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The influence of infrastructure to cyclist route choice in Bologna 

Abstract: 

Due to urbanization and increased environmental awareness, lot of effort has been paid to 

promoting sustainable mobility modes. Cycling is one option to replace motorized transport in 

cities. To achieve this shift, the urban environment must be transformed to more suitable for 

cyclist. The goal of this thesis is to study the spatial and temporal patterns of cyclist and study 

the influence of cycling infrastructure to the cyclist’s route choice.  

Data collected from Bologna for 6 months was used to gain insight into cyclist behaviour and 

preferences in urban environment. The cycling in Bologna is used as a transport mode mostly 

in short and medium length distance trips. The results revealed the routine of cyclist in different 

periods – peak hours in workday morning and evening and periods with lower activities during 

weekends. Generally, cyclist prefer streets with good cycling infrastructure and avoid streets 

with intense traffic. In the suburban area, cyclist prefer bigger roads which lead towards city 

centre, while in city centre preference is on roads which avoid narrow streets in old town. The 

results of this thesis will help to see the reasons behind specific route preferences, and this can 

be used to find opportunities to improve the cycling infrastructure for a better and safer urban 

environment. 
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Rattainfrastruktuuri mõju jalgratturite teekonna valikule Bolognas 

Lühikokkuvõte: 

Linnastumise ja keskkonnateadlikkuse suurenemise tõttu on säästvate liikumisviiside 

propageerimiseks kerkinud oluliseks teemaks. Jalgrattasõit on üks võimalus asendada linnades 

mootortransporti, kuid selleks on vaja muuta linnakeskkond jalgratturile sobivamaks. Lõputöö 

eesmärk ongi uurida jalgratturi ruumilisi ja ajalisi mustreid ning uurida jalgratta infrastruktuuri 

mõju jalgratturi marsruudi valikule.  

Selleks et koguda täpseid andmeid jalgratturite käitumisest ja eelistustest linnakeskkonnas 

kasutati Bologna linnas 6 kuu jooksul kogutud andmeid. Jalgrattasõitu kasutatakse 

transpordiviisina peamiselt lühikeste ja keskmiste pikkusega reisidel. Tulemustest selgus 

jalgratturite rutiin erinevatel perioodidel – tipptunnid tööpäeva hommikul ja õhtul ning 

madalama aktiivsusega perioodid nädalavahetustel. Üldjuhul eelistab jalgrattur hea 

rattainfrastruktuuriga tänavaid ja väldib tiheda liiklusega tänavaid. Äärelinnas eelistab 

jalgrattur suuremaid teid, mis viivad kesklinna poole, kesklinnas aga teid, mis väldivad 

vanalinna kitsaid tänavaid. Lõputöö tulemused toovad välja konkreetsete marsruudieelistuste 

tagamaid, mis aitavad leida võimalusi jalgratta infrastruktuuri parendamiseks parema ja 

turvalisgfema linnakeskkonna nimel. 

Võtmesõnad: 

Rattasõit, Liikuvus linnas, Liikuvuse analüüs 

CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, kontroll 
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1. Introduction  

Due to climate change, energy crisis, depletion of fossil fuels, overpopulation and traffic 

congestion, increased attention has been paid to sustainable ways of life. One important part of 

this is sustainable transport modes in highly populated urban areas. One possibility to decrease 

the usage of motorized vehicles and thereby decrease traffic volumes is to increase cycling as 

a transport mode in cities. Cycling is sustainable, healthy, economical transport mode and a 

reasonable and fast alternative for short-distance trips, especially, in congested in urban 

environment. 

To promote and support cycling as a mode of transport, better understanding of various aspects 

travel behaviour is required. Mobility is the result of individual behaviours, habits and describes 

the movements of individual objects [1]. Mobility studies can reveal daily and routine human 

mobility patterns [2]. This information is valuable for a wide range of applications in urban 

areas like urban planning, developing transportation models, promoting healthy lifestyles [3] 

and can benefit traffic managers and policymakers to make targeted decisions at different levels 

[4]. 

In recent years, the increasing availability of mobile-phone records, Global Positioning System 

(GPS) data and other datasets have been seen as one possible way to collect location data in 

more detail way for accurate analysis and thereby patterns in human mobility can be revealed. 

The GPS and other positioning technologies enable to collect vast amounts of mobility data 

from moving objects [5]. By using this data and by applying modern data science methods it is 

possible to extract valuable information about movement patterns and behaviours of people – 

where, how, and when people move around city.  

Data and data analysis is central point in cycling research and planning. One important research 

field is the route choice behaviour of cyclists. It is important to know what factors and at what 

magnitude influences the route decisions of cyclists. By knowing more about where, why, and 

how cyclists move it is possible to improve the transport network and thereby promote cycling 

as a transportation mode in cities. Many papers on cyclist route choice models for different 

cities are published. Most of them use localized data and applying diverse infrastructure 

variables to examine their impact on route selection. However, no studies were found where 

detailed routes between two locations and multiple alternative trajectories between these 

locations were analysed.  

This thesis addresses this gap by using the Bologna Bella Mossa mobility study data to 

investigate the cycling mobility patterns in Bologna, Italy. This thesis presents a framework of 

analysing mobility flows in urban areas by origin-destination tiles and studying the people’s 

routes between them.  

The primary objective was to study the influence of cycling infrastructure to the route choice 

made by cyclists. Understanding these patterns is necessary to see the reasons behind specific 

route preferences and find opportunities to improve the cycling infrastructure for a better and 

safer urban environment. Using the results of this study it is possible to make recommendations 

for infrastructure improvements can be developed, aiming to foster cycling as a viable urban 

transportation method. 

Research goals (RG) addressed with this thesis: 

• RG1: Study the spatial and temporal cycling mobility patterns in Bologna to understand 

when cyclist move and where do they start and end their journeys; 
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Findings: Our analysis presents the daily patterns of cyclist – cycling was higher in the 

city centre area and in periods when people commuted to school and work in the 

morning or returned home in the evening; 

• RG2: Study the use of infrastructure concentrating on different type such as urban 

highways, different type of bike lanes, and streets to understand what infrastructure 

types are used for cycling; 

Findings: Results reveal that cyclists prefer streets and roads with smaller traffic 

intensities and with dedicated cycling roads 

• RG3: Identify most used flows and routes cyclist use in Bologna for transport purposes 

to understand where cyclist start and end their trips and what routes are preferred; 

Findings: Cyclist flows were determined and 20 most used flows were selected for 

further analysis 

• RG4: Study the influence of road type and its characteristics to trajectory choice made 

by cyclist to understand their influence on cyclist route choice; 

Findings: The cyclist prefer to use streets with cycling infrastructure and when possible, 

narrow streets in the old town are avoided; 

The thesis is outlined in the following order: in first paragraph, the overview to the cycling 

mobility and mobility analysis methods are given; in the second part the framework and 

methods of the analysis is introduced. The results of the analysis are presented in the third 

paragraph and fourth part of the thesis includes conclusions. 
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2. Cycling mobility data and its analysis 

 

2.1 Cycling as urban mobility 

The rise in urbanisation and increase in motorized vehicles are causing traffic congestion and 

different types of urban pollution which is becoming a public health problem. To reduce these 

negative effects, greener means of transport should be promoted and chosen. Motor vehicles 

have different transport alternatives, primarily public transport and shared mobility systems 

which reduce the traffic by decreasing the number of private car trips and reduce the greenhouse 

gas emissions [6]. Cycling is also considered as one of the best options to improve sustainable 

mobility in urban environments and reduce the negative effect of motorized traffic [6,7]. It is 

considered to be environmentally friendly, cost-effective, inclusive, and convenient mode of 

transportation because of its affordability, adaptability, beneficial impacts on physical and 

mental well-being, and zero greenhouse gas emissions [8,9]. 

Cycling in urban environment can have many purposes – cycling for as commuting or utilitarian 

purposes, leisure cycling and sport cycling. Transport cycling is oriented towards practical and 

necessary journeys and may include daily activities. Therefore, it is considered an "obligatory" 

form of transport, distinguished by its practical nature, logistical objectives, and lower cost 

compared to other cycling forms. Leisure cycling, in contrast, occurs outside working hours 

and areas and serves purposes like social reasons, tourism, and relaxation. Most research 

attention has been paid on cycling as a transport [8]. 

Choice of travel mode depends in various variables, but most important factors are built 

environment and trip characteristics. Most influential trip characteristics are trip distance, travel 

time and trip cost [9]. The cycling is preferred over motorized modes of transport in case of 

short and medium distance trips (<20 min.), while car and public transport (bus and tram) is 

preferred in case of longer commutes (more than 30 minutes) [10,11]. If the travel distance 

increases, the likelihood of choosing motorised vehicles as a primary travel mode also increases 

and this can cause traffic congestion. On the other hand, shorter travel times and distances in 

compact cities encourages the use of active transport modes like cycling [12,13]. The 

achievement of switch from motorized transport to cycling is a concern for many cities. 

However, achieving well-designed, efficient, and cost-effective cycling infrastructure network 

is difficult since urban space is scares and fitting cycling infrastructure into existing urban space 

is difficult [11]. 

 

2.2 Cycling infrastructure 

In urban areas, street network consists in different infrastructure types for various user types – 

cars, bicycles, pedestrians, mixed users etc. [14]. Bicycle network and infrastructure involves 

various infrastructure elements and takes several forms - from fully separated paths to various 

types of on-street markings, parking facilities, changing amenities, and signs which devote 

street space to cyclists [15]. In terms of their design and structure, bikeways can be constructed 

at ground level, elevated above other traffic forms, and even in tunnels [11]. The design of 

cycling infrastructure includes multiple elements to consider, for example road and lane 

configurations, speed control strategy, traffic signals, and connection road networks and 

broader transportation infrastructure [16]. The availability of dedicated cycling infrastructure, 

such as the continuous, separate, and protected bikeway network significantly encourages and 

promotes cycling [11].  
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According to Wysling et al there are four basic types of cycling paths [17] :  

• stand-alone paths which are often found in parks and are sometimes shared with 

pedestrians, 

• cycling lanes that physically separate bicycles from motorized traffic using devices such 

as bollards, planters, or a parking lane, 

• cycling lanes marked on roads but do not physically separate cyclists from motorized 

traffic,  

• roads where cyclists ride in mixed traffic where speed limits and traffic volumes are 

low. 

Bikeways and cycling paths can be also categorized based on their intended purpose, such as 

greenways designed for leisure and recreation, or bicycle boulevards that give priority to bicycle 

traffic. Greenways are linear public spaces which can be present in many ways, including parks, 

reclaimed trails, and riverfronts, frequently designated as open spaces for leisure [11]. Bicycle 

boulevards are low traffic intensity and speed roads which are designated and designed to 

prioritize bicycle travel. These boulevards include secure and convenient bicycle crossings by 

employing speed and traffic volume management practices [18]. 

Different measures have been proposed to assess the suitability of cycling infrastructure and 

cycling paths. Most common are cycling suitability and bikeability. Cycling suitability refers 

to the perceived comfort and safety of individual street segments for cyclists. However, 

bikeability evaluates the suitability of cycling infrastructure to facilitate cycling, considering 

factors that influence the choice of the bicycle as the primary mode of transportation, along 

with environmental factors that promote bike travel [17,19].  

Many studies have been made to investigate the effect of different variables to these measures. 

The most important are presence of dedicated cycling paths along streets and traffic calming 

measures. This provides safer environments as bikes do not have to share same urban space 

with motorized vehicles [19]. Cycling lanes separated from motorised vehicles are more costly 

to construct and demand more street space compared to cycling lanes marked on roads. 

Therefore, the share lane markings are widely used in United States and European cities due to 

their cost-effectiveness and space efficiency. The study made in Madrid indicated that only 9% 

on the cycling infrastructure comprised of bike lanes physically separated from other vehicles 

while the 50% are cycling lanes marked on the roads [20] 

In addition to cycling paths, the continuity and safety of them is also important features [19]. 

Cyclists prefer well-established and connected cycling infrastructure where different areas of 

the city, but also different cycling paths are connected. In addition, density of cycling network 

is important. The establishment if a single cycling path does not increase bikeability but it must 

be part of a wider cycling infrastructure for a more substantial improvement in the cycling 

possibilities [19,21]. 

 

2.3 Route choice selection  

Cyclist route choice is based on a combination of route features, individual characteristics, the 

purpose of their cycling journey and even on the region. Route choice is a decision-making 

process in which a person selects a specific route, based on its attributes, between an origin and 

a destination [22]. Many papers handling bicycle infrastructure, built environment and its effect 

on cycling route choice have been published. This knowledge is very important to understand 

how cycling infrastructure could be improved to further promote cycling [23–25]. 
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Most common factors influencing cyclist route choice are length of the route, travel time, 

steepness, traffic volume, speed limit, type of intersection, and presence of bicycle 

infrastructure [17,26]. Generally, cyclists will opt for the shortest route, either in terms of 

distance or travel time, to move from origin to destination. In addition, cyclists avoid steep hills 

and prefer moderate terrains. Nevertheless, many studies and reviews have shown that there are 

additional factors that impact these decisions. This results in cyclists frequently selecting routes 

that are longer than the absolute shortest ones [17,27].  

Cyclists avoid unsafe routes with high speeds and traffic density but highly value dedicated 

infrastructure to minimize interactions with cars [28] therefore they are willing to take longer 

route to reach a road with a bicycle-friendly infrastructure and avoid roads without bicycle 

infrastructure [26]. Roads with a stronger separation between cycling and other forms of 

transportation are preferred and arterial roads with heavy traffic are avoided [24]. The most 

preferred forms of infrastructure are residential roads featuring clearly marked bicycle lanes, 

with cycleways (dedicated paths designed exclusively for bicycles) coming in second. Cycle 

path situated at sidewalk level is considered superior to a cycle lane on the road that is only 

separated by painted lane markings, or even worse, by dashed lane markings [24,28] . 

Additional influencing factors are routes with less stops and intersections [28,29], attractive 

surrounding and streetscape [24,28], less traffic, less traffic markings and signals, less major 

cross streets and turns [30]. However, the work of Lu et al showed that cyclists are willing to 

take longer routes if they include positive features such as bicycle facilities and low traffic 

volumes even if it increases in number of turns and number of intersections [30]. A study in 

Bologna also showed that route choice also depends on the cyclist gender as women prefer 

routes which minimize interferences with other traffic streams and avoid using roads with 

frequent intersections and unsafe manoeuvres such as left turns [31]. 

 

2.4 Cycling data collection 

Different technologies are available to record mobility data. Data can be collected using social 

media or cellular network which save location information in case of social media activity or 

when call is made using cellular device. Mobile phones can be used also to collect location 

information using phones GPS device, cellular network, or wireless networking technology. 

Additionally, using local area networking of wireless network devices enable to save location 

info. Most common location information data source is technology based on GPS (Global 

Positioning System) [32] which is now used in nearly two-thirds of studies related to bicycle 

route choice analysis [33]. 

Since 1990s, GPS technology has been widely used for many purposes such as analysing travel 

patterns, research of transport safety and efficiency, and evaluating travel impacts [34]. GPS is 

a satellite-based worldwide navigation system that enable to determine a precise location of any 

point on the Earth's surface by triangulating 4 or more signals from different satellites [35]. 

GPS tracking enables to gather information globally [36] on longitude, latitude, date, time, 

speed, altitude, and direction of movement [34]. Compared to interview-based approach, this 

technology is less expensive, and enables [37] save mobility data in real time and more detail 

scale than with surveys [38].  

According to Lee et al., the most perspective for bicycle data collection are various regional 

mobility tracking apps. If resources are available for developing the app and recruiting users it 

is possible to gain a higher level of data quality, accuracy, and user details than with the other 

methods [39]. Bicycle data can be collected also using fitness tracking apps. However, this data 

might include mostly recreational cycling activities and not for cycling for transport [26]. 
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Passive data collection enables to collect continuously low frequency data which includes also 

records that are not related to mobility. On the other hand, the active methods require users to 

record data only during mobility which allows to collect high frequency data containing mainly 

mobility records [37,39,40]. 

 

2.5 Trajectory analysis 

A trajectory is a path formed by a moving object in geographical spaces, typically represented 

by a sequence of ordered points in time. Trajectories are stored as a polyline, can be represented 

as p1 → p2 → ... → pn and denoted as Trn=(p1, p2, … pn). The pn represents single GPS points 

which are ordered by time to represent the sequence of GPS points [41]. Trajectories can be 

created by humans, animals, transportation vehicles, animals, or even natural phenomena. The 

points include geospatial coordinates and a time stamp but may also include some additional 

descriptive information [42–45]. Trajectories can have varying durations, may include vast 

number of moving objects with different sampling rates from every a few seconds to hours and 

even days [46].  

Advancements in satellite and tracking technology has enabled collection of substantial 

amounts of trajectory data concerning the movements of different objects [47]. This data can 

be used in various applications like intelligent transport systems, urban management, 

environmental protection, meteorological forecasting and more [46,48]. Despite the substantial 

amount of data already collected and potential of collecting this, there are still many challenges 

to effectively use data due to privacy concerns, commercial considerations, the presence of 

missing values, and the high costs associated with acquiring the data [49].  

GPS data is not fully accurate and suffers from major limitations in terms of data quality. Errors 

in GPS accuracy can be caused by random noise and interferences and therefore recorded 

locations may deviate from true locations. Also, missing data between recorded points can be 

caused by blocked GPS signal indoor or underground places or due to satellite, receiver, signal 

reflections and other disturbances during data collection [50,51]. To overcome these problems 

and extract relevant information from large amount of location information, GPS data needs 

cleaning and preprocessing before further analysis to avoid to false results and misleading 

conclusions [40,48,50]. 

The first and fundamental step in trajectory analysis is preprocessing to prepare data for further 

analysis [52]. Most used methods are smoothing, compression, segmentation, and map 

matching. The influence of random GPS errors which or minor discrepancies from true value 

can be reduced by smoothing methods, such as Gaussian smoothing and Kalman filtering. 

Systematic errors – invalid GPS pointes due to external reasons can be corrected using visual 

inspection and automatic filtering methods. The goal of compression is to reduce the size of the 

dataset while maintaining the utility of trajectory to enable less complex calculations. The 

trajectory segmentation, however, enables to split the trajectories into multiple smaller 

fragments based on movement characteristics or other rules. The determination of stops where 

to cut the trajectory can consider various spatio-temporal parameters, including position 

density, velocity, and direction of movement. The map matching is used to refine the trajectory 

by replacing each location with the network point that represents the most probable location of 

the moving object on road infrastructure or to convert the trajectory into sequence of road 

segments [53].  

The GPS trajectory data contains basic location information of movements however further 

analysis of the data is necessary to be able to predict unknown or future values or reveal hidden 

behavioural patterns [54]. The analysis methods can be divided into primary methods which 
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aim to categorize the trajectories based on their properties - classification and clustering. 

Trajectory data clustering seeks to characterize trajectories by grouping them into distinct 

clusters based on movement characteristics of trajectories. Trajectories similar to each other are 

grouped in the same cluster, and characteristics of these trajectories are distinct from those 

trajectories in other clusters [47,55,56]. The classification assigns trajectories into pre-defined 

classes based on predefined set of labels relying on the features exhibited by the trajectories 

[56]. 

The secondary trajectory data mining methods are aimed towards uncovering and describing 

the hidden movement patterns in trajectories [56] and to predict the future behaviour of moving 

object [36,45]. Pattern mining focuses on finding interesting, significant, or unexpected patterns 

from data. The patterns can be periodic, frequent, or collective depending on in which manner 

the trajectories are reoccurring [42]. This periodic pattern can be going from home to work 

every morning, to church every Sunday and may include various aspects such as recurrent 

trajectories, sub-trajectories, or areas of frequent co-occurring movements [57]. The outlier 

identification in trajectory data mining involves identifying trajectories that are not consistent 

with majority of trajectories. The prediction involves prediction of future locations and 

prediction of trajectories within a road network [42]. 

 

2.6 OSM road network 

OpenStreetMap (OSM) is as initiative to create, provide and distribute a free, openly licensed, 

volunteer-contributed geographic data. The data is free to use, share and modify if credit is 

given to OSM and its contributors [58]. The project started in 2004 with a focus on streets and 

roads [59] however, now OSM includes very detailed road network along with a point of 

interests (POI) and features like building, land use, etc. [60]. The complete mapping process of 

OSM is done by volunteer contribution and all users can have access to the information and 

edit view and/or share the whole data at no cost [61]. However, the OSM information 

contributed by individual users may have problems associated with data quality like inadequate 

sampling, potential bias, and inaccuracies in tagging [62]. 

OSM data contains road network information, points of interest and other relevant geographic 

information from all over the world. The OSM road network is represented as a graph that 

consists in basic data elements of OSM data model - nodes, ways, and relations. The nodes are 

single points and are defined by latitude, longitude, and node identifier. The ways are a 

collection of connected nodes and represent various linear features (road, path etc) and area 

boundaries (building, area etc). The relations are used to show the connection between different 

data elements [63].  

The OSM data elements can be characterized using tags that describe their meaning or function. 

A tag consists of two items, a key and a value. The key is used to describe a topic, category, or 

feature type while the value provides specific details about the key [15,64]. OSM data elements 

can include a multitude of tags and various combinations of tags and keys. The greater the 

number of tags present, the richer the available information becomes [65]. In the case of bicycle 

infrastructure, the ways with highway or cycleway as tag keys are mostly used. Table 1 includes 

information about different road types for cycling and their OSM tags. 
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Table 1. List of most used cycling infrastructure types and respective OSM tags (adapted from 

Ferster et al., 2020) [15] 

Category  Description Generalized OSM tag 

Cycle track A paved facility alongside a 

city street, separated by a 

curb or barrier, intended for 

bicycle-only use. 

Highway = cycleway 

Highway = * AND cycleway 

= track 

On-street bicycle lane A painted bike lane on the 

street, with or without parked 

cars. 

Highway = * AND cycleway 

= lane 

Path (bicycle only or 

multiuse) 

An off-street paved path, 

either bicycle only or shared 

with pedestrians. 

Highway = path AND 

bicycle = 

yes/designated 

Highway = footway AND 

bicycle = yes 

Highway = service (or 

unclassified) AND bicycle = 

yes/designated AND 

motor_vehicle = no 

Local street bikeway A designated bicycle route 

with signs, and possibly 

cyclist activated traffic 

signals/traffic calming. 

Cycleway = shared 

bicycle = designated 

Ambiguous infrastructure  Highway = cycleway 

No other tags 

*Tags have variations and additional descriptor tags. 

 

2.7 Map matching 

Due to measurement error and noise from multiple sources, the recorded GPS point can deviate 

from true location. Therefore, it is often necessary to align the observed GPS points with the 

road network on a specific digital map [66,67]. Map matching is the approach to correct the 

errors and link the recorded GPS points to a road network graph [51]. It serves as a fundamental 

pre-processing step for many applications which include location analysis [66]. After two 

decades of research, many map matching algorithms have been proposed which can be 

classified into geometric, topology, probabilistic and advanced map matching algorithms based 

on used approach [68]. 

One of the most widely used approaches for map matching is based on HMM (Hidden Markov 

Model) [41]. The HMM is based on Markov Chain, defined as “A stochastic model describing 

a sequence of possible events in which the probability of each event depends only on the state 

attained in the previous event” [69]. The map matching algorithm uses HMM to find the most 

probable path out of all possible paths available. In the map matching process, each GPS point 
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in the trajectory is treated as an observed measurement and the actual position of the object is 

unobserved (hidden) state. The road segments near the observed measurement are potential 

locations (states) [41] where the GPS point actually might have been. The probabilities of 

different paths are computed using probability of GPS measurement being observed in road 

segment (emission probability) and probability of moving from one segment to another 

(transition probability). The most probable path is the order of road segments (states) with most 

likely transitions from one segment to another [70].  

The example of transitions between states and optimal path calculation is shown in Figure 1. 

The possible road segment candidates are found for each measured GPS point - Figure 1, Point 

P1 with possible candidate edges c1
1 and c1

2. The possible road segments are usually limited 

within a certain radius from the GPS point to reduce computation effort. The measurement 

probability represents the likelihood of a GPS point P1 being located on that road segment. The 

road segments further from the measured point have a smaller probability. The transition 

probabilities are the probability of an object moving from one road segment to another [41,51]. 

The optimal path is calculated based on both probabilities using different algorithms such as 

Viterbi [51]. 

 

  

Figure 1. Possible transitions between states and optimal path. Figure adapted from [51].  
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3. Data exploration and insights discovery 

3.1 Data 

The data was collected from municipal area of Bologna (44.498955°N; 11.327591°E), which 

is a capital of Emilia-Romagna Region (Italy). Bologna is characterized by a dense and compact 

historical centre with industrial areas and fundamental transportation hub for road, rapid and 

air transport in its periphery [71]. Location of study area is shown in Figure 2. 

Data was collected within the Bella Mossa program. This was a program of the City of Bologna 

to promote a healthy lifestyle and sustainable mobility. During the period from April 1, 2017, 

to September 30, 2017, around 15 000 people participated in the program, 895 000 trips were 

recorded which was a total of 3,7 million km. The program was designed to encourage 

travelling using sustainable transportation modes. During the program, points were awarded for 

cycling, walking, and using public transportation which could be redeemed for discounts or 

payments for various services. Participants downloaded a free smartphone app that used GPS 

for automatic recording of their trips. The data was sent to a database and used anonymously 

without reference to user [72]. 

 

Figure 2. Location of Bologna in Italy. Study area, City of Bologna, is bordered with red line. 

 

The basic information describing the collected data is summarized in Table 2. Each row of the 

dataset includes information about one GPS point. Each activity has a unique ActivityId. 

ActivityType is selected by user and indicates the mode of transportation. Data also includes 

information about the time, location, and other variables as listed in Table 2. In the scope of 

this program, one activity was considered as a single trip made by one random person. The 

dataset is anonymized. Therefore, the ActivityId-s can not be linked back to users, nor they can 

be grouped by users. In this work ActivityId, ActivityType, time, latitude, longitude and 

Accuracy information were used. The data contained several mobility types but only datapoints 

labelled with ActivityType as “cycling” were included in this work.  

The overview of the data analysis framework for this thesis is outlined in Figure 3. Two types 

of data were used – cycling mobility data from Bella Mossa program and freely available OSM 

street network data. The main procedures are data preprocessing, map-matching tessellation, 

flow analysis which includes trajectory clustering and road type analysis. 
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Table 2. Description of variables for the dataset. 

Variable Description of variable 

ActivityId a unique number that identifies an activity (not a user), that is a trip 

ActivityType user-declared activity type: Car_Share, Car_Share_Passenger, 

Cycle, Walk, Bus, Train, Car_Club, Survey, In_Vehicle, Run, 

Shuttle_Bus 

Time when the activity was done 

Latitude GPS coordinates 

Longitude GPS coordinates 

Accuracy GPS accuracy 

Speed GPS Speed 

IdentifiedType activity type inferred by the application collecting the data 

IdentifiedConfidence confidence about identified type 

 

Python programming language was used to build data preprocessing pipeline and perform 

analysis of movement data. Provided data was converted from multiple csv files into parquet 

format for efficient storage. Partitioning was used to split dataset into smaller subsets for 

efficient calculations using parallel processing where applicable. This made it possible to run 

computations with a full dataset with limited compute resources. 

 

Figure 3. The framework for the analysis. 
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3.2 Data Preprocessing 

Data preprocessing includes activities necessary to transform raw data into suitable format for 

further analysis. The data was provided in multiple files in csv format and they were converted 

to parquet format and various processes were done to correct or clean the data from incomplete 

or inaccurate activity records. 

GPS data was sorted by ActivityID and time to have a better overview of data and activities. 

The analysis revealed that some activities were extremely long, containing several movements 

with long pauses in between them. For example, during the trip, the user made long stops and 

continued later, while the entire journey was saved as one. To correct this, activities where data 

recording is stopped for longer than 6 minutes or cyclist stayed in one location longer than 6 

minutes were split into multiple activities. Activities that are longer than 2 hours or above 30 

km after segmenting were removed since most likely contained more than one segment or are 

made for other purposes than transport (sport etc.). Activities with distance below 100 m or 

time less than 3 minutes were removed since most likely to not contain any reasonable 

information. Data also included records outside study period and study area which were 

removed. 

The data preprocessing was conducted in following order: 

1. removed activities that contained less than 2 recorded GPS points; 

2. split activity into multiple activities if time gap between two GPS points is more than 6 

minutes; 

3. split activity into 2 if GPS points stay in 30 m radius location more than 6 minutes; 

4. removed activities with distance above 30 km or time more than 2 hour; 

5. removed activities with distance below 100 m or time less than 3 minutes; 

6. removed activities whose all points were outside Bologna city; 

7. removed activities with timestamps outside the study period. 

 

The number of data points and unique activityID-s representing unique activities or movements, 

respectively, before and after data preprocessing are outlined in Table 3. The total number of 

unique activities was 290 177 and included a total of 60 414 481 GPS points with unique 

timestamp. Most of the GPS points were recorded with intervals of 3-10 seconds, although 

longer gaps between datapoints were also present. 

 

Table 3. Data characteristics. 

Characteristics Before data preprocessing After Data Preprocessing 

Number of unique 

activityID-s 

320 109 290 117 

Number of GPS points 72 396 179 60 414 481 
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3.3 Map matching 

Preprocessed data was prepared for further analysis using map matching. Map matching 

algorithm assigns original GPS coordinates to corresponding road network nodes in the most 

plausible way. This identifies the actual travel routes of cyclists and allows making more 

accurate route analysis based on actual road network. This was used for 2 main purposes - to 

improve the accuracy of GPS data locations and to link GPS coordinates to corresponding road 

network [59]. 

Map matching was done using Open-Source Routing Machine (OSRM) which uses OSM street 

network as data source and HMM with Viterbi path finding algorithm [74]. OSRM maps all 

possible combinations of nodes and transitions for consecutive GPS points, determines 

measurement and transition probabilities and finds optimal route. This process is repeated until 

gaining the full GPS trajectory [75]. The time intervals between consecutive GPS points and 

usual speed of transportation mode can be considered to determine the optimal route [76]. The 

algorithm also removes outliers if they cannot be matched and splits traces in case of large gaps 

in timestamps of improbable transitions [75]. 

OpenstreetMap street network data of Nord-east Italy was sourced from Geofabrik [77] 

download server using pyrosm library. Since the mobility project was conducted in 2017, the 

data dated to 1.01.2018 was chosen. The OSM road network is provided as a directed graph 

where edges refer to road segments and nodes refer to intersections. With directed graph, each 

driving direction is represented by a separate edge [78]. Since many streets are one-way streets, 

the edges were added to street network also in reverse. Adding one-way edges in both directions 

enables to take driving in opposite direction into account during map-matching. Although 

driving in the opposite direction is not allowed it is very often done using bicycles. The final 

street network of Bologna was in a total of 106 552 edges with a total length of 3545,12 km. 

Local OSRM installation using Docker containers and downloaded street network data was 

used. Profile bike was used for map matching and list of GPS coordinates, timestamps and 

radiuses/accuracy as input parameters. The radius limits the search to given radius in meters, 

while timestamp enables to remove outliers since otherwise it is assumed that the GPS 

coordinates have equal intervals [74]. Although map matching is faster when only GPS 

coordinates are used, time and accuracy parameters were also used since more accurate results 

were gained with the expense of longer processing time. For each trajectory - list of GPS points, 

the output response of map matching is a json object that includes tracepoints object and 

matchings object. The tracepoints object include a list of waypoint objects which include all 

matched coordinates. The matchings object includes legs attribute with matched OSM nodes 

that assemble the ways. The Figure 4 illustrates the map matching process and its output data. 
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Figure 4. Map-matching process. 

 

Additional processing was done to construct paths from map matching output data. The path is 

a sequence of OSM ways. For this, both tracepoints and matching objects were joined together 

to single pandas dataframe and timestamp column was restored from input data as it was not 

present in OSRM output. The way column contained a list of ways associated with the point 

which were split to individual rows and duplicate ways were removed. Example of map 

matched trajectory compared to initial trajectory is presented in Figure 5. The final dataframe 

contained mapmatched GPS points and information about the node of each point.  

 

 

Figure 5. Example of GPS points of one activity before and after map matching. 

 

3.4 Descriptive analysis 

Descriptive analysis was done using aggregated data after map matching. Data was aggregated 

based on ActivityID. The information about aggregated dataset variables have been added to 

Table 4. The activity duration was calculated based on time difference of first and last GPS 

point of each activity. The travelled distance was calculated as a sum of distances of consecutive 

road segments. Additional variables from time were prepared indicating different time periods 

(day of week, hour of day etc.).  
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Table 4. Variables included in the aggregated dataset. 

Variable Variable description 

ActivityId Unique identifier of activity assigned during processing 

geometry Multilinestring of mapmatched trajectory 

start_t Start time of activity 

end_t End time of activity 

OrigActivityId Original unique identifier of activity  

duration Trip duration 

distance Trip distance 

 

3.5 Road type analysis 

Road type analysis was done to investigate what type of roads are mostly used for commuting 

using bicycle in Bologna city. To optimize calculations, the street type analysis was done using 

only 1 month data (April 2017). Data from entire program period was used when road type 

analysis was done as a part of the flow analysis. Google street view images were used to identify 

and compare street type information when necessary. 

The dataset with map matched GPS data was merged with OSM street network data. The entries 

not matched with OSM node and activities that had only one matched GPS point were removed. 

Highway, bicycle and cycleway tags and their values were used to characterize the usage of 

different road types.  

Additionally, cycling road classification as described in Table 1 was adapted and used to gain 

deeper insight of road usage. The custom classification rules are outlined in Code snippet 1. To 

estimate the usage intensities of different streets and street types, the edges from OSM data and 

their occurrence were counted. 

The proportion of road type usage was calculated as the lengths of all road types in activity 

divided by the total length of the activity. The length in one activity represents the total length 

of this road type in the activity. 

 

1. data['category_cycle_track'] = (data['highway']=="cycleway") | 

(data['cycleway']=="track") 

2. data['category_bicycle_lane'] = (data['cycleway'].isin(["lane", 

"opposite_lane"])) 

3. data['category_path'] = ((data['highway']=="path") & 

(data['bicycle'].isin(["designated", "yes"]))) | ((data['highway']=="footway") & 

(data['bicycle']=="yes")) | ((data['highway']=="service") & 

(data['bicycle'].isin(["designated", "yes"])) & (data['motor_vehicle']=="no")) 

4. data['category_local_bikeway'] = (data['cycleway'].isin(["share_busway", 

"opposite_share_busway"])) | (data[' bicycle']=="designated")  

Code snippet 1. Custom classification rules for road type analysis. 
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3.6 Spatial tessellation 

Spatial tessellation was used to divide the city into polygons with no overlaps and no gaps based 

on GPS points and point densities. Irregular tessellation method with Voronoi diagrams was 

used since this method uses POI data and results in more realistic tiles compared to regular 

tessellation [79]. The Voronoi tiles are prepared using POI-s as seeds. The tiles in a plane are 

defined by assigning each area to its nearest POI using Euclidean distance. Areas in equal 

distance from POI are shared, forming region boundaries [80]. In this way, each point will have 

a dedicated area, Voronoi cell or tile, defined by these individual points – POI-s and Euclidean 

distance metric. According to Adhinugraha et al a “Voronoi cell can be defined as the region 

where any point 𝑥 located in a Voronoi cell 𝐶(𝑓𝑖) will consider 𝑓𝑖 as the nearest facility point” 

[81]: 

𝐶(𝑓𝑖) = {𝑥| 𝑑(𝑥, 𝑓𝑖) ≤ 𝑑(𝑥, 𝑓𝑗), 𝑖 ≠ 𝑗} 

 

A Voronoi Diagram [82] can be defined as the set of Voronoi cells [81] 

 

𝑉𝐷 = {𝐶(𝑓1), 𝐶(𝑓2), …, 𝐶(𝑓𝑛)} 

 

Voronoi diagrams are often used to define the catchment areas for each point from a group of 

points in a two-dimensional space [60] and the method is used in various ways in spatial 

analysis [81,82]. 

The clustering algorithm selects randomly k initial cluster centres (c1, c2, …, ck) from all 

available n points {x1, x2, …, xn}, k ≤ n. Each point is assigned to cluster Cj corresponding to 

its cluster centre cj which is closest to it:  

 

j = 1, 2, …, k iff ǁ xi – cj ǁ ≤ ǁ xi – cp ǁ, p = 1, 2, …, k and j ≠ p. 

 

The new cluster centres c1
*, c2

* , …, ck
* are calculated according to 

 

𝑐𝑖
∗ =

1

𝑛𝑖
∑ 𝑥𝑖𝑥𝑗∈𝐶𝑖

 for i= 1, 2, …, k 

 

Where n is the number of data points in cluster Ci. The process is repeated from assigning points 

to clusters until ci
* = ci [83]. The K-means clustering algorithm assigns all points/tiles to 

predetermined number of clusters in a way to minimize the intracluster distances, maximize the 

intercluster distances [29]. 

Tesspy library was used to create Voronoi diagrams and GPS coordinates of origin points of all 

activities were used as POI-s to create tessellation tiles. The algorithm created individual 

tessellation tile for each activity’s point of origin. To decrease the number of tiles, K-means 

clustering was used to merge similar tiles.  

Different numbers of k were applied, and the final k-value was set to 300. If the k value is small, 

large tiles were large in suburban areas and trajectories with origin and destination in same tile 

could not be considered to be in the same area. If the number of tiles were set too large, then 
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number of activities in clusters is too small for further analysis. The created tiles do not overlap 

and cover the entire Bologna city area.  

 

3.7 Flow analysis  

Flow analysis was used to describe cyclists’ movement patterns and routes in the city of 

Bologna. Flow refers to the movement from one spatial unit to another. In the scope of this 

study, flow is defined as the movement of cyclists from a specific origin tile to a designated 

destination tile.  

Flow analysis was conducted using Voronoi tiles. Origin and destination tiles for each activity 

were determined based on the location of first and last GPS point of each activity, respectively. 

Subsequently, the data was grouped by origin and destination tiles and number of activities 

from each origin-destination tile pairs were counted. The resulting table contained data about 

number of movements between all Voronoi tile pairs.  

Detail trajectory analysis was done using 20 most numerous flows. The flow analysis 

distinguished flows from opposite directions as different flows. However, the results showed 

that if flow from one direction is among top 20, then the opposite direction is also numerous. 

Therefore, to increase the number of activities in flows, the flows from both directions were 

considered as one flow. However, movements from one direction were turned around so all 

movements would be in the same direction to simplify distance calculation and clustering. 

Trajectory clustering analysis was done to gain the most common routes used to commute 

between different locations represented by tessellation tiles. The route is a trajectory for moving 

between two certain location which are defined as tiles in this study. A flow from one tile to 

another can have more than one possible trajectory - route. Frechet distance [84] was used as a 

metric for clustering and DBSCAN (density based spatial clustering for applications with noise) 

as clustering method. 

DBSCAN is a widely used density-based approach for urban travel pattern analysis. This is a 

nonparametric method that can determine the number of clusters, handle clusters with varying 

densities and it identifies outliers as noise [85]. Method identifies regions with high density in 

data by computing distances between points based on a selected metrics. The minimal 

parameters specified are the maximum distance radius (Epsilon) and the minimum number of 

points in clusters (MinPts) [86,87]. 

The Fréchet distance is a metric for measuring the similarity between two curves, commonly 

explained through an analogy of a person and a dog connected by a leash. Both are moving 

along their respective curves from start to end, with the freedom to control their speed but 

without the ability to backtrack. The Fréchet distance is defined as the minimum length of the 

leash required for both the person and the dog to traverse their curves in this manner [88,89].  

The Fréchet distance between two directed curves A and B is determined as the maximum 

distance reached between the two curves at any point on that curve. The Fréchet distance, 

denoted as δF(A, B), is the minimum possible cost over all curves. Formally, it is expressed as 

[90]: 

 

 

where dist(·, ·) represents Euclidean distance, and μ: A → B is a function that maps each point 

a ∈ A to a point μ(a) ∈ B [90]. 
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The input of the clustering algorithm was the distance matrix of trajectories for one specific 

flow, minimal number of points in clusters and eps value. The eps value was set to eps=0.001 

and the minimal number of points in clusters was 1. For each flow, the distance matrix was 

calculated, and clustering algorithm was applied individually.  

The result of clustering was all trajectories in one flow divided into clusters according to route 

taken. The cluster size varied from 1 to more than 200 trajectories. For further analysis clusters 

with less than 5 trajectories were discarded since these contained trajectories which can be 

considered isolated instances or outliers. The Figure 6 illustrates the flow analysis where the 

tessellation tiles are marked with blue and different trajectories between two tiles are marked 

in red and after clustering different routes are marked with different colours. 

Street type analysis using similar approach as described in previous chapter were applied to 

trajectory clusters to determine if street type has influence in cyclist route choice. 

  

Figure 6. Sample of trajectory clustering results from one flow analysis: Origin and 

destination tiles are indicated with blue. Left figure illustrates all trajectories in this flow with 

red. Right figure includes only trajectories which were clustered into groups of 5 or more and 

form different routes. 
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4. Results and discussion 

4.1 Descriptive analysis 

Figure 7 describes the number of daily activities during the study period – the count of activities 

in each day and sliding average over 7 days. Largest number of daily activities were recorded 

in April and May – 58 033 and 78 892 activities in month, respectively. After that the number 

of activities decreased and reached a minimum in August – 21 291 activities during the month. 

The decrease starting from June can be explained by starting of school breaks and therefore less 

activities due to school and University. Also, in Italy, the summer holiday is usually scheduled 

in August and many people leave cities which may be the cause of minimum records. The 

increase in number of activities in September compared to August can be explained by the end 

of the holiday season and start of the school year. However, the recorded activities did not reach 

to same level when the program was started – April and May. Probably many people who started 

the mobility recording program quit, thereby the recorded numbers decreased during the 

program. 

 

Figure 7. Number of activities in a day and 7 day sliding average during study period. 

 

In addition to seasonal variations, the number of activities exhibits weekly fluctuations. Figure 

8 presents a heatmap of the frequencies of movements in different weekdays and hours 

throughout the day. In a weekly basis, higher volume of movements was recorded during 

workdays and less during weekends. However, on a daily scale, the peak hours were morning 

between 6-8 AM and evenings at 16-18 PM. These peaks hours correlate with the activities of 

people commuting to work and school in the morning and back home in the evening. The lunch 

peaks around 12-13 can also be seen.  

The weekend and workdays are different in terms of number of movements and daily routine. 

The number of activities was smaller during the weekend and the peak hours, where number of 

activities is significantly higher, are barely detected. The morning peaks hour is 2 hours later 

during the weekend, compared to a working day, but the evening peak hour remains at the same 

time. 
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Figure 8. The Count of activities across weekdays and different hours of the day. 

 

From Figure 9, it can be seen that most activities are less than 8 km long and take less than 40 

minutes. The mean distances of weekend and workday activities are 2985,5 m and 3080,0 m 

and mean durations are 17:33 minutes and 16:56 minutes, correspondingly. Cycling is used 

mainly for short or medium distance tips in the city. The analysis is based on Bologna city and 

during preprocessing many long activities were split into multiple smaller ones and additionally 

limits were set on duration of activity. 

 

Figure 9. Histograms of distances and durations of activities in workdays and weekends. 

 

4.2 Spatial tessellation 

Tessellation divides the space into subspaces or tiles with no overlaps and no gaps which 

enables to gain better understanding of geographic space and analyse geospatial data [79]. 

Irregular tessellation with Voronoi diagrams was used to divide city into tiles and analyse where 

activities start and end (Figure 10).  

The tiles where the highest number of activities started and ended was in the city centre. 

Compared to suburban areas, city centre has denser road network, more activities start and end 

there and this also leads to smaller and darker tiles in the city centre. Less activities were starting 

and ending in suburban areas, but also in the southern and western areas of the city. Compared 

to other districts, the southern area of the city is a sparsely populated residential area with hilly 
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landscape and bad public transport network. However, western area is primarily a residential 

area with tall apartment buildings and good public transportation [91]. Due to low population 

density in southern areas and good public transportation network in other areas, the number of 

cycling activities in these suburban areas were lower.  

The colour scheme in Figure 10, illustrating the spatial distribution of origin and destination 

points within the tessellation tiles, showcases a similarity in patterns. This suggests that there 

is a similarity in the patterns of places where activities start and end, with comparable 

occurrences across the tiles. Similarly, no significant difference was found when workday and 

weekend mobility pattern maps were compared.  

 

 

Figure 10. A visualization of the spatial distribution of origin or destination points using 

Voronoi polygons in workdays and weekend. K-means (300 tiles) is used for clustering and 

the tile colour is representing the number of activities in the tile. 
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4.3 Road usage analysis 

Road usage analysis was conducted to study the urban infrastructure and its usage preferences 

for cycling. The heatmap in Figure 11 illustrates the road network of Bologna and its usage 

intensities for cycling during 1 month period (1.04.2017-30.04.2017).  

The most frequently used roads and streets are coloured using a darker tone of red. These are 

bigger roads, multi-lane highways and avenues with more intense cycling traffic. In suburban 

areas, mostly highways which are used to enter the city and lead towards the city centre. In the 

city centre, the circular route which enables cyclist to have a ride around the old town is heavily 

used. This route is a two-way cycling road separated from cars and thereby a very comfortable 

and safe way to move near city centre. Major streets lead to city centre with a historic old town 

and very narrow and often one-way streets. In this region, cycling tends to converge to the 

streets that are wider, in some sections two directional and may contain on-street bicycle lanes 

(via Ugo Bassi, via dell'Indipendenza, via Riva di Reno, etc.). These streets enable to drive 

through old town faster and more convenient way than narrow and winding historic streets. 

During the weekends, the cycling infrastructure is used less than on workdays. However, the 

most heavily used streets are still the same as during workdays. The smaller usage intensity 

during weekend can be seen also in Figure 8 where number of movements and daily routine is 

visualized. It is also important to point out that the number of workdays in a week is 5 and 

weekends is 2 therefore this will also accentuate higher road usage intensities during workdays. 

 

 

Figure 11. Count of usage events of different road segments describing Bolognas street usage 

intensities during the period of 1 month in workdays (left subplot) and weekends (right 

subplot). 

 

Additional analysis was done to investigate what type of streets are preferred by cyclists. The 

street type information was gained from OSM data using different tags and their values. 

Although the information contained in OSM is not always correct it holds reasonably good 

quality to give good overview of street infrastructure [78,92].  

Figure 12 illustrates the usage of different street types in Bologna. Figure 12 A shows the 

relative length of different road types and Figure 12 B the length of each street type in activities. 

The results show that cyclists prefer streets and roads with smaller traffic intensities and 

dedicated cycling roads. The most used street types, considering both relative length and length 

of different road types, are cycleways and residential streets. These streets are designated 

cycleways and smaller streets which serve as an access to houses, respectively [93]. The average 
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relative length of these street types in activities are 30% and 23%, respectively, which is an 

average of 870 m and 841 m in total length, respectively.  

The largest and assumably busiest street types in Bologna are primary and secondary streets. 

These tags are used to label major traffic arteries and boulevards within cities [94]. Averages 

of 569 and 686 meters in an activity, which is 15% and 20% of the length of activity is cycled 

on these street type. Additionally, tertiary roads which facilitate connections between local 

centres and linking minor streets to more major roads and activity includes an average of 20% 

or 668 m of this road type. 

 

Figure 12. The relative length of different road types (A) and length of different road types 

(B) based on highway tag and its values. 

 

Similar analysis was done using only cycling infrastructure (Figure 13). Custom classification 

was used to group all streets with cycling infrastructure to see how much each type of 

infrastructure is used. The results show that amongst different bicycle roads, local bikeways are 

most preferred, followed by cycle tracks. These street types are mainly roads dedicated for 

public transport on which cyclists are also allowed to bike and specially designated paths for 

bicycle use [95,96]. Streets where cycling road are painted to streets and can be mixed with 

parking places are labelled as bicycle_lanes and are less preferred. Although paths are separated 

bicycle roads shared with pedestrians, the usage of these is small. The higher usage of cycle 

tracks and local bikeways are caused by longer length of these streets. The total length of these 

street types in street network data was 137,0 km and 107,3 km, respectively. The total length 

of bicycle lanes and paths in street network data was 2,9 km and 57,3 km, respectively. 

 

A B 
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Figure 13. The relative length of different road types (A) and length of different road types 

(B) based on custom tags describing cycling road types. 

 

4.4 Flow analysis  

Flow analysis was done using tessellation tiles and all activities were assigned corresponding 

origin and destination tiles. The activities were grouped by origin and destination tiles and all 

activities with same tile set were counted and considered as one flow. The trajectory analysis 

was done using 20 of the most numerous flows between two tiles. Trajectory clustering was 

used for each flow to group similar trajectories and thereby identify different routes used to 

move between two locations. The most popular route from of 20 most used flows with 

corresponding origin and destination tiles are visualized in Figure 14. Most of the origin-

destination tiles are in the city centre or its nearby areas. The trajectories are mostly between 

the city centre and its surrounding areas or from farther suburban areas towards city centre.  

 

Figure 14. The origin-destination tiles of 20 most popular flows (in blue) and most used 

trajectories to commute between them (in red). 

A B 
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Each flow was analysed individually to see different routes between two tiles. The DBSCAN 

clustering algorithm was applied to cluster all trajectories into groups of similar routes. Street 

type analysis was done to see if street type impacts the route choices. The maps illustrating 20 

most used flows and results of street type analysis are added to Appendixes I.  

The analysed flows had between 1 to 5 clusters and the number of trajectories in a cluster ranged 

from 5 to more than 200. Clusters with 5 or less trajectories were considered isolated instances 

or outliers and were removed from further analysis. Only one cluster was gained when two 

tessellation tiles were too close to each other and trajectories with short distances were dispersed 

over a narrow area causing too small differences in distance matrix (Appendix I, Figures 25, 

26, 28 and 33). One cluster was also results if only one main route for commuting was present 

and possible alternative routes were used less than 5 times (Appendix I, Figure 24 and 27). The 

clustering resulted in several clusters if multiple actively used and distinctive routes from two 

tiles was possible.  

The main reason for having multiple active routes is the occurrence of one-way roads. Due to 

this, many flows are clustered into distinctive clusters based on movement direction in one-way 

street (Appendix, Figures 15, 17, 23, 29, 33). The activities in one or many clusters move in 

one direction using one-way street and trajectories in other cluster or clusters move in the 

opposite direction using alternative routes. For example, in Appendix I Figure 15 the 

trajectories in clusters 0 and 1 move all in one direction and in clusters 9 and 10 in the opposite 

direction. Similar effect can be seen in Appendix Figure 17 where clusters 0 is majority one 

way and clusters 6 and 8 the opposite way due to narrow one-way street segment in historic old 

town. If the route choice is influenced by one-way streets, then these streets are very narrow. 

Often even tighter due to parking cars and therefore not convenient for moving in the opposite 

direction. Although cycling in opposite direction in one-way street is not allowed, the data 

indicates that in some sections this is still done (Figure 32, cluster 1). 

The influence of street type, distance, and duration of activity to cyclist route choice preference 

were additionally analysed. When multiple routes are available then streets with cycling 

infrastructure are preferred and when possible, narrow streets in the old town are avoided. For 

example, in Figure 32 cyclists prefer to use longer routes (clusters 0 and 22) to avoid narrow 

street sections in old town (in cluster 1). The longer route includes wider streets and enables 

people to arrive at their destination faster. In Figure 30, the most used path takes more time and 

is longer but includes long sections of cycling and tertiary roads while the significantly less 

used alternative route includes high traffic intensity primary roads. Similarly in Figure 16 travel 

time and duration for activities in clusters 0 and 9 are similar but majority of cyclist use route 

in cluster 0 since streets include two way cycling path on the sidewalk. The street analysis also 

reveals that the preferred route has more cycleways and residential street types and less 

secondary street types. If no significant difference in street types can be found, the cyclist 

prefers the routes that enable shorter distance and/or smaller duration of activity (Figure 21). 

To better estimate the influence of infrastructure and other parameters to route choice, 

modelling could be applied where more influencing factors can be considered. Current work 

only analyses and compares routes that are actively used by cyclist. However, for more 

profound analysis, the routes that are not used should be also analysed to see why some routes 

are not used at all. 
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5. Conclusions 

Due to environmental concerns and urbanisation, increased attention has been paid to 

alternative transport modes like cycling and walking. Numerous studies been done to 

investigate factors influencing cyclist route choices, and various models for different cities have 

been published. Most previously reported studies use localized data and applying diverse 

infrastructure variables to examine their impact on route selection.  

In this work, the mobility campaign data from city of Bologna was used to study cyclist mobility 

and route choices. This thesis presents a framework of analysing mobility flows in urban areas 

by origin-destination tiles and studying the people’s routes between them. Spatial tessellation 

was used to divide city into tiles and divide all trajectories into flows according to their origin 

and destination tiles. Additionally, clustering with DBSCAN was applied to group all 

trajectories in flows into characteristic routes. Finally, data embedded in downloaded OSM data 

was used to see how street type and it attributes influence the route choice made by cyclist on 

Bologna.  

The descriptive analysis revealed general fluctuations in cyclist activity. More people cycled 

when the Bella Mossa mobility campaign started, and the activity decreased gradually. Activity 

was lower in August, during the vacation period, but increased slightly when schools reopened 

in September. Additionally, cycling was more active on workdays and less active during 

weekends. In a daily schedule, cycling activity followed the daily routine – higher when people 

commuted to school and work in the morning or returned home in the evening. The weekend 

routine was slightly different compared to workdays and only one peak in activity was detected. 

Cycling served as a mobility method for shorter or medium-length distances. The mean distance 

and duration of cycling activities were around 3 km and 17 minutes, respectively.  

Spatial tessellation revealed areas with lower and higher cycling activities. More activities start 

and end in city centre while suburban areas have lower cycling activities. Due to regional 

specifics, the south and east areas of city have lower cycling activity compared to other 

suburban areas. Also important is to further study the reasons of lower cycling activity in certain 

areas and use the results of this study as an input to improve the cycling infrastructure to 

increase cycling in these areas. 

The road preference is also different is different areas of city. In suburban areas, cyclist prefer 

mostly highways and wider streets which are convenient to enter the city and lead towards the 

city centre. On the other hand, in the city centre, the circular road which avoids old town or 

larger roads in the old town which enable to drive through old town faster and more convenient 

way. The road type analysis revealed that cyclists prefer streets and roads with smaller traffic 

intensities and with dedicated cycling roads. The most used street types are cycleways and 

residential streets.  

The 20 most used flows between origin-destination were clustered into distinctive routes and 

the analysis revealed that route choice was mainly influenced by the presence of one-way 

streets. Cyclists prefer not to drive one-way street in the opposite direction even if it is possible 

in the sidewalk. In addition, streets with cycling infrastructure are preferred and when possible, 

narrow streets in the old town are avoided. Consistent with findings from previous studies, 

cyclists in Bologna prefer shorter and faster routes but are willing to take longer routes to avoid 

certain cycling infrastructure types. In Bologna, cyclist prefer streets with good cycling 

infrastructure and avoid narrow streets in old town. 

Current work included only routes which were used and included in the dataset. The route 

preference can be further studied by adding routes generated by dedicated algorithm. This 

enables to see if suggested (for example shortest or fastest) routes are used by cyclist or if not, 
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then what might cause the discrepancies. The information about cyclist route choices is 

necessary and can be used to improve cycling infrastructure to make cycling more convenient 

and thereby increase the cycling activities. The research could be further elaborated by adding 

other mobility modes to find possibilities to increase usage of other alternative transport modes 

and thereby decrease the usage of motorized transport. 
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7. Appendix 

I. Results of trajectory analysis for 20 most used flows 

  

 

Figure 15. Trajectory analysis between tiles voronoiID138 and voronoiID213 (n= 293). Left 

figure illustrates different routes between tiles and right figures present the road type 

analysis results. 
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Figure 16. Trajectory analysis between tiles voronoiID37 and voronoiID142 (n= 279). Left 

figure illustrates different routes between tiles and right figures present the road type analysis 

results. 
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Figure 17. Trajectory analysis between tiles voronoiID166 and voronoiID124 (n= 273). Left 

figure illustrates different routes between tiles and right figures present the road type analysis 

results. 
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Figure 18. Trajectory analysis between tiles voronoiID161 and voronoiID154 (n= 267). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 19. Trajectory analysis between tiles voronoiID76 and voronoiID201 (n= 254). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 20. Trajectory analysis between tiles voronoiID44 and voronoiID97 (n= 250). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results.  
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Figure 21. Trajectory analysis between tiles voronoiID297 and voronoiID25 (n= 238). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 22. Trajectory analysis between tiles voronoiID76 and voronoiID181 (n= 237). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 23. Trajectory analysis between tiles voronoiID60 and voronoiID89 (n= 236). Left 

figure illustrates different routes between tiles and right figures present the road type analysis 

results. 
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Figure 24. Trajectory analysis between tiles voronoiID210 and voronoiID181 (n= 230). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 25. Trajectory analysis between tiles voronoiID62 and voronoiID185 (n= 225). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 26. Trajectory analysis between tiles voronoiID204 and voronoiID193 (n= 218). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 27. Trajectory analysis between tiles voronoiID18 and voronoiID154 (n= 209). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 28. Trajectory analysis between tiles voronoiID68 and voronoiID120 (n= 207). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 29. Trajectory analysis between tiles voronoiID239 and voronoiID181 (n= 207). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 30. Trajectory analysis between tiles voronoiID26 and voronoiID136 (n= 200). Left 

figure illustrates different routes between tiles and right figures present the road type analysis 

results. 
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Figure 31. Trajectory analysis between tiles voronoiID246 and voronoiID297 (n= 200). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 

   



 

55 

 

 

 

Figure 32. Trajectory analysis between tiles voronoiID248 and voronoiID6 (n=198). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 
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Figure 33. Trajectory analysis between tiles voronoiID248 and voronoiID6 (n=198). Upper 

figure illustrates different routes between tiles and bottom figures present the road type 

analysis results. 

   



 

57 

 

 

 

 

 

Figure 34. Trajectory analysis between tiles voronoiID142 and voronoiID222 (n=184). Left 

figure illustrates different routes between tiles and right figures present the road type analysis 

results. 
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