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Produce Quality and Pesticide Residue Estimation Using Light Sens-
ing

Abstract:
While produce quality estimation across various stages in the value chain is essential to
tackle food loss and waste, determining pesticide residue in fresh produce can alleviate
the threat to human health and the environment. Light sensing offers a non-invasive
and cost-effective method to establish unique fingerprints for fresh produce. During a
12-day produce decomposition period, it was established that light reflectivity is effective
for the quality estimation of vegetables. The AdaBoost classification model with blue
light reflectivity value, vegetable items and luminosity as input features achieved a
performance accuracy of 92.4%. While measuring reflectivity intensity, it is important
to account for varying lighting conditions (luminosity). Notwithstanding the success of
predicting the quality of fresh produce, light sensing failed in pesticide residue estimation.
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Saaduste kvaliteedi ja pestitsiidi jääkide hindamine valgussensori
tehnoloogia abil

Lühikokkuvõte:
Kui toodangu kvaliteedi hindamine väärtusahela eri etappides on oluline toidukao ja
raiskamise vähendamiseks, siis pestitsiidide jääkide kindlaks määramine saadustes lee-
vendab ohtu inimeste tervisele ja keskkonnale. Valgussensori tehnoloogia võimaldab
mitteinvasiivselt ja kulutõhusalt tuvastada värskete saaduste ainulaadseid sõrmejälgi.
Uurimistöö 12-päevase saaduste lagunemisperioodi jooksul tehti kindlaks, et valguse
peegeldusvõime on tõhus viis juurviljade kvaliteedi hindamisel. AdaBoost klassifikatsioo-
nimudel, mille sisendparameetrid olid sinise valguse peegeldusvõime väärtus, juurviljade
tüüp ja heleduse tase, saavutas täpsuse 92.4%. Peegeldusvõime intensiivsuse mõõtmis-
el on oluline arvestada erinevate valgustingimustega (heleduse tase). Hoolimata edust
ennustada värskete saaduste kvaliteeti, valgussensori tehnoloogia abil ei õnnestunud
hinnata pestitsiidide jääke.
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1 Introduction
Food quality and safety are central issues in food economics [20] that get attention from
different stakeholders throughout the agriculture and food production supply chain. The
advances in computing technologies are benefiting food quality and safety detection and
monitoring. These emerging technologies are helping farmers, producers and retailers
to improve efficiency and respond to consumer demands. Besides direct economic
profitability, indirect and second-order benefits are valuable to the market players and
society at large. Eradication of hunger and poverty, clean water, sustainable land use,
responsible production and consumption, mitigating climate change, and sustainable life
on land and water are the United Nations sustainable development goals (SDG) [31] that
can be linked to food quality and safety.

Computer vision technology has been extensively deployed for quality estimation
of fresh produce, such as fruits and vegetables. The first computer vision systems for
produce quality assessments examined surface characteristics to detect visual defects
or estimate ripeness [10]. Machine learning techniques are often used in conjunction
with computer vision. Other computing technologies for quality estimation make use of
thermal imaging and light sensing [19, 49]. The safety of fresh produce has been investi-
gated less by advanced computational methods. This thesis examines the application of
light sensing for both produce quality and pesticide residue estimation.

Quality estimation encompasses various characteristics (e.g. colour, texture, shape
and sugar content) and refers to the ripeness stage of fresh produce. The importance
of quality estimation consists in food loss and waste prevention. Every year around
one-third of all food produced for human consumption is lost and wasted across the
entire supply chain [14]. This has serious implications for food security, especially in the
context of a growing population and limited resources. Nearly every third person does
not have access to adequate food and about 12% of the global population is severely food
insecure [15]. Quality assessment solutions can limit food loss and waste throughout
the supply chain, consequently causing less environmental harm as fresh produce often
involves long transportation and cold storage.

Pesticide residue estimation is concerned with determining the levels of substances
in produce resulting from the use of pesticides. Pesticides constitute the second largest
group of man-made chemicals after fertilizers [16] and pose a threat to human health
and the environment. The sustainable use of pesticides is advocated by the European
Commission in its communication on the Chemicals Strategy for Sustainability Towards
a Toxic-Free Environment that is part of the European Green Deal. The communication
underlines societal concern over the use of pesticides: “84% of Europeans are worried
about the impact of chemicals present in everyday products on their health, and 90% are
worried about their impact on the environment” [4]. New techniques and methodologies
for detecting pesticide residue can invoke stronger control over pesticide usage.

Zuniga el al demonstrate the use of reflective green light sensing as an innovative
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low-cost approach for quality estimation of fresh produce [49]. The authors validate their
method through empirical benchmarks showing it can establish unique fingerprints for
different produce and estimate the quality or ripeness. This is established via correlation
between the changes in the green light values and the so-called transpiration coefficients
of produce. Although the study covers a diverse range of fruit categories, it is essential
to examine the same effect on vegetables to generalize the method. Moreover, a wider
spectrum of light sources other than red light is worth considering.

Therefore first, this thesis aims to corroborate the work of light sensing for quality
estimation of produce. Red, green and blue light reflectivity is used to establish finger-
prints instead of merely green light. All three light sources are evaluated for their fitness.
Several categories of vegetables are examined to demonstrate the generalisability of light
sensing for produce quality estimation. Second, since there is non-existing research
about light sensing for pesticide residue estimation, the goal is to explore the possibility
of light reflectivity for assessing pesticide residues in fresh produce. Fungicide and
insecticide categories of pesticides are investigated. Both objectives are achieved via a
single experimental setup.
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2 State of the Art
This chapter reviews the literature with respect to the core topics of the thesis, presenting
the current state to date for produce quality and pesticide residue estimation. Produce
quality estimation covers visual inspection, odor and magnetic sensing, soft X-ray
and thermal imaging, light sensing and a number of other methods. For pesticide
residue estimation, the two main routines are chromatography and biosensors, that is
supplemented by a few other methods.

2.1 Produce quality estimation
2.1.1 Visual inspection

The most common method for quality estimation is manual or automated visual in-
spection. Manual inspection by human graders is time-consuming and labor-intensive.
Moreover, it lacks accuracy due to human error and subjective evaluations [48].

In an attempt to overcome the shortcomings of manual examination, computer
vision technology was introduced to inspect and grade food products in the late 1980s.
Computer vision systems provide rapid, economic, hygienic, consistent and objective
quality assessment [18]. The first automated systems for produce quality assessments
were detecting visual defects or estimating ripeness by examining surface characteristics,
e.g. texture coarseness [3]. Color, texture, size, shape and defects are common features
inspected by traditional computer vision systems (TCVS) where RGB color cameras
acquire images.

Multispectral and hyperspectral computer vision systems surpass TCVS in a few
defects that are challenging to detect with TCVS due to the dominance of spectral images
[3]. The shortcoming of capturing the images of fruits and vegetables from one direction
can be overcome by modeling the fruit shape as a 3D spheroid to obtain a global score of
the fruit. This method matches the defects between adjacent views to prevent counting
them more than once and examines the whole surface [1]. While severely injured fruits
and vegetables are easily identified visually, hidden internal physical damage caused by
mechanical injury is difficult to detect. Therefore, visual methods are limited to external
quality factors.

2.1.2 Odor sensing

E-nose technologies are sensors that respond reversibly to volatile compounds and
generate electric signals that define odor fingerprints. These are widely used in agriculture
for quality evaluation, process monitoring and detection of crop diseases. The e-nose has
been used in monitoring aroma changes during ripening and shelf life assessment of fruits
and vegetables [27]. The fruits’ shelf life has been evaluated at room temperature and
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during cold storage. Humidity, ambient temperature and atmosphere, and the presence of
other gases can be a challenge for electronic sensor systems.

2.1.3 Magnetic sensing

Nuclear magnetic resonance (NMR) instruments work by application of an external
magnetic field and enable the detection of variations in the concentration or state of water
and fats in fruits and vegetables. This can be used for assessing ripeness, defects and
decay, primarily suited for produce with high water content [34]. NMR systems require
high magnetic fields and sophisticated electronics; hence the limitation of this method is
bulky and expensive equipment.

2.1.4 Soft X-ray imaging

Soft X-rays are electromagnetic waves that have wavelengths ranging from 1 to 100 nm.
It only takes a few seconds to produce an X-ray image. These are appropriate for the
evaluation of agricultural products, since they have low penetration power and can reveal
internal density changes [32]. The method is used in the seed industry to detect internal
voids, defects, insect infestation and insect damage [24, 33, 29].

2.1.5 Thermal imaging

Thermal imaging measures the reflection of light in terms of heat. It has been widely
adopted in agriculture for monitoring the growth quality of fruits and vegetables, e.g.
estimation of seasonal diameter growth of fruits [7]. Other applications include nursery
produce monitoring [25], pathogens detection in crops [41], maturity evaluation [8] and
bruise detection [9].

Thermal dissipation from organic produce can be used as a sensing modality. A
thermal imaging based approach proposes to assess the quality of produce through human
touch interactions. Thermal radiation is transferred from users to objects as they touch
them and the dissipation of this heat is examined to establish a thermal dissipation
fingerprint [10].

2.1.6 Light sensing

Light sensing has been examined by using red spectrum to capture the decomposition of
produce over time. The quality state of fruits has unique fingerprints as reflected light
values correlate with the transpiration coefficients of produce [49]. This method is low
cost and easy to implement throughout the supply chain, however it requires specialized
devices and new sensor designs.
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2.1.7 Other methods

Spectroscopy measures the absorption of different light wavelengths instead of using
light reflection. Regulatory food safety inspections rely on spectroscopy as a highly
accurate method that is able to estimate internal quality factors. However, the equipment
is bulky and expensive, and measurement taking and analysis are time-consuming.

Other proposed methods of produce quality estimation include bio-inspired soft tactile
sensor [38] and texture sensor based on highly sensitive hair-like cilia receptors [28].
The limitation of surface analysis is the need for physical interaction that can damage the
fruit. Internal quality factors can be assessed by absorption of wireless signals to estimate
the water content of produce [22], which in turn correlates with the state of fruits and
vegetables. The wireless technique is highly sensitive to the measurement setup though.

Furthermore, maturity level can be evaluated by changes in volatiles emitted by fruit
during ripening. This can be investigated by gas chromatography (GC) with headspace
sampling and GC combined with mass spectrometry (GC-MS) [2]. Expensive devices
and sophisticated analysis limit the use of these methods. Besides, these methods can
only be applied to measure volatiles in unsealed packages of food. To overcome this
limitation, a tunable diode laser spectroscopy method has been developed to detect
volatiles that are sealed in containers or packages [45].

2.2 Pesticide residue estimation
Unlike quality estimation, visual inspection of fruits and vegetables is usually of no use
to determine pesticide residues as there may be no visible traces. Therefore, computer
vision systems are not a fit for this purpose. Chromatography and biosenors are the main
methods for pesticide residue estimation.

2.2.1 Chromatography

Gas and liquid chromatography or chromatographic methods coupled with mass spec-
trometry are classical techniques for the detection of pesticides [6, 26]. Their pros are
sensitivity, separation and identification abilities. However, the cons are laboriousness,
highly skilled manpower and costly instruments. Moreover, these require pre-treatment
and extraction processes as detection is not done in real samples. This makes real-time
on-site detection of pesticide residues unfeasible.

2.2.2 Biosensors

Biosensors overcome several limitations of conventional methods, e.g. sample prepara-
tion. These are analytical devices that detect changes in biological processes and convert
them into electrical signals. The main detection methods in biosensors are optical,
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electrochemical, piezoelectric and molecular imprinted polymer [30]. Biosensors are
frequently used in medicine, environmental monitoring, the food industry and agriculture.
In agriculture, biosensors are generally used for the detection of pesticides. Sensor-based
techniques offer several advantages such as low-cost, simple, rapid operation, highly
sensitive and selectivity on-site detection with detection limits lower compared to the
classical chromatographic methods [35].

2.2.2.1 Enzyme-based biosensors

Enzyme-based biosensors are based on the inhibition reaction or catalytic activity of
several enzymes in the presence of pesticides. Since some pesticides have a similar mode
of action affecting the activity of the same enzyme, enzyme-based biosensors are mostly
used for screening purposes and unspecific for individual pesticides [23]. Thus, they can
determine the total pesticide content and not a particular pesticide.

2.2.2.2 Immunosensors

Immunosensors are biosensors that use antibodies or antigens as the sensing element
and provide concentration-dependent signals. Electrochemical immunosensors are used
more frequently, optical sensors less and piezoelectric sensors least actively for the
detection of pesticides in fruits and vegetables [11]. Amperometric, potentiometric,
conductometric and impediometric for electrochemical; and fluorescence, colorimetric,
chemiluminescence, electrochemiluminescence, surface plasmon resonance and surface-
enhanced Raman spectroscopy for optical sensors are the proposed immunosensors for
pesticide detection.

High sensitivity, convenience, simplicity and broad linear range are the advantages of
the immunosensors. However, a few of them are widely applied due to concerns around
cost, usability and speed of analysis [13]. Advances in nanotechnology promise further
improvement and miniaturization of biosensor devices. Nanomaterials have improved
the concept of flexibility, stability, optical transparency and compatibility [46]. The
drawback of using nanomaterials such as metal and metal oxide nanoparticles is their
toxic effect [37].

2.2.3 Other methods

Hyperspectral and near infrared (NIR) imaging harness the dual advantage of image
and spectrum. The detection process is non-destructive, non-polluting and does not
require pre-treatment of sample. NIR sensing is proposed for the detection of pesticides
in food [43, 17] and can provide preliminary screening for pesticides and other chemical
residues in produce [40]. NIR microscopic image technique has demonstrated the ability
to detect pesticide concentration in a vegetable [42]. Hyperspectral imaging combined
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with machine learning algorithms has shown potential in pesticide residue estimation in
vegetables [47, 21, 44].

Interferometric sensing uses laser light that changes the speed when passing through
contaminated produce. The change is measured and determined against a set of existing
values to spot bacteria and pesticides. The plasmo-photonic bimodal multiplexing sensor
is proposed to detect pesticide residue without the use of chemicals or dyes as a marker
[5]. The photonic sensor is expected to cut the time for pesticide residue detection in
fruits and vegetables from a few days to minutes.

12



3 Methodology
The methodology chapter introduces the key methods and techniques used in the study.
First, the concept and benefits of light reflectivity as a sensing modality are presented.
Then, the core elements of machine learning techniques and approaches applied for data
analysis are outlined.

3.1 Light reflectivity
Reflection is the process of electromagnetic radiation that the light wave returns. The
incoming light wave is called an incident wave and the wave that bounces away from
the object is termed the reflected wave. When the light wave reflects from the object, it
returns in a certain manner that mirrors the original wave. The law of reflection states
that upon reflection from a smooth surface, the angle of the reflected wave (r) from the
normal is equal to the angle of the incident wave (i), i.e. r = i (see Figure 1).

Figure 1. Return of reflected light wave from the incident light wave at an equal angle.

The sensing modality of light reflectivity measures how much light is reflected by
the object instead of how much it absorbs or transmits. Light reflection can either occur
at the boundary between two media (surface reflection) or at the interior of a medium
(volume reflection). The reflectivity of the object is determined by its physical properties,
such as color, texture and composition.

3.1.1 Reflectivity by color

The color of an object affects its reflection properties. When the light wave strikes the
surface of an object, the light can be absorbed, transmitted or reflected. The object’s
color determines which wavelengths of light are absorbed and which are reflected.
For example, a red surface of an object absorbs the green and blue and reflects red
wavelengths. Therefore, given separate red, green and blue incident light wave sources,
the reflected light amount from a red object is the highest for the red light source and
less for green and blue light sources.
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3.1.2 Reflectivity by texture

The amount of light reflected by an object and how it is reflected is dependent upon the
smoothness or texture of the surface. The reflection of light can be generally categorized
into two types: specular and diffuse reflection. Specular reflection is defined as light
reflected from a smooth surface at a definite angle. Regarding the law of reflection,
for specular reflection, the reflected light follows a trajectory of the same angle as the
incident light. On the contrary, diffuse reflection is produced by a rough surface that
reflects light in all directions.

Therefore, the texture of an object determines the amount of light reflected back and
captured at the point of the light source. For specular reflection, the light reflectivity
values are higher as all waves travel back. Whereas in the case of diffuse reflection, only
some waves come back to the source point since the rest of them scatter in different
directions.

3.1.3 Reflectivity by composition

The composition of an object determines its physical and chemical properties, including
its reflectivity. For example, metals are highly reflective due to the presence of free
electrons that interact with incident light waves and reflect it back. On the contrary,
non-metallic materials such as ceramics, glass and plastics have lower reflectivity due
to their chemical composition and lack of free electrons. Fresh produce has even lower
reflectivity due to its organic composition, while a high index of refraction determines
higher reflectivity for materials.

3.1.4 Measure of light reflectivity

A photoresistor can be used to capture the value of light reflectivity. A photoresistor is a
type of resistor whose resistance varies with the amount of light falling on its surface.
As the amount of light falling on the photoresistor changes, its resistance also changes
and this change in resistance can be measured and used to determine the level of light
reflectivity. The output of the photoresistor can be calibrated using a known light source
or a reference standard to provide accurate measurements of light reflectivity.

3.1.5 Benefits of light sensing

There is a wide range of benefits of light sensing compared to other sensing modalities.
These advantages make it a versatile and useful method for various applications, including
imaging, sensing, communication and monitoring. In the context of light reflectivity, the
benefits of light sensing are the following: non-invasive, high sensitivity, cost-effective,
fast response and low power consumption.
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3.1.5.1 Non-invasive

Light sensing is a non-invasive sensing modality that does not require physical contact
with the object. This makes it an ideal solution for applications where physical contact
is not possible or undesirable such as monitoring. Besides, non-invasive methods are
typically faster and less labor-intensive than invasive ones, which require physical
sampling or alteration of the product.

3.1.5.2 High sensitivity

Light sensors are highly sensitive and detect even small changes in light reflectivity.
This makes them perfect for applications such as biomedical sensing, where even small
changes in light reflection can provide valuable information.

3.1.5.3 Cost-effective

Generally light sensors are low-cost and widely available. This makes them accessible to
a wide range of applications and industries. It is paramount for farmers in developing
countries and small businesses to have access to low-cost devices. Moreover, it can
increase the efficiency of the production process, since expensive and time-consuming
laboratory tests can be skipped.

3.1.5.4 Fast response

Light sensors can rapidly detect changes in light reflectivity, making them perfect for
applications requiring real-time or near-real-time sensing, such as industrial automation
and robotics. The need for fast-response portable equipment to use in the field and
packinghouse is recognized [39]. Furthermore, quick results for the state of fresh
produce contribute to consumer protection. Light sensing devices allow consumers to
exercise their power while shopping instead of relying on regulatory food inspections
that are rather sporadic.

3.1.5.5 Low power consumption

Many light sensors have low power consumption and can be easily integrated into low-
power electronic devices. This makes them ideal for battery-operated devices and IoT
applications. Besides, low-power devices reduce energy consumption and therefore
contribute to reduced cost and environmental sustainability.

3.2 Machine learning
Machine learning is a subfield of artificial intelligence that encompasses algorithms and
statistical models for making predictions or decisions based on data without being explic-
itly programmed to do so. This is achieved by training models to improve performance
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on a specific task by learning from data. Overall, machine learning algorithms can be
divided into supervised, unsupervised and reinforcement learning.

3.2.1 Supervised learning

Supervised learning involves training a model on labeled data, where the target output
is known for each input example in order to predict outputs for new, unseen instances.
Regression and classification are the two main types of supervised learning problems. In
regression, the output feature is a continuous variable and the objective is to predict a
numerical value. On the other hand, for classification, the output feature is a categorical
variable and the objective is to predict a label or class for a given input.

3.2.2 Input feature selection

Feature selection involves the identification of the most relevant and informative input
features for predicting the output variable. Thus, irrelevant or redundant features are
discarded.

Input feature selection is important in the context of overfitting. The selection of too
many features or wrong features can lead to overfitting. Overfitting occurs when the
model is trained too well on the training data to the point where it begins to memorize
the noise or random fluctuations in the data rather than learning the underlying patterns
and relationships. This can lead to poor performance on new, unseen data, as the model
has not learned to generalize beyond the training data.

3.2.3 Model training

Model training comprises data preparation, model initialization, training, prediction and
evaluation. Both regression and classification follow the same steps in model training.
The difference lies in the used algorithms and evaluation metrics.

3.2.4 One-hot encoding

One-hot encoding, a technique that converts categorical data into numerical data to be
used as input for the machine learning algorithm, is deployed in the data preparation
step. For example, the types of vegetables constitute categorical variables that require
transformation. The one-hot encoder creates a binary vector representation for each
category in the data. This ensures the model does not interpret the numerical values as
continuous data and mistakenly attempts to draw relationships between the values.
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3.2.5 Train-test split

Data preparation also involves the train-test split, which divides the available data into
the following two sets: a training and a testing set. The training set is used to train the
machine learning model, while the test set allows for evaluating model performance on
unseen data. The train-test split function from the scikit-learn Python machine learning
library is used with a ratio of 80% for training and 20% for testing. The original dataset
is split into two subsets by means of random selection.

3.2.6 Separate and single model training

Two main approaches to building models can be distinguished – separate and single
model training. Separate model training refers to separate machine learning models
for each specific task or problem. For example, in the case of fresh produce, separate
models for each vegetable type are trained. This approach can lead to more accurate
predictions for each specific task as the model is optimized specifically for that task.
Single model training, on the other hand, trains a single machine learning model to
perform multiple tasks or solve multiple problems. This approach can be more efficient
and easier to manage since only a single model needs to be trained rather than multiple
separate models.

3.2.7 Scikit-learn

The scikit-learn library provides a wide range of tools and algorithms for the implementa-
tion of machine learning models in Python. It is a user-friendly and powerful library that
is built on top of other scientific Python libraries such as NumPy, SciPy and matplotlib.

The regression and classification models from the scikit-learn Python machine learn-
ing library are deployed for model training. There are about 40 regressors and 30
classifiers available in the scikit-learn library. These include both traditional machine
learning models as well as some deep learning models. The latest stable release at the
time of the data analysis is scikit-learn version 1.2.2 [36].

3.2.8 Performance metrics

Performance metrics are used to evaluate the performance of a machine learning model.
The evaluation metric choice depends on the problem being solved and the type of model
used. For regression, the common metrics include mean absolute error (MAE), mean
squared error (MSE) and root mean squared error (RMSE). The classification problem is
often evaluated by accuracy, F1 score and area under the curve (AUC).

In this thesis, model accuracy is used to compare various models in their prediction
of the target class. The accuracy measures the proportion of correct predictions made by
the model. The MAE score, that is the average absolute difference between the predicted
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and true values, is given for the regression problem. However, the evaluation of the
regression model is made by plotting the true value and predicted value.
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4 Experimental design
In this chapter, the experimental design is outlined for the use of light sensing to estimate
produce quality and pesticide residue. These two distinct objectives are pursued via
a single experiment. First, the selection of fresh produce obtained from a retail outlet
is described. Then, the experimental setup and measurements are discussed in detail.
Further, the application of pesticides is specified. Finally, an account of the overall
procedure is given for a 12-day experimental study.

4.1 Objects
Fresh produce commonly available at retail stores is considered for the experiment. This
covers the following five categories of vegetables: leaves (cabbage and spinach), stem
(celery), fruits (tomato), pods (bean) and flowers (cauliflower). Roots, bulbs, tubers and
seeds are omitted from the study since pesticide application while these grow does not
take place directly on the edible plant part, e.g. potato tubers are growing underground
and therefore do not get directly sprayed. Moreover, tubers and bulbs can be stored
at room temperature for a considerable period of time without losing quality. Hence
produce decomposition from ripe to decayed would not be captured for these vegetable
categories over a 12-day period.

The fresh produce is bought at one time from the same retail outlet. All the vegetables
are initially in a fresh state without signs of decomposition. Two samples from each
vegetable category are selected to have similar appearance, shape and size to ensure
that samples’ differences only come from inherent properties. Each produce sample is
marked with a unique identifier, e.g. spinach-1 and spinach-2.

4.2 Testbed
A testbed is set up to measure the vegetable items for light reflectivity. The setup
comprises a white table where samples of vegetable items are placed. The table is
positioned in the room in such a way that each side of the table receives the same amount
of light. Since touching the produce can affect its surface, each item is kept on its spot
and therefore, the measurements are taken by moving the instrument around the items.

4.3 Apparatus
The apparatus (see Figure 2) to measure light reflectivity consists of three laser sensors –
red, green and blue light – and a photoresistor to receive the reflected light. The photore-
sistor is connected to the analog input pin of an M5StickC PLUS ESP32 development
board, which integrates Wi-Fi capabilities. The board controls the sampling frequency
(5Hz) and records the light values to a CSV file along with a timestamp for each record.
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Also the light reflectivity values can be seen on the device screen in real time. The light
sensor is easy to deploy and its components are low-cost. This makes light sensing an
affordable solution that can be easily scaled.

Figure 2. The device with three laser sensors (red, green and blue) and photoresistor to
measure light reflectivity.

Additionally, three more devices are deployed to obtain reference values. First, a
non-invasive durometer depicts the firmness of the vegetable items. Second, a room
thermometer records the daily temperature. Third, a Lux meter application running in
the smartphone Xiaomi M11 measures the experimental testbed’s light intensity (lux).

4.4 Pesticide application
The most common pesticides are selected from the two main categories - fungicide
(Switch) and insecticide (KarateZeon) - that are freely available at various retail stores.
First, Switch by Baltic Agro is a fungicide where the active substances are cyprodinil
and fludioxonil. Cyprodinil poses a risk to human health by being liver toxic as well
as impacting reproductive and developmental processes. The human health concerns
of fludioxonil include liver and kidney damage. Second, KarateZeon by Baltic Agro is
an insecticide where the active substance is lambda cyhalothrin. Lambda cyhalothrin is
highly neurotoxic and can cause short-term effects or tremors. These pesticide substances
are widely found in the contamination of European vegetables [12].

The pesticide solutions are prepared according to the application instructions and
sprayed evenly over the vegetable. The solutions are mixed in two identical new spray
bottles so no other residue mixes with the pesticide dilution. Two samples of produce
for each pesticide treatment are taken. Additionally, one two-samples produce set is not
treated with anything and constitutes the baseline (no treatment group).
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4.5 Procedure
Measurements are collected from each set of fungicide-, insecticide- and untreated
vegetable items once a day over a 12-day long period. Variations in light reflectivity
capture changes in surface and characteristics of produce.

Figure 3. The procedure of light sensing for produce quality and pesticide residue
estimation.

Pesticides are only applied on the first day and the surface of produce is left to dry
completely before the first measurement is taken. Every day measurements are taken in
the second half of the day. Each sample is measured over a 60-second period by moving
the sensor around the item from a distance of one cm. Every time the two samples in
each set are chosen randomly.

First, measurements are taken with red light, then the same procedure is repeated
with green and finally with blue light. Sample-1 and sample-2 of no pesticide group is
measured for firmness with durometer, while sample-3 is left untouched by durometer.
The daily temperature and light intensity (lux) values are recorded. The produce is kept
at room temperature (≈ 24°C) throughout the experiment.
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5 Results
This chapter presents the results of the experimental study conducted in August 2022.
First, red, green and blue light reflectivity is assessed as a sensing modality. This includes
an account of light characterization and generalization. From comparing the three light
sources, blue light is chosen as a basis for further analysis. Then, produce quality and
pesticide residue estimation are examined based on the light reflectivity values.

5.1 Light characterization
Light reflectivity values from red, green and blue light demonstrate that fresh produce
can be characterized by variations in light intensity across different vegetable items. The
Kruskal-Wallis test confirms the differences to be significant between various vegetables
for red (x2 = 67493, η2 = 0.75, p < 0.05), green (x2 = 76754, η2 = 0.85, p < 0.05)
and blue light (x2 = 73306, η2 = 0.82, p < 0.05). These variations constitute unique
fingerprints that allow to determine the vegetable type irrespective of pesticide treatment.

Figure 4. Item-wise median light values and standard deviation of treatment groups (no
pesticide, fungicide and insecticide) for red, green and blue light sensing.
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Figure 4 shows the item-wise light reflectivity median values and standard deviations
for no pesticide, fungicide and insecticide groups. While cabbage, spinach, tomato
and cauliflower tend to have more distinctive values across three lights, celery and
bean exhibit more similar fingerprints throughout all three lights. Posthoc comparisons
(Dunn-Bonferroni) prove that differences are statistically significant (p < 0.05) for all
vegetables given red, green and blue light with the exceptions for the green light: spinach-
tomato (x2 = −0.11, p > 0.05) and bean-celery (x2 = 1.05, p > 0.05); for blue light:
bean-celery (x2 = 0.52, p > 0.05); for red light: bean-celery (x2 = 1.68, p > 0.05) and
celery-tomato (x2 = 1.31, p > 0.05). Thus it appears that all three lights grapple with
differentiating bean and celery, and blue light outperforms red and green light sources
when it comes to capturing vegetable items by light reflectivity values.

Figure 5. Item-wise median light values for red, green and blue light sensing.

Red laser results in the highest variance in light reflectivity, whereas green and
blue lights have a lower variance. The reflectivity from green and blue light is on par
ranging from 500 to 1500, whereas red light values fall in a higher range from 1500
to 4000. Figure 5 shows that overall reflectivity patterns for different items are very
similar, e.g., cauliflower and cabbage have the highest and spinach have the lowest values.
Kolmogorov–Smirnov test also shows no significant difference (p > 0.05) for all the
light sources, i.e. for blue-green: KS=0.17, for blue-red: KS=0.33, and for green-red:
KS=0.33.

5.2 Light generalization
For red light, no matter whether the pesticide is on the vegetable or not, the Wilcoxon
test using light values as a condition shows that differences in measurements between the
two samples (sample-1 and sample-2) are not statistically significant (p > 0.05), except
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the cabbage (x2 = 174, p < 0.05) and bean (x2 = 108, p < 0.05). For green light, the
exception of significance between the two samples is bean (x2 = 192, p < 0.05) and for
blue light is cabbage (x2 = 202, p < 0.05). This result indicates that light sensing can be
generalized to identify different vegetable samples of the same item type (see Figure 6).
The lack of generalizability of cabbage for red and blue light can be attributed to the
uneven color of the surface.

Figure 6. Item-wise median light values and standard deviation for samples 1 and 2 of
vegetables given red, green and blue light.

As the durometer applies pressure on the surface, it can cause damage, speeding
up the decomposition process and affecting the light sensing. To assess this, the light
values of the vegetables for which durometer measurements are available are separately
compared to a third sample of the same produce that is not measured with the durometer
(no pesticide group). Figure 7 depicts the three samples for different light sources.

For blue light, Friedman tests show no significant difference across different samples
for all the vegetables (p > 0.05), verifying that the durometer does not damage the
vegetable during the experiment and that the decomposition characteristics remain
similar across the produce of the same type. However, for the red light, it is cabbage
(x2 = 18.2, p < 0.05), tomato (x2 = 11.2, p < 0.05) and bean (x2 = 9.5, p < 0.05), and
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Figure 7. Item-wise median light values and standard deviation for samples 1, 2 and 3 of
no pesticide treatment group given red, green and blue light.

for the green light, it is cabbage (x2 = 6.5, p < 0.05) and tomato (x2 = 8.7, p < 0.05)
that show disparities across the samples. This suggests that unlike blue, red and green
sensors might be more sensitive to capturing any damage to produce.

5.3 Light source comparison
Figure 8 showcases the daily differences in reflectivity of vegetable items for red, green
and blue light sensors. On the left is given the mean with the 95% confidence interval
(CI); on the right is the median value and the standard deviation (SD). There are negligible
differences in mean and median values, hence both are suitable for analysis. Again, the
red light exhibits high variance and celery and bean overlap values for all three lights.
Moreover, tomato values blend in celery and bean for the red light and in spinach for the
green light. Out of the three lights, green appears to be the most stable over time, i.e. the
light values for particular items do not follow any trend. Whereas red and blue lights are
somewhat dynamic, i.e. changes in light reflectivity in time can be noticed.
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Figure 8. Day-wise mean + 95% CI (left) and median + SD (right) light values of
vegetable items for red, green and blue light sensing.
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Given the observations of vegetable items from red, green and blue light sensors for
different treatment groups (Figure 4), light reflectivity pattern (Figure 5) and 12-day long
time span (Figure 8), it appears that blue light is most appropriate for conducting further
analysis. Unlike red light, there is a lower variance and unlike green light, there can be
observed a trend in light reflectivity over time for the blue sensor. Blue light appears
most promising for capturing differences in treatment groups since the median values
are not as even as in the case of green light and the standard deviation is not as much
overlapping as in the case of red light. Therefore, from here onwards only the reflectivity
values from the blue light sensor are considered for produce quality and pesticide residue
estimation.

5.4 Produce quality estimation
5.4.1 Capturing quality of fresh produce

The ability of blue light reflectivity to capture produce quality is assessed. For this
purpose, light values from only no pesticide treatment group are evaluated. Figure 9
demonstrates the median values with a 95% confidence interval (CI) of sample-1 and
sample-2 for each day over the 12-day decomposition period.

Figure 9. Day-wise median + 95% CI light values of samples 1 and 2 for vegetable items.
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Cauliflower, cabbage and tomato have a clearly established trend of decreasing
reflectivity intensity due to produce decomposition. There are minor or non-existent
changes in time for spinach, bean and celery. During the experiment, the spinach leaves
dried up quickly and remained dry, so these items obtained a stable state and reflected in
light values. Bean and cabbage first slightly softened and then began to dry and harden,
other vegetable items followed a softening trend (see Figure 10 for firmness values from
durometer). Figure 11 displays the produce appearance at four stages (day 1, day 5, day
9 and day 12) over a period of 12 consecutive days.

Figure 10. Day-wise average durometer values for vegetable items.

Figure 11. Vegetable items at different stages during 12 consecutive days.
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Figure 12 depicts each vegetable item’s daily median absolute deviation (MAD) value
compared to the corresponding fingerprint on day 1. While light values for cabbage
display a linear function of produce decomposition, the rest of the vegetable items are
more inconsistent. However, similarly to the earlier figure, other vegetable items too
have a certain tendency to change values as a response to produce decomposition.

Figure 12. Day-wise median absolute deviation (MAD) of light values for vegetable
items.

Next, the daily light values are grouped into two categories: days 1-6 as ripe and days
7-12 as decayed. Figure 13 displays the median and standard deviation (SD) of ripe and
decay stages for each vegetable item, distinguishing between sample-1 and sample-2.

Figure 13. Two-stage median + SD light value of samples 1 and 2 for vegetable items.

The overall tendency for a decline in reflectivity intensity can be observed, which
is apparent for both samples of cabbage, cauliflower and tomato. Spinach, celery and
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bean are less distinguishable from ripe to decayed stages. The Wilcoxon test confirms
there are statistically significant differences (p− values < 0.05) for all vegetable items
of ripe and decayed groups (see Table 1 for test statistic t and p-value).

Table 1. Wilcoxon test statistic t and p-value of ripe vs decayed vegetable items for
samples 1 and 2.

Sample 1 Sample 2
Day 1-6 vs day 7-12 t p t p
Cabbage 93116 0.000 19619 0.000
Spinach 105014 0.000 208005 0.000
Celery 63866 0.000 187403 0.000
Tomato 105006 0.000 53333 0.000
Bean 204598 0.000 211655 0.000
Cauliflower 16788 0.000 86644 0.000

Figure 14. Red (left) and green sensor (right) two-stage median + SD light values.

For the purpose of comparison, the two-stage-wise median and SD light values are
also given for red and green light (see Figure 14). These other two lights are evidently
underperforming as a sole sensing modality. However, given the combination of all three
light sensors, changes in produce quality get well captured for all vegetable items.

5.4.2 Predicting quality of fresh produce

Machine learning models for classification are deployed to predict produce quality based
on the light reflectivity values. The following two stages of ripeness are considered to
characterize the quality of vegetable items: ripe (day 1-6) and decayed (day 7-12). First,
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separate models are trained for each vegetable item considering merely light values as a
single input feature. Second, the approach of a single machine learning model is explored.
Finally, for baseline comparison a regression model is trained to predict firmness values
from light reflectivity along with other input features.

5.4.2.1 Separate model classification

The following ten classifiers are explored for model performance: Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Gaussian Naïve Bayes (GNB), Multilevel Perceptron (MLP),
Quadratic Discriminant Analysis (QDA), AdaBoost (AB) and XGBoost (XGB).

As seen in Table 2, separate model accuracy is highest for cauliflower (78.1%),
followed by tomato (76.5%) and cabbage (73.5%). Classifiers for bean (64.3%), spinach
(61.6%) and celery (55.9%) are rather poor – these three vegetable items are known for
their obscurity from prior analysis.

Table 2. Model accuracy of ten classifiers for individual vegetable items.

LR DT RF SVM KNN GNB MLP QDA AB XGB
Cabbage 73.5 70.2 69.8 72.7 70.7 73.5 72.6 73.5 72.9 72.3
Spinach 59.1 57.2 56.3 61.5 57.0 61.5 53.9 61.5 61.6 59.4
Celery 49.1 55.0 55.5 56.5 56.5 55.3 50.9 55.3 57.5 55.9
Tomato 74.4 72.7 73.0 76.5 71.8 75.2 71.1 75.2 76.1 74.7
Bean 57.4 58.5 58.5 64.3 60.6 59.3 52.2 59.3 61.9 59.5
Cauliflower 78.1 75.1 74.6 78.0 75.9 78.0 50.5 78.0 77.0 77.0
Average: 65.3 64.8 64.6 68.3 65.4 67.1 58.5 67.1 67.8 66.5
Average
(-spinach): 66.5 66.3 66.3 69.6 67.1 68.3 59.5 68.3 69.1 67.9

Evidently, there is no particular classification model that works best for all vegetable
items. However, certain classifiers outperform others: LR for cauliflower and cabbage,
SVM for tomato and bean, and AB for spinach and celery. GNB and QDA are as good
as LR for cabbage and very close to AB for spinach. The SVM is the most universal
classifier, i.e. it scores well across all vegetables with an average accuracy of 68.3%. In
the case where spinach is excluded (since no firmness values are recorded for spinach),
the average accuracy of SVM stands at 69.6%.

5.4.2.2 Single model classification

Next, a single model is trained for all vegetables except spinach to predict the quality
of fresh produce. Performance accuracies of LR, SVM and AB are measured as these
classifiers did the best for separate models. Table 3 shows the selected models’ accuracy
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for four different input feature combinations. Across all scenarios, the AB algorithm
outperforms the other two models.

Table 3. Single model accuracy of top three classifiers for vegetable items given various
input feature combinations.

LR SVM AB Average
Light reflectivity value (R) 54.6 63.0 63.1 60.2
R + vegetable item (V) 66.3 60.6 67.3 64.7
R + luminosity (L) 77.4 75.0 88.1 80.2
R + V + L 87.2 76.0 92.4 85.2

When light reflectivity alone is considered, the accuracy for a single model (AB) is
63.1%. In this case, no information about the type of produce is given. Supplementing the
dataset with vegetable type improves the accuracy to 67.3%. However, light reflectivity
along with luminosity gives a leap for model accuracy amounting to 88.1%. Further,
combining all three input features - light reflectivity, vegetable type and luminosity -
takes the accuracy score to 92.4%.

These outcomes highlight the importance of considering lightning conditions as
it impacts light reflectivity. If light reflectivity is not corrected with luminosity, then
accuracy performance suffers. Therefore, it is essential to include luminosity as an input
parameter in the model to account for varying lighting conditions.

5.4.2.3 Regression for firmness prediction

The firmness of fresh produce is often associated with produce quality. Therefore, the
daily firmness values measured by the durometer can be considered as a baseline for
produce quality. In other words, light reflectivity values should be able to predict the
firmness of the vegetable items. For this purpose, a machine learning model for regression
is deployed for all vegetables except spinach. Only values of sample-1 and sample-2 are
included since sample-3 was not measured for firmness, as it was kept as a reference
point to evaluate the effect of the durometer.
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Figure 15. True firmness (x-axis) and predicted firmness (y-axis) of the regression model.

A linear regression model is trained given the light value, lux and vegetable items as
input features. The output feature or prediction is the firmness value. As a result, the
mean absolute error (MAE) is 7.39. The model performance is illustrated in Figure 15,
where the true firmness is given on the x-axis and the predicted firmness on the y-axis.
Overall, the regression model is able to predict the firmness value from input features, as
depicted by the red line in the figure. Pearson’s correlation coefficient between the true
and predicted firmness stands at 63%.

5.5 Pesticide residue estimation
5.5.1 Capturing pesticide residue in fresh produce

Light reflectivity values across no pesticide, fungicide and insecticide treatment groups
are compared in order to estimate pesticide residue in fresh produce. Wilcoxon test shows
that differences in light values for the treatment groups are not statistically significant
(p > 0.05). Figure 16 exhibits the disparities in treatment groups for each vegetable item.
Kruskal-Wallis test finds no statistically significant difference among treatment groups
for most vegetable items (p > 0.05), as seen in Table 4.
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Figure 16. Item-wise light reflectivity values for no pesticide, fungicide and insecticide
groups.

Table 4. Kruskal-Wallis test statistic x2 and p-value of treatment groups for vegetable
items.

x2 p
Cabbage 3.9 0.142
Spinach 1.1 0.571
Celery 7.6 0.023
Tomato 3.0 0.218
Bean 3.0 0.218
Cauliflower 0.3 0.856

Celery and bean are the only vegetables that exhibit statistically significant differences
among treatment groups. Posthoc comparisons (Dunn-Bonferroni) reveal only bean’s
disparities for fungicide-insecticide and insecticide-no pesticide pairs that are statistically
significant (p < 0.05). Consequently, light reflectivity values lack the ability to capture
pesticide residue in fresh produce.

5.5.2 Pesticide residue over time

Figure 17 showcases the median values with a 95% confidence interval (CI) of three
treatment groups for each day over the 12-day period. It highlights how the no pesticide,
fungicide and insecticide light values go hand in hand for bean, spinach, tomato and
celery, and somewhat less for cauliflower and cabbage.
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Figure 17. Day-wise median + 95% CI light values of treatment groups for vegetable
items.

5.5.3 Predicting pesticide residue

Following, machine learning models are trained to predict pesticide residue in fresh
produce. Light reflectivity value, vegetable item and luminosity value are taken as input
features to perform classification into no pesticide, fungicide and insecticide groups.
The same ten classifiers are deployed as done in machine learning for produce quality
estimation. The highest accuracy is scored by XGB (53%), followed by DT (47.9%) and
RF (47.7%). These accuracy scores are very low and do not make for a good classification
model.

Further, the target class is divided into no pesticide and pesticide (fungicide and
insecticide) for a binary classification problem. Performance accuracy sees some im-
provement for XGB (68.2%), RF (64.6%) and KNN (63.4%), however still remains quite
low.
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6 Discussion
In this chapter, the implications and limitations of the study are discussed. The areas for
potential future work are deliberated.

6.1 On light sensing
6.1.1 Light source color

In this experiment, three different light sources are deployed and a single light (blue) is
chosen for further analysis. The advantage of blue light is that none of the examined
vegetables (cabbage, spinach, celery, tomato, bean and cauliflower) are blue in color.
Since the vegetables are either green, red or white, blue wavelengths are absorbed instead
of being reflected from the surface. Hence, the blue light beam is more apt to capture
the inner qualities of the produce given the vegetables used in this study. However,
for example to estimate the quality of eggplant, the use of red or green light could be
worthier. It is, therefore, critical to consider the use of variable light based on the color
of the vegetable type so that fewer wavelengths are reflected and more get absorbed.

6.1.2 Single vs multi point measurement

Another aspect to consider while measuring the light reflectivity is to prescribe how the
measurements are taken. As done by Zuniga el al [49], one way is to place the sensor
at a single point and collect the light reflectivity values from that particular spot. The
drawback of this method is that produce decomposition is not even. Sporadic decayed
dark spots on the surface of produce can affect the measurement, depending on whether
the records are taken from that spot or not.

Another approach is to move the sensor from a fixed distance along the object, as
was performed in this experiment. In such a scenario, the recorded values reflect better
the overall condition of the vegetable item rather than a specific area of the object.

6.1.3 Non-invasive and contactless

The non-invasive nature of light sensing is beneficial where it is not desirable to cause
damage to the produce or the method does not work with certain items. For example,
given the fragile nature of the spinach leaves, it is impossible to measure the firmness of
spinach by applying pressure with the durometer. Here, light sensing becomes particularly
useful in estimating the level of ripeness for gentle leafy vegetables, such as spinach.

Another facet where non-invasive and contactless sensing has an advantage is hygiene.
Given the recent COVID-19 pandemic, touching fresh produce at supermarkets was
highly undesirable or forbidden. Hence, unlike thermal imaging through human touch
interactions, light sensing does not threaten the spread of disease.
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6.2 Approaches in machine learning
Two approaches to training the machine learning models are explored in this study. In the
separate model classification problem, where only light reflectivity value is taken as an
input feature, the top model accuracy ranges from 57.7% (celery) to 78.1% (cauliflower).
The average performance accuracy of separate classifiers stands at 68.3%. Logistic re-
gression, support vector machine and AdaBoost are the outstanding algorithms. However,
the single model classification accuracy reaches 63.1% with a single input parameter and
67.3% with light reflectivity and vegetable items as input features. AdaBoost is found to
be a top-performing model for a single model classification problem. Consequently, it is
worth considering developing a light sensing unit that can, based on the produce type,
adjust the classification model that works best for that particular item.

6.3 Limitations
Unlike the case of cauliflower, cabbage and tomato, the analysis of fresh produce
decomposition reveals that spinach, bean and celery do not follow a clear trend of
decreasing light reflectivity value. These are less distinguishable from ripe to decayed
stages and their separate classification model accuracy is lower. In fact, these vegetable
items are often kept on refrigerated shelves in the supermarket. However, in this study
these are kept at room temperature, which does not resemble the real case scenario. It is
therefore recommended to design a different testbed for refrigerated vegetables to imitate
a real-life situation.

6.4 Future work
The work of light sensing for produce quality estimation has been so far focused on
the retail stage of the produce value chain. This stage has two main implications for
different stakeholders. Namely, quality estimation when buying fresh produce (customer
perspective) and dynamic pricing at the retail store (retailer perspective).

After all, the same method can benefit earlier in the value chain. For example,
ripeness can be estimated from raw to ripe, aiding the farmers in precise timing decisions
for automated harvesting solutions. This is a new potential area for work that can be
performed with raw and ripe produce, preferably without detaching the fruit or vegetable
from the plant.
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7 Conclusion
This thesis explored light reflectivity as a sensing modality for produce quality and
pesticide residue estimation in fresh produce. Three different light sources (red, green
and blue) were investigated for various vegetable items from five categories (leaves, stem,
fruits, pods and flowers). All three lights were able to establish unique fingerprints for
different vegetable types. Comparing two samples of the same item indicated the ability
of light sensing to generalize. Moreover, with the third sample, it was established that
firmness measured with a durometer did not affect produce decomposition. Based on the
juxtaposition of the three light sources, the blue light was chosen for further analysis to
estimate produce quality and pesticide residue.

The 12-day experiment of produce decomposition confirmed the ability of light
reflectivity to capture the quality of fresh produce. This corroborates with the work on
green light sensing for fruit categories and therefore endorses the generalizability of light
reflectivity for produce quality estimation.

Light sensing offers a non-invasive and cost-effective method with a wide range of
applications across the value chain of fresh produce. Besides, it can work for vegetable
items, where taking firmness measurements are not viable, such as in the case of spinach.
This non-invasive sensing technique can be contrasted with traditional methods, which
are time-consuming, expensive, use harmful reagents, need expert laboratory staff and are
strongly dependent on rigorously following a standardized protocol to obtain accuracy.

While predicting the quality of fresh produce, it is essential to account for varying
lighting conditions, as reflectivity intensity depends on luminosity. With respect to
machine learning to classify produce into ripe and decayed, one size does not fit all.
Different models work best for various vegetable items for a separate model classification.
AdaBoost classifier, with the input features of light reflectivity value, vegetable item
and luminosity, reached an accuracy of 92.4%. For a baseline comparison, a linear
regression model validated the ability to predict the firmness of vegetable items from
light reflectivity value, vegetable items and luminosity as input features.

The estimation of pesticide residue using light reflectivity did not yield anticipated
results. The disparities among the no pesticide, fungicide and insecticide treatment
groups across vegetable items were not established. Overall, it was observed that changes
in light reflectivity due to produce decomposition are major; hence estimation of pesticide
residue becomes troublesome.

The future work emancipating from this thesis was proposed. This can fall in the
scope of research to be expanded from retail to other stages of the produce value chain,
e.g. harvesting. Furthermore, various aspects of light sensing and training of the machine
learning model were highlighted.
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