UNIVERSITY OF TARTU
Faculty of Science and Technology
Institute of Computer Science
Computer Science Curriculum

Kyrylo Riazantsev

Study on GitOps paradigms

Master’s Thesis (30 ECTS)

Supervisor(s): Bruno Rucy Carneiro Alves De Lima, MSc

Tartu 2024

Study on GitOps paradigms

Abstract: GitOps is a recently emerged concept that became popular due to the rise
of DevOps methodology and a constant software development struggle to improve
deployments and ensure their reliability. It offers an approach that utilizes Infrastructure
as a Code and Git as a version control system to ensure that the state of an application and
infrastructure always matches the one described in the Git repository (e.g., repository as a
source of truth). There are two main ways to do GitOps: pull-based, in which an operator
checks for updates in a Git repository, ensuring that the target matches the desired state,
and push-based, which states that Git should notify the GitOps system about updates.
This thesis focuses on describing GitOps at its core, explaining why the above two
paradigms were extracted from its implementation and going into detail about the
principles of their work. It also proposes a prototypical implementation of both paradigms
to measure their performance under various scenarios. It analyzes these measurements
using the queueing theory model as a theoretical framework.

Keywords:
GitOps, DevOps, Continuous Integration, Continuous Delivery, Kubernetes, CI/CD,
ArgoCD, Cloud Native

CERCS: P170 Computer science, numerical analysis, systems, control
Uuring GitOps paradigmade kohta

Liihikokkuvote: GitOps on hiljuti tekkinud kontseptsioon, mis sai populaarseks tinu
tousule DevOps metoodika ja pideva tarkvaraarenduse voitlusega, et parandada juu-
rutamise ja nende tookindluse tagamise eest. See pakub ldhenemisviisi, mis kasutab
infrastruktuuri kui koodi ja Git’i kui versioonihaldussiisteemi, et tagada rakenduse olek
ja infrastruktuur vastab alati sellele, mis on kirjeldatud Git-repositooriumis (nt repositoo-
rium kui tde allikas). GitOps’i on véimalik teha peamiselt kahel viisil: pull-pShine, mille
puhul operaator kontrollib uuendusi Git-repositooriumis, tagades, et sihtmirk vastab
soovitud olekule, ja push-pohine, mille kohaselt peaks Git teavitama GitOps-siisteemi
uuendustest. Kidesolev 10put6d keskendub GitOps’i kirjeldamisele selle pdhiolemuses,
selgitades, miks eespool nimetatud kaks paradigmad on selle rakendusest vilja voetud
ja kisitletakse iiksikasjalikult nende t66 pohimotteid. Samuti pakutakse vilja mdlema
paradigma prototiilipne rakendamine et mddta nende toimivust erinevate stsenaariumide
korral. Selles analiiiisitakse neid mootmisi kasutades teoreetilise raamistikuna jirjekorra
teooria mudelit.

Votmesonad: GitOps, DevOps, Pidev integratsioon, Pidev kohaletoimetamine, Kuberne-
tes, CI1/ CD, ArgoCD, Cloud Native

CERCS: P170 Arvutiteadus, arvutusmeetodid, siisteemid, juhtimine (automaatjuhtimis-
teooria)

Contents

6

Introduction

Background

21 Git. ..o

22 DevOps
221 CICD......

Semantics of GitOps

3.1 Kubernetes

3.2 Instrastructure as a Code

33 GitOps.
33.1 ArgoCD.
332 Flux.......

34 GO............

Implementation
4.1 Gitserversetup
42 Clustersetup
4.3 Repository setup
44 ArgoCDsetup
4.5 GitOpstool
4.5.1 Modules
4.6 Queue theory application

Experiments and benchmarks
5.1 Waiting time
5.2 Utlization
5.3 Average queue length . .
5.4 ArgoCD benchmarks . .

Conclusion

References

Appendix

I.SourceCode
II. Licence

1 Introduction

The term GitOps was first introduced by Weaveworks in 2017 [Wea]. The company
describes a case where one of the engineers pushed a change that wiped out the entire
system, consisting of multiple Kubernetes clusters. After that, the Weaveworks engineer-
ing team restored the system in about forty minutes because it was fully described in
various Git config files. The system included the cluster and the app, monitoring, and
other pieces. Whenever a change is made to the system, it is first committed and then
allowed to propagate automatically into production [Wea21].

Narrowing this to a basic definition, we can state that GitOps is a paradigm or set of
practices for managing and automating IT infrastructure and application configurations
using Git as the single source of truth. It combines software development practices like
version control, collaboration, compliance, and CI/CD (Continuous Integration/Continu-
ous Deployment) workflows to manage infrastructure and application deployments. In
GitOps, the system’s desired states, including infrastructure provisioning, application
deployment, and configuration updates, are declarative and stored in Git repositories.
Changes to the system are made through updates to these files. They are automatically
applied to the target environments using automated processes, ensuring that the actual
state of the system matches the desired state as defined in the repository.

GitOps has recently emerged as a concept and set of tools to utilize this concept
as a response to the rising usage of technologies, processes, and tools like DevOps,
Kubernetes, [aC (Infrastructure as a Code), and Git. Though the practice and its software
implementations are not yet an industry standard, it is already widely adopted by soft-
ware development companies of different sizes domains, ranging from startups to large
enterprises [arg23].

At the same time, due to its novelty (as mentioned earlier, the term was introduced
in 2017) and the nature of any emerging field, it has not been extensively researched,
described, and structured academically to the same depth as more established fields (for
instance, the ones mentioned previously, like Kubernetes or Git, that were the foundation
of GitOps).

Another reason might be that GitOps is a highly practical and tool-driven concept
rooted in software development and deployment operations. It can be proved by the
fact that its foundation was a single use-case that occurred in a commercial software
development company. Most existing studies also prove the initial statement by focusing
on the application of GitOps tools and how to utilize them in real-world software and
infrastructure development rather than providing a formalized description. For instance,
describing the application of GitOps in a Cyber-Physical Production Systems (CPPS) en-
vironment along with microservices in a real-world case study [KRM*23] or highlighting
the benefits of GitOps adoption in Internet of Things Edge computing [LVDP22].

At the same time, the field’s development reached a point where a comprehensive
and generalized study on the topic is necessary. One of its expected outcomes is that

4

it might provide a robust theoretical framework for GitOps, helping to standardize its
definitions, principles, and best practices. It would also aid in distinguishing GitOps
from related methodologies like DevOps, clarifying its unique contributions, and guiding
its implementation.

The foundation for this theoretical framework will be the paradigms (also commonly
referred to as models or workflows) of GitOps. They describe how changes are propagated
from the source control (e.g., Git) to the target environments (like production or staging).
This principle of synchronizing changes between code stored in source control and the
actual infrastructure is what GitOps is made for. Therefore, it significantly affects how
GitOps tooling performs, depending on which way of doing this it chooses.

The thesis aims to give a general overview of GitOps methodology, how it emerged
from other, already well-established practices, and to compare the aforementioned
approaches to GitOps in terms of performance, scalability, security, and other metrics.
We will also review actual implementations and tools that utilize these paradigms. By
doing so, it will be possible to identify potential improvements and determine the
feasibility of developing a new implementation that could reduce bottlenecks and enhance
key characteristics essential for a GitOps system. Comparing approaches implies the
development and evaluation of a prototype system alongside simple queue-theoretical
formulas that help to model the performance of these systems.

By conducting this, it will be possible to provide a standardized theoretical framework
for evaluating GitOps tools and approaches and establish practical guidelines for utiliz-
ing GitOps in different fields of cloud-native software development and infrastructure
management.

This thesis is organized as follows: In Chapter 2 (background), the fundamental
concepts and theoretical foundations of Git and DevOps will be explained, as those are
essential definitions for understanding GitOps. In Chapter 3 (semantics of GitOps), we
will go over GitOps itself and technologies that are tightly related to it, evolved from
it, and utilize it, like [aC (infrastructure as code), ArgoCD, and Flux. In Chapter 4
(Implementation), we will extract discovered kinds of GitOps, describe them, propose
prototypical implementation of those approaches, and their estimations on how they can
perform based on computer science concepts. In Chapter 4 (experiments), comparisons
and evaluations will be presented. Lastly, in Chapter 6 (conclusion), we will list the
findings, lessons learned, and what future paths can be discovered related to the study
topic.

2 Background

This chapter provides a foundational overview of the key concepts and tools that underpin
the GitOps methodology and are used for its implementation, setting the stage for a
deeper exploration of GitOps paradigms.

Terms are listed in chronological order, based on the time of their proposed definition
and formalization (since one might argue that DevOps, for instance, existed long before
the term came up). This approach will give a clear perspective on how each tool evolved
from another and how the latter, GitOps, came up.

2.1 Git

Git is a distributed version control system (VCS) created by Linus Torvalds in 2005.
Like most other VCSs, it records changes to a file or set of files over time, making it
possible to return to specific versions later [CS14].

Besides software development, Git’s influence extends into various fields requiring
version control. In academia, for instance, Git is used for managing research projects and
data and even writing academic papers, offering a solution to maintaining a consistent and
traceable history of changes. The integration of Git with online platforms like GitHub
and GitLab has further expanded its utility, making it an essential tool for collaborative
projects, open-source software development, and educational purposes. These platforms
provide a user-friendly interface and additional features like issue tracking, feature
requests, and code reviews.

The main features that make Git state-of-the-art in VCSs are essential for imple-
menting many software development practices and which will be many times referred to
throughout the thesis, are as follows:

* Distributed nature. Unlike centralized version control systems, Git is distributed,
meaning every developer’s working copy of the code is also a repository that can
contain the entire history of all changes. This distributed nature allows for greater
workflow flexibility and redundancy, as there is no single point of failure.

* Branching and Merging: Git’s lightweight branching allows developers to create
isolated environments for new features or bug fixes, enabling parallel development
without interference. Merging integrates these branches back into the main line of
development, facilitating collaboration and innovation.

* Speed and Performance: Git is designed to be fast and efficient, even for large
projects. Operations like branching, merging, and commit history retrieval are
optimized for performance, making Git suitable for projects of any size.

* Data Integrity: Every file and commit in Git is checksummed, ensuring the integrity
of the codebase and protecting against corruption. The immutable nature of
Git commits also provides a reliable audit trail for changes. This property of
commits will be thoroughly utilized in the practical part of the study, as an essential
part of any git-based system is distinguishing changes between each other and
understanding when and whether the change took place.

Remote code storage platforms such as GitHub, GitLab, and Bitbucket leverage
Git for version control, providing a collaborative environment for developers to host,
share, and manage their codebases online. These platforms offer several advantages,
such as centralized hosting of projects, enhanced collaboration features like pull requests
and code reviews, integrated issue tracking, and continuous integration/continuous
deployment (CI/CD) pipelines [SABZ17]. Moreover, these platforms often have robust
security features, including branch protection, role-based access control, and secure secret
management, ensuring code integrity and safety in collaborative projects. By combining
the power of Git with additional collaboration and management tools, these platforms
significantly streamline the software development process, making them indispensable
in modern development workflows.

2.2 DevOps

Though it is hard to track when the term "DevOps" itself came out for the first time, a
need for a reliable and seamless software development delivery process might be as old
as software development. However, the first documented appearance of the term came
out between 2007 and 2008 when IT communities worldwide started expressing con-
cerns about the traditional software development model where the one who writes code
(Developers) was separated from one who supports and deploys/delivers it (Operations).
In 2009, the first conference named after the concept, DevOpsDays, was held in Belgium,
which made the term known to the general public [Mez18].

Therefore, it can be concluded that the DevOps approach is utilized as a methodology
for software development, characterized by integrating traditionally separate teams within
the IT framework, specifically the development (Dev) and operations (Ops) teams. This
integration fosters coordination and collaboration between these teams, replacing manual
workflows with automated processes through DevOps tools. The primary aim of DevOps
is to enhance the speed, quality, and reliability of product delivery.

2.2.1 CI/CD

DevOps incorporates several key practices, notably Continuous Integration (CI), Contin-
uous Delivery (CD), and Continuous Deployment (CD), which are foundational to its
methodologies. "Continuous" refers to the regular and systematic repetition of processes,

from development to deployment, operation, and quality control, facilitating quicker
production cycles and feature releases without sacrificing product quality. These core
practices are depicted in Figure 1, illustrating the fundamental principles of DevOps
methodologies [RUF21].

Hasil ‘]

Pengiriman Berkelanjutan / Continuous Delivery (CDE)

[Integrasi Berkelanjutan
Continuous Integration (CI) .
i Test e
Manual

A

5 (Buia_}

j'. — -— " pan Berkelanjutan / Conti Deployment (CD)

Sopnsl; S ([Test]
Il Test
Source Ci | X

Developer Repository Server A Toot I atie &

[I Hasil J

Figure 1. The Basic Principles of DevOps Practice. [LM12]

Continuous Integration (CI) and Continuous Deployment (CD) are practices that
streamline the software development process, ensuring a seamless flow from development
to production. CI involves frequently integrating code changes into a shared repository,
where automated builds and tests are run to detect and fix integration errors quickly, re-
sulting in enhanced software quality and reduced time to release. CD extends this process
by automatically deploying all code changes to a testing or production environment after
the build stage, enabling rapid and reliable delivery of functionalities to users. These
practices make the development process more efficient and error-free. They also repre-
sent the collaborative approach of DevOps, breaking down barriers between development
and operations teams and promoting a culture of continuous improvement and innovation.
Integrating CI/CD into DevOps practices represents a significant evolution in software
development, driving the delivery of high-quality software at a faster pace [BKA123],
emphasizing optimization and controlled deployment in cloud-based applications.

3 Semantics of GitOps

3.1 Kubernetes

Kubernetes is an open-source container orchestration platform that automates container-
ized applications’ deployment, scaling, and management. Google initially started de-
veloping it and later donated it to the Cloud Native Computing Foundation (CNCF).

Kubernetes is the de facto standard for container orchestration, supported by a strong
community and a wide range of infrastructure providers [BGO™ 16].

The architecture of Kubernetes is built around the principle of managing groups of
containers, which constitute an application in a logical unit called a "pod." Pods are
the smallest deployable units in the Kubernetes ecosystem and can contain one or more
containers that share storage, network, and specifications on how to run the containers.
Operations on pods are managed by higher-level abstractions like "Deployments" or
"StatefulSets" which provide declarative updates to applications and maintain the desired
state specified by the user[VPK'15].

An important aspect of Kubernetes is its cluster architecture. A Kubernetes cluster has
at least one master node and multiple worker nodes. The master node hosts the cluster’s
control plane components, including the API server, scheduler, controller manager, etcd,
a key-value store that stores the cluster’s configuration and state. Worker nodes run the
actual applications and workloads. Kubernetes automatically handles the placement of
pods onto worker nodes and manages the accessibility of applications to users and other
services.

When discussing deployment efficiency and infrastructure reliability, Kubernetes’
self-healing mechanisms, such as auto-restarting, rescheduling, and replicating contain-
ers, should be mentioned. Its service discovery and load balancing features enable
traffic distribution across multiple instances of an application, ensuring that new version
deployment can happen with minimal or no downtime[Luk17].

In the scope of GitOps, Kubernetes offers wide opportunities to describe infrastructure
and application state as a set of manifests that can be put under VCS for tracking. This
approach is called Infrastructure as a Code and is covered separately and in relation to
Kubernetes in the following subsection.

3.2 Instrastructure as a Code

Infrastructure as Code (IaC) is a practice that allows the management and automatic
provision of infrastructure, such as load balancers, containers, orchestrators, etc., using a
high-level programming language. This allows developers to eliminate manual methods,
like executing command-line commands or using a graphic interface [PT21].

This is where both Git and DevOps come in place. First of all, VCS (which stands
for Git in most cases and in this thesis) is an essential part of utilizing IaC. Since all
infrastructure specifications are stored in files, they can be tracked with Git, which allows
us to follow the history of changes, perform rollbacks, and understand how infrastructure
evolved through time. In addition to that, it allows for easier collaborative development,
every change to infrastructure might go through an established git flow, which usually
includes creating a separate branch, pushing changes to repository, and getting them
code reviewed. It adds more visibility and makes configuring infrastructure safer and
more reliable.

IaC is also an essential part of DevOps practices. It allows for a more efficient
development life cycle and easier and more efficient deployments, improving delivery
times. Furthermore, [aC utilizes CI/CD in a way that configurations can be seamlessly
integrated (e.g., invalid configurations will not make their way through the pipeline,
therefore ensuring infrastructure’s reliability) and delivered, as is demonstrated in Figure
1

One of the most common use cases of [aC, which will be extensively referred to
throughout the thesis, is configuring and describing Kubernetes resources. Kubernetes
API allows CLI to create resources, like deployments or services, but the most common
way of describing them is declaratively by writing configuration files. As we already
figured, these files can be put under version control, shared, and properly maintained,
allowing for a smoothly managed Kubernetes cluster. Below is an example of how
Kubernetes deployment is described in code:

apiVersion: apps/v]1
kind: Deployment
metadata:
name: example-deployment
spec:
replicas: 3
selector:
matchLabels:
app: example
template:
metadata:

labels:
app: example

spec:

containers:

- name: example-container
image: example/image:latest
ports:

- containerPort: 80

However, even when following the IaC approach, direct changes to k8s cluster
resources or any other type of infrastructure can still be made without modifying the
code, creating inconsistencies. This is where our next main topic comes in.

10

3.3 GitOps

As previously described, GitOps is a relatively new concept introduced by Weaveworks
in 2017. They define it as a set of practices for managing and automating IT infrastructure
and application configuration with Git as a single source of truth. "Git as a single source
of truth" is one of the core principles of GitOps described by its founders, with the others
listed as follows:

1. Declarative. GitOps utilizes IaC, which enables Git to be the single source of truth.
This approach simplifies deployments and rollbacks (which can be described as
simple git actions, like git push or git revert). It also allows for rapid recovery of
infrastructure if needed.

2. Versioned and immutable. Storing system’s configuration in a version-controlled
repository as the source of truth simplifies rollbacks to previous states using *Git
revert’. Git’s security features allow commits to be signed with an SSH key,
ensuring code authenticity and origin. The immutability of this version history is
crucial for maintaining a reliable audit trail.

3. Pulled automatically. By storing the desired state in Git, GitOps automates system
updates without requiring cluster credentials, offering a clear division between
action and implementation. Although manual reviews are possible for specific
deployments, the objective is direct, automated deployment from Git to Kubernetes
following successful tests and checks, all governed by specific policies.

4. Continuously reconciled. With system’s state defined and tracked, software agents
can detect and correct deviations, including human errors, beyond Kubernetes’
automatic handling of node or pod failures. These agents act as essential feedback
and control mechanisms for maintaining system integrity. [Wea]

Approaches to implementing and adopting GitOps (as we will see later on) might
differ depending on the tools used in infrastructure configuration, the code-storing
platform (as long as it uses Git), and the implementation tools themselves. However,
sticking to these principles is essential to keep the approach effective and performing
as it is intended to, and evaluating their implementation is important for ensuring that
the GitOps system stays reliable and compliant with all the needs of such a system. In
this subsection, we will primarily focus on general guidelines on how GitOps is done,
which is followed by a section dedicated to particular tools and approaches whose tools
are utilized.

An entry point and main building block of GitOps is the Git repository. At least two
of them should exist: application one and environment one. The application repository
houses the application’s source code and may include a Dockerfile for container creation.

11

The environment repository, on the other hand, holds deployment manifests detailing the
desired infrastructure setup for the intended environment. This includes specifications
on which applications and infrastructure services (like message brokers, service meshes,
and monitoring tools) should be deployed, along with their configurations and versions.
There is also an option to store application deployment manifests within the application
repository.

Let us expand definitions of two main GitOps paradigms:

Push-based. Popular CI/CD platforms like Jenkins, CircleCI, and Travis CI employ
a push-based deployment methodology. In this setup, the application’s source code is
stored in the same repository as the Kubernetes YAML files required for deployment.
Updates to the application code initiate the build pipeline, creating container images
and subsequent updates to the environment configuration repository with the latest
deployment descriptors as shown in (see Figure2).

Any modifications to the environment configuration repository activate the deploy-
ment pipeline, which then applies all the manifests from the repository to the infrastruc-
ture. This method necessitates providing access credentials to the deployment environ-
ment, essentially granting the pipeline full access. In scenarios where automated cloud
infrastructure provisioning is necessary, a push-based deployment becomes essential.
In such instances, employing the cloud provider’s detailed and adjustable authorization
system is highly advised to enforce more stringent deployment permissions.

It is important to remember that the deployment pipeline is only activated by changes
in the environment repository and does not automatically detect discrepancies between
the current environment and its intended state. Therefore, a monitoring mechanism must
be in place to allow for intervention if the environment deviates from what is outlined in
the environment repository [BKH21].

Image Registry

pushes
container images

triggers deploys
Application > Build Pipeline Deployment Pipeling | e Environment
Repository

updates triggers

Environment
Repository

Figure 2. Push-based approach. [BKH21]

Pull-based. The pull-based deployment method incorporates the principles of its
push-based counterpart but varies in the operation of the deployment process. Unlike
traditional CI/CD pipelines activated by an external trigger, such as new code commits
to a repository, the pull-based approach employs an operator. This operator assumes the

12

role traditionally held by the pipeline, consistently monitoring the desired state outlined
in the environment repository against the actual state of the infrastructure. In case of
discrepancies, the operator adjusts the infrastructure to align with the specifications in the
environment repository. Additionally, it can monitor the image registry for new image
versions to deploy(see Figure3).

Similar to the push-based method, this approach ensures the environment is updated
in response to changes in the environment repository. The operator, however, also
detects and corrects unilateral modifications to the infrastructure that deviate from the
repository’s specifications, thereby maintaining traceability of all changes within the Git
log and preventing unauthorized direct modifications to the cluster.

This approach targets a fundamental limitation of push-based deployments, which
rely solely on updates to the environment repository to initiate changes. However,
this does not eliminate the need for monitoring. Operators typically offer notification
capabilities, such as email or Slack alerts, for instances where achieving the desired state
is hindered, such as issues in pulling a container image. Monitoring the operator is also
advisable due to its critical role in automated deployment.

For optimal security and functionality, the operator should reside within the same
environment or cluster as the application it deploys. This arrangement avoids the *god-
mode’ associated with push-based methods, where the CI/CD pipeline has extensive
deployment credentials. By situating the deployment mechanism within the target envi-
ronment, external services are not privy to sensitive credentials. Deployment platform
authorization features can be leveraged to control deployment permissions, enhanc-
ing security finely. This can be achieved in Kubernetes environments through RBAC
configurations and service accounts [BKH21].

I Image Registry

Pushes e

container images !
triggers 0 ——observes=—>
Applicat — Build Pipeline observes = Operator Deployment
ppication i ——deploys =—>

Repository I
updates AR] """"" Enironment T ‘
L’ 4 writes

Environment
Repository

Figure 3. Pull-based approach. [BKH21]

3.3.1 ArgoCD

ArgoCD is a declarative continuous delivery open-source tool mostly targeting Kuber-
netes. It is currently of the most popular GitOps implementations officially adopted by

13

more than 300 companies [arg23]. It is also part of the Argo suite, a collection of tools for
Kubernetes to facilitate job execution and application management. Argo CD, along with
Argo Workflows, Rollouts, and Events, addresses application deployment needs, enabling
seamless integration of services, workflows, and event-driven architectures. In 2020, the
Cloud Native Computing Foundation (CNCF) recognized Argo CD’s contributions to
the cloud-native ecosystem by bringing it on board as an incubation-level project.

ArgoCD is also a good example of pull-based GitOps paradigm. It works by pulling
updated code from Git repositories and deploying it directly to Kubernetes resources.
This allows developers to manage both infrastructure configuration and application
updates in one system.

The general ArgoCD flow looks like this: after the developer pushes the changes to
the main branch of the repository (either directly or by merging a dedicated branch to a
main one), a webhook is triggered, which notifies ArgoCD that the change was made.
ArgoCD then clones the repo and compares application state with the state of kubernetes
cluster, applying required changes to cluster configuration. By utilizing Kubernetes
controllers, reconciliation happens, making the cluster achieve the desired configuration.
After cluster readiness, ArgoCD reports that the application is in sync.

But since ArgoCD, as already mentioned, implements a pull-based model, it also
works the other way around by monitoring the actual state of the Kubernetes cluster and
making sure that it matches the state defined in Git. If not, it can discard them, preventing
an out-of-sync state.

To get a better understanding of how the above general flow is implemented, we need
to understand the two main concepts of ArgoCD:

* Application The Application serves as a structured way to organize Kubernetes
resources; its main properties are source and destination. The Application’s source
specifies the repository’s URL and the path to the relevant directory within that
repository. It is a common practice to have separate directories inside repositories
for different application environments, such as QA and Production. The destination
for the Application specifies the deployment location for resources, which includes
the URL for the API server of the intended Kubernetes cluster and the name of the
cluster Namespace. By specifying these two properties, the ArgoCD application
represents both environment states deployed in Kubernetes and links them to the
desired state in the Git repository. The principle of ArgoCD application working is
also depicted in Figure5

* Project. Projects are abstractions over ArgoCD applications that allow logical
grouping. This enables engineers to set specific restrictions and settings for those
groups.

14

h search application
| 424 image: acme/search:vi.0
AY .
envs: dev, staging, us-central-1

guestbook application
| 433 image: acme/guestbook:vi.3
envs: dev, staging, us-east-1, us-west-1

Repository
Service

%

@ ® » \ Application
‘ gRPC ’ Controller

W
‘ &)
S ¥ v
Sync Hooks, I
App Actions

v

'
:

ev staging

SN
OO

us-west-1 us-central-1 us-east-1

‘ Deploy ’

Figure 4. ArgoCD architecture. [arg24a]

3.3.2 Flux

Flux is an open-source tool for implementing GitOps which is already adopted by a
variety of companies, which include companies like "Orange" and "Sap" [Flu24a]. It op-
erates by aligning the state of manifests in a Git repository with the desired configuration
of a cluster and offers integration with Prometheus and other key Kubernetes ecosystem
components, providing multi-tenancy and the capability to synchronize multiple Git
repositories.

Flux does this by providing multiple core concepts [Flua]:

* Sources. A Source represents the location of a repository that holds the system’s
intended state and the details needed to access it. Sources generate artifacts other
Flux components utilize to execute tasks, such as deploying the artifact’s contents

15

Application

repoURL Specifies resource manifest's location

path Repository

Destination I—

cluster Specifies resource destination

- Kubernetes

namespace

Figure 5. ArgoCD application. [BYS21]

to the cluster. Multiple entities can use these sources to minimize configuration and
storage repetition. Sources are monitored at set intervals for updates, producing
new artifacts when matching updates are found. In Kubernetes, sources are defined
as Custom Resources, including GitRepository, OCIRepository, HelmRepository,
and Bucket resources.

* Reconciliation. Reconciliation is the process of ensuring that an actual state (e.g.,
application running in the cluster, infrastructure) matches a desired state declara-
tively defined, for instance, in a git repository code. This refers to "Continuously
reconciled" principle of GitOps and guarantees that it is fulfilled.

There are various types of Reconciliation in Flux:

— HelmRelease reconciliation: ensures the state of the Helm release matches
what is defined in the resource and performs a release if this is not the case.
Verifies and aligns the Helm release’s actual state with its predefined resource
configuration, initiating a release for any differences, including HelmChart
resource revisions.

— Bucket reconciliation: Periodically retrieves, archives, and stores bucket
content as an artifact, logging the artifact’s observed revision and details in
the resource’s status.

— Kustomization reconciliation: Confirms that the deployment state of an
application on a cluster corresponds to the definitions in Git, OCI repositories,
or S3 buckets.

* Kustomization. The Kustomization custom resource in Flux designates a group of

Kubernetes resources for Flux to manage within the cluster. By default, it checks
for and enforces the desired state every five minutes, which can be adjusted with

16

.spec.interval. Any manual changes made directly in the cluster through commands
like kubectl edit/patch/delete are automatically undone to maintain consistency
with the defined state. This can be avoided by pausing the reconciliation process
or applying changes through the designated Git repository.

* Bootstrap Bootstrapping in Flux stands for setting up its components within a
cluster using GitOps principles. This process includes deploying manifests to
the cluster, establishing a GitRepository and Kustomization for managing Flux’s
own configurations, and synchronizing these manifests with a specified Git repos-
itory, which can be either pre-existing or newly created. Flux is capable of self-
management in the same way it manages other resources. This setup can be done
via the flux CLI or by leveraging the Terraform Provider.

Under the hood, Flux uses GitOps Toolkit, a set of APIs and controllers that allow
the creation of GitOps tooling for Kubernetes. It can be used either as an extension to
Flux or on its own, allowing for customization and building own Kubernetes GitOps
system (see Figure6).

®

Sources l
Source
> N _—
S MOCHREES AR &S controller V

Kustomizations J
&
0 Kustomize

@ controller

RBAC

Namespaces
t CRDs H

r ©

Helm
S5 controller

LM Releases I —

{

Figure 6. GitOps Toolkit usage in Flux [Flub].

As can be already understood, Flux uses the so-called Operator pattern, which is a
popular implementation of the pull-based GitOps model. This model involves having

17

1

a dedicated entity that pulls updates from a source and applies them to an infrastruc-
ture while also detecting all the synchronization issues thanks to the Reconciliation
mechanism.

34 GO

Go, also known as Golang, is a statically typed programming language developed at
Google by Robert Griesemer, Rob Pike, and Ken Thompson and launched in 2009. The
language prioritizes simplicity, efficiency, and readability, featuring a syntax close to C,
contributing to its speed and performance. Concurrency in Go is supported by goroutines
and channels, making it a solid choice for handling multiple processes simultaneously,
particularly useful in server-side programming.

In the context of cloud-native technologies, Go has become increasingly essential
and is the language behind several significant projects. Kubernetes, Docker, ArgoCD,
and FluxCD, four technologies tightly related to GitOps and covered in some way
throughout this research, are all written in Go[kub24][doc24][arg24b][flu24b]. They
utilize its ability for efficient and flexible memory handling, concurrent capabilities, and
strong typing. While having all these features, GO’s syntax is very intuitive, making the
development experience relatively simple. This is why GO is the language of choice for
prototype GitOps implementation developed in the scope of this study.

3.4.1 Syntax

Variables. In GO, variables store data that can be used and manipulated. They are
declared with the var keyword or by using the shorthand := which infers the type:

repoUrl := "https:// github.com/example/repo. git"
> repo, err := CloneRepo(repoUrl)
3 if err != nil {
fmt. Printf (" Failed to clone repository: %v\n", err)

1

}

Listing 1. Variable usage example

Conditions. Conditional statements in Go control the execution flow based on
boolean conditions. The if, else if, and else are the primary conditional constructs:

if err != nil {
fmt. Println ("Error")

3} else {

fmt. Println ("No error")

s)

Listing 2. Condition example

18

W

Functions. In Go, functions are defined using the func keyword followed by the
function’s name, a list of parameters (enclosed in parentheses), and the return type. For
example:

func CloneRepo(repoUrl string) (%git.Repository, error) {

}

Listing 3. Function usage exampple

Here, CloneRepe is a function that takes a string parameter repoUrl and returns a
pointer to git.Repository and an error.

Error Handling. Go handles errors explicitly using the error type, which is a built-in
interface. Functions that can encounter errors return an error object as part of their return
values. This is checked in the calling code:

repo, err := git.Clone (...)

> if err != nil {

w1

6

fmt. Println (err)
return nil, fmt.Errorf("failed to clone repository: %v", err)

Listing 4. Error handling example

If err is not nil, an error has occurred.
Printing Output. The fmt package is used for formatted I/O with functions like
Println and Printf:

fmt. Println ("Repository cloned into memory successfully.")
fmt. Printf (" failed to apply manifest: %v, output: %s", err, output)

Listing 5. Printing example

Println outputs a line of text followed by a newline, while Printf allows formatted
strings similar to C’s printf.

Structs and JSON. Structs are custom data types that group together variables.
In Go, structs can be annotated with tags such as json:"fieldname" to specify JSON
encoding/decoding behavior:

type GiteaPushEvent struct ({
Commits []struct {
Added []string " json:"added""®
Removed []string " json:"removed"’
Modified []string “json:"modified""
} “json:"commits"®

Listing 6. Struct and handling JSON example

19

This struct represents a JSON object received from a Git push event, with fields
mapped to JSON property names.

Command Execution. Go can execute external commands using the os/exec package.
This is useful for running system commands like kubect!:

cmd := exec.Command("kubectl", "apply", "—-f", "=")
cmd. Stdin = bytes.NewBufferString(manifestContent)

: output, err := cmd.CombinedOutput ()

1

{

Listing 7. Command execution example

Here, exec. Command creates a new command, setting its standard input to the content
of manifestContent. CombinedOutput runs the command and returns its combined
standard output and standard error.

3.5 Bash

Bash (Bourne Again SHell) is a powerful scripting language widely used in Unix-like
operating systems to automate tasks, manage files, and run applications. It provides an
environment for executing commands through the command line and standalone scripts.

Bash scripting plays a role in GitOps and cloud-native environments due to its
powerful capabilities in automating and orchestrating complex workflows. In GitOps,
where the entire operational workflow is centered around Git repositories and automated
processes, Bash scripts can automate the deployment, monitoring, and management
of configurations across distributed systems. This is particularly useful in Kubernetes,
where Bash scripts frequently interact with the kubectl command-line tool to apply
configurations, roll out updates, or revert changes based on the state defined in a Git
repository.

3.5.1 Syntax

Bash scripts are written as a series of commands to be executed by the Bash shell. A
script usually starts with a shebang line, which tells the system which interpreter to use
to execute the script:

#!/bin/bash

Listing 8. Shebang

Variables. Variables in Bash store data that can be used throughout the script.
Variables are assigned without the $ symbol but are accessed with it:

Assigning a variable

> filename="example. txt"

Accessing a variable

20

s echo $filename

Listing 9. Shebang

Loops. Basic syntax of loop in Bash:

for var in list_of _elements

> do

commands
done

Listing 10. Loop example

sed. The sed (Stream Editor) tool parses and transforms text in data streams and files.
It is powerful for performing text substitutions, more complex edits, or data extraction.
Basic syntax:

sed 's/search_pattern/replacement_string/' filename

Listing 11. sed usage example

4 Implementation

4.1 Git server setup

The efficacy and performance of GitOps paradigms, whether pull-based or push-based,
are influenced significantly by the characteristics and behavior of the underlying Git
server. Benchmarking different GitOps paradigms requires a controlled environment
where variables can be systematically manipulated and observed. Self-hosting a Git
server provides this controlled environment, enabling precise measurement of the impact
of these variables on the GitOps workflow performance.

It is also important to keep in mind considerations like the ability to control network
latency and throughput, flexibility in adjusting load conditions, and custom configuration
capabilities. For instance, Github, which is already mentioned in the introduction as
one of the default options for external Git repositories management, offers limited
customization of the server-side environment. Users cannot modify the server’s behavior,
install custom hooks directly on the server, or alter the software to better fit specific
needs, which might be necessary for specialized GitOps workflows or for integrating
unique features. In addition, it does not provide access to the underlying Git repository
data at a granular level. Developers are limited to the interfaces and APIs provided by
GitHub, which might not expose all data required for thorough GitOps tool testing or
detailed performance analysis.

Among the multiple options present on the market, Gitea was chosen as the self-
hosted solution due to the below-listed considerations:

21

. Lightweight and Easy to Deploy: Gitea is written in Go, making it a lightweight

and efficient solution easily deployed on minimal hardware specifications. This
efficiency is essential for ensuring that the Git server itself does not become a
bottleneck in performance benchmarks. It differentiates Gitea from Gitlab, which
also can be used as a self-hosted solution but was considered superficial for this
study as its functionality covers a broader range of software development lifecycle,
including complex CI/CD capabilities and project management tooling[PCDH23].

Customization: As an open-source platform, Gitea allows for extensive customiza-
tion and modification. Later in this section, it will be shown how flexible the tool
actually is and how beneficial this property of Gitea is to the present study.

Built-in Webhooks and API: Gitea supports webhooks and provides API, allowing
easy integration with GitOps tools and CI/CD pipelines. These features are crucial
for automating GitOps workflows and initiating push-based operations based on
repository events.

Community and Documentation: Gitea has a strong community and well-maintained
documentation, providing support and resources that are invaluable during setup,

customization, and troubleshooting. This support can significantly reduce the

complexity and time of configuring the Git server for any needs.

Scalability: despite its lightweight nature, Gitea is scalable and can handle sig-
nificant loads, making it suitable for high-load testing scenarios often required in
performance benchmarking GitOps paradigms.

For hosting the Gitea server, an Azure (cloud provider by Microsoft) VM instance of
Standard_B2s size was created. This instance offers vCPU of 2 and Memory of 4GiB,
which is above Gitea’s system requirements[Git23a] and should allow the server to run
under heavy load and without downtime, which are intended during the experiments (see
Figure7 for more information).

A Essentials

Resource group (move) : git-server Operating system Linux (ubuntu 22.04)

Status

Location

Running Size Standard B2s (2 vepus, 4 GiB memory)

North Europe (Zone 1) Public IP address : 20.82.149.17

Subscription (move) Azure for Students Virtual network/subnet : git-network/default

Subscription ID 1d9297cd-c4a3-41bc-b66f-0886cf9e837e DNS name : git-server.northeurope.cloudapp.azure.com

Availability zone 1 Health state

Tags (edit Add tags

Figure 7. Azure VM configuration.

After connecting to the server, Gitea was installed and initially configured by follow-
ing the install from a binary guide in the official documentation[Git23b].

22

4.2 Cluster setup

The next part of the environment setup is creating and configuring a Kubernetes cluster.
As discussed earlier, modern GitOps use cases mostly involve using Git repositories as
the source of truth for defining the desired state of a system, specifically in a Kuber-
netes environment. Thus, a Kubernetes cluster becomes an essential part of the testing
framework for the GitOps tool.

As with git server, there are two possible ways of hosting clusterfMAB19]:

1. Hosted. Hosted Kubernetes means using a solution provided by one of the cloud
providers to work with the cluster. It requires a subscription and is mostly used by
enterprises or DevOps companies in production environments due to its reliability
and ease of scale. Cloud providers also deliver support capabilities and extensive
documentation, which is an important point for big projects and organizations.
Some popular hosted Kubernetes services are: Google’s cloud Kubernetes Engine,
Azure Kubernetes Service, Amazon’s Elastic Container Service for Kubernetes,
IBM’s Cloud Container Service, etc.

2. Self-hosted. Self-hosted Kubernetes engine allows a user to run Kubernetes on a
single server usually for testing or educational purposes. It does this by automating
steps used to deploy Kubernetes clusters. An example of such a tool is Kubeadm,
which is used in various Kubernetes distributions to run locally on a single machine.
Another popular solution is MiniKube. MiniKube is essentially a lightweight
Kubernetes implementation running minimally by creating a VM on one’s local
machine and deploying a simple cluster containing only one node.

It can be seen that the self-hosted solution satisfies our needs and should be used
in the scope of this study. Minikube was chosen because it is one of the most popular
self-hosted implementations; therefore, it has a big community and comprehensive
documentation, which is important for initial setup and in case of need in troubleshooting.
It also supports different drivers, including Virtual-Box and Hyper-V, making it cross-
platform. That is why the described environment can be easily reproduced regardless of
the platform or operating system.

In given setup, minikube uses docker as driver, so docker-daemon needs to be started
to run minikube. After docker is up and running, minikube can be started with the
following command:

$ minikube start --profile thesis

This command will start the local Kubernetes cluster, which uses "thesis" as the name
of the Minikube profile. To check that the cluster is running properly, the following
command should be used:

23

$ minikube profile list

It lists all present minikube profiles and their properties, like profile name, driver
used, kubernetes version used, etc. This is how output of the command looks like for
running local cluster:

| Profile | VM Driver | Runtime | IP | Port | Version | Status | Nodes |

| thesis | docker | docker | 192.168.49.2 | 8443 | v1.28.3 | Running |

1

As expected, the running cluster has docker as its driver and contains one node (which
serves as the control plane at the same time).

4.3 Repository setup

The GitOps tool should track changes in the Git repository and ensure that it is in sync
with the actual infrastructure (a local Kubernetes cluster, in our case). Therefore, it is
essential to create an actual repository that will contain all the Kubernetes resources
needed to be deployed to the cluster and updated in case of changes. A repository named
"thesisCD-infra" was created in Gitea.

As an application to be deployed to the cluster and tracked by GitOps, I chose podinfo.

Podinfo, as described by the authors, is a small web application developed in Go that

was created specifically to showcase how to deploy and run microservices in kubernetes.

Its repository also contains all the manifests needed to deploy this application to the
cluster[Pro24]. So the initial content of the thesisCD-infra is:

* deployment.yaml Kubernetes manifest describing deployment resource of podinfo.

Contains container settings (like image reference and env variables).

* service.yaml Manifest describing service resource of podinfo. Specifies which
ports are to be used to access the application

* hpa.yaml Manifest describing HorizontalPodAutoscaler resource of podinfo used
for defining autoscaling policies.

As mentioned in Section 3.1, one of the important features of Gitea is that it allows the
use of Webhooks to notify about events in the repository. Push-based GitOps workflow
will rely on these events and information from webhooks to know whether the repository
was updated and what is the nature of these updates (e.g., were the target files updated that
are related to repo configuration). Thus, the webhook was configured on the repository

24

level, specifying the target URL it is sent to, the push event trigger of it, and the Git
branch that it sends the event about (main in our case).

Regarding the target URL, it is important to keep in mind that if the consumer of the
webhook is running on the local machine, additional configuration is needed to allow
the webhook sent by the Git server to reach the application running on the local server.
For this purpose, ngrok application was used, which can create a tunnel from a publicly
available domain with an https certificate to a local server. For the application that will
expect webhooks on http://localhost:8080/webhook it is needed to run:

$ ngrok http 8080

And use the URL provided by ngrok in Gitea’s webhook configuration as shown in
Figure 8.

4.4 ArgoCD setup

As one cluster will be controlled and updated by a custom GitOps tool, one more cluster
should be created using minikube to do the benchmarking with ArgoCD. After the
creation of the cluster, ArgoCD can be installed with the following command:

$ kubectl apply -n argocd -f \

https://raw.githubusercontent.com/argoproj/argo-cd/v2.5.5/manifests/install.yaml

As described in Section 3.3.1 Application resource is the key part of ArgoCD’s
declarative setup. Manifest for the deployed application is listed below:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: argocd-app
namespace: argocd
spec:
destination:
namespace: podinfo
server: https://kubernetes.default.svc
project: default
source:
repoURL :
http://git-server.northeurope.cloudapp.azure.com/ \
administrator/thesisCD-infra.git
path: test
targetRevision: main

25

Update Webhook

Integrate Gitea into your repository.
Target URL

https://9cd0-200 87ea-c780-e146-9f2c-9141-283f.ngrok-free.app/webhook

HTTP Method

POST

POST Content Type

application/json

Secret

Trigger On:

®) Push Events
All Events
Custom Events...
Branch filter
main

Branch whitelist for push, branch creation and branch deletion events, specified as glob pattern. If empty or *, events for all branches
are reported. See github.com/gobwas/glob documentation for syntax. Examples: master, {master, releasex}.

Authorization Header

Will be included as authorization header for requests when present. Examples: Bearer token123456, Basic
YWxhZGRpbjpvcGVuc2VzYW1l.

«| Active
Information about triggered events will be sent to this webhook URL.

Figure 8. Gitea webhook configuration.

Here, the local kubernetes cluster is specified as the source, and the remote git
repository, which ArgoCD will keep track of, is specified as the source. After creating
the application by applying the below manifest, ArgoCD will sync the state of the cluster
with the repository, and respective podinfo resources will be created in the cluster. It is
also reflected in ArgoCD UI, which shows all the resources that are synced within the
applications and the application’s status (See Figure 9).

26

Q argocd-app

L WYDS/VER (5 APP DIFF @ @ SYNCSTATUS | "D HISTORY AND ROLLBACK @ C' REFRESHv.

APP HEALTH CURRENT SYNC STATUS LAST SYNC RESULT

Healthy Synced

09318126

EHE + - Q@ @ |100%

podinfo-szagf . podinfo-7b9499c88c-2dzbw
argocd-app ., B podinfo . B podinfo-7b9499c88c . 0 podinfo-7b9499c88c-ffpmj

podinfo s podinfo-7b9499c88C17xrp

Figure 9. ArgoCD UL

4.5 GitOps tool

Implemented software is a CLI application intended to run in two modes representing
pull and push-based GitOps paradigms. It is written in Go language and extensively
uses the go-git library for Git operations. go-git does not have any native dependencies,
which makes it less error-prone. It also has some important features, such as a pluggable
storage system, which allows it to work with the repository’s in-memory copy without a
need to clone it on a disk.

4.5.1 Modules

The software consists of two modules:

1. cmd. Contains entrypoints for the CLI which handles parameters defined by the
users and bootstraps the application.

2. pkg. Contains functions used in both modes for performing git operations and
working with the cluster.

git package from pkg module contains logic for performing git operations necessary
for the GitOps workflow:

* CloneRepo. Function accepts repoUrl as a parameter and performs in-memory
clone of the specified repository and returns go-git’s reference of the repository,
which we can later work with:

i func CloneRepo(repoUrl string) (xgit.Repository, error) ({
repo, err := git.Clone(memory.NewStorage (), memfs.New(), &git.
CloneOptions {

27

URL: repoUrl ,

Progress: os.Stdout ,
ReferenceName: plumbing.ReferenceName("refs/heads/main"),
SingleBranch: true,
P
if err != nil {
fmt. Println (err)
return nil, fmt.Errorf("failed to clone repository: %v", err
)

}

fmt. Println ("Repository cloned into smemory successfully.")
return repo, nil

Listing 12. CloneRepo implementation

PullAndApplyChanges. This function accepts repo instance obtained previously
as a parameter along with path in which infrastructure configurations are to be
located.

Then, on line 2, the Worktree instance of repository is get, and its pull method is
executed on line 12.

If no new commits were detected during the pull, the function exits, and the system
keeps waiting for the next poll, as seen on line 16. If changes in the remote
repository were detected, the previously obtained head’s hash is compared with
the new one (line 25), which was pulled to ensure that the change was done.

If hashes are different, the system proceeds with checking if changes were done in
a specified path and handle the deployment (line 26).

An important consideration here is that we are deploying only the latest state of the
repository by obtaining changes from the Head. So, no matter how many commits
were done in between pollings, only the latest state will be processed in contrast
with the push-based approach, where every commit needs to be handled:

func PullAndApplyChanges(repo =git.Repository, path string)

error {
w, err := repo.Worktree ()
if err != nil {

return fmt.Errorf("failed to get worktree: %v", err)
}
oldHead, err := repo.Head()
if err != nil {

return fmt.Errorf("failed to get HEAD before pull: %v", err)
}

28

err = w.Pull(&git.PullOptions {RemoteName: "origin"})

if err != nil && err != git.NoErrAlreadyUpToDate {
4 return fmt. Errorf("failed to pull: %v", err)
5 } else if err == git.NoErrAlreadyUpToDate {

fmt. Println ("No new changes to pull.")
7 return nil

s

9

0 newHead, err := repo.Head()

21 if err != nil {

2 return fmt. Errorf (" failed to get HEAD after pull: %v", err)
23 }

24

25 if newHead.Hash() != oldHead.Hash() {

26 err := checkPathChanges(repo, oldHead, newHead, path)

27 if err != nil {

28 return err

29 }

30 } else {

31 fmt. Println ("No new commits were merged during the pull.")

kD) }

34 return nil

Listing 13. CloneRepo implementation

webhook package from pkg module contains logic for handling incoming webhook.
The structure of the webhook is described in Gitea documentation[Git23c], but in the
code only the fields that are needed for commit handling are defined:

type GiteaPushEvent struct ({
Commits []struct {
Added []string “json:"added"®
Removed []string " json:"removed"’
Modified []string "json:"modified""
} “json:"commits"®

}

Listing 14. Gitea webhook type

kubernetes package from pkg module contains logic for applying manifests to lo-
cal kubernetes cluster. It uses exec module from Go’s os module to execute kubectl
commands as passing manifests’s content as BufferString:

func ApplyManifest(manifestContent string) error ({
cmd := exec.Command("kubectl", "apply", "—-f", "=")
cmd. Stdin = bytes.NewBufferString (manifestContent)

29

>}

output, err := cmd.CombinedOutput ()

if err != nil {
fmt. Printf (" failed to apply manifest: %v, output: %s", err,
output)
}

fmt. Printf ("Manifest applied successfully: %s\n", output)
return nil

func DeleteResource (manifestContent string) error {

cmd := exec.Command("kubectl", "delete", "—f", "=")
cmd. Stdin = bytes.NewBufferString (manifestContent)

output , err := cmd.CombinedOutput ()
if err != nil {
fmt. Printf (" failed to delete resource: %v, output: %s", err,
output)
}
fmt. Printf ("Resource deleted successfully: %s\n", output)

return nil

Listing 15. Kubernetes operations implementation

4.6 Queue theory application

To evaluate the performance and throughput of push-based and pull-based implemen-
tations and compare their performance a reliable framework is needed to model the
behavior of each paradigm, helping to understand and predict the dynamics of deploy-
ment tasks under varying conditions. A structured approach is also needed to quantify
and compare the efficiency and effectiveness of each paradigm.

Queueing theory provides such a framework since it is widely used for systems where
line or queue form due to a demand for resources exceeding available supply.

A standard used within queueing theory to classify queueing nodes is a Kendall
notation, which proposes describing queueing models using three factors written as
A/S/c where A represents the time between arrivals to the queue, S is the service time
distribution, and c is the number of service channels open at the node[Ken53].

Arrival process A can be represented as follows:

Service time distribution S:

30

Symbol | Description

Markovian (Poisson or random arrival process).

Erlang distribution.

Degenerate distribution (Deterministic/fixed-time arrival process).
General distribution.

QomZ

Table 1. Arrival process notations

Symbol | Description

Markovian (Exponential service time).

Erlang distribution.

Degenerate distribution (A deterministic or fixed service time).
General distribution.

Qoo

Table 2. Service time distribution notations

c is represented as a whole positive number.

Pull-based paradigm can be modeled as a D/G/1 system (deterministic arrivals,
general service times, one server). Deterministic arrival can be applied to this paradigm
because the pull-based system operator polls the repository for changes at regular, pre-
configured intervals. Thus, the model helps us understand how the frequency of timed
checks affects the deployment process’s stability and performance. Service times might
vary based on the complexity of the changes needed to match the desired state, including
the time taken to detect differences and apply updates. The service process might also
include the time to check for and deploy new image versions from the image registry.

Push-based paradigm can be modeled as an M/G/1 system (Poisson arrivals, general
service times, one server), reflecting the stochastic nature of commits to the repository.
Each commit triggers the deployment pipeline, making the arrival process random. Simi-
lar to the pull-based model, service times depend on the complexity of the deployment
manifests to be applied. However, push-based systems may also face bursts of arrivals
when multiple commits are pushed quickly, potentially leading to queue buildup and
increased waiting times.

After modeling, performance metrics should be established which will be used for
future evaluation:

« Utilisation (p): This metric will help assess how effectively the computational re-
sources (servers) are used. In a pull-based system, utilization tends to be smoother
and more predictable. Conversely, a push-based system might see highly variable
utilization, with potential spikes in resource demand following multiple simultane-
ous commits.

31

1

1

Utilization is calculated as the ratio of the arrival rate (A) to the service rate (u) of
the system:

p=- (1

I

If o > 1 then updates are arriving faster than the system can handle them. This
results in queue buildup. p = 1 means that the service rate matches the arrival rate,
e.g., queue is not growing, and the system is fully utilized. o < 0 means that service
is higher than the arrival rate so the queue is stable.

* Average Queue Length (L): In pull-based systems, the queue length is likely to
be low due to regular and predictable polling. For push-based systems, the average
queue length can vary significantly depending on the frequency and timing of
commits.

* Waiting Time (W): This metric is critical in operations where deployment speed
is competitive. Pull-based systems might show relatively constant waiting times,
while push-based systems could see highly variable waiting times, especially
during periods of high commit activity.

By benchmarking using the above metrics, it is possible to make a justified decision
on which of the paradigms performs better, what are the bottlenecks of the two GitOps
approaches and how they can be improved depending on the use case.

S Experiments and benchmarks

To perform experiments, it is necessary to simulate a variable load on a GitOps server
in order to understand how it performs in different scenarios. To accomplish this, a
simple bash script was created, which allows to do small commits to kubernetes manifest
deployment.yaml and pushes them to Git server. It also gives an ability to configure the
number of commits to perform.

1 generate_random_hex_color () {

2 printf '#%06X\n' $((RANDOM % OxFFFFFF))
3}
4
s YAML_FILE="test/deployment.yaml"
6
» NUM_COMMITS=$NUM_COMMITS

o for ((i=1; i<=$NUM_COMMITS; i++))

o do

1 NEW_COLOR=$ (generate_random_hex_color)

12

32

sed —1 "' "49s/.%/ value: $NEW_COLOR/" "$YAML_FILE"
git add "$YAML_FILE"

git commit —m "Update color to $NEW_COLOR on iteration $i,
experiment $SEXPERIMENT NAME"

git push origin main
done

Listing 16. commit and push script

Another important aspect of tracking metrics and analyzing them is introducing
logging, which allows one to follow which process is executing and when a certain event
(e.g., pulling, incoming webhook, deployment) was triggered, which is important for
performing benchmarks and visualizing results for experiments.

For this logrus Golang library is used to dump logs in JSON format in a dedicated log
file, and its API is completely compatible with the standard Golang logger[Esk24]. Each
log contains a description of the operation (e.g., "Deployment triggered", "Deployment
started"), timestamp, and unique identifier of the operation (in our case, commit hash can
be used) as shown in Figure 10. These values are sufficient for future calculations.

d2d9e2532867b6e810a8COF2d4e68ab72097d" , "Le ge":"Deployment triggered”, Action performe:
d2d9e2532867b6e810a8cOF2d4e68ab72097d" , " ":"Deployment completed", Action performe

"7bcbf31calc8389a52fb3966e13516020217aa9" L m "Deployment triggered","msg":"Action performe
{"commitID":"7bchf31calc8389a52fb3966ef13516020217aa9" , "Lev Deployment completed”,"msg":"Action performed","time":"2024-05-08T16:22:31+03:00", "tinestamp"

Figure 10. Logs format

All the measurements and results presented are relative to the implemented prototypi-
cal GitOps system and can differ when the same experiments are run with another tooling.
For example, Waiting Time W can vary depending on the efficiency of deployment
handling, network latency, and underlying optimizations. The goal is not to provide
results comparable to other GitOps implementations but to compare two paradigms in
the scope of one system.

5.1 Waiting time

The practical aspect of measuring Waiting Time W, in scope of GitOps system, involves
defining a timestamp 7} when task enters the queue (Enqueued) and when the second
timestamp 75 which is recorded when task starts being processed (which in case of
GitOps means right before deployment to kubernetes is triggered). Considering the
above, waiting time is calculated as:

W=1-T 2)

33

For both push-based and pull-based approaches 75, will be measured at the time of
the same event. Meanwhile, 77 will be recorded differently. In a pull-based system, a
task is enqueued when the polling event takes place, as without this, there is no way
the GitOps system might know about updates in the repository. While in a push-based
system, enqueued 75 is the moment when change is pushed to the repository, as this is
when the task enters the queue to be processed.

Four commit and push scenarios are simulated for benchmark purposes:

* High frequency, high quantity: 100 commits and pushes V. are done sequentially
representing scenario when there is a high load (in real-world scenarios, this might
be a situation when multiple developers are actively working on the project).

* Low frequency, high quantity: 100 commits and pushes V. is done sequentially
with 10 seconds interval [representing scenario when there is high commit activity
but commits are not done frequently.

* High frequency, low quantity: 20 commits and pushes N, are done sequentially
without an interval.

* Low frequency, low quantity: 20 commits and pushes V. are done sequentially
with 10 seconds intervals /.

Going over each scenario presented on Figure 11:

1. The waiting time remains relatively stable, around 6-7 seconds, with an average W
of 6.85 seconds. This scenario represents a system where the capacity (service rate)
closely matches the demand, allowing it to handle bursts of 20 commits without
significant increases in waiting time. The relatively stable and low waiting time
suggests that the system is efficiently processing deployments without significant
backlog or resource constraints.

2. The waiting time shows stable behavior, at around 5 seconds, with an average
waiting time of 5.40 seconds. Introducing intervals between commits helps manage
the queue more effectively, reducing the average waiting time compared to the
no-interval scenario. This suggests that spreading out the deployment requests
allows the system to handle each request more swiftly, likely due to better resource
availability at each deployment initiation.

3. Waiting time shows a progressive increase, starting from 10 seconds and rising to
an average of 11.73 seconds. The trend indicates a gradual buildup in the queue.
This scenario highlights the system’s limitations under high load conditions. The
absence of intervals between many commits (100) leads to increased waiting times
as the queue builds up. This suggests that the service process is slower than the

34

Push-based GitOps, waiting time

N.=20, I=0s N.=20, I=10s

=
@

--- Average: 6.85 sec -~ Average: 5.40 sec

[R
N R o
.
o

=
o

|

Waiting Time W (seconds)

v
)
)
)

=~

Waiting Time W (seconds)

|
{

0 5 10 15 20 25 30 0 50 100 150 200
Time Since first deployment triggered (seconds) Time Since first deployment triggered (seconds)

N:=100, I=0s N=100, [=10s

-
®

--- Average: 11.73 sec -~ Average: 5.25 sec

.
o

=
=

-
~
T
I
I
]
i
I
I
I
I
I
T
I
I
I
I
i
]
T
I
]
I
I
I
|
T
I
]
]
T

.
=)

©
Waiting Time W (seconds)

Waiting Time W (seconds)

o

IS
IS

0 20 40 60 80 100 120 140 160 0 200 400 600 800 1000 1200
Time Since first deployment triggered (seconds) Time Since first deployment triggered (seconds)

Figure 11. Push-based GitOps, Waiting time measurements

arrival rate of new deployments, leading to queue saturation and increased waiting
times.

4. The waiting times are significantly lower and more stable, maintaining close to
an average of 5.25 seconds, even with many commits. Spacing out the commits
at 10-second intervals significantly mitigates the impact seen in the no-interval
scenario with the same number of commits. The system can effectively manage
the queue without significant buildup, indicating that the intervals allow the service
process enough time to handle each commit before the next one arrives.

For a pull-based system, one more parameter is introduced, which is a polling interval
I,,. As shown in Figure 11, for the push-based system, it takes less than 30 seconds to
process 20 commits without an interval. So a value of I, will be established as three and
20s to emulate real-world shorter and longer polling intervals.

35

Waiting Time W (seconds)

B
g
S
S
b
=
v
E
=
o

Wal

Waiting Time W (seconds)

Waiting Time W (seconds)

Pull-based GitOps, waiting time /I,=3s

: Nc=20, /=0s : Nc=20, /=10s
—e— Complete Deployments —e— Complete Deployments
——- Average: 0.89 sec —8— Polling without deployment
4 4 --- Average: 0.90 sec
o
B
2
S
3 83
=
g
2 £ 2
o)
<
F
1 - ERY P - o
- —o—— ———=v v » ® - -
0 0 000 000 000 0060 000 00 ¢ 000 o000 o000
2 4 8 10 0 5 10 15 20 25 30 35 40
Number of Polling Events Number of Polling Events
: N:=100, /=0s A N:=100, I=10s
—e— Complete Deployments —e— Complete Deployments
=== Average: 0.93 sec —— Polling without deployment
4 4 -=-- Average: 0.90 sec
B
2
S
S
3 23
=
g
2 E2
=)
£
A -
1 St s1 = » » ® ot
Mo - and Ladk o
0 0
10 20 30 40 50 60 50 100 150 200 250 300 350 400
Number of Polling Events Number of Polling Events
Figure 12. Pull-based GitOps, Waiting time measurements, [, = 35
Pull-based GitOps, waiting time I, = 20s
Ne=20, /=0s Nc=20, I=10s
2.00 2.00
—e— Complete Deployments —e— Complete Deployments
1.75 —=- Average: 0.87 sec 1.75 —=- Average: 0.89 sec
1.50 = 1.50
)
3
2
1.25 S 1.25
3
1.00 = 100 S
° o L —===¢
0.75 £ 075
2
0.50 S 050
]
=
0.25 0.25
0.00 0.00
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 2 6 8 10 12
Number of Polling Events Number of Polling Events
N.=100, I=0s N.=100, I=10s
2.00 2.00
—e— Complete Deployments —— Complete Deployments
175 --- Average: 0.89 sec 1.75 -== Average: 0.88 sec
1.50 = 1.50
B
2
1.25 g 125
8
1.00 1.00
o 2 AN — AN A PN
— [L e R e e i S e e
0.75 Eors
o
2
0.50 = 0.50
]
=
0.25 0.25
0.00 0.00
1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 60

Number of Polling Events

Number of Polling Events

Figure 13. Pull-based GitOps, Waiting time measurements, /,, = 20s

36

As seen in Figure 12 and Figure 13, the waiting time remains consistent across
all experiments with overall high stability. However, slight spikes can be observed in
scenarios with many commits. Though the polling interval does not affect waiting time,
it has an effect on the number of "Polling without deployments" events when polling
took place. However, it did not result in actual deployment because no changes occurred
in the repository. This is where the utilization ratio comes in place.

5.2 Utilization

Push-based GitOps utilization ratios

7 X: 100/173
: 100/1173

41 A: 20/37
: 20/137

Utilization Ratio p

A:100/1153
: 4/21

Nc=20, [=10s Nc=100, /=0s Nc=100, /=10s

Scenarios

Nc=20, I=0s

Figure 14. Push-based utilization ratios

37

Pull-based GitOps utilization ratios

A: 3625/10744
: 29000/26917

A:11000/30843
: 2750/2443

0.30

0.20

e
-
«

Utilization Ratio p

A:11000/118009
. A: 20000/229989
: 20000/17971
A: 3000/40867
: 600/523

A:3000/55217 A:3000/53633
: 10!

0/89 A: 2950/58043

: 4000/3563 : 1475/1296

Nc=20 Nc=20 Nc=100 Nc=100 Nc=20 Nc=20 Nc=100 Nc=100
1=0s Ip=3s 1=10s I, =3s 1=0s Ip=3s 1=10s I, =3s 1=0s I, =20s 1=10s I, = 20s 1=0s I, =20s 1=10s I, = 20s

Scenarios

Figure 15. Pull-based utilization ratios

As shown in Figure 14 and 15, utilization ratios are significantly higher than one can
be observed, as expected, in a push-based system with low commits interval. This is
because, in pull-based systems, arrival rates (that can also be observed in the Figures) are
consistently lower than the service rates due to the nature of the pull-based systems. In
contrast, for push-based systems handling frequent updates, arrival rates tend to surpass
service rates. Therefore, the queue is growing, resulting in increased waiting time, as
shown in Figure 11.

While pulling-based system utilization is always lower than 1, the queue is not
growing, and the system is not reaching its full capacity. It also tends to be lower for
systems where the polling interval increases (because of a decrease in arrival rate).

5.3 Average queue length
For average queue length measurements, Little’s Law rule can utilized, which is a
theorem determining average queue length based on the waiting time and arrival rates:
L=\W 3)
Based on the previous measurements, it can be expected that L will be higher for
push-based systems in scenarios with low commit intervals.

As shown in Figure 16 assumptions were correct, the more the utilization ratio for
the scenario is, the more deployments stay in the queue to be processed.

38

Average Queue Lengths (L) - Push-based

Queue Length

N=20, I=0s N:=20, [=10s N=100, /=0s N:=100, /=10s
Scenarios
Average Queue Lengths (L) - Pull-based

0.30

0.25 A
S 0.20 A
[}
(=
o
)
s
2 0.15 -
=l
o

0.10 A

0.05 A

0.00 -

Nc.=20 Nc=20 N.=100 N.=100 N:=20 N.=20 N:=100 N:=100
1=0s I,=3s [=10sl,=3s [=0sl,=3s I=10sl,=3s [=0s l,=20s [=10s [, =20s I=0s I, =20s /=10s I, = 20s
Scenarios

Figure 16. Queue length

39

5.4 ArgoCD benchmarks

To adjust ArgoCD to act as pull-based GitOps with automatic synchronization within
a specified interval, it is necessary to update the app’s configuration by running the
following:

argocd app set <APPNAME> --sync-policy automated

which sets the interval for synchronization (value is "3s" in our case).

Waiting Time (seconds)

Waiting Time (seconds)

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

ArgoCD pull-based GitOps, waiting time I, = 3s

N:=20, I=0s

N.=20, I=10s

And configure ArgoCD ConfigMap by specifying parameter timeout.reconciliation

—-- Average: 0.50 sec

Waiting Time (seconds)
)
°
3

—0.04 4

—=—=~ Average: 0.00 sec

1 2 3 4 5 6 7 8
Polling Event Index
N=100, /=0s

7.‘5 16.0
Polling Event Index
N:=100, /=10s

12.5 15.0 17.5

—-- Average: 0.11 sec

Waiting Time (seconds)

1.0

o
®

o
o

o
>

o
o

0.04

p

=== Average: 0.36 sec

0 5 10 15 20 25 30 35
Polling Event Index

20

40 60
Polling Event Index

Figure 17. ArgoCD pull-based waiting time Ip = 3s

40

ArgoCD pull-based GitOps utilization ratios

A: 0.24242424242424243

0.124

o
o
®

e
o
=

Utilization Ratio p

A: 0.08703374777975133

A: 0.24836601307189543
: 9.5

A: 0.08780487804878048
e inf

N:=20, I=10s N:=100, /=0s N=100, I=10s

Scenarios

Figure 18. ArgoCD pull-based utilization Ip = 3s

As we can see in Figure 17 and 18 waiting times are significantly smaller for Ar-
goCD than for prototypical implementation, which might happen due to more efficient
deployment handling by ArgoCD. Though spikes in waiting time happen, in utilization
measurements, we can see that utilization ratios stay relatively low, with one scenario
showing 0O utilization rate (this exact scenario has 0 waiting time, so it is expected).

6 Conclusion

The GitOps concept was introduced, starting with a thorough overview of its foundational
technologies like Git and methodologies like DevOps, proceeding with more specific
tools like Kubernetes and GO. GitOps itself was covered in detail, focusing on how
the concept emerged, which problems it solves, and what its basic building blocks are.
Then, based on previously presented information, two main approaches to GitOps were
extracted, with in-detail descriptions of how they are implemented and first assumptions
on how they might perform in comparison. Two already existing and widely used
implementations for GitOps, Flux, and ArgoCD, were presented and described to give
the reader an understanding of the state-of-the-art field and how production-ready GitOps
is done.

To evaluate the performance of extracted GitOps paradigms, multiple steps were

41

performed: setting up a self-hosted Git server to have a controlled and configurable
environment that can be adjusted to specific benchmarking and testing needs, Kubernetes
cluster was set with deployment described in manifests files and put under Git. As
the last step, a prototypical implementation of the GitOps operator was developed,
which implemented both pull-based (utilizing goroutines) and push-based (utilizing
Gitea-provided webhooks) paradigms.

With the help of this setup, thorough testing was performed for both paradigms, with
different scenarios and under varying loads. Results were interpreted with a queueing
theory, a decent theoretical framework for such systems.

Results have shown that the pull-based GitOps paradigm demonstrates higher stability
and is less prone to queue buildup (considering that the polling interval is adjusted
accordingly). At the same time, the arrival rate and frequency of deployments are
advantages of the push-based paradigm, which makes it a choice for organizations that
value these parameters but, at the same time, can ensure stability and quick targeting of
issues related to a higher utilization ratio.

Evaluation of GitOps paradigms or different tools utilizing the same paradigm through
mathematical models should be considered in the future. As DevOps methodology is
becoming mainstream and the time-to-market of software features decreases, any reduc-
tion in deployments’ latency and reliability improvement will become more valuable.
There are several GitOps solutions available on the market, as discussed in this arti-
cle. These solutions offer a wide range of configurable setups and utilization scenarios.
Therefore, it is important for future research in this field to evaluate these solutions and
provide developers with insights into which paradigm performs better under specific
circumstances.

42

References

[arg23]

[arg24a]

[arg24b]

[BGO"16]

[BKA+23]

[BKH21]

[BYS21]

[CS14]

[doc24]
[Esk24]
[Flua]

[Flub]

[Flu24a]

[flu24b]
[Git23a]

argoproj. Who uses argo cd? https://github.com/argoproj/argo-cd/
blob/master/USERS.md, 2023. Accessed: 2023-12-30.

argoproj. Architectural overview. https://argo-cd.readthedocs.io/
en/stable/operator-manual/architecture/, 2024. Accessed: 2024-
02-10.

argoproj. Argocd, 2024. Accessed: 2023-04-11.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. Borg, omega, and kubernetes. ACM Queue, 14(1):70-93, 2016.

Ahmed Mateen Buttar, Adeel Khalid, Mamdouh Alenezi, Muham-
mad Azeem Akbar, Saima Rafi, Abdu H. Gumaei, and Muhammad Tanveer
Riaz. Optimization of devops transformation for cloud-based applications.
Electronics (Switzerland), 12(2), 2023. Cited by: 3; All Open Access, Gold
Open Access.

Florian Beetz, Anja Kammer, and Dr. Simon Harrer. GitOps: Continuous
Deployment for Cloud Native Applications. 2021.

Todd Ekenstam Billy Yuen, Alexander Matyushentsev and Jesse Suen. Gi-
tOps with Argo CD. Manning publications, 2021.

Scott Chacon and Ben Straub. Pro Git. Apress, Berkeley, CA, 2nd edition,
2014.

docker. docker, 2024. Accessed: 2023-04-11.
Simon Eskildsen. logrus, 2024. Accessed: 2023-04-11.

Core concepts. https://fluxcd.io/flux/concepts/. Accessed: 2024-
02-10.

Gitops toolkit components. https://fluxcd.io/flux/components/. Ac-
cessed: 2024-02-10.

Flux adopters. https://fluxcd.io/adopters/, 2024. Accessed: 2024-
02-26.

fluxcd. flux2, 2024. Accessed: 2023-04-11.

Gitea documentation. https://docs.gitea.com, 2023. Accessed: 2023-
04-11.

43

https://github.com/argoproj/argo-cd/blob/master/USERS.md
https://github.com/argoproj/argo-cd/blob/master/USERS.md
https://argo-cd.readthedocs.io/en/stable/operator-manual/architecture/
https://argo-cd.readthedocs.io/en/stable/operator-manual/architecture/
https://fluxcd.io/flux/concepts/
https://fluxcd.io/flux/components/
https://fluxcd.io/adopters/
https://docs.gitea.com

[Git23b]

[Git23c]

[Ken53]

[KRM 23]

[kub24]
[LM12]

[Luk17]
[LVDP22]

[MAB19]

[Mez18]

[PCDH23]

[Pro24]
[PT21]

Gitea documentation - installation. https://docs.gitea.com/
installation/install-from-binary, 2023. Accessed: 2023-04-11.

Gitea documentation - webhooks. https://docs.gitea.com/usage/
webhooks, 2023. Accessed: 2023-04-11.

David G. Kendall. Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chain. The Annals
of Mathematical Statistics, 24(3):338-354, 1953.

Istvan Koren, Felix Rinker, Kristof Meixner, Moritz Kroger, and Michael
Zeng. Implementing devops practices in cpps using microservices and
gitops. volume 2023-September, 2023. Cited by: 0.

kubernetes. kubernetes, 2024. Accessed: 2023-04-11.

Jon Loelinger and Matthew MacCullogh. Version Control with Git - Power-

ful Tools and Techniques for Collaborative Software Development: Covers
GitHub, Second Edition. O’Reilly, 2012.

Marko Luksa. Kubernetes in Action. Manning Publications, 2017.

Ramoén Lépez-Viana, Jessica Diaz, and Jorge E. Pérez. Continuous deploy-
ment in iot edge computing a gitops implementation. volume 2022-June,
2022. Cited by: 2.

Ruchika Muddinagiri, Shubham Ambavane, and Simran Bayas. Self-hosted
kubernetes: Deploying docker containers locally with minikube. In 2079

International Conference on Innovative Trends and Advances in Engineering
and Technology (ICITAET), pages 239-243, 2019.

Steve Mezak. The origins of devops: What’s in a name? https://devops.
com/the-origins-of-devops-whats-in-a-name/, 2018. Retrieved 6
May 2019.

Marius Politze, Ulrich Christoph, Barbara Decker, and Petar Hristov. Sup-
porting software development processes for academia with gitlab. In Pro-
ceedings of European University, 2023.

Stefan Prodan. podinfo, 2024. Accessed: 2023-04-11.

Sneh Pandya and Riya Guha Thakurta. Introduction to Infrastructure as
Code: A Brief Guide to the Future of DevOps. Apress, 2021.

44

https://docs.gitea.com/installation/install-from-binary
https://docs.gitea.com/installation/install-from-binary
https://docs.gitea.com/usage/webhooks
https://docs.gitea.com/usage/webhooks
https://devops.com/the-origins-of-devops-whats-in-a-name/
https://devops.com/the-origins-of-devops-whats-in-a-name/

[RUF21]

[SABZ17]

[VPK*15]

[Wea]

[Wea21]

Ramadoni, Ema Utami, and Hanif Al Fatta. Analysis on the use of declara-
tive and pull-based deployment models on gitops using argo cd. page 186 —
191, 2021. Cited by: 3.

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous
integration, delivery and deployment: A systematic review on approaches,
tools, challenges and practices. IEEE Access, 5:3909-3943, 2017.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. Large-scale cluster management at google
with borg. In European Conference on Computer Systems (EuroSys). ACM,
2015.

Weaveworks. What is gitops? https://www.weave.works/
technologies/gitops/. Accessed: 2023-12-30.

Weaveworks. The history of gitops. https://www.weave.works/blog/
the-history-of-gitops, 2021. Accessed: 2023-12-30.

45

https://www.weave.works/technologies/gitops/
https://www.weave.works/technologies/gitops/
https://www.weave.works/blog/the-history-of-gitops
https://www.weave.works/blog/the-history-of-gitops

Appendix

I. Source Code

The source code for this thesis is accessible from a public GitHub repositories:
https://github.com/kirilxd/thesisCD and https.//github.com/kirilxd/thesisCD-infra.

46

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Kyrylo Riazantsev,
(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Study on GitOps paradigms,
(title of thesis)

supervised by Bruno Rucy Carneiro Alves De Lima.
(supervisor’s name)

2. 1 grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. T am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Kyrylo Riazantsev
15/05/2024

47

	Introduction
	Background
	Git
	DevOps
	CI/CD

	Semantics of GitOps
	Kubernetes
	Instrastructure as a Code
	GitOps
	ArgoCD
	Flux

	GO
	Syntax

	Bash
	Syntax

	Implementation
	Git server setup
	Cluster setup
	Repository setup
	ArgoCD setup
	GitOps tool
	Modules

	Queue theory application

	Experiments and benchmarks
	Waiting time
	Utilization
	Average queue length
	ArgoCD benchmarks

	Conclusion
	References
	Appendix
	I. Source Code
	II. Licence

