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Post-Quantum Secure Time-Stamping

Abstract:
Cryptographic timestamps are used as proof that a certain document existed before
another. Post-quantum secure time-stamping examines whether these proofs can be
forged using a quantum computer. The field is very unexplored as the primitives used in
keyless time-stamping have not shown any serious weakness towards quantum computers.
Until now no effort had been made towards formally defining post-quantum secure time-
stamping. In this work, we define the notion of post-quantum time-stamping and examine
how contemporary classical results change in this new framework. A key difference in
the post-quantum setting is that we cannot retrieve multiple separate executions of an
arbitrary quantum adversary. Currently known rewinding techniques allow an adversary
to be ran again only under very specific conditions. We examine the possibility of
combining existing rewinding techniques to prove a theorem for which there is currently
no proof in the standard post-quantum model. We conjecture a rewinding construction
which could possibly prove the theorem and establish a minimal open problem for
formally proving the theorem.

Keywords: Time-stamping, quantum computing, quantum cryptography

CERCS: P170 - Computer science, numerical analysis, systems, control

Post-kvant turvalised ajatempliprotokollid
Lühikokkuvõte:
Krüptograafilisi ajatempliprotokolle kasutatakse tõestusena, et üks dokument eksistee-
ris enne teist. Postkvantkrüptograafiliselt turvalised ajatempliprotokollid uurivad kas
neid tõestusi on võimalik võltsida kasutades kvantarvuteid. Tegu on suuresti uurimata
alaga, kuna võtmeta ajatempliprotokollides kasutatavates primitiivides pole seni leitud
kvantarvutite kontekstis tõsiseid nõrkusi. Selles töös me defineerime mis on post-kvant
turvalised ajatempliprotokollid ning uurime kuidas klassikalised tulemused muutuvad
uues raamistikus. Suur erinevus kvantvastaste puhul on see, et meil ei ole võimalik saada
suvalise kvantalgoritmi mitut erinevat käivitust. Tänapäeval teadaolevad tagasipööramise
võtted võimaldavad kvantalgoritmi tagasi pöörata ainult väga kindlatel tingimustel. Me
uurime nende võtete kombineerimise võimalikkust ühe teoreemi tõestamiseks. Sellele
teoreemile ei ole hetkel post-kvant standardmudelis ühtegi tõestust. Me pakume tões-
tuseta ühe tagasipööramise konstruktsiooni, mille abil võib osutuda teoreemi tõestamine
võimalikuks. Me lisaks pakume välja ka minimaalse lahendamata probleemi, mis on
esimene samm teoreemi formaalse tõestamiseni.

Võtmesõnad: Ajatempel, kvantarvutus, kvantkrüptograafia

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria)
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1 Introduction
Cryptographically secure time-stamping mostly deals in the security of hash-based time-
stamping protocols. As quantum computers have not yet achieved very strong attacks
against hash functions, there is seemingly little concern for the security of hash-based
time-stamping protocols in the quantum setting. Most recently, Buldas et al. noted
that with some small differences, classical results can be carried over to the quantum
setting [BLT17]. However, the notion of a secure time-stamping scheme in the post-
quantum setting is currently undefined. As it has been shown in the case of commitments,
there can be subtleties when dealing with quantum states and adversaries which can cause
classical definitions to no longer capture their intended meaning. In our work, we lift the
appropriate classical definitions into the quantum setting and explore the outcomes.

We begin with an overview of current classical time-stamping schemes and their
cryptographical results. In Section 5 we define post-quantum security for time-stamping
schemes and show that the definition of an unpredictable quantum adversary needs to
differ significantly from the classical setting. In Section 6 we give a brief overview of
contemporary quantum rewinding techniques. We do this with the aim to prove that
collapsing hash functions are sufficient for polynomially bounded keyless time-stamping
schemes. This is a theorem which holds in the classical setting, but for which there is no
proof in the post-quantum standard model.
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2 Cryptographic Background
We expect the reader to have some knowledge of cryptography and of quantum computing.
This section is intended to be a reference guide if one comes across a term they do not
recognize or remember. Additionally, all definitions, theorems and lemmata can be found
in the Index section of the Appendix. All quoted definitions, theorems and lemmata
appear in a shaded box with the proper accompanying citation, with the exception of
Lemma 1 where we cite both the original article as well as the source for our notation.

As we base several of our definitions on the article by Buldas and Laur, we use the
following from their Notation and Definitions section: [BL06].

Definition 1 (Probabilistic functions (FP)). Let FP be the class of all probabilistic
functions f : {0, 1}? ← {0, 1}? computable by a polynomial-time Turing machine.

Definition 2 (Collision (C)). Let C denote that (x, x′) is a collision for h if

C(x, x′) = [x 6= x′ ∧ h(x) = h(x′)]

Definition 3 (Collision-resistance). A function h $←− F is Collision-resistant if ∀A ∈ FP :

Pr[(x, x′)← A(1k, h) : C(x, x′)] = k−ω(1)

By Un we denote the uniform distribution on {0, 1}n. A distribution family {D‖}k∈N
is poly-sampleable if there exists aD ∈ FP with output distribution D(1k) equal toDk.

Definition 4 (2nd Preimage Resistance). A function h $←− F is 2nd Preimage Resistant if
∀A ∈ FP :

Pr[x← U` : x′ ← A(x) : C(x, x′)] = k−ω(1)

Definition 5 (One-Way hash function). A function h $←− F is One-Way if ∀A ∈ FP :

Pr[x← U` : x′ ← A(h(x)) : h(x) = h(x′)] = k−ω(1)

The following notation is adopted from Dominique Unruh’s Quantum Cryptology
class notes [Unr17].

Definition 6 (Quantum states). An n-dimensional quantum state is represented by a
vector |Ψ〉 ∈ Cn with |||Ψ〉|| = 1 (here Cn is a Hilbert space).
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We abbreviate x⊗ . . .⊗ x (n components) as x⊗n where ⊗ is the tensor product (or
Kronecker product).

Definition 7 (Unitary matrices). A matrix M ∈ Cn×n is unitary if M †M = MM † = I
where I is the identity matrix.

Definition 8 (Hadamard). The Hadamard gate (usually denoted H) is defined by

H =
1√
2

(
1 1
1 −1

)
or equivalently

H|0〉 =
1√
2

(|1〉+ |0〉)

H|1〉 =
1√
2

(|0〉 − |1〉)

Definition 9 (Unitary transformation). A unitary transformation on a quantum state
|Ψ〉 ∈ Cn is represented by a unitary matrix U ∈ Cn×n. The state after the transforma-
tion is U |Ψ〉.

Definition 10 (Measurement). A (projective) measurement on a Hilbert space H is
specified by a family {Pi}i∈I of orthogonal projections onH labelled with the possible
measurement outcomes i ∈ I . The projections have to be pairwise orthogonal, i.e.
PiPj = 0 for i 6= j. And the projections sum to 1, i.e.

∑
i Pi = 1H where 1H is the

identity onH.
When measuring a state |Ψ〉 ∈ H, the outcome i occurs with probability

||Pi|Ψ〉||2

If the outcome i occurs, the state after the measurement (post-measurement state) is

Pi|Ψ〉
||Pi|Ψ〉||
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3 Time-Stamping Protocols

3.1 Introduction
A timestamp is used to note that a piece of data existed at a specific point in time. This
has many real life applications - consider a simplified scenario where someone has a
timestamped piece of media, where the timestamp predates the public release of this
piece of media. That person could then claim it as proof that they are the original author
of the media. However, in order for this proof to be convincing, it must be difficult to
forge. While most operating systems keep track of file creation time, those timestamps
would not be much help in a copyright dispute, as they can be easily forged by changing
the local clock.

Trusted time stamps are used to establish relative temporal authenticity, as absolute
time stamps are incredibly complicated if not impossible [BLLV98]. Relative temporal
authenticity allows the verifier to correctly identify which of the two time stamped
documents was signed earlier. In this section we outline different types of timestamping
schemes and their properties. This section is optional for those with previous knowledge
of hash-and-publish time-stamping.

3.2 PKI-Based Time-Stamping
A PKI-based time-stamping scheme relies on a completely trusted third party (a TSS -
Time stamping service), which distributes timestamps that are signed with the trusted
party’s digital signature. The benefits of this approach are its simplicity, fast verification
of timestamps, and security links to already existing primitives. However, it requires
unconditional trust in the third-party TSS and the continuous secrecy of private keys.

In a PKI-based time-stamping scheme, a client who wants a timestamp s of a doc-
ument X provides the TSS with x = H(X) where H is a hash function. The server
then generates the current timestamp t using a trusted time source and creates the
combined hash c ← h(x||t). The TSS then signs c using the digital signing function
σ = Sign(sk, c) and then returns s = (σ, t) to the client.

Client(X)[
s← TSS(H(x))

return s

TSS(x)
t← Device
c← h(x||t)
σ ← Sign(sk, c)

return (σ, t)

For verification, a similar process is carried out locally - the file is hashed using
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the hash function used on the client side. The timestamp generated by the device is
extracted from the TSS-issued timestamp and concatenated to the hash. This is hashed
together using the TSS-side hash function as the server did earlier, resulting in c. Then
the digital signature verification procedure is called to ensure that this was indeed the
signed document.

Verify(X, s, pk)
x← H(X)

(σ, t)← s

c← h(x||t)
return Verify(pk, c, σ)

Many commercial timestamping services use PKI-based time-stamping, confirming
to the RFC-5816 standard [SxSPT10]. The security of PKI-based timestamping schemes
in the post-quantum setting has been studied by Clupek et al [CMZ15]. As a result, this
paper focuses on other timestamping schemes.

3.3 Hash-Chain Time-Stamping
In hash-chain time-stamping schemes, sometimes referred to as hash-and-publish schemes,
data is hashed and linked together using public cryptographic hash functions in some sort
of data structure. The root of this data structure is then published in a widely available
piece of public media, such as a newspaper, and a certificate of the timestamp are the
necessary pieces of data required to reach a published root node.

In contrast to PKI-based time-stamping, hash-chain timestamping only requires the
existence of hash functions with certain properties, and does not rely on the secrecy of
any private key. However, as the certificate for a piece of data has to contain everything
needed to reach the published root node, the size of the certificate is dependent on the
number of issued certificates. Different data structures can be used to achieve better
certificate sizes with subtle differences in security.

3.3.1 Linked List Schemes

The first hash-chain time-stamping scheme proposed by Haber and Stornetta was based
on the linked list data structure [HS91]. The scheme relies on the fact that if a certificate
includes the hash of another issued timestamp, it must have been issued after it, as the
hash of the timestamp could not be known in advance. Thus by always including the
hash of the previous timestamp in a new certificate, relative temporal authenticity can be
achieved.

Formally, the TSS receives the time-stamping request for a string y for a client with a
unique identifier ID. For the n-th query, a TSS does the following:
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TSS(y, IDn)
tn ← Device

Cn ← (n, tn, IDn, yn;Ln)

s← σ(Cn)

Send IDn to client IDn−1

return s

Where tn is the actual measured time, σ is the TSS’s signing function, and Ln =
(tn−1, IDn−1, yn−1, H(Ln−1)) comes from the internal memory of the TSS and is based
on the previously issued time-stamp. This linking information contains the hash of the
previous timestamp’s information, and thus establishes temporal order between two
timestamps.

Once the client that requested the n-th timestamp has s and IDn+1, they check
whether s is a valid signature and whether tn is correct. Any challenger to their timestamp
can then check the legitimacy of their certificate, and to make sure that the client is not
colluding with the TSS by producing a one-off certificate that is not actually part of the
"legitimate" hash chain, they can contact person IDn+1 and check if their timestamp is
legitimate and their linking information contains the data from s. They can then do this
for IDn+2 and so forth, if they believe that IDn+2 is also colluding. Alternatively they
have access to IDn−1 from Ln and can go backwards in the chain as well. Without using
publishing, the only possible way to fool a challenger would be to create a fake chain of
certificates long enough to exhaust any challenger.

If publishing is involved, the most recent linking information can be periodically
published in a trusted publicly-accessible medium. Then, one can verify that the time tn
is at least within a time frame specified by two instances of the periodic publishing Lm−1
and Lm if there is a valid chain (Lm−1, . . . Ln, . . . Lm). Additionally, if it is constantly
verified that each published Lm is linked to Lm−1, the published linking values create
legitimate "anchor points" for certificate verification.

There are numerous drawbacks to the linked list scheme, and such it is only used for
pedagogic purposes. For instance, checking the relative temporal authenticity between
two timestamps is linear to the number of issued certificates. Additionally this requires
all certificates to be stored indefinitely for future verification of other certificates. While
Haber and Stornetta proposed a change to the linked list scheme, other data structures
have proven to be more efficient and in fact close to optimal.

3.3.2 Tree-Like Schemes

In tree-like schemes, the time-stamping procedure constructs tree at regular intervals.
Between these intervals, clients can submit their documents to be timestamped. A tree
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is constructed from these documents by hashing two requests together into an inner
node, and then hashing inner nodes together into a single root node, as in the hash trees
proposed by Merkle [Mer80]. The certificate is then the information required to reach
the published root hash from a given document. This causes the certificate size to be
logarithmic with respect to the number of issued timestamps, rather than linear.

The Haber-Stornetta scheme is a tree-based scheme, where after the round tree is
generated, the published string is the the root of the round tree hashed with the previously
published string [BHS93]. This is done in order to strengthen temporal order between
the rounds. An alternative approach to achieve this was offered by Benaloh and de
Mare, where each leaf node has to be hashed together with the root of the previous round
tree [BdM91].

This paper deals with linked list schemes and tree-like schemes as defined in Defini-
tion 11.

Let σ denote the empty string. If x = (x1, x2) ∈ {0, 1}2k and x1, x2 ∈ {0, 1}k then
by y ∈ x we mean y ∈ {x1, x2}.

Definition 11 (Hash-chain [BL06]). Let h : {0, 1}2k → {0, 1}k be a hash function.
By an h-chain from x ∈ {0, 1}k to r ∈ {0, 1}k we mean a (possibly empty) sequence
c = (c1, . . . , cl) of pairs ci ∈ {0, 1}2k, such that the following two conditions hold.

1. if c = σ then x = r

2. if c 6= σ then x ∈ c1, r = h(cl), and h(ci) ∈ ci+1 for every i ∈ {1, . . . , l − 1}.
We denote by Fh(x; c) = r the proposition that c is an h-chain from x to r. Note that

Fh(x;σ) = x for every x ∈ {0, 1}k.

3.3.3 Optimal Binary Linking Scheme

Buldas et al. have proposed a binary linking scheme which they have proven to be
asymptotically optimal [BLLV98]. This scheme is out of scope for the purposes of this
paper.
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4 Classical Security
In this section we outline the different security definitions and properties related to time-
stamping. This section is optional for those already familiar with secure time-stamping.
While this paper concerns itself with time-stamping definitions which use unpredictable
adversaries such as the ones outlined in Section 4.2, we also briefly mention the list
commitment approach to time-stamping.

4.1 Real-Life Attack Scenario
The security of time-stamping protocols concerns itself with protection against back-
dating attacks. That is, consider a scenario where a client produces an original document
(e.g. a proof or invention) and time-stamps it. Then once it is released to the public, an
adversary (potentially the time-stamping server itself) tries to claim ownership of the
document by providing a timestamp for it which predates the client’s. To do so, they must
manufacture a fake certificate which is a hash-chain to a root value that was published
before the document was known to the time-stamping server.

4.2 Unpredictability Based Definition

An interesting problem when dealing with time-stamping is how to define the no-
tion of an original document. The approach used in this section is one where any
future documents are considered unpredictable. In "On Provably Secure Time-Stamping
Schemes"[BS04], Buldas and Saarepera define new documents as ones that are sampled
from an unpredictable distribution D, such that

Pr[y ← D, x← D : x = y] = k−ω(1)

In later years, Buldas and Laur define unpredictability as a property of an adversary,
rather than a distribution of documents [BL06]. This models real life more closely as the
adversary can have some influence over the document (and more importantly its hash)
by altering things such as whitespace symbols. The article by Buldas and Laur also
establish many other important security definitions which we will later use as a basis for
our post-quantum definitions.

Definition 12 (FPU [BL06]). Let FPU be the class of all two-staged probabilistic poly-
time adversaries (A1,A2), such that the first output component of A2 is unpredictable,
even if the output of A1 is known to the predictor, i.e. for every poly-time predictor Π:

Pr[(r, a)← A1(1
k), x′ ← Π(r, a), (x, c)← A2(a) : x′ = x] = k−ω(1)
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Note that the predictor has access to the advice string a, allowing it to run A2 within
itself. This requires that the probability of each individual output from the output
distribution of A2 be negligible.

Buldas and Laur define a secure time-stamping scheme as one where a two-staged
adversary first outputs r (the value to be published) and a (an advice string for A2) given
access to the server-side hash function h. Note that r need not be created using h. A2

then needs to produce an unpredictable value X (the document) and a certificate c such
that the client-side hash of the document verifies with respect to r.

Definition 13 (Secure (H, h)-time-stamping [BL06]). A (H, h)-time-stamping scheme
is secure if for every (A1, A2) ∈ FPU the next probability is negligible:

Pr[H ← Fck, h← Fsk, (r, a)← A1(1
k, H, h), (X, c)← A2(a) : Fh(H(X; c) = r]

Additionally they explore the necessary and sufficient properties for secure time-
stamping. As they show that h does not even need to be one-way, they define new security
conditions for both the client and server side hash functions.

Theorem 1 (Sufficient requirement for secure time-stamping [BL06]). For secure (H,h)-
time-stamping in terms of Definition 13 it is sufficient that h is sChain, H is uPre and the
distribution H ← Fck is poly-samplable.

The sufficient property for the server side hash function is effectively the definition
for secure time-stamping without client-side hash functions.

Definition 14 (Strong chain-resistance - sChain [BL06]). A function distribution family
{F} is strongly chain-resistant, if for every (A1, A2) ∈ FPU:

ε(k) = Pr[h← Fk, (r, a)← A1(1
k, h), (x, c)← A2(a) : Fh(x; c) = r] = k−ω(1)

For client-side hash functions, it is a necessary and sufficient requirement that the
hash function preserves the unpredictability of its inputs.
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Definition 15 (Unpredictability preservation - uPre [BL06]). A function distribution
family {Fk} is unpredictability preserving if for every unpredictable poly-samplable
distribution family {Dk} and for every predictor Π ∈ FP :

Pr[H ← Fk, y ← Π(1k, H), x← D‖ : y = H(x)] = k−ω(1)

4.3 Results Within the Unpredictability Definition
In addition to defining the sufficient security definitions for secure time-stamping, Buldas
and Laur also explore the relationships between the new definitions and existing proper-
ties of hash functions [BL06]. Most notably, they show that server-side hash functions
do not need to be one-way. They show full separation between uPre and the previously
known 2nd Preimage Resistance property. They show that uPre is instead equivalent to
the following property:

Definition 16 (weSec [BL06]). We say that a fixed familyH = {Hk} is weak everywhere
2nd preimage resistant if for every poly-samplable un-predictable distribution family Ak
on {0, 1}`(k):

max
X∈{0,1}`(k)

Pr[X ′ ← Ak : X ′ 6= X,H(X ′) = H(X)] = k−ω(1)

During earlier work in the field of time-stamping, Buldas et al. had previously shown
that a collision-resistant function is also unpredictability preserving [BLSW05]. Buldas
and Jürgenson have shown that there are no black-box reductions from collision-resistant
hash functions to time-stamping schemes using an oracle separation technique [BJ07].
However, it has been shown that collision-resistance does imply secure time-stamping
for hash chains and Merkle trees with a polynomially bounded amount of allowed tree
"shapes" [BN10]. Buldas and Laaneoja have also shown that this polynomial bound is
necessary, as without it they are able to turn any pre-image aware function into one which
is insecure for time-stamping [BL13]. They also show that under the Random Oracle
and Preimage Awareness assumptions, the following holds:

13



Theorem 2 (Security under Random Oracle and Preimage Awareness Assump-
tions [BL13]). If h : {0, 1}2n → {0, 1}n is a random oracle, then the corresponding
(bounded or unbounded) hash-tree time-stamping schemes are 2

n−1
2 secure.

Note that this is independent from the number of issued timestamps.
With regards to MD-hash functions specifically, Buldas and Laur have shown that

collision-finding attacks with regards to a random initialization vector are sufficient
to violate uPre [BL06]. They also have shown that this is likely to be the case for all
iterative hash functions as they show that when assuming computational uniformity from
the compression function, the average and worst case complexities do not differ greatly.

4.4 Black-Box Definition
An alternate approach to secure time-stamping is to view one round in a tree-based
scheme as a list commitment. Buldas and Laur show that every binding N -bounded list
commitment scheme doubles as a secure time-stamping scheme [BL07].

Definition 17 (Black-box security [BL07]). A time-stamping scheme is (t, τ, ε)-secure
if there exists a τ -time black-box extractor machine K such that for every t-time A:

Advts(A) = Pr

 ω1 ← Ω, pk← Gen, X̂ ← KA(pk;ω1;·)(pk)
(c, n, φ)← A1(pk, ω1), (x, s)← A2(φ) :

(Verpk(c, n, x, s) = true ∧ x 6∈ X̂ ) ∨ |X̂ | > n


where ω1 denotes random coins of A1 and K gets a black-box access to A1(pk;ω1) and
A2(φ; ·). The working time of KA(pk;ω1,·) includes the time needed to execute all oracle
calls. For list commitments, we treat X̂ as a list and write x ∈ X̂ iff x = X̂ [loc(s)]].

This definition states that a list commitment c can’t open to an unknown document
x, as there exists an algorithm K which is able to efficiently extract the list of all
valid documents using (A1,A2). This definition is currently unsuitable in the post-
quantum setting as rewinding of arbitrary quantum algorithms currently can’t be done
(see Section 6).
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5 Defining Post-Quantum Security
Since there is currently no highly efficient quantum attack against hash functions, they
are sometimes regarded as seemingly "quantum immune" [BLT14]. As such, there
has not been much study in the field of hash-and-publish time-stamping schemes in
the post-quantum setting. More recently in 2017, Buldas et al. also note that some
differences between the classical and post-quantum setting, stating among other things
that as there are no restrictions placed on the advice string in the unpredictability model,
it can be quantum data [BLT17]. However the definition of FPU involves state copying,
which is not possible in the case of quantum states. More interestingly, a direct lifting
of FPU leads to a less generalizable definition of unpredictability, which we will show
in Section 6.3.5. This shows the need for clear definitions that are designed for the
post-quantum setting.

In this section we define unpredictable quantum adversaries, which lays most of
the groundwork for defining the unpredictability-based model for post-quantum time-
stamping. In order to make the definition realizable, we remove the runtime requirement
of the predictor and show that this restriction was unnecessary, even in the post-quantum
setting. We then define all the previous definitions in the post-quantum setting and
perform analysis on several proofs to verify whether or not they hold with respect to the
new definitions.

5.1 Defining Unpredictable Quantum Adversaries
When defining post-quantum security, it is important to look at the previous definitions
with a critical eye. Classical definitions can lose the real-life meaning they try to convey
if one just hastily replaces normal bitstrings with quantum states and Turing machines
with quantum Turing machines. In the case of commitment schemes, a definition
that perfectly satisfies the real-life scenario for computationally binding commitments
becomes extremely weak when directly translated into the quantum setting [ARU14]. In
this section we define post-quantum security of time-stamping schemes and outline some
key obstacles in doing so.

When lifting the FPU definition into the quantum setting, one must consider which
variables and algorithms become quantum, and which not. In terms of adversaries, there
seems to be no reason to require either part of the adversary to be classical. As for data, r
is modeled to be the published root, and so it does not make sense for it to be a quantum
state. However, a is the advice string which is supposed to, in part, represent the internal
state of A1. As such it should be given the possibility to be a quantum state.

This proposes an obstacle, as an unknown arbitrary quantum stated cannot be copied
according to the No-Cloning Theorem. [KWHZ82] In the definition of FPU there is
explicit copying of the advice string a to hand out to both Π andA2, which must therefore
be eliminated. An intuitive solution might seem to require Π to not significantly disturb
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the state a during its computation. However, as we demonstrate in Section 6.3.5 this
would result in a definition that does not generalize to a scenario where r can be a
quantum state. The definition of a two-stage unpredictable quantum adversary could be
useful in other subfields, and so we should prefer a definition which could also allow r to
be quantum. Instead, we require that invoking Π does not significantly disturb the output
distribution of A2.

Definition 18 (Undisturbing quantum predictor). A quantum predictor Π is undisturbing
if for every quantum detector D the value |Pr[b = 1|Game1] − Pr[b = 1|Game2]| is
negligible, where:

Game1 : (r, a)← A1(1
k), (x′, a′)← Π(r, a), (x, c)← A2(a

′),b← D(x, c)

Game2 : (r, a)← A1(1
k), (x, c)← A2(a),b← D(x, c)

Definition 19 (qFPU). Let qFPU be the class of all two-staged quantum poly-time ad-
versaries (A1,A2), such that the first output component of A2 is unpredictable, even if the
output of A1 is known to an undisturbing quantum predictor, i.e. for every undisturbing
quantum predictor Π:

Pr[(r, a)← A1(1
k), (x′, a′)← Π(r, a), (x, c)← A2(a

′) : x′ = x] = k−ω(1)

Where a and a′ are quantum states and all other inputs and outputs are classical
bitstrings.

A natural question that one might have is if this new definition is even satisfiable, as
measurements performed on quantum states collapses them. Somewhat surprisingly, a
computationally unlimited predictor that has full knowledge related to state a (in our
case, it also requires access to r) can perform spectral decomposition and measure the
state without disturbing it.

Theorem 3 (Spectral decomposition [NC11]). Any normal operator M on a vector
space V is diagonal with respect to some orthonormal basis for V . Conversely, any
diagonaliazable operator is normal.

In terms of the outer product representation, this means that M can be written
as M =

∑
i λi|i〉〈i| where λi are the eigenvalues of M , |i〉 is an orthonormal basis

for V , and each |i〉 an eigenvector of M with eigenvalue λi. In terms of projectors,
M =

∑
i λiPi, where λi are again the eigenvalues of M , and Pi is the projector onto the

λi eigenspace of M . These projectors satisfy the completeness relation
∑

i Pi = I , and
the orthonormality relation PiPj = δijPi.
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However, it is not known how to achieve spectral composition in polynomial time,
which is why Π in qFPU is left unbounded. There might also be additional techniques
that would allow Π to have access to the state a.

This raises a new question - is the definition with an unlimited predictor too strict
for modelling real-life scenarios? The answer is no - first consider this in the classical
setting.

Definition 20 (CP-FPU, CU-FPU). Let CP-FPU refer to the version of FPU where Π is
a classical probabilistic poly-time Turing machine. Let CU-FPU refer to the version of
FPU where Π is a classical computationally unlimited probabilistic Turing machine.

Theorem 4 (CU-FPU = CP-FPU). For every two-staged adversary (A1, A2):

(A1, A2) ∈ CP-FPU⇔ (A1, A2) ∈ CU-FPU

Proof. CP-FPU ⇒ CU-FPU is trivial, as CU-FPU only gives Π more computational
power. For CU-FPU⇒ CP-FPU, let U be the computationally unlimited predictor Π in
the definition of CU-FPU. U has non-negligible advantage ε. We construct the following
poly-time predictor P for use in CP-FPU and show that it succeeds with non-negligible
probability.

P (r, a)[
(x, c)← A2(a)

return x

Consider the following games G1,G2,G3. Note that G1 is the definition of CU-FPU with
an extra function call to P which is of no consequence. Thus G1 returns true with
probability ε. As all P does is call A2, the same applies for G∈. Since the calls to P and
A2 are independent (one can reorder them with no consequence), G3 returns true with
probability ε2.

G1
(r, a)← A1(1

k)

y ← U(r, a)

x′ ← P (r, a)

(x, c)← A2(a)

return x = y

G2
(r, a)← A1(1

k)

y ← U(r, a)

x′ ← P (r, a)

(x, c)← A2(a)

return x′ = y

G3
(r, a)← A1(1

k)

y ← U(r, a)

x′ ← P (r, a)

(x, c)← A2(a)

return x = y ∧ x′ = y
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Due to transitivity, we can then claim that the probability of x = x′ is ε2. Removing
the unnecessary call to U then gives us our final game

G4
(r, a)← A1(1

k)

x′ ← P (r, a)

(x, c)← A2(a)

return x = x′

which is the definition of CP-FPU with the poly-time predictor P in place of Π, and this
has non-negligible advantage ε2.

This is an extremely intuitive result when considering that as the statistical distance
between the predictor’s output distribution and the distribution of the predicted adversary
decreases, the more accurate the predictor will be. A simulating predictor will have
statistical distance of 0, making it the ideal predictor.

In the case of Theorem 4, A2 is being ran multiple times, once as part of P and
then by itself. Lifting this proof into the quantum setting would then require efficient
poly-time rewinding of A2. But could it be possible that there is a problem in proof
technique, and we could prove this theorem in a radically different way? Interestingly
no, as if the theorem held, there would exist a P which we could plug into the proof. So
either a polynomial time predictor is not meaningful, or it is equivalent to an unlimited
runtime predictor. This gives us a negative answer to the question raised earlier - qFPU
is not too strict of a definition.

5.2 Changes to the Unpredictability Based Approach
As qFPU fixed which adversaries and variables are quantum, the other definitions from
the unpredictability-based model outlined in Section 4.2 can be lifted fairly easily into
the post-quantum setting. For formality we will present them here in order to display
how each definition changes (if at all).

Definition 21 (Post-quantum secure (H, h)-time-stamping). A (H, h)-time-stamping
scheme is secure if for every (A1, A2) ∈ qFPU the following probability is negligible:

Pr[H ← Fck, h← Fsk, (r, a)← A1(1
k, H, h), (X, c)← A2 : Fh(H(X); c) = r]

Definition 22 (quPre). A function distribution family {Fk} is unpredictability preserving
if for every unpredictable quantum poly-sampleable distribution family {Dk} and for
every poly-time quantum predictor Π :

Pr[H ← Fk, y ← Π(1k, H), x← Dk : y = H(x)] = k−ω(1)
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Definition 23 (q-weSec). A fixed function family H = {Hk} satisfies q-weSec if for
every quantum poly-samplable unpredictable distribution family Ak on {0, 1}`(k):

max
X∈{0,1}`(k)

Pr[X ′ ← Ak : X ′ 6= X,H(X ′) = H(X)] = k−ω(1)

Definition 24 (qsChain). A function distribution family {Fk} strongly quantum chain
resistant if for every (A1, A2) ∈ qFPU :

ε(k) = Pr[h← Fk, (r, a)← A1(1
k, h), (x, c)← A2(a) : Fh(x; c) = r] = k−ω(1)

We have also performed preliminary review for the proofs for the properties outlined
in Section 4.3 to see if the argumentation holds in the post-quantum setting. We claim
the following results:

• The Post-quantum secure (H, h)-time-stamping⇒ quPre proof holds in the post-
quantum setting.

• The proof for Theorem 1 holds in the post-quantum setting.

• The proof for uPre 6⇒ 2nd Preimage Resistance holds in the post-quantum setting.

• The proof for 2nd Preimage Resistance 6⇒ uPre requires additional review from
someone versed in quantum information theory. The reason for this is that it should
be analyzed whether being able to evaluate H ′k in superposition has any impact on
the proof.

• The proof for Post-quantum secure (H, h)-time-stamping 6⇒ One-Way holds in the
post-quantum setting.

• The rewinding proof for CR⇒ sChain does not hold in the quantum setting, see
Section 6.

The oracle separation technique used for showing CR⇒ qsChain and the theorems
for security under preimage awareness assumptions could not be reviewed due to time
constraints.
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6 Quantum Rewinding
Rewinding is a common proof technique in cryptography which refers to the technique of
saving the inner state of an adversary in order to run it multiple times. While two separate
techniques for rewinding have been developed by Watrous [Wat09] and Unruh [Unr12],
they are only applicable in certain scenarios. It has been shown that, with respect to a
certain oracle, some schemes which were proven to be classically secure via rewinding
are insecure in the quantum setting. [ARU14]

Rewinding plays a crucial role in certain proofs and definitions related to time-
stamping. Most notably, all proofs that show CR⇒ sChain (for chains or limited amount
of tree shapes without the Random Oracle assumption) rely on rewinding [BN10].
Additionally, the black-box definition hinges on turning the adversary into an efficient
extractor. As such we will not be defining a quantum version of that security definition,
since it would not be meaningful.

This section gives an overview on existing quantum rewinding techniques, states
different rewinding problems related to time-stamping, and our attempts to solve them.

6.1 Watrous’ Rewinding Technique
The Watrous rewinding lemma allows a simulator to repeatedly run a unitary operation
Q with success probability p a number of times, making it succeed with overwhelming
probability. However, the Watrous technique hinges on not keeping information about
past executions, meaning that it is not possible to use this technique to gain two different
executions of an algorithm.

Lemma 1 (Quantum rewinding lemma [Wat09, Unr17]). Let Q be a unitary operation
fromHin⊗Hanc toHout⊗Hsucc withHsucc = C2. (This implies that dimHin⊗Hanc =
dimHout ⊗Hsucc since a unitary operation is a square matrix.)

Assume that there is a value p ≤ 1
2

such that for any |Ψ〉 ∈ Hin, we have
that applying Q to |Ψ〉 ⊗ |0〉 and then measuring Hsucc in the computational basis
gives outcome 1 (success) with probability p (not ≥ p). Let |φsucc〉 denote the post
measurement state inHout in that case.

Consider the following algorithm R (depending on a parameter q):

1. Let |Ψ〉 denote the input of the algorithm (inHin).

2. InitializeHanc with |0〉.
3. Apply Q.

4. MeasureHsucc in the computational basis.
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5. If the outcome is 1, exit (successfully).

6. Apply Q†.

7. Apply FLIP to Hanc where FLIP|0〉 := |0〉 and FLIP|x〉 := −|x〉 for x 6= 0.

8. Go to 3. (But at most q times.)

Then for a suitable q ∈ poly(1/p), we have that

• The probability that R exits successfully is overwhelming.

• The post measurement state inHout in that case is |φsucc〉.

The difficulties in applying the Watrous lemma are often related to the fact that
it requires the success probability to be precisely p rather than ≥ p and for it to be
independent of the auxiliary input. For instance, while it may seem intuitive to apply the
Watrous lemma to the first run in the Unruh Rewinding Technique, but Unruh has stated
in that this condition is not always fulfilled [Unr12].

Another subtlety of the Watrous technique is the FLIP operation. This is required
in order to slightly disrupt the state, as otherwise one would be applying Q right after
applying Q†. Since Q is unitary, by definition QQ† = Q†Q = I , which would cancel out
the second run.

6.2 Unruh Rewinding Technique
In contrast to the Watrous lemma, the Unruh rewind allows one to rewind in order to
gain two successful executions of an algorithm. We view the Unruh lemma in the context
of a sigma protocol of a commitment scheme (Com,Ver) where we want two different
executions (c,m, u) and (c,m′, u′).

P V

c

m

u

Figure 1. Example sigma protocol for a commitment scheme

If the probability of the sigma protocol succeeding is ε then the Unruh rewind
provides us with the different executions with probability ε3. However, for the rewind to
work, it requires strict binding or strict soundness - that ∀c ∀m : ∃≤1u : Ver(c,m, u) = 1.
That is, the first two messages uniquely fix the third. The Unruh rewind splits the prover
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P into two unitary operations, (A1, A2) where there are multiple A2’s that are indexed
by the message m sent to the prover.

A1 A2,m A†2,m A2,m′ A†2,m′

S S S S S

U U

C
c u u′

Figure 2. The Unruh rewind technique informally

Figure 2 presents a simplified circuit of the Unruh rewind where black squares
indicate measurement. In essence, it allows one to rewind A2,m by running A†2,m since c
and m uniquely determine what u can be, meaning the measurement does not disrupt the
state S. In addition to collapsing hash functions, which by definition disrupt the state S
negligibly. Note that every collapsing hash function is collision resistant.

Definition 25 (Collapse [Unr16]). For a function H and algorithms A,B, consider the
following games:

Game1 : (S,M, c)← A(1η),m←Mcomp(M), b← B(1η, S,M)

Game2 : (S,M, c)← A(1η), b← B(1η, S,M)

Here S,M are quantum registers. Mcomp(M) is a measurement of M in the computa-
tional basis.

We call an adversary (A,B) valid if Pr[H(m) = c] = 1 when we run (S,M, c)←
A(1η) and measure M in the computational basis as m.

A function H is collapsing iff for any quantum-polynomial-time valid adversary
(A,B), the difference adv := |Pr[b = 1 : Game1] − Pr[b = 1 : Game2]| is negligible.
(We call adv the advantage.)
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6.3 Rewinding in Collapse⇒ qsChain

We focus on an important property which does not carry over from classical results,
namely that CR⇒ qsChain. As every classical proof for this property uses rewinding,
whether requiring the hash function to be collapsing would allow us to prove Collapse→
qsChain. For simplicity we focus on hash chains and attempt to perform the rewinding
proof in the quantum setting.

6.3.1 Classical Rewinding Proof

We begin by proving CR⇒ sChain for hash-chains for a fixed hash function, in order to
analyze and lift the proof to the quantum setting. First as a matter of formality we define
hash-chains for linked lists rather than Merkle trees.

Definition 26 (Linear hash chains). By an h-chain from x ∈ {0, 1}k to r ∈ {0, 1}k we
mean a (possibly empty) sequence c = (c1, . . . , cl) of values ci ∈ {0, 1}k, such that the
following two conditions hold:

1. if c is empty then x = r

2. if c is not empty then x = c1, r = h(cl) and h(ci) = ci+1 for every i ∈ 1, . . . , l − 1.

Definition 27 (sChain for fixed functions). A function h is strongly chain-resistant, if for
every (A1, A2) ∈ FPU:

ε(k) = Pr[(r, a)← A1(1
k, h), (x, c)← A2(a) : Fh(x; c) = r] = k−ω(1) (1)

The general proof sketch is as follows: We run A2 twice to get two valid certificates
r = Fh(x; c) = Fh(x

′, c′). From FPU it follows that Pr[x = x′] is negligible. Then we
can easily find a collision in (c, c′). However, this does not always hold - for instance,
if x′ = h(x) and c′ is the chain from x’s parent to r. We can show that due to A2 being
unpredictable, the probability of this is negligible.

Lemma 2 (Witnesses don’t predict future statements). Given an adversary (A1, A2) ∈
FPU against sChain, for two independent runs of A2 with the same input the probability
that the witness of one run contains the statement of the other is negligible. That is

Pr[(r, a)← A1, (x, c)← A2(a), (x′, c′)← A2(a) : ∃i : ci = x′] = k−ω(1) (2)

Proof. Let ε be the probability defined in (2). Let ε be non-negligible. Consider a
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predictor Π such that

Π(a)
(x, c)← A2(a)

M = {mi|∃j : mi ∈ cj ∨mi = cj}

r
$←−M

return r

Consider this Π as the adversary in (12). The probability that Π succeeds in predicting
is ε
|M | which is non-negligible based on our assumption that ε is non-negligible and the

fact that |M |must be polynomial due to the runtime constraints in FPU. This contradicts
the fact that (A1, A2) ∈ FPU. Therefore ε must be negligible.

Theorem 5 (CR⇒ sChain).

Proof. Let h be a collision-resistant function distribution family. Assume that h is not
strongly chain-resistant, meaning ε(k) from (1) is non-negligible.

Consider an adversary B such that

B(h)
(r, a)← A1(1

k, h)

(x, c)← A2(a)

(x̄, c̄)← A2(a)

return g(c, c̄)

Where g is a recursive collision-finding function defined in pattern matching syntax
as

g(σ, _) := ⊥
g(_, σ) := ⊥
g(ci : c′, c̄i : c̄′) := if ci = c̄i then g(c′, c̄′) else (cl, c̄i)

From the runtime of A2, the length of (c, c̄) is polynomial, so B is also poly-time. If
both runs of A2 succeed then h(cl) = h(c̄l) = r. If cl 6= c̄l then we have a collision.
Otherwise we apply this search recursively as eventually either a collision is found or
one of (c, c̄) ends. If c ends before we find a collision then c1 ∈ c̄. From Lemma 2 we
know that the probability of this happening is negligible. Therefore we can quantify the
success of B as

Adv(B) = Pr[Fh(x, c) = Fh(x̄, c̄) = r ∧ ¬(x ∈ c̄ ∨ x̄ ∈ c)] = ε(k)2 − Pr[x ∈ c̄ ∨ x̄ ∈ c]

which is non-negligible. This makesB a polynomial time collision finder for h. Therefore
ε(k) must be negligible and h satisfies sChain.
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6.3.2 Difficulties With Direct Lifting

Theorem 5 provides some interesting challenges when lifting into the quantum setting.
For one, notice that due to its wording, Lemma 2 does hold in the quantum setting,
but will not be of much use in the proof. Namely it does not hold when, for instance,
performing the Unruh Rewinding Technique as the two runs of A2 will no longer be
independent - the state S will be changed after performing the measurement of u. We
cannot claim that this preserves the second run’s unpredictability, so it is possible that
the second run of A2 will output an x′ that is contained in c.

Additionally, if one was to apply the Unruh Rewinding Technique directly with
c = r,m = ”hello”, u = (x, c) then this will not lead to success. This is because
there is no m which will uniquely determine (x, c). In fact, due to the fact that A2 is
unpredictable, there must be exponentially many possible values for x, which means that
any measurement to find the value of x will disrupt the state catastrophically.

6.3.3 Adversary With Fixed Chain Length

We use Lemma 2 in Theorem 5 to guarantee that one chain does not fully overlap the
other. Fortunately by having A1 fix the length of the chain we achieve the same result,
but without requiring the runs to be independent. Now the adversary B that we need to
lift would be

B(h)
(r, a, i)← A1(1

k, h)

(x, c)← A2(a)

(x̄, c̄)← A2(a)

return g(c, c̄)

Notice that requiring the length of the chain to be fixed keeps the success probability
of (A1, A2) non-negligible. Indeed, as the length of the longest chain that A2 would
output would be polynomial, the success probability of (A1, A2) drops at worst by a
polynomial degree.

6.3.4 Commitments With Unpredictable Openings and Messages

Consider the game in Figure 3 for a commitment scheme, where A2 is unpredictable and
A1 sends c before A2 starts.

In the classical setting, it can be easily shown that if the commitment scheme is
binding then Pr[b = 1] is negligible. However, this is not known to hold in the quantum
setting. When viewing the special case of i = 1 for fixed length hash chains, it is a
hash commitment that conforms to this problem. Therefore we present formally proving
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A2
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m, u

b

b = Ver(c,m, u)

a

Figure 3. The unpredictable commitment subproblem

that Pr[b = 1] is negligible in the quantum case as a minimal open problem in showing
Collapse⇒ qsChain.

6.3.5 Subtleties in Defining No Disturbance

When defining qFPU, we noted that requiring the predictor to not disturb the state leads
to a definition which is not as neatly generalizeable. Consider the following definition:

Definition 28 (Undisturbing quantum predictor - candidate). A quantum predictor Π
is undisturbing if for every quantum detector D the value |Pr[b = 1|Game1]− Pr[b =
1|Game2]| is negligible, where:

Game1 : (r, a)← A1(1
k),(x′, a′)← Π(r, a), b← D(r, a′)

Game2 : (r, a)← A1(1
k), b← D(r, a)

This effectively states that A2 cannot tell the difference in whether or not Π was ran,
therefore Π also has a negligible impact on A2’s output. Otherwise D could run A2 and
distinguish from its output, similar to the actual qFPU definition.

However, it may be beneficial to allow Π to collapse the state a. This is in the
case where we also allow r to be quantum. If that were the case there exists a pair of
adversaries (A1, A2) for the game pictured in Figure 3 where V does not measure c until
he has received (m,u), for which Pr[b = 1] = 1 and (A1, A2) ∈ qFPU but which clearly
should not belong in qFPU. Consider the following (A1, A2):

Let the third wire of A1 be the commitment r and the first and second wire together
form the inner state a. A1 initializes its wires with all zeroes, then runs H⊗n on the first
wire, after which its state is

∑
i

|i〉 ⊗ |0〉 ⊗ |0〉. Then it runs Uh which is defined as

Uh|x, y, z〉 = |x, y ⊕ h(y), z ⊕ h(y)〉
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|0〉
|0〉
|0〉
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V

i h(i)

b

Figure 4. Adversary against Definition 28

After which its internal state is described at
∑
i

|i, f(i), f(i)〉. A2 receives
∑
i

|i, h(i)〉

at which point it measures both wires, fixing its state for some uniformly chosen i as
|i, h(i)〉. Thus V has received (h(i), i, h(i)), which verifies.

But is (A1, A2) ∈ qFPU? If the predictor is defined as in definition Definition 28 then
yes. That is because if Π who is allowed to read the full state a and create an identical
quantum state a′, the measurement that it performs on a′ as a result of running A2(a

′)
will output a uniform i which is completely independent of what A2 will measure. Thus
Π will not be able to predict A2.

However, our definition for the predictor in Definition 18 rejects A2 as an unpre-
dictable adversary. A predictor Π which measures both wires similarly to A2 will indeed
disturb the state, but not in any way that would be noticeable from the output of A2, as
repeated identical measurements do not change the state.

6.4 Conjecture for Collapse⇒ qsChain

We present, without proof, a possible solution for showing Collapse⇒ qsChain. Recall
that to show this via rewinding, we require two transcripts (r, x, c), (r, x′, c′) such that

1. x 6= x′

2. x 6∈ c′ ∧ x′ 6∈ c
3. Fh(x; c) = Fh(x

′; c′) = r

In which case a collision (against Collision-resistance) is guaranteed. Recall also that we
cannot apply the Unruh rewind directly as an analogue from commitment schemes as
by definition the space of possible statements is exponential. We propose a rewinding
scheme which only performs multiple negligibly disturbing measurements through
the use of collapsing functions. This allows us to produce a collision, thus showing
Collapse⇒ qsChain as Collapse⇒ CR.

Condition 1 follows from the adversary being in qFPU. Condition 2 was satisfied
through unpredicatibility in the classical proof, but in the quantum setting we will achieve
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Π
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Figure 5. Predicting A2 w.r.t Definition 28 (top) and w.r.t Definition 18.

this by requiring A1 to fix the chain length (see Section 6.3.3). For the third condition, we
could assume for simplicity that the adversary succeeds against qsChainwith probability
1. Since in rewinding we must only consider purified adversaries (ones which have been
converted to purely unitary operations), we will also capture the auxiliary wires.

Consider an adversary (A1, A2) that against a collapsing hash function h achieves

adv := Pr[z0 ← |0〉, (r, a, i, z1)← A1(1
k, h, z0),

z2 ← |0〉, (x, c, z3)← A2,i(a, z2) :

Fh(x; c) = r ∧ |c |= i] = 1

Note that since i is output by A1, we can index the possible adversaries A2 by i rather
than provide it as an input. This simplifies the rewinding process considerably. Most
notably, we can view the c output of A2,i as consisting of i wires. Recall that we could
not measure x directly as it would disrupt the state considerably. However, notice that
by definition of Fh, if i > 0 then h(ci) = r. Since h is collapsing, we can measure ci
and only disturb the state negligibly. Additionally, now that ci is fixed, we can measure
ci−1 as h(ci−1) = ci. We repeat this process until we reach x. Once the measurement
is complete, we use the FLIP function on the auxiliary input, similarly to the Watrous
rewinding technique. This is needed since otherwise A†2,iA2,i would cancel out. The
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Figure 6. Proposed rewinding technique for (A1, A2).

Unruh rewind escapes this problem since it has different adversaries for messages m,m′.
In principle, using FLIP would result in a different execution of A2,i. This process is
informally illustrated in Figure 6.

However we are unable to prove the efficacy of this construction. This is largely due
to the complex nature of both the rewinding technique and the potential proof. There
can be substantial difficulty in showing something that may seem intuitive at first glance,
for example using the Watrous rewind inside the Unruh rewind. As such, we leave the
analysis of this construction as an open problem.
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7 Conclusion
We have formally outlined the notion of post-quantum timestamping and how it differs
from the classical setting. Most notably in the case of FPU for which the direct quantum
definition is impossible. We have also proven that out new definition qFPU is not too
strict of a definition, as it is equivalent to a definition with a polynomial runtime, if such a
definition can be meaningful at all. We have also outlined two different versions of qFPU
and have shown that the one we decided to use generalizes better. We also examined
which currently known classical results can be lifted easily into the quantum setting.
Finally, we conjecture a rewinding scheme which could potentially prove a theorem
which currently has no proof in the post-quantum standard model. We leave the formal
analysis of this construction as an open problem. We leave another open problem in the
form of a small subproblem which is the first step towards formally proving the theorem.
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