical structure and, therefore, its properties. [38] 

In silico methods can be divided into two main categories: expert systems that use prede-
fined rules based on human reasoning to make predictions and learning systems, where 
predictions are made automatically using conventional statistical analysis or machine 
learning techniques. These two subclasses include several types of computational ap-
proaches, such as structural alerts (SAs), (quantitative) structure-activity relationship 
((Q)SAR) modelling and read-across analysis. [39] 

The structural alerts technique relies on searching the structural patterns, so-called toxico-
phores, which are known to be associated with specific types of toxic effects, assuming 
that the presence and absence of SAs can explain the compound's overall toxicity [39]. For 
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instance, the (poly)brominated diphenyl ether ((P)BDE) group, commonly present in many 
flame retardant structures, is linked to their antagonising properties in oestrogenic and 
androgenic receptor-binding assays and can be used as SA in the evaluation of endocrine-
disrupting activity [10,40].  

Like in other approaches, the central assumption in the read-across analysis is that com-
pounds with similar structures have similar biological activity. In this technique, the end-
point values for the target compounds are estimated by leveraging the relevant endpoint 
data of their closest analogue(s). [39] 

QSAR methods are mathematical models that use structural information expressed as dif-
ferent molecular descriptors to output the compound's activity in a particular biochemical 
assay. Molecular descriptors, both experimental (e.g. partition coefficient) and theoretical 
(e.g. molecular formula), are often categorised based on their dimensionality. For exam-
ple, 0D descriptors are molecular weights, counts of atoms and bonds. The structural 
fragment counts and molecular fingerprints are representatives of 1D descriptors. Molecu-
lar fingerprints are key components in most cheminformatics applications. Even though 
several types of fingerprints exist, most of them can be described as binary vectors, where 
a value of "1" indicates the presence of a specific structural feature and a "0" absence of it 
(see Figure 1). The examples of 2D and 3D descriptors are different graph representations 
of molecules and weighted holistic invariant molecular (WHIM) descriptors, respectively. 
Depending on the field of study, descriptors with higher dimensionality are also used.[41] 

 
Figure 1 Example of theoretical molecular fingerprint of 2,2',4,4',6-pentabromodiphenyl ether (PBDE-100) 
that is shown to have one of the highest estrogenic potency among PBDEs [42] 

In QSAR modelling, a wide range of algorithms has been employed. Alongside the histor-
ically used simple and easily interpretable multiple linear regression (MLP), several other 
more sophisticated machine learning methods are utilised nowadays, such as support vec-
tor machines (SVMs), k-nearest neighbours (kNN), partial least squares (PLS), random 
forest (RF), boosting and artificial neural networks (ANNs). [43] 

It is important to note that even though the field of in silico toxicology is gaining populari-
ty and applying its tools is seen as common practice in future risk assessment procedures, 
some limitations still inhibit their development. One of the most crucial hindrances is the 
lack of comprehensive and reliable data to train and validate the models. Different pro-
grams and initiatives have been established to promote generating and sharing high-quality 
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toxicity data to overcome this problem. Among these initiatives, by far the most signifi-
cant and well-known is Tox21 [44]. 

3.3 Toxicology in the 21st Century and Tox21 Data Challenge 2014 

Toxicology in the 21st Century, also known as Tox21, is a US federal research collabora-
tion between the National Institute of Environmental Health Sciences (NIEHS)/the Na-
tional Toxicology Program (NTP), the National Center for Advancing Translational Sci-
ences (NCATS), the US Food and Drug Administration (FDA), and the US Environmental 
Protection Agency (EPA) (the National Center for Computational Toxicology (CCTE)) 
launched in 2008. It is an innovative program developed to leverage the latest advances in 
high-throughput screening (HTS) technologies to assess the potential risk of chemicals to 
human health and the environment. [37,44] 

Tox21 is revolutionising the field of toxicity testing by developing novel in vitro and in 
silico methods to gain a deeper understanding of the mechanisms by which different 
chemicals affect the organisms and the biological responses they may elicit, as well as to 
help to select a feasible number of compounds that should go through comprehensive test-
ing. These methods address major issues associated with traditional toxicity testing, in-
cluding ethical concerns with animal testing, limited resources (including money and 
time), and the complications associated with clinical trials. [37,44] 

In 2014, the NCATS announced the Tox21 Data Challenge1, soliciting the support of sci-
entists from around the globe to achieve their goals. They invited the researchers to build 
computational models that could predict the chemical activity of compounds in 12 differ-
ent bioassays, including seven nuclear receptor (NR) and five stress response (SR) panel 
pathways (see Table 1). For training the models, the organisers provided a dataset of 
~10,000 licensed drugs and environmental chemicals (Tox21 10K library), which endo-
crine-disrupting activity had been tested using a quantitative HTS setup. Every compound 
in this dataset had information about its activity in each assay, expressed with three cate-
gories: active, inactive or inconclusive, and its structure in either the simplified molecular-
input line-entry system (SMILES) or structure-data file (SDF) format. [45] 

In machine learning approaches, SMILES [46] notation is the most commonly used repre-
sentation of chemicals' structures. It utilises ASCII (American Standard Code for Infor-
mation Interchange) characters to encode the compound's structural information (atoms 
and bonds) as a single-line string. For example, the SMILES of PBDE-100, shown in 
Figure 1, is "C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2Br)Br)Br".  

The 40 teams from 18 countries employed an extensive array of strategies and tools to 
construct the most accurate predictive models, incorporating a diverse selection of mo-
lecular fingerprints along with other chemical descriptors as inputs, as well as utilising 
various machine-learning algorithms, such as random forest, deep neural networks (DNN), 
support vector machines, and k-nearest neighbours. The winning teams commonly used 
multiple descriptor types, applied feature selection to select the most relevant descriptors, 
employed multiple modelling algorithms, and applied consensus models to make the final 
predictions. Additionally, the Grand Challenge winner [13] (the best model predicting all 
the 12 assays) used external data from literature and public databases like PubChem2 and 
ChEMBL3 to improve their predictions. Depending on the biochemical assay, the balanced 
accuracy of the winning models ranged from 0.550 ("nr.er.lbd") to 0.904 ("sr.mmp") and 

 
1 https://tripod.nih.gov/tox21/challenge/ 
2 https://pubchem.ncbi.nlm.nih.gov/ 
3 https://www.ebi.ac.uk/chembl/ 
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the area under the receiver operating characteristic curve (ROC-AUC) from 0.810 ("nr.er") 
to 0.950 ("sr.mmp").[45] 

Table 1 Twelve different toxicity assays used in the Tox21 dataset 

Panel Dataset Toxicity pathway Abbreviation 

nuclear 
receptor 

activators of aryl 
hydrocarbon recep-
tor 

aryl hydrocarbon receptor (AHR) (full 
receptor) agonism in HepG2 cells 

nr.ahr 

activators of andro-
gen receptor 

androgen receptor (AR) (full receptor) 
agonism in MDA-kb-2 cells 

nr.ar 

activators of andro-
gen receptor ligand 
binding domain 

AR (partial receptor) agonism in 
Hek293 cells 

nr.ar.lbd 

aromatase inhibitors inhibition of aromatase in MCF-7 cells nr.aromatase 
oestrogen receptor 
activators 

oestrogen receptor (ER) alpha (full 
receptor) agonism in BG1 cells 

nr.er 

activators of oestro-
gen receptor ligand 
binding domain 

ER alpha (partial receptor) agonism in 
Hek293 cells 

nr.er.lbd 

activators of peroxi-
some proliferator-
activated receptor 
gamma 

peroxisome proliferator-activated re-
ceptor gamma (PPARg) (partial recep-
tor) agonism in Hek293 cells 

nr.ppar.gamma 

stress 
response 

activators of antioxi-
dant response ele-
ment 

antioxidant response element (ARE) 
agonism in HepG2 cells 

sr.are 

activators of heat 
shock response sig-
nalling pathway 

heat shock response (HSR) signalling 
pathway activation in HSE-bla (beta-
lactamase reporter gene under the con-
trol of heat shock response elements) 
HeLa cells 

sr.hse  

ATPase family AAA 
domain-containing 
protein 5 

induced stabilisation of the ATAD5 
protein in Hek293 cells 

sr.atad5 

disruptors of mito-
chondrial membrane 
potential 

mitochondria membrane potential in 
HepG2 cells 

sr.mmp 

activators of p53 
signaling pathway 

induced stabilisation in HCT-116 cells sr.p53  

 

3.4 Liquid-chromatography high-resolution mass spectrometry 

Real-world samples (wastewater, blood, food, etc.) contain hundreds to thousands of 
chemicals. Therefore, to evaluate the toxicity of each component, it is necessary first to 
separate the individual chemicals from the complex mixture and then identify and quantify 
them accurately. In recent years, non-target liquid chromatography high-resolution mass 
spectrometry (LC/HRMS) has become a widely used method for this purpose [1,3,4].  
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LC is a separation technique where the mixture's components are separated based on their 
polarity. Commonly, LC is coupled to MS to detect the separated chemicals. In MS, the 
chemicals from the LC are converted to gas-phase ions, and for this, electrospray ionisa-
tion (ESI) in both positive and negative ionisation modes is widely used. [47] 

After ionisation, the resulting ions are directed into a mass analyser, where they are sepa-
rated based on their mass-to-charge ratio (m/z) in an electric and/or magnetic field. In ap-
plications where MS is utilised for identifying unknown compounds, so-called non-target 
screening (NTS), instruments with high-resolution mass analysers, such as time-of-flight 
(ToF) and orbitrap, are usually used. In the final stage of MS, the number of ions with 
specific m/z values is recorded to generate a mass spectrum. [47] 

Some applications, like analysing complex mixtures, require more information than the 
m/z of the detected chemical. Therefore, a special two-step technique, called tandem mass 
spectrometry or MS2, is developed that combines multiple mass analysers. In the first 
stage of MS2, ions generated during ionisation are separated based on their m/z values. 
After that, the interesting ions with predetermined m/z are isolated from the rest of the ions 
and are fragmented further (see Figure 2). The weaker bonds in the ions are broken during 
the fragmentation, and characteristic fragments are produced. The higher the collision en-
ergy, the more different fragments are generated. The resulting fragments are separated 
based on their m/z, and their detection produces the MS2 spectrum. [48] 

 
Figure 2 Schematic representation of tandem mass spectrometry. In the first stage, all the ions generated 
during the ionisation are separated based on their m/z values (MS1 spectrum is generated). Based on that, 
interesting precursor ions of specific m/z are selected (highlighted with purple and yellow) and fragmented 
further to produce the MS2 spectra. 

In order to utilise the data obtained from the LC/HRMS analysis for identifying unknown 
chemicals, a multi-step analysis procedure needs to be conducted. In the first step of this 
identification procedure, the appropriate molecular formulas are allocated to unknown 
compounds based on the registered m/z values (in the MS1 spectrum). One widely-used 
algorithm [49] utilises seven heuristic rules, commonly called the "seven golden rules", 
which are applied to calculate scores for each possible molecular formula. Next, formulas 
with the highest scores are searched in the chemistry databases for potential structures and 
mass spectra. The unknown compounds' fragmentation spectra (MS2) are then measured 
and compared with literature spectral data. If the patterns of the two spectra match, the 
compound's identity can be confirmed. However, due to the fact that compounds may have 
several structural isomers (compounds with the same molecular formula but different 
structures), additional information (e.g. retention time, collision cross-section, and prelim-
inary knowledge about the sample composition) is often required. [50] 

Besides the need for complementary data, the main limiting factor of this process is the 
lack of fragmentation spectra in the literature, which often makes it impossible to achieve 
a high confidence level in identification. Schymanski's five-level system [4] is frequently 
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employed to describe different confidence levels. In this system, level 1 is the ideal situa-
tion, where the structure of the compound under investigation is confirmed, and level 5 is 
the case where m/z is known, but due to lack of information, it is impossible even to assign 
a molecular formula to the compound. In terms of non-target LC/HRMS analysis, this 
means that while the technique can detect thousands of chemicals simultaneously, only a 
small fraction (up to 2%) of them can be unambiguously identified. [4] 

Tools such as SIRIUS CSI:FingerID are used to complement non-target LC/HRMS 
analysis to improve identification confidence. SIRIUS is a software that utilises the MS2 
spectra to compute the fragmentation trees (i.e. annotate the fragmentation spectra with 
chemical formulas) by employing combinatorial optimisation. Fragmentation trees are 
graph-based data structures that shed light on the fragmentation pathways of the 
compounds under investigation. Every node in these trees represents the fragment's 
chemical formula, and edges describe the losses between the precursor ions (larger 
fragments) and product ions (smaller fragments). In order to increase the accuracy of this 
process, the MS1 spectra are additionally required (for example, to flag the presence of 
halogens). [15,51] 

The CSI:FingerID uses the constructed fragmentation trees to predict molecular 
fingerprints. It employs the linear support vector machine algorithm to calculate the 
probability of the presence or absence of each molecular property (structural pattern) for 
an unknown compound. The calculated fingerprints include CDK Substructe, ECFP6, 
Klekota-Roth, MACCS, Open Babel FP3, PubChem CACTVS, ring systems, and custom-
made SMARTS (SMILES arbitrary target specification) fingerprints. However, it is 
important to emphasise that not entire fingerprints are outputted, but only those molecular 
properties, so-called fingerprint features, that were found to have reasonable prediction 
quality when the SVMs were trained. If the HRMS measured in the positive ionisation 
mode is given as an input, the process yields 3878 fingerprint features, and when the 
negative mode data is provided, the number of produced features is 4072. Between those 
fingerprint feature subsets, there are 3494 overlapping molecular properties. [15,51] 
CSI:FingerID offers a valuable feature in the case where the entire structure of the 
compound is unknown because it allows for predicting its characteristics and MOAs, and 
therefore, it may help to overcome the problem of the lack of structural information that 
impedes EDs discovery.  
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4 Data and methods 

4.1 Data and its preprocessing 

4.1.1 Toxicity data 

In order to train machine learning models that can classify compounds as toxic and non-
toxic based on structural information, toxicity data is needed. The present study utilised 
the dataset that was provided as a training set in the Tox21 Data Challenge. The raw 
dataset was downloaded as twelve files in ".smiles" format, each containing information 
about one specific toxicity assay, including compounds' structures in SMILES format, 
their NCATS identifiers and activity data in the respective assay obtained in vitro. 
Combining these datasets resulted in a single dataset with 11764 instances. Among these, 
5090 instances represented compounds whose SMILES occurred only once, and the 
remaining 6674 instances corresponded to compounds with multiple occurrences in the 
datasets. However, it is important to note that some experimental results about the same 
compound were inconsistent. 

Therefore, the following rules were applied (for reasoning, see Chapter 5.4.1) 

1) if any of the duplicate rows have a value of "1" for a particular assay, the 
compound is classified as active in that assay in the combined dataset; 

2) if at least one of the duplicated rows has a value of "0" for a particular assay while 
the others have missing values, the compound is classified as inactive in that assay 
in the combined dataset; 

3) if all the duplicated rows have a value of "NA" for a particular assay, the 
compound is marked as inconclusive for that assay in the combined dataset. 

After processing the whole combined dataset by following these principles, a total of 8043 
unique compounds remained. 

Another important data-cleaning step in the Tox21 data preprocessing pipeline was 
removing the compounds unsuitable for LC/ESI/HRMS analysis or, if possible, modifying 
their structures to make them compatible. The Tox21 dataset contained 1600 compounds 
that had disconnected structures (SMILES notation contains the character "."; see Figure 
3): containing ionic bonds (i.e. were classified as salts) or coordinating bonds (i.e. 
coordination complexes). For these chemicals, the non-toxic cations and anions (such as 
Na+, K+, Ca2+, nitrate and acetate ions) and solvent molecules (e.g. H2O, ethanol) were 
removed if possible. Furthermore, the remaining ions were neutralised by taking into 
account the valence of the atoms (the number of bonds they can form). In both of these 
tasks, the functions from open-source cheminformatics and machine learning software 
RDKit [52] were utilised in Python. The ions and solvent molecules were removed by 
using module "rdkit.Chem.SaltRemover", and the remaining ions were neutralised with the 
function "neutralize_atoms()", which algorithm was written by Noel O’Boyle [53] and 
adapted to RDKit by Vincent Scalfani. In the current work, it was assumed that the overall 
biochemical activity of the compound would not be affected by the elimination of the non-
toxic ion. Therefore, if it was unclear which ion was potentially toxic, the compound was 
discarded. 

All the compounds were also evaluated individually to exclude those unsuitable for mass 
spectrometric analysis (e.g. indium arsenide). As a part of the deduplication, all the 
SMILES of the compounds were standardised via the function "neutralize_atoms()", and 
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the obtained "Molecule class" objects were converted back to SMILES. Finally, 7483 
unique chemicals (in this work called as original dataset) remained for training and testing 
the models (see Figure 5; the exact proportions of the active, inactive and inconclusive 
compounds per bioassay are given in Appendix II). 

 
Figure 3 Example of modifying the SMILES notation of the compound that has a disconnected structure. 
The original structure and SMILES are shown on the left, and on the right, the structure and its SMILES 
representation obtained after removing non-toxic ions and solvent molecules are given. 

4.1.2 Mass spectrometric data 

Since this study aimed to build machine learning models that use LC/ESI/HRMS data to 
predict toxicity, the experimental high-resolution mass spectra of compounds were needed 
to evaluate the final models. Two databases widely acknowledged in the field of analytical 
chemistry, MassBank (version 2022.06a) [54] and MassBank of North America (MoNA) 
[55], were used to derive the spectrometric data.  

First, the high-resolution tandem mass spectra (MS2 data) were extracted from MassBank 
and matched with a cleaned Tox21 dataset based on standardised SMILES, yielding a sub-
set of over 1000 chemicals with MS2 and toxicity data. 748 (10% of all the compounds) 
compounds from this subset were selected to form the so-called real-life test set that would 
represent the overall chemical space of the dataset well. In this study, using random sam-
pling for that purpose was impossible because data was highly imbalanced in each bioas-
say and contained up to 26% missing values depending on the assay. (Figure 4 shows the 
number of non-missing values per compound across all the bioassays.) Instead, the frac-
tions of active, inactive and inconclusive compounds in each bioassay in the Tox21 dataset 
were calculated, and the dataset was repeatedly sampled until the obtained subset resem-
bled these proportions. 
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Figure 4 Number of valid labels ("active" or "inactive") per compound in the original dataset. 2961 
compounds (around 40%) had labels for all the bioassays, i.e. around 60% of the compounds had at least one 
missing label ("inconclusive"). 

The real-life test set was used only for the final evaluation of the chosen models, while the 
remaining 6735 compounds were employed for training the models and for intermediate 
testing (train/test set). 

4.1.3 Data preparation for models training and intermediate testing 

A sufficiently large and representative training set consisting of high-quality data is the 
fundamental building block for developing precise machine learning models. Due to the 
lack of experimental high-resolution mass spectra of all compounds in Tox21, the usage of 
probabilistic molecular fingerprints calculated with SIRIUS+CSI:FingerID (see Chapter 
3.4) is hindered. Thus, for each compound in the previously defined train/test set (in a total 
of 6735 compounds), the exact fingerprint features were calculated from SMILES using 
the R package "rcdk"[56] and the full set of SMARTS (structural patterns) that 
corresponded to the molecular properties computed by SIRIUS+CSI:FingerID. 

In order to build classification models that are applicable regardless of which ionisation 
mode (positive or negative) was used during the HRMS analysis, after the computation 
process, only the overlapping features (3494 fingerprint features; see Chapter 3.4) were 
kept for training the models. Furthermore, the fingerprint features with zero and near-zero 
variance were discarded by using the function "nearZeroVar()" with default parameters 
(freqCut" = 95/5, and "uniqueCut" = 10). To remove the highly correlated fingerprint fea-
tures "findCorrelation()" with three different cutoff values (0.7, 0.8 and 0.9) from R pack-
age "caret" [57] was utilised.  

The function "nearZeroVar()" helps to identify the features that have very little or no vari-
ance by flagging the ones that have either only one unique value (zero variance) or whose 
characteristics follow the values of two parameters: "freqCut" (a cutoff value representing 
the ratio of the most common value to the second most common value within the feature) 
and "uniqueCut" (a cutoff value representing the percentage of distinct values out of the 
total number of samples). The latter means that all the features where one value prevails 
over the others (the ratio of the frequencies of the most common and second most common 
value is relatively large) and that have very few unique values relative to the number of 
samples are marked as near-zero variance features. 
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The function "findCorrelation()" detects the features that should be removed in order to 
ensure that the maximum absolute pairwise correlation between them is less than the cut-
off value. First, it determines the two features with the highest absolute pairwise correla-
tion based on the correlation matrix given as input. Then it calculates the average correla-
tions between the selected and all the other features and removes the one with the highest 
average correlation. The procedure is repeated until no absolute correlations are above the 
cutoff value. 

After performing these preprocessing steps, three datasets were obtained for the same set 
of compounds, with varying numbers of fingerprint features, namely 247, 340, and 476, 
depending on the selected cutoff value used to eliminate the highly correlated features. 

Prior to training the models, the dataset should be split into the training and test set (in this 
work, the latter is also called the intermediate test set). However, due to imbalance of the 
data and missing values (Chapter 4.1.2), the random sampling was inapplicable. Thus, to 
overcome the limitations and divide the data so that the test set would represent the under-
lying distribution of the toxicity data, the anticlustering algorithm [58] was used.  

This algorithm aims to partition the input data into K anticlusters, i.e. heterogenous groups 
that are as similar as possible to each other. It is achieved by maximising a clustering ob-
jective function rather than minimising it. The anticlustering algorithm is implemented as 
the function "anticlustering()" in the R package "anticlust". To obtain the 80/20 training 
and test sets, the function parameter K was set to 5, meaning that all the compounds were 
assigned to five anticlusters and one of them was randomly allocated as a test set.  

Figure 5 shows the proportions of the active, inactive and inconclusive compounds per 
toxicity assay in training (a total of 5388 compounds) and intermediate test set (a total of 
1347 compounds) (for more details, see Appendix II). 

4.1.4 Data preparation for final evaluation of models 

In order to use SIRIUS software for calculating the fingerprint features from HRMS data, 
the spectral data were converted to ".ms" format. It is SIRIUS specific file format, where 
in addition to mass spectra given as a simple peak list, the meta information, such as ioni-
sation mode, formula, parentmass etc., necessary for computations, is also provided. Fur-
thermore, the ".ms" format enables the combination of HRMS data of the same compound, 
measured using identical experimental conditions but different collision energies. Combin-
ing the fragmentation spectra obtained in multiple collision voltages allows SIRIUS to 
build deeper fragmentation trees since more characteristic fragments are captured, leading 
to more accurate fingerprint predictions. 

For each compound in the real-life test set (748 chemicals, see Chapter 4.1.2), the ".ms" 
files were generated based on MassBank data. If multiple MS2 spectra, measured using 
identical experimental parameters (same ionisation mode and instrument type) but differ-
ent collision energies, were present for a compound, the information was gathered into one 
file so that data in each HRMS file (peaks given as m/z and corresponding intensities) 
were listed under specific collision voltages. In order to provide the MS1 data, the isotope 
patterns were calculated from the chemical formula with the R package "enviPat" and 
function "isopattern()" [59] because of the lack of experimental data in mass spectrometry 
databases. 

These files were further used as input in SIRIUS+CSI:FingerID (version 5.6.3) to compute 
the fingerprint features (given as posterior probability that a specific structural pattern is 
present in the compound under investigation) explained previously. For 97 compounds, 
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fragmentation spectra appeared to provide insufficient information for generating the 
characteristic fragmentation trees. Therefore, supplementary spectral data was needed. For 
that objective, the data from MoNA was used: the HRMS data was queried for each com-
pound with insufficient information, and the ".ms" files were improved. Thanks to this 
excessive work, the finalised real-life test set, ready for evaluating the trained models, 
contained information about 734 compounds (for more details, see Appendix II). 

The following figure illustrates the proportions of the active, inactive and inconclusive 
compounds per toxicity assay in the original dataset, training dataset, intermediate test set 
and real-life test set. Based on this, it can be concluded that the datasets used for training 
and testing the models represent well the overall chemical space of the original dataset. 

 
Figure 5 Proportions of the active, inactive and inconclusive compounds per toxicity assay in the original 
dataset (dataset obtained after deduplication and unsuitable compounds removal from Tox21 data; 7483 
compounds), training dataset (used for training the models; 5388 compounds), intermediate test set (used for 
testing the models and selecting the final models; 1347 compounds), and real-life test set (used for final 
evaluation of models; 734 compounds). Each subplot illustrates one bioassay. 

4.2 Models 

In the current study, the machine learning models that use the compounds' binary molecu-
lar fingerprint features to predict their endocrine-disrupting activity  ("active" or "inac-
tive") in 12 different bioassays were developed. Two concurrent approaches were em-
ployed for modelling. The first strategy defined the task as 12 distinct binary classification 
problems; therefore, the independent classification model was trained for each of the 12 
bioassays. In the second approach, however, the task was framed as a multi-label classifi-
cation problem, and thus, a single model that predicts compound activity in all the assays 
simultaneously was trained. 

The training set, consisting of 5388 chemicals (as described in Chapter 4.1.3), was em-
ployed to train the models in both approaches. In the first strategy, the models were trained 
using three different fingerprint feature sets containing 247, 340, or 476 features, respec-
tively, obtained after removing the highly correlated fingerprint features (cutoff values: 
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0.7, 0.8, 0.9). While training the multi-output models, only the feature set with 476 molec-
ular properties (cutoff value 0.9) was utilised. 

4.2.1 Training the binary classifiers 

The trained models comprise a wide variety of machine learning algorithms that are 
broadly used for classification tasks. Specifically, these models include those based on 
linear discriminant analysis (LDA), logistic regression (LR), naïve Bayes (NB), k-nearest 
neighbours, support vector machines, and decision tree (DT) algorithms. Since it has been 
found that aggregating the predictions of a group of models, so-called ensembles, will 
often improve the accuracy of the prediction compared to the best individual model, the 
ensemble methods, such as random forest, bagging, and boosting (adaptive boosting, 
boosted logistic regression, gradient boosting, including stochastic gradient boosting and 
extreme gradient boosting), were also employed. Additionally, neural network models 
were trained. 

Several implementations of the same algorithm were utilised. For example, besides the 
classical kNN model, an extended version, known as weighted kNN [60], was employed. 
In this realisation of the algorithm, the kernel functions are used to weight the neighbours 
according to their distances. All the trained models are given in Appendix III. 

The R package "caret" was used to train the binary classifiers. A grid search approach 
with 10-fold cross-validation (to build robust models that generalise well on unseen data) 
was employed to select the optimal set of hyperparameters. The anticlustering algorithm 
(see Chapter 4.1.3) was utilised to split the data into training and validation sets when the 
original imbalanced training dataset was used without employing any sampling tech-
niques. The models were assessed using the ROC-AUC, sensitivity, and specificity met-
rics through the "twoClassSummary()" function. However, the ROC-AUC metric was used 
to select the optimal model. 

Sampling methods were employed during the training process to address the imbalanced 
data issue: depending on the assay, the proportion of active compounds in the training set 
varied from 2.3% to 12.1%. Four different techniques were considered:  

 down-sampling  
(function "downSample()" from package "caret") 
In the down-sampling approach, a subset of the majority class data points is 
selected such that the resulting data set has frequencies of the minority and 
majority classes in close proximity to each other; 

 up-sampling  
(function "upSample()" from package "caret") 
In up-sampling, the minority class data points are randomly sampled with 
replacement until their number is identical to the amount of majority class data 
points; 

 synthetic minority over-sampling (SMOTE)  
(function "smote()" from package "performanceEstimation") 
The SMOTE method generates new minority class instances by randomly selecting 
a minority class data point and synthesising new samples by interpolating the 
feature values of the selected data point with its k-nearest neighbours in the feature 
space [61]; 

 random over-sampling (ROSE) 
(function "ROSE()" from package "ROSE") 
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The ROSE approach generates new synthetic data points by following the 
smoothed bootstrap technique [62].   

Therefore, each binary classifier was trained for each bioassay on 15 different datasets: 
three different feature sets (obtained while removing the highly correlated features with 
different cutoff values) and the original imbalanced dataset together with four balanced 
datasets (extra datasets obtained by applying the sampling methods). 

4.2.2 Training the multi-label classifier 

In the current study, deep neural networks (DNNs), which have demonstrated high per-
formance on similar problems [13], were employed for the multi-label classification task. 
The proposed architectures comprise the DNNs with up to four hidden layers with the rec-
tified linear unit (ReLU) function as an activation function. The number of units in each 
hidden layer ranged from 512 to 8192. The output layer consisted of 12 sigmoid units: one 
per task (12 toxicity assays). In order to reduce the issue of vanishing/exploding gradients, 
the batch normalisation technique was utilised. Simultaneously, dropout, L2 regularisation 
(Ridge Regression) and early stopping methods were implemented to prevent the DNNs 
from overfitting. 

Due to the missing labels, a regular cross-entropy loss function, broadly used for learning 
in multi-label classification tasks, was not applicable in the present study. Therefore, its 
slightly modified version was employed, where the data points with missing labels were 
discarded while calculating the loss, i.e. their loss was fixed to zero. 

For optimisation, the Adam (adaptive moment estimation) optimiser was utilised. The 
hyperparameter-tuning was done using a grid search approach and 10-fold cross-validation 
(folds were generated utilising an anticlustering algorithm). The optimal set of 
hyperparameters was selected using the ROC-AUC. Additionally, the learning rate 
reduction technique was implemented, which reduced the learning rate when the metric 
did not improve during the number of given epochs. For training the models, "Keras" li-
brary via TensorFlow for R was used [63]. All the hyperparameters and architectures 
considered are shown in Table 2. A total of 1080 different settings were tried in multi-
output model training. 

Table 2 Proposed architectures of DNNs and considered hyperparameters 

Considered hyperparameters and architectures  Tried values 
number of hidden layers 2, 3, 4 
number of hidden units per layer 512, 1024, 2048, 4096, 8192 
learning rate 0.01, 0.05, 0.1 
learning rate reducing factor 0, 0.1 
dropout probability 0, 0.3, 0.5 
L2 regularisation penalty  0, 10-6,  10-5,  10-4 

4.3 Model selection and final evaluation 

The selection of an appropriate metric to evaluate the model relies on the intended 
application of the model in the future. The current master’s thesis aimed to develop 
machine learning models that are able to pinpoint chemicals that probably have an 
endocrine-disrupting activity and, therefore, need further examination. In this application, 
the models should clearly demonstrate a high true positive rate (TPR, also known as 
recall), meaning they can find as many as possible of the EDs in the sample analysed. On 
the other hand, due to the problems of classical toxicity testing methods, the number of 
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compounds falsely classified as toxic must be minimal, i.e. good models should have a 
low false positive rate (FPR). Thus, this work uses a false positive rate at 90% of recall as 
a metric to evaluate models and as a selection criterion (see Figure 6). 

 
Figure 6 Metrics used for the final evaluation of the models. The left side of the figure shows how the 
values obtained based on the confusion matrix (TP – true positive, FP – false positive, FN – false negative, 
TN - true negative) are used for calculating the false positive rate (FPR) and true positive rate (TPR). The 
ROC graph with an example of determining the FPR at 90% of recall is shown on the right side of the figure. 
The x-axis on this figure represents the FPR and the y-axis TPR. Additionally, the value of the area under the 
curve (ROC-AUC) is given.  

After completing the training of the models, each model was evaluated on the intermediate 
test set. Based on their FPR at 90% of recall, the best models were selected for further 
evaluation on the real-life test set. Additionally, the balanced accuracy and ROC-AUC 
values were outputted to enable one to compare the trends in the results with those ob-
served in the Tox21 Data Challenge. 

The fingerprint features are given as posterior probabilities instead of binary values in the 
real-life test set (see Chapter 4.1.4). Thus, an additional preprocessing step is necessary to 
use them for toxicity predictions with the trained models, during which the probabilities 
are converted to binary values. In the naive approach, a threshold value could be used for 
that. For instance, applying a simple threshold value of 0.5: if the predicted probability is 
equal to or greater than 0.5, the corresponding fingerprint feature would be marked as pre-
sent ("1"), and if it is less than 0.5, it would be marked as absent ("0"). However, finding a 
suitable threshold value is a very complex problem. Hence, a more sophisticated strategy 
was employed. For each compound, every fingerprint feature that is used as input in 
trained models was sampled 10,000 times using the SIRUS+CSI:FingerID outputted prob-
ability (p) that the specific feature should have value "1" and the probability of 1−p that it 
should have a value "0". All 10,000 obtained datasets were utilised to test the models, and 
their results were averaged to obtain the final prediction. The performance of the models 
was evaluated by calculating the FPR at 90% of recall. 
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4.4 Additionally utilised methods and resources 

The t-distributed stochastic neighbour embedding (t-SNE) [64] analysis was conducted to 
explore the potential patterns among the fingerprint features used for training the models. 
It is a statistical method which is widely used for visualising high-dimensional data in a 
lower-dimensional (2D or 3D) space. For analysis, the Python module "scikit-learn" and 
the function "TSNE()"[65] were utilised.  

The SHapley Additive exPlanations (SHAP) [66] technique was utilised to provide insight 
into a machine learning model's predictions. This commonly used method assists in identi-
fying the features that hold the most significance in the model's prediction process. The 
analysis was performed by using the R package "SHAPforxgboost" [67]. 

The Nextflow [68] framework was utilised to develop automated workflows that facilitate 
the training and testing of multiple models concurrently. 

During the thesis writing process, Grammarly and ChatGPT were used to improve the 
quality of the text by helping to rephrase the hardly understandable sentences, suggesting 
alternative word choices, and correcting the grammar. 

The code used in the study can be found at the link: https://github.com/idarahu/MSc_thesis 
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5 Results and discussions 

5.1 Models performance on the intermediate test set 

This study aimed to develop machine learning models capable of predicting the endocrine-
disrupting activity of compounds using their structural information obtained from HRMS 
analysis. More precisely, it was hypothesised that the molecular properties derived from 
SIRIUS+CSI:FingerID are characteristic enough to define compounds' activities ("active" 
or "inactive") in 12 bioassays related to EDs. Two parallel approaches were employed to 
test the hypothesis: splitting the task into 12 separate binary classification tasks (i.e. train-
ing a single-output model for each biochemistry endpoint) or combining all the bioassays 
into a multi-output classification problem (i.e. training a model that simultaneously pre-
dicts the values for all the endpoints). 

An intermediate test set was utilised to select the final single- and multi-output models 
based on their false positive rate at 90% of recall. Depending on the biochemical assay, the 
lowest achieved values of this metric ranged from 0.196 ("nr.ahr") to 0.670 ("nr.er"). The 
performance of all the trained models is displayed in Figure 7. The single-output models 
chosen for final evaluation are highlighted in yellow, and the multi-output model in green, 
and the parameters of these models are given in Appendix IV.  

 
Figure 7 Models' performance on the intermediate test set expressed as FPR at 90% of recall (metric 
employed to select the models for final evaluation). (Trained models with a metric value of 1 were excluded 
from the comparison.) The data points highlighted in yellow represent the single-output models selected for 
final evaluation on the real-life test set, while the data points highlighted in green represent the multi-output 
model chosen for the same purpose. 

As one can see, in most of the bioassays, the selected single-output models had lower FPR 
at 90% of recall than the selected multi-output model. One of the reasons for that is the 
difference in selection strategy. Single-output models were selected by identifying the 
models with the lowest FPR at 90% of recall for specific endocrine-disrupting activity 
endpoints. In contrast, for choosing the multi-output model, the average FPR at 90% of 
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recall values across all the bioassays were compared, and the model with the lowest value 
(0.455) was selected. Among all the algorithms used for training the single-output models, 
only the ones that use ensemble methods, such as random forest and boosting, were repre-
sented in the final selection. However, it is important to emphasise that it does not mean 
that the selected models were statistically better than the others. 

Based on the results presented in Figure 7, it becomes apparent that the method proposed 
in this master's thesis, which utilises the molecular properties that can be computed from 
HRMS data by SIRIUS+CSI:FingerID, can be employed for modelling compounds' endo-
crine-disrupting activities with sufficient accuracy. However, some aspects that are also 
reflected in the figure should be considered beforehand.  

5.2 Underlying patterns that affect the performance of the models 

Although the measured metric value varied considerably across the trained models, some 
trends are observable between the bioassays. For example, the models generally performed 
better on bioassays such as "nr.ahr" and "sr.mmp", where the lowest FPR at 90% of recall 
among all the models were 0.196 and 0.203, respectively. On the other hand, the "nr.er" 
endpoint modelling was more challenging, with the best FPR at 90% of recall being 0.670. 
There can be several reasons for these fluctuations. However, in terms of the applicability 
of the proposed methodology, it is crucial to determine whether these are solely due to the 
experimental design. For instance, it could be possible that the fingerprint features used 
are not representative toxicophores or that valuable information was removed during the 
data cleaning step. To address this, the trends observed in the current work were compared 
to those observed for the models’ submitted to the Tox21 Data Challenge. 

In Tox21 Data Challenge, the balanced accuracy and ROC-AUC values were used to 
compare the models. Therefore, utilising the intermediate test set, the same metrics were 
calculated for all the trained models (see Appendix V). However, it is essential to note that 
a direct numerical comparison is not possible as the test set used here and in Tox21 Data 
Challenge do not completely overlap.  

In Tox21 Data Challenge, the bioassays "nr.ahr" and "sr.mmp" received the models with 
the best performance, where the highest ROC-AUC scores were greater than 0.9 and aver-
age scores above 0.8. Conversely, the lowest average ROC-AUC scores, around 0.7, were 
reported for "nr.ar" and "nr.ar.lbd" bioassays and the lowest ROC-AUC among the win-
ning models was 0.810, achieved for "nr.er" endpoint prediction. The highest balanced 
accuracies ranged from 0.650 ("nr.ar.lbd") to 0.904 ("sr.mmp"), with the lowest balanced 
accuracy across the winning models being 0.550 for "nr.er.lbd" bioassay. [45] These pat-
terns across toxicity assays are in accordance with the trends observed in this study.  

In the current work, the highest average ROC-AUC scores were achieved for "nr.ahr" and 
"sr.mmp" bioassays (0.856 and 0.870, respectively), while the bioassay with the lowest 
maximum ROC-AUC score (0.768) was "nr.er". The highest balance accuracies ranged 
from 0.709 ("nr.er") to 0.848 ("nr.ahr"). The most significant difference between the re-
sults of the current work and the Tox21 Data Challenge was observed in the "sr.hse" bio-
assay, which had relatively higher predictive performance in the competition (in the cur-
rent study, this bioassay had the lowest average ROC-AUC score (0.704)). 

Based on this survey, it can be concluded that even though the experimental design defi-
nitely impacts the outcome of the models, some assay-specific aspects also play an im-
portant role. The Tox21 Data challenge organisers acknowledged that the models devel-
oped for assays with higher levels of active compounds tended to perform better. Addi-
tionally, they emphasised that although several computational approaches can be em-
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ployed to handle the data imbalance, their efficacy is restricted by the limited real structur-
al information that can be extracted. [45]  

In the case of bioassays, e.g. "nr.ahr" and "sr.mmp", where all the models tend to perform 
generally better, indeed, have a relatively high active compound rate (Figure 8). On the 
other hand, the difficulty in modelling the "nr.er" endpoint indicates the impact of other 
aspects. 

 
Figure 8 Proportions of the active compounds per bioassay. In the calculations, only the active and inactive 
compounds were considered (i.e. inconclusive compounds were discarded) 

One of the key elements that affect the analysis results in the field of in silico toxicology is 
the complexity of the endpoint under investigation. The authors of the Tox21 10K library 
have brought out that compounds that belong to the same structure classes may have con-
tradicting effects [69]. For instance, flavonoids, which are widely present in plant-based 
foods, can act as either oestrogen receptor agonists or antagonists [69,70]. This example 
vividly illustrates the limitations of in silico approaches, which rely on the theory that a 
chemical's structure defines its biochemical properties: if compounds with similar struc-
tures have different biological activities, finding the characteristic toxicophores that could 
explain this variation is very difficult. In order to explore potential patterns among the 
fingerprint features used for training the models, that could shed light on the quality of the 
toxicophores captured by these molecular properties, the t-distributed stochastic neighbour 
embedding (t-SNE) analysis was conducted (see Figure 9). 

Although t-SNE has limitations, it provided valuable insights into the analysed data. For 
example, the active and inactive compounds in the "nr.ahr" assay were predominantly 
separated on the t-SNE plot, suggesting that the fingerprint features could capture some 
discriminatory information regarding this assay. In contrast, the compounds in the "nr.er" 
bioassay were more widely dispersed, indicating a higher degree of complexity and 
possibly a lower predictive power of the fingerprint features for this endpoint. This may be 
one of the reasons why models built for the "nr.er" assay showed lower performance 
metrics compared to those for the "nr.ahr" assay. 
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Figure 9 Results of the t-SNE analysis. In every assay, only the active (purple) and inactive (grey) 
compounds are shown, and each plot uses the same coordination system 

In order to determine whether the single-output model selected for final evaluation, which 
was designed to predict the endocrine-disrupting activity of compounds in the "nr.ahr" 
assay and had the lowest FPR at 90% recall among all models on the intermediate test set, 
captured meaningful toxicophores, a Shapley Additive exPlanations (SHAP) analysis was 
performed. The ten most important variables and their contribution to the models’ 
predictions are shown in Figure 10. 
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Figure 10 Variable importance analysis for "nr.ahr" model that basis on the extreme gradient boosting 
algorithm. According to SHAP analysis, the results of the ten most important variables are shown together 
with their graphical descriptions from SIRIUS+CSI:FingerID (the purple highlight indicates the exact 
structural patterns that correspond to the feature under investigation). The x-axis of the plot represents the 
directionality of the effect of variables. The colour of the points indicates the absence ("0") or presence ("1") 
of the respective structural fragment. Fingerprint naming "RelIdx" refers to the absolute index numbering 
system in SIRIUS+CSI:FingerID. 

The fingerprint feature (RelIdx_48) with the highest importance score and whose presence 
indicates that the compound under investigation is more probably active corresponds to 
the different ring structures. Although the aromatic ring in the structures of the compounds 
that are able to bind to aryl hydrocarbon receptors (AHR) is one of the key elements, this 
fingerprint feature is not very informative since it covers a broad spectrum of chemicals. 
On the other hand, the molecular property representing the indole moiety (RelIdx_914) is 
highly relevant because indole-derived chemicals have been shown to act as AHR ligands 
[71]. The same applies to the fingerprint feature (RelIdx_333) representing annelated rings 
since polycyclic aromatic hydrocarbons (PAHs) are widely recognized as AHR agonists 
[72]. Based on these results, it can be concluded that fingerprint features used for training 
the models contain characteristic toxicophores, at least for some of the bioassays, and 
machine learning models are able to learn them. This discovery is significant because it 
provides an opportunity to delve deeper into compounds' toxicological effects and explore 
how various structural patterns contribute to predicting their endocrine-disrupting activity. 
Also, it confirms once more that the methodology proposed in this study, which employs 
machine learning models trained on molecular fingerprints computable from HRMS data 
to predict compounds' activity in bioassays, is a valuable and promising approach for in 
silico toxicology. 

Finally, the correlations between the bioassays were examined to explain the observed 
trends in the models' performance comparison. The t-SNE plots effectively demonstrated 
the correlations between certain bioassays, including "nr.ar.lbd" and "nr.ar". Latter is 
expected since both endpoints are related to the androgen receptor signalling pathway. 
Additionally, a pairwise correlation matrix was calculated to obtain a more comprehensive 
understanding of the underlying relationships within the dataset (see Figure 11). This 
analysis also confirms that bioassays that are designed to measure the compounds' activity 
towards the same biological targets, such as "nr.ar" and "nr.er", together with their ligand 
binding domain counterparts, are closely related. However, based on the results, it is also 
evident that the nature of the relationships could be more complex. For instance, the 
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compounds that act as agonists of antioxidant-responsive element (ARE) also tend to 
disrupt the mitochondrial membrane potential (MMP). This observation is consistent with 
the literature [73] demonstrating the direct link between antioxidative stress and 
mitochondrial membrane potential. The information about the correlations between the 
assays is highly valuable and helps to understand why the trained models, in the case of 
some assays, perform similarly and use the analogous fingerprint features for decision-
making. Additionally, it illustrates why multi-output models could be more beneficial than 
single-output models in the field of in silico toxicology. By considering multiple bioassays 
simultaneously, multi-output models can leverage the correlations between the assays and 
extract more information from the data, potentially leading to more robust and accurate 
predictions. 

 
Figure 11 Pairwise correlation matrix for all the biochemical assays 

5.3 Models evaluation on the real-life test set 

After thoroughly investigating the underlying patterns in the data that may affect the out-
come of the models, the selected classifiers were tested on the real-life test set (a separate 
dataset where all the fingerprint features are calculated from HRMS by                          
SIRIUS+CSI:FingerID). To overcome the limitations related to the fact that                  
SIRIUS+CSI:FingerID outputs the molecular properties as posterior probabilities (p), a 
sampling strategy that utilises the p to convert the probabilities into binary fingerprint fea-
tures was used (see Chapter 4.3). This technique basis on the idea that after repeating the 
procedure where probabilities are converted to binary values, which are used for predict-
ing the toxicity of the compounds enough times, the average of all the predictions becomes 
constant and reflects the underlying distributions better. 

Several sampling iterations were tried during the experiments to determine the optimal 
value that would result in the models' predictions converging. Based on these experiments, 
it was found that a sampling strategy involving 10,000 samplings was sufficient for all of 
the models, as the average predictions remained constant for all compounds even as the 
number of iterations increased. Figure 12 (left panel) illustrates an example of this tech-
nique, where each line represents the predictions made for one compound (a total of 50 
compounds are plotted) and shows how the cumulative prediction of the single-output 
model changes with the increase in iterations. The pink lines in the figure highlight the 
importance of adequate sampling iterations. For these particular compounds, applying a 
threshold value of 0.5 to convert the model's prediction into endocrine-disrupting activity 
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would have produced a different result after the first iteration as compared to the 10,000th 
iteration. For this bioassay ("nr.ahr"), a total of 61 compounds out of 614 would have ex-
hibited similar behaviour as the chemicals shown with pink lines. The same figures for all 
the models and the table that combines the information about the number of compounds 
whose activity would be different depending on the sampling iteration are given in Ap-
pendix VI. 

Additionally, the utilised strategy was compared to a naive approach, in which the finger-
print features outputted by SIRIUS+CSI:FingerID would have been converted to binary 
values using a fixed cutoff value of 0.5. This approach would mark all probabilities greater 
than or equal to 0.5 as "1" (fingerprint feature present) and "0" (fingerprint feature miss-
ing) for those lower than 0.5. For all the models, the percentage of compounds per each 
assay was calculated to determine how many compounds predicted to be active or inactive 
using the utilised strategy would have been predicted to belong to the opposite class if the 
naive approach had been used. The results of this analysis are displayed in the right panel 
of Figure 12.   

 
Figure 12 Comparison of the sampling strategy and naive approach for endocrine-disrupting activity 
prediction using single- and multi-output models. The left panel shows the effect of different sampling 
iterations on the predictions of the single-output model for 50 compounds in the "nr.ahr" bioassay. Each line 
represents the predictions made for one compound, and the pink lines indicate the importance of adequate 
sampling iterations. The right panel displays the percentage of compounds whose endocrine-disrupting 
activity prediction would have been different if the naive approach had been used instead of the optimal 
sampling strategy for each bioassay and model.  

As one can see, in the case of single-output models, the predictions would have been dif-
ferent for less than 10% of the compounds. However, for the multi-output model, there 
were significant differences between the two approaches: in "nr.ar" assay, more than 20% 
of the compounds' endocrine-disrupting activity would have been predicted differently. 
Nevertheless, this is not surprising while considering the basis of multi-output models. 
These models are designed to predict multiple properties of a given compound simultane-
ously, and thus, their predictions depend on the correlation between these properties, i.e. 
they have the ability to learn the hierarchical representations of the data, which can be 
shared across multiple tasks. Therefore, the input data change can concurrently affect mul-
tiple predictions' outcomes. This was one of the reasons why in the present work, the hy-
pothesis was made that using models that are able to predict endpoints of 12 bioassays 
simultaneously would enable pinpointing new fingerprint features that undergo unnoticed 
in training individual models due to data sparsity. From all the obtained results (especially 
in the case of the multi-output model), it can be inferred that the employed sampling 
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strategy for converting the SIRIUS+CSI:FingerID fingerprint features into a usable form 
for models is effective in achieving consistent and reliable predictions. 

Table 3 displays the models' performance on a real-life test set, expressed as FPR at 90% 
of recall. Upon analysing these results, it can be observed that similar trends to those 
obtained previously are present. One of the most challenging biochemical endpoints to 
model is "nr.er" while simultaneously, both the single- and multi-output model tend to 
perform well on predicting the activity of the compounds in "sr.mmp" bioassay. However, 
some noteworthy differences exist between the results obtained using the intermediate and 
real-life test sets. For instance, the selected single-output models tended to have lower 
FPR at 90% recall than the multi-output model on the intermediate test set (only in the 
case of two bioassays the multi-output model had a lower metric value). On the real-life 
test set, both the single- and multi-output models had lower FPR at 90% of recall in half of 
the bioassays. 

Table 3 Models’ performance on the real-life test set. The lower FPR at 90% of recall value per bioassay is 
highlighted in bold. 

Bioassay 

FPR at 90% of recall 

single-output models multi-output model 

nr.ahr 0.408 0.430 

nr.ar.lbd 0.688 0.789 

nr.ar 0.824 0.904 

nr.aromatase 0.520 0.379 

nr.er.lbd 0.844 0.576 

nr.er 0.850 0.882 

nr.pppar.gamma 0.570 0.537 

sr.are 0.690 0.700 

sr.atad5 0.856 0.422 

sr.hse 0.795 0.754 

sr.mmp 0.251 0.339 

sr.p53 0.461 0.254 

Based on these results, it can be confirmed that it is possible to use the fingerprints calcu-
lated from HRMS data by SIRIUS+CSI:FingerID for predicting the compounds’ endo-
crine-disrupting activity as was hypothesised in the present master’s thesis. The findings 
suggest that multi-task learning may be advantageous for such tasks, but more experiments 
are needed. Further analysis is also necessary to fully understand the impact of model se-
lection and data balancing strategies on overall performance. The following chapter dis-
cusses additional considerations and limitations of the proposed methodology. 
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5.4 Limitations and further considerations of the proposed approach 

5.4.1 Quality of the toxicity data and preprocessing strategy 

In machine learning, the quantity and quality of the data are crucial: data has to be 
representative and contain relevant features [72]. The present study utilised the dataset 
from Tox21 Data Challenge. This widely used dataset in the field of in silico toxicology 
contains qualitative toxicity endpoint measurements in 12 bioassays related to EDs for 
8043 unique compounds. Although one of the most comprehensive datasets available, it 
still possesses many limitations, such as data duplication, missing labels, data imbalance, 
etc., that should be considered while building the models and interpreting the results. 

The original Tox21 dataset included 2953 compounds that were found to occur more than 
once. This duplication may be caused by the fact that different laboratories tested the same 
compound or the same compound was repeatedly tested in the same laboratory. However, 
as noted in Chapter 4.1.1, experimental results regarding the same compound were not 
always consistent. Figure 13 illustrates one example, where herbicide pendimethalin has 
two entries (highlighted with light blue) in the Tox21 dataset. Even though these 
experimental results align with each other in most assays, there is a conflict in the 
aromatase assay: one experiment suggests that pendimethalin does not exhibit activity in 
this assay, but another study indicates that the compound is capable of modifying 
aromatase activity.  

 
Figure 13 Example of the duplicated rows in the Tox21 dataset. The endocrine-disrupting activity of the 
herbicide pendimethalin has been measured twice experimentally (rows that are highlighted with light blue). 
In most of the bioassays, the measured endpoints are in accordance with each other, except in the case of the 
aromatase assay. In order to overcome such inconsistencies in the dataset, the deduplication strategy that 
basis on the three rules (see Chapter 4.1.1) was applied. The endpoint values of pendimethalin obtained 
while using this approach are highlighted in light green in the third row. 

The principles of toxicology (Appendix VII) state that the compound's concentration 
(dose) plays a key role in determining its toxicity. Therefore, the differences in the 
experimental data may be caused by the fact that the compounds have been tested on 
borderline concentrations where small changes in concentrations can lead to different 
outcomes. Thus, in the present work, in contrast to the usual deduplication strategy, that 
basis on the "majority vote" idea, the three rules were applied to address the contradicting 
data points. According to these rules, all the compounds found to have an endocrine-
disrupting activity in a specific assay, at least in one replica, were marked to be active in 
this bioassay in the final dataset. In Figure 13, the values in the third row (highlighted with 
light green) express the result of employing this approach for deduplicating the data of 
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pendimethalin. As one can see, in the final dataset, the molecule is marked as active in the 
aromatase assay, which is consistent with the findings reported in the literature [74]. 

This deduplication technique also served the aim of the master's thesis: developing 
machine learning models that are able to flag compounds that should go under more 
thorough in vitro or/and in vivo testing. In the case of contradicting experimental results, 
the compound should be tested further to determine its toxic effects unambiguously. 

Another important consideration while preprocessing the data for model training is 
whether it accurately represents the unseen data the models will encounter in practice. In 
this study, the final models utilise the data of HRMS analysis as input; hence the training 
data should contain only compounds that are detectable in LC/ESI/HRMS setup. 
Therefore, all the structures of chemicals were evaluated for suitability and modified or 
discarded if necessary (see Chapter 4.1.1).  

The main part of this preprocessing step was handling the compounds with disconnected 
structures, such as salts. Salts are dissociated into negatively charged anions and positively 
charged cations in solutions. Thus, in LC/ESI/HRMS, the complete structures of salts are 
never registered. For that reason, it was essential to modify their SMILES notations to 
correspond to real-life scenarios. As mentioned in Chapter 4.1.1, the simplified 
assumption that the toxicity of salts does not depend on non-toxic ions was made. From 
the practical point of view, this assumption was vital because it allowed one to use the data 
that constituted one-fifth of the entire dataset, which would have otherwise been 
discarded. However, it is necessary to emphasise that since not all of the MOAs of EDs 
are fully understood, and the toxicodynamics and -kinetics of ions and their neutral 
counterparts can differ, there is a theoretical possibility that this premise may lead to errors 
in some cases. 

5.4.2 Effect of the usage of SIRIUS+CSI:FingerID on the applicability of models 

This study hypothesised that structural information obtained from high-resolution mass 
spectra could be used to identify unknown compounds requiring additional testing due to 
potential toxicity concerns. SIRIUS and its integrated tool CSI:FingerID, which maps 
HRMS data to molecular fingerprint features, are central to this theory. Even though this 
methodology has some clear advantages, such as allowing one to retrieve information 
about chemicals' endocrine-disrupting activity without fully identifying them, due to the 
usage of SIRIUS+CSI:FingerID, it still possesses many limitations. 

The first constraints are related to the measured HRMS spectra. The data-rich fragmenta-
tion spectra with high mass accuracy are required to build the fragmentation trees, i.e. 
spectra with too few peaks (that correspond to meaningful fragments) cannot be used as an 
input of SIRIUS+CSI:FingerID. The issue, as observed in the present study when utilising 
data from MassBank to compute fingerprint features for a real-life test set (see Chapter 
4.1.4), can considerably limit the scope of this method since it demands substantial exper-
imental resources to tackle it. Besides the compound's molecular structure, the number of 
meaningful fragments in MS2 spectra depends on instrumental parameters, such as colli-
sion energy, mass resolution, scanning range and sensitivity. Therefore, the performance 
in real experiments will depend on the mass spectrometric method used and might differ 
from the metrics reported here. 

A key element of building effective machine learning models is identifying and selecting 
suitable features for their training. In the field of in silico toxicology, determining a 
sufficient set of structural patterns, or structural alerts,  characteristic of toxic compounds 
is the main challenge. This is especially true when the mechanisms of compounds are very 
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complex and not entirely clear, like in case of EDs (see Chapter 3.1.1)) which strongly 
affects the applicability of developed methods. In the current master's thesis, all the usable 
features were predefined by SIRIUS+CSI:FingerID. Thus, the assumption was made that 
the fingerprint features outputted by this tool are comprehensive enough to describe the 
toxicity of compounds. However, it should be noted that this premise may not hold for all 
compounds, as some characteristic toxicophores could be overlooked, which may lead to 
biased predictions.  

Another crucial factor affecting the overall accuracy of the proposed methodology is that 
the fingerprint features obtained from HRMS data cannot be taken as ground truth. As 
mentioned, SIRIUS+CSI:FingerID uses the SVM algorithm to predict the molecular prop-
erties and provides them as posterior probabilities. Therefore, it is essential to emphasise 
that even if the posterior probability that the chemical contains the specific structural pat-
tern is 0.99, it does not necessarily mean that this molecular property is truly present. Even 
when assuming that the accuracy of SIRIUS+CSI:FingerID is as high as 99% for all the 
fingerprint features, around 34 to 35 out of 3494 overlapping fingerprint features that were 
used in this work are still expected to be incorrect (Figure 14).  

 
Figure 14 Difference between the predicted fingerprint features, calculated based on HRMS data using 
SIRIUS+CSI:FingerID (fpfpredicted; posterior probabilities) and the true fingerprint features derived from 
SMILES (fpftrue). The figure includes data on 476 molecular properties selected for model training (see 
Chapter 4.1.3), which are arranged in the same order on both panels. The left panel depicts the difference 
between fpfpredicted and fpftrue for each compound in the real-life test set, calculated as difference = fpfpredicted − 
fpftrue. The right panel illustrates the proportions of compounds for which the predicted and true fingerprint 

features disagree. For that, a naive approach was used: setting a feature value to "1" if fpfpredicted ≥ 0.5 and 

"0" otherwise, and then comparing the results with true values. 

As one can see, in most cases, the molecular properties from SIRIUS+CSI:FingerID are in 
good accordance with the ones calculated from the SMILES notations. The simplified 
analysis, which considered posterior probabilities greater than or equal to 0.5 as evidence 
for specific structural patterns, showed that most of the features were mispredicted for less 
than 4% of the compounds (see Figure 14, right panel). However, the molecular property 
that represents the benzeneamine group (aniline and its derivatives) demonstrates that con-
cordance is not always as good: for more than 12% of the compounds, its predicted value 
did not match the true value. This result is especially valuable in the context of the current 
study, as it highlights the limitations of the developed method. Aniline and its derivatives 
are reported in the literature as compounds that may influence steroidogenesis [75], mak-
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ing the benzeneamine group a potential characteristic toxicophore. Having said that, it is 
clear that if SIRIUS+CSI:FingerID is unable to predict its presence with high accuracy, 
the developed models may misclassify the compounds. This is an important factor that 
should be considered before employing this approach. 

Furthermore, the predicted fingerprint features for certain chemicals deviated from the true 
ones more frequently (Figure 14). It could result from insufficient meaningful fragments in 
their MS2 spectra, inhibiting the building of deep fragmentation trees and thereby affecting 
the prediction of molecular properties, which again stresses the importance of the quality 
of experimental data. 
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6 Conclusions 
The current master’s thesis aimed to investigate the possibilities of using the information 
obtained from non-target LC/HRMS analysis to predict the compounds endocrine-
disrupting activity in 12 different bioassays without the need for their full identification. It 
was proposed that leveraging the capabilities of SIRIUS+CSI:FingerID, which is able to 
translate the compound’s structural information that is present in its data-rich HRMS spec-
tra to molecular fingerprint features, it becomes feasible to use machine learning methods 
to flag the unknown chemicals present in the complex real-world samples that should be 
going under further in vitro and/or in vivo testing due to their potential toxicity concerns. 

In order to fulfil this objective, the toxicity data from the Tox21 10K library was utilised, 
and a wide variety of machine learning algorithms were employed to build classification 
models, including both single- and multi-output models, capable of predicting the experi-
mental toxicity endpoints contained within the dataset.  

Based on the results obtained from these experiments, it was found that fingerprint fea-
tures generated by SIRIUS+CSI:FingerID can be used to determine compounds' bioactivi-
ty. Moreover, it was shown that this methodology could enable pinpointing the structural 
patterns highly characteristic to toxic compounds and thereby help to understand how the 
compounds under investigation exert their adverse effects on biological systems, shedding 
light on their mechanisms of action. 

Furthermore, the proposed approach was tested under near real-world conditions by 
utilising the fingerprint features extracted from the experimental HRMS data using 
SIRIUS+CSI:FingerID as input for trained models. The results of these experiments 
demonstrate that employing this approach with sufficient accuracy is possible, and thus, it 
holds great promise for practical applications in the field of in silico toxicology. It is also 
important to notice that one of the key elements of achieving consistent and reliable 
predictions in this approach relies on the technique developed in the present work for 
converting the fingerprint features outputted by SIRIUS+CSI:FingerID into true binary 
fingerprint features. 

Finally, the findings of this study suggest that multi-task learning may be advantageous in 
the field of in silico toxicology for predicting values of multiple endpoints for the same 
compound due to the many underlying correlations between the biochemical pathways; 
however, further experiments are required to validate this theory. Additionally, a more 
thorough analysis is required to gain a complete understanding of how the model selection 
and data balancing strategies employed in the master's thesis affect the overall 
performance of the proposed methodology. 

To conclude, the present study represents a significant step forward in identifying toxic 
compounds in real-world mixtures without the need for their chemical identification. It 
provides a strong foundation for further research and the development of new approaches 
to address the gaps present in the downstream evaluation of their toxic effects.  
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Appendix 

I. Biosynthesis of catecholamines and steroid hormones 

 
Figure 15 (A) Synthesis of catecholamines (dopamine, epinephrine and norepinephrine synthesis from 
amino acid tyrosine). (B) Steroidogenesis (steroid hormone synthesis from cholesterol). The names written 
in black represent the compounds whose structures are shown in the figure; the compounds’ names given 
above and under the arrows (written in purple) represent the enzymes that catalyse the corresponding 
reactions. 
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II. Proportions of the compounds in the used datasets 

 

 
Figure 16 Proportions of the active, inactive and inconclusive compounds per toxicity assay in the original 
dataset (dataset obtained after deduplication and unsuitable compounds removal from Tox21 data) 

 

 
Figure 17 Proportions of the active, inactive and inconclusive compounds per toxicity assay in the training 
dataset 
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Figure 18 Proportions of the active, inactive and inconclusive compounds per toxicity assay in the 
intermediate test set 

 

 
Figure 19 Proportions of the active, inactive and inconclusive compounds per toxicity assay in the real-life 
test set 
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III. Trained single-output models 

Table 4 Information about all the trained single-output models4 

Model Method name Libraries used Tuning parameters 
Boosted Classification 

Trees 
ada ada, plyr iter, maxdepth, nu 

Bagged AdaBoost AdaBag adabag, plyr mfinal, maxdepth 
Stochastic Gradient 

Boosting 
gbm gbm, plyr 

n.trees, interaction.depth, 
shrinkage, n.minobsinnode 

k-Nearest Neighbors kknn kknn kmax, distance, kernel 
k-Nearest Neighbors knn  k 
Linear Discriminant 

Analysis 
lda MASS None 

Boosted Logistic 
Regression 

LogitBoost caTools nIter 

Naive Bayes naive_bayes naivebayes laplace, usekernel, adjust 

Random Forest ranger 
e1071, ranger, 

dplyr 
mtry, splitrule, 
min.node.size 

Random Forest Rborist Rborist predFixed, minNode 
Random Forest rf randomForest mtry 

eXtreme Gradient 
Boosting 

xgbDART xgboost, plyr 

nrounds, max_depth, eta, 
gamma, subsample, 
colsample_bytree, 

rate_drop, skip_drop, 
min_child_weight 

Bagged CART treebag 
ipred, plyr, 

e1071 
None 

C5.0 C5.0 C50, plyr trials, model, winnow 
Regularised Logistic 

Regression 
regLogistic LiblineaR cost, loss, epsilon 

eXtreme Gradient 
Boosting 

xgbTree xgboost, plyr 

nrounds, max_depth, eta, 
gamma, colsample_bytree, 

min_child_weight, 
subsample 

Linear Support Vector 
Machines with Class 

Weights 

svmLinearWei
ghts 

e1071 cost, weight 

Neural Network nnet nnet size, decay 
Neural Networks with 

Feature Extraction 
pcaNNet nnet size, decay 

    

 
4 https://topepo.github.io/caret/available-models.html 
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IV. Parameters of the selected models 

Table 5 Parameters of the selected single-output models 

Bioassay Model Parameters 
Balancing 
strategy 

Cutoff value to 
remove highly 

correlated  
features 

nr.ahr xgbTree 

 nrounds = 100 
 max_depth = 9 
 eta = 0.3 
 gamma = 0 
 colsample_bytree = 0.6 
 min_child_weight = 1 
 subsample = 1 

down-
sampling 

0.7 

nr.ar.lbd Rborist  predFixed = 247 
 minNode = 2 

SMOTE 0.7 

nr.ar gbm 

 n.trees = 50 
 interaction.depth =2 
 shrinkage = 0.1 
 n.minobsinnode = 10 

None 0.8 

nr.aromatase gbm 

 n.trees = 200 
 interaction.depth = 3 
 shrinkage = 0.1 
 n.minobsinnode = 10 

up-
sampling 

0.7 

nr.er.lbd rf  mtry = 476 None 0.9 

nr.er rf  mtry = 239 
up-

sampling 
0.9 

nr.pppar.gamma ranger 
 mtry =124 
 splitrule = ’extratrees’ 
 min.node.size =1 

SMOTE 0.7 

sr.are xgbDART 

 nrounds = 150 
 max_depth = 9 
 eta = 0.3 
 gamma =0 
 subsample = 1 
 colsample_bytree = 0.6 
 rate_drop = 0.01 
 skip_drop = 0.05 
 min_child_weight = 1 

down-
sampling 

0.8 

sr.atad5 gbm 

 n.trees = 150 
 interaction.depth = 3 
 shrinkage = 0.1 
 n.minobsinnode = 10 

up-
sampling 

0.8 

sr.hse gbm 

 n.trees = 150 
 interaction.depth = 3 
 shrinkage = 0.1 
 n.minobsinnode = 10 

ROSE 0.7 

sr.mmp rf  mtry = 171 
up-

sampling 
0.8 

sr.p53 gbm 

 n.trees = 200 
 interaction.depth = 3 
 shrinkage = 0.1 
 n.minobsinnode = 10 

down-
sampling 

0.8 
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The architecture and hyperparameters of the selected multi-output model: 

 layers = 3 
 units in the first layer = 4096 
 units in the second layer = 2048 
 units in the third layer = 1024 
 learning rate = 0.05 
 learning rate reducing factor = 0.1 
 dropout probability (for each layer) = 0.5 
 L2 regularisation penalty = 10−6 
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V. Performance of the trained models on the intermediate test set ex-
pressed as ROC-AUC and balanced accuracy 

 
Figure 20 Models' performance on the intermediate test set expressed as ROC-AUC. The data points 
highlighted in yellow represent the single-output models selected for final evaluation on the real-life test set, 
while the data points highlighted in green represent the multi-output model chosen for the same purpose. 

 
Figure 21 Models' performance on the intermediate test set expressed as balanced accuracy. The data points 
highlighted in yellow represent the single-output models selected for final evaluation on the real-life test set, 
while the data points highlighted in green represent the multi-output model chosen for the same purpose. 
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VI. Effect of sampling strategy 

 
Figure 22 The effect of different sampling iterations (used in the conversion of SIRIUS+CSI:FingerID 
outputted fingerprint features to the true binary fingerprint features) on the predictions of the single-output 
model for 50 compounds in the six bioassays. Each line represents the predictions made for one compound, 
and the pink lines illustrate the importance of adequate sampling iterations 
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Figure 23 The effect of different sampling iterations (used in the conversion of SIRIUS+CSI:FingerID 
outputted fingerprint features to the true binary fingerprint features) on the predictions of the single-output 
model for 50 compounds in the six bioassays. Each line represents the predictions made for one compound, 
and the pink lines illustrate the importance of adequate sampling iterations 
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Figure 24 The effect of different sampling iterations (used in converting SIRIUS+CSI:FingerID outputted 
fingerprint features to the true binary fingerprint features) on the predictions of the multi-output model for 50 
compounds in the six bioassays. Each line represents the predictions made for one compound, and the pink 
lines illustrate the importance of adequate sampling iterations 
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Figure 25 The effect of different sampling iterations (used in converting SIRIUS+CSI:FingerID outputted 
fingerprint features to the true binary fingerprint features) on the predictions of the multi-output model for 50 
compounds in the six bioassays. Each line represents the predictions made for one compound, and the pink 
lines illustrate the importance of adequate sampling iterations 
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Table 6 Number of compounds per each bioassay, which predicted endocrine-disrupting activity would have 
produced a different result after the first iteration as compared to the 10,000th iteration 

Bioassay 
Number of compounds 

single-output model multi-output model 
nr.ahr 61 35 

nr.ar.lbd 12 60 
nr.ar 1 40 

nr.aromatase 30 35 
nr.er.lbd 7 59 

nr.er 14 0 
nr.pppar.gamma 6 31 

sr.are 59 13 
sr.atad5 17 62 
sr.hse 47 55 

sr.mmp 17 41 
sr.p53 52 59 
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VII. Toxicology and its principles 

Toxicology is a scientific discipline investigating the harmful effects of chemicals (e.g. 
pesticides, solvents, food additives, drugs) and physical agents (e.g. radiation, coal dust) 
on living organisms under certain exposure conditions. The roots of toxicology can be 
traced back to ancient civilisations, where the study of poisons and their effects on the 
human body was first recorded. The term "toxicology" also originates from the ancient 
Greek word "toxikón," representing the poisons used to treat arrowheads before hunting 
and warfare. Nowadays, this simple "study of poisons" has evolved into an interdiscipli-
nary field encompassing pharmacology, biochemistry, environmental science, and epide-
miology; and in this integrative approach, toxicologists try to find answers on how toxic 
substances, so-called toxicants, interact with biological systems and which are the mecha-
nisms behind their adverse effects.5,6 

Although all the fields are strongly interrelated, toxicology can be divided into three main 
subareas: descriptive, mechanistic and regulatory/applied toxicology. Descriptive toxicol-
ogy relates to toxicants' toxicity, epidemiology, and biological quantification through tests 
such as bioassays and structure-activity studies. It focuses on describing the toxic effects 
of a substance on an organism, including the dose-response relationship and the symptoms 
produced by exposure to the substance, without attempting to explain the underlying 
mechanisms of toxicity. Identifying and understanding these cellular, biochemical and 
molecular mechanisms by which substances cause toxic effects is the focal point of mech-
anistic toxicology. The results of studies of these two subfields are used as input in applied 
toxicology, which evaluates this information on behalf of the government or international 
organisations, aiming to protect the health of workers, consumers, populations, and the 
environment.1 

Even though every mentioned subarea has several branches and subdisciplines, all of them 
are closely linked and contribute to the general risk assessment process. Latter can be de-
scribed as a four-step procedure involving hazard identification, dose-response assess-
ment, exposure assessment and risk characterisation, and it basis on the fundamental toxi-
cology concepts. These principles describe how toxic effects are related to the dose of a 
toxicant, the route of exposure, and the duration of exposure, and take into account various 
factors, like the target organ and the susceptibility of different populations, such as age, 
sex, and species.1 

The dose-response relationship is widely regarded as the most crucial foundation in toxi-
cology. It describes the relationship between the amount of an agent, or dose, and the 
magnitude of the resulting biological effect or response. Since the term is also used in 
pharmacology, agricultural sciences, biochemistry etc., it is important to note that the re-
sponse could be wanted or unwanted based on the field of application. The interpretation 
of dosage depends on the response/endpoint being measured. Historically, in toxicology, 
mortality is considered an observable response; therefore, the dosages are frequently given 
as lethal doses (LD) or concentrations (LC). In addition, toxic doses (TD) and sentinel 
doses (SD) are also used, while seriously harmful or minor adverse effects (e.g. headache, 
fatigue) are reckoned as a response.1 

 
5 In Principles of Toxicology: Environmental and Industrial Applications (eds. Williams, P. L. et al.) 3–34, 
232–235 (Wiley–Blackwell, 2000) 
6 In Encyclopedia of Toxicology (ed. Wexler, P.) 4, 1–9, 158–164, 590–594, 610–616, 634–637, 673–675, 
680–681, 718–720, 731–745 (Academic Press, 2014) 
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The dose-response relationship can be characterised in two ways: describing the response 
of an individual organism to varying doses of a toxicant (individual/graded dose-response 
relationship) or describing the doses of a substance that produce a given effect in a popula-
tion (quantal dose-response relationship). However, the latter is more often employed be-
cause the unique characteristics of individuals largely influence the impact of a toxicant, 
and therefore, it is almost impossible to make generalisations based on individual dose-
response analysis.1 

The second principle of toxicology states that the duration and frequency of exposure can 
affect the toxicity of the substance. Based on the length of the period, the exposure is usu-
ally categorised as acute, subacute, subchronic or chronic. The concept is vividly illustrat-
ed by the fact that smoking one cigarette does not result in severe complications, but 
smoking regularly over a long time range can end in lung cancer [37]. Also, chemicals that 
produce unfavourable effects with a single dose may have no effect if the same total dose 
is given during a prolonged time interval as multiple smaller portions. Thanks to many 
coordinated processes that take place in the body, organisms have the ability to eliminate 
toxicants. If the elimination rate is higher than the administering rate, the toxic concentra-
tion of this substance may never be reached. The efficiency of the elimination process is 
highly related to the organism's characteristics, which leads to the next concept of toxicol-
ogy.1 

The susceptibility to chemicals varies between species and among individuals within a 
species1. For example, the botulinum toxin is highly toxic (the most potent known toxin) 
to humans7, but vultures8 have been found to be resistant to it. The interspecies differences 
in susceptibility and sensitivity can be explained by many factors, such as age, gender, 
health, and genetics. The young and elderly are usually more affected than adults due to 
their decreased ability to eliminate toxicants. Also, individuals whose status of well-being 
is dropped are more prone to the effects of toxic agents. The difference in hormones and 
physiological processes between males and females may result in nonidentical responses 
to exposure to the same agent, e.g. several studies have shown that women experience 
more adverse effects of drugs. And last but not least, genetic variability, which makes all 
organisms unique, can simultaneously give an advantage to one individual and a disad-
vantage to another in coping with the toxicity of substances.1 Acatalasia is an autosomal 
recessive peroxisomal disorder caused by significantly decreased levels of the enzyme 
catalase. The root of the disorder lies in the genetic mutation in the CAT gene that encodes 
the particular enzyme. Organisms with acatalasia have much slower rates of removal of 
hydrogen peroxide; therefore, this chemical may have adverse effects on them.1,9 

Another major aspect that should be considered while working in the field of toxicology is 
the routes of exposure. Based on this basic principle, the pathway by which a chemical 
enters the body, such as inhalation (lung exposure), ingestion (oral/gastrointestinal expo-
sure), skin contact (skin/dermal exposure), or injection (intravenous, intraperitoneal, sub-
cutaneous, intramuscular), can affect its toxicity. The route determines the amount of toxi-
cant passed by and which organs are exposed to the highest concentration. Latter is very 
important because the absorption site can dictate the elimination rate and alter the ob-
served toxicity. For example, if the overall metabolism is detoxifying, oral or peritoneal 
administering can be less harmful than other exposure forms because it ensures that the 

 
7 Dhaked, R. K. et al. Indian J Med Res 132, 489–503 (2010) 
8 In Field Manual of Wildlife Diseases - General Field Procedures and Diseases of Birds 271–281 
(CreateSpace Independent Publishing Platform, 2012) 
9 Wang, D. H. et al. Arch Toxicol 70, 189–194 (1996) 
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toxicant passes the liver, which has a high capacity to break down chemical agents, before 
damaging the other organs. However, the opposite scenario can occur if toxic byproducts 
are created during the elimination process.1 

The last concepts of toxicology are closely associated with the toxicants themselves. In the 
real world, organisms are concurrently exposed to a mixture of chemicals. However, the 
toxic effects of these mixtures can significantly differ from the simple sum of toxicities of 
each component because of the chemical interactions. There are several mechanisms for 
how chemical interactions take place. These mechanisms involve modifications in toxico-
kinetics and/or toxicodynamics and thus affect chemical absorption, distribution, metabo-
lism, and excretion, alter binding to a target site like a receptor, or interfere with tissue 
repair processes. As a result of a broad spectrum of mechanisms, the toxicity of the mix-
ture can be higher (in the case of synergy and potentiation) or lower (in the case of antag-
onism) compared to the effects of individual compounds. 1  

Finally, the structure of chemicals greatly impacts their toxicity, as it dictates their physi-
cochemical properties, such as solubility, lipophilicity, redox potential, dissociation con-
stant, hydrogen bonding ability, and complex forming ability, to name some of them. 
Thus, the structure is a crucial factor in determining the reactivity of the compound and, 
thereby, the mechanisms of its actions. 1 
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