
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Herman Rull

Towards practical privacy-preserving data
analysis with Intel TDX-based Sharemind

HI

Master’s Thesis (30 ECTS)

Supervisors: Armin Daniel Kisand, MSc

Raimundas Matulevičius, PhD

Tartu 2024



Towards practical privacy-preserving data analysis with Intel TDX-
based Sharemind HI

Abstract:
Making evidence-based decisions often requires combining data of different data owners.
Due to privacy concerns, data owners may be reluctant to share their data. Sharemind
HI is a platform for developing data analysis applications that protect data owners’ data
throughout its lifecycle. Data-in-use protection is guaranteed by running operations
involving data owners’ data in Intel SGX TEE.

The problem with Sharemind HI is that developing analysis code on it was com-
plicated due to programming language and library constraints of Intel SGX. Here we
propose a Sharemind HI architecture built around Intel TDX TEE technology. The
architecture demonstrates how the development limitations present in the old system
could be eliminated without losing any core functionality. Additionally, we found that
risks caused by Intel TDX’s lack of isolation and data sealing can be managed using
technical controls. Intel TDX-related overhead in expected Sharemind HI data flows is
minimal compared to running them in a regular VM.

The resulting architecture is a step towards Sharemind HI that supports a wider range
of programming languages and libraries, making the life of an analysis code developer
easier as he can employ tools that best suit the situation. The architecture can be used to
evaluate the system further or serve as a guiding document for implementing the new
system.

Keywords:
trusted execution environments, software architecture, privacy-preserving technologies

CERCS: P170 Computer science, numerical analysis, systems, control.

2



Praktilise privaatsust säilitava andmeanalüüsi suunas Intel TDXil
põhineva Sharemind HIga
Lühikokkuvõte:
Tõenduspõhiste otsuste tegemiseks on sageli vaja liita erinevatelt osapooltelt saadud
andmeid. Samas ei pruugi andmeomanikud olla privaatsusest tulenevatel kaalutustel nõus
oma andmeid jagama. Sharemind HI on platvorm, er arendada andmeanalüüsi rakendusi,
mille eesmärk on säilitada andmeomanike andmeid andemete elukaare vältel. Seejuures
kaitse parasjagu töödeldavatele andmetele on tagatud jooksutades arvutusi Intel SGX
usaldatavas täitmiskeskkonnas.

Intel SGX piirab programmeerimiskeelte ja teekide kasutust. Piirang laieneb ka
Sharemind HIga arendatud andmeanalüüsi rakendustele. Töös pakume välja tarkvaraarhi-
tektuuri Sharemind HI-le, mis kasutab Intel TDXi usaldatavat täitmiskeskkonda. Loodud
arhitektuur võimaldab eemaldada praegusele süsteemile rakenduvad arenduspiirangud,
seejuures säilitades vana süsteemiga võrdväärse võimestiku. Me leidsime, et Intel TDXist
puuduvatest isolatsiooni ja andmete pitserdamise võimekusest tingitud riske on võimalik
maandada kasutades tehnilisi meetmeid. Jooksutades Sharemind HI andmevooge Intel
TDXiga ja tavalises VMis, nägime, et Intel TDXi kasutamisega seonduvad lisakulud on
minimaalsed.

Töös loodud arhitektuur on samm erinevaid programmeerimiskeeli ja teeke toetava
Sharemind HI suunas. See lihtsustab andmeanalüüsi arendajate tööd, võimaldades ka-
sutada olukorrale sobivaid tööriistu. Magistritöös kirjeldatud arhitektuuri on võimalik
kasutada süsteemi edasiseks hindamiseks või uue süsteemi implementeerimise toeta-
miseks.

Võtmesõnad:
usaldatavad täitmiskeskkonnad, tarkvaraarhitektuur, privaatsust säilitavad tehnoloogiad.

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll.

3



Contents
1 Introduction 7

2 Modelling Software Systems 9
2.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Trusted Execution Environment . . . . . . . . . . . . . . . . . 9
2.1.2 Sharemind Hardware Isolation . . . . . . . . . . . . . . . . . . 11
2.1.3 Purpose of the Model . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Architecture as a Model of the System . . . . . . . . . . . . . . . . . . 13
2.2.1 Architecture Description . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Modelling Languages . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Architecture Evaluation Methods . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Scenario-based evaluation . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 ISSRM Domain Model . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Constructing the Architecture 18
3.1 Context View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Information View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Concurrency View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Verifying the Architecture 28
4.1 Creating Verification Plan for Requirements . . . . . . . . . . . . . . . 28
4.2 Verifying Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Functional Scenarios . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Security Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Ease of Development Scenario . . . . . . . . . . . . . . . . . . 49

4.3 Measuring Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Concluding Remarks 56
5.1 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . 56

References 58

4



Appendix 62
A FUSE - Filesystem in Userspace . . . . . . . . . . . . . . . . . . . . . 62
B BPMNs with Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
C Performance Test Code . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C.1 PT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.2 PT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5



Acronyms
AD Architecture Description

AEAD Authenticated Encryption with Associated Data

BPMN Business Process Modelling Notation

CAPEC Common Attack Pattern Enumerations and Classifications

CMAC Circular Message Authentication Code

DA Data Analysis

DEK Data Encryption Key

DFC Dataflow Configuration

FUSE Filesystem in userspace

HI Hardware Isolation

IS Information System

ISSRM Information System Security Risk Management

KBS Key Brokering Service

RA Remote Attestation

SDK Software Development Kit

SEAM Secure Arbitration Mode

SGX Secure Guard Extensions

TD Trusted Domain

TDX Trust Domain Extensions

TEE Trusted Execution Environment

UML Universal Modelling Language

VM Virtual Machine

VMM Virtual Machine Monitor

6



1 Introduction
Sharemind Hardware Isolation (HI) is a platform for developing data analysis applications
handling sensitive data. Rather than relying on conventional trust-based mechanisms to
protect end users’ data, Sharemind HI enforces that the data is protected by encryption
throughout its lifecycle [7]. Using Sharemind HI to protect end users’ data can help
businesses comply with regulations, creating unique selling propositions and convince
privacy-conscious data owners to share their data. The security guarantees offered by
Sharemind HI are possible thanks to using Intel Secure Guard Extensions (SGX) Trusted
Execution Environment (TEE) technology for performing operations on confidential data
[7]. The software development for SGX enclaves includes Intel maintained Software
Development Kit (SDK), which compiles C or C++ code to machine code that their TEE
could run. In addition to limiting the programming language choice, the SDK supports
only libraries previously adapted by Intel [18]. These limitations extend to data analysis
programs, making developing analysis code for Sharemind HI more complex.

In this thesis, we investigate using Intel Trust Domain Extensions (TDX) in Share-
mind HI as the TEE provider to lower the complexity that Sharemind HI integration
currently has. Intel TDX is a relatively new technology, released only in 2023 in its 4th
Generation Scalable Xeon CPUs [16]. The runtime element of Intel TDX is Trusted
Domain (TD), a Virtual Machine (VM) run inside TEE [16]. As such, TDs are very
flexible, allowing programs written in any programming language, using any library,
to run inside. However, transitioning from one TEE to another is not a trivial step, as
the overall system needs to be adapted according to the properties of the new TEE to
preserve functionality, performance, and security guarantees.

The main research question of the thesis is: "How could Sharemind HI use Intel TDX
to simplify task development?" The question is further split into the following supporting
research questions (SRQs):

• SRQ1 - What are the means of creating a verifiable model for TDX-based Share-
mind HI? We capture requirements of the domain and peculiarities of Intel TDX
that the eventual model must consider. We then introduce the methods for creating
a model that can be used to verify the fulfilment of the requirements.

• SRQ2 - What is the architectural description of TDX-based Sharemind? We
construct an architectural description using the method found in SRQ1. The
answer to this supporting research question is the contribution of the thesis.

• SRQ3 - How does the new architecture solve the requirements? We verify the
architecture found in SRQ2 against requirements complied in SRQ1 using methods
described in SRQ1.

In Chapter 2, we give an overview of TEEs and Data Analysis (DA) domain in
which the Sharemind HI operates. Furthermore, we explain the methods that were

7



used to construct and evaluate the architecture. Chapter 3 constructs the architecture
of the TDX-based Sharemind HI. In Chapter 4, we verify the contribution against
requirements. Chapter 5 concludes the work by answering the research question and
critically evaluating contributions and potential improvements. A comprehensive view
of the research questions and corresponding chapters is given in Table 1.

Table 1. Thesis structure given as a mapping between research questions chapters.

Identifier Research question Chapters
MRQ How could Sharemind HI use Intel

TDX to simplify task development?
SRQ1 What are the means of creating a ver-

ifiable model for TDX-based Share-
mind HI?

2. Modelling Software Systems

SRQ2 What is the architectural description
of TDX-based Sharemind?

3. Constructing the Architecture

SRQ3 How does the new architecture solve
the requirements?

4. Verifying the Architecture

8



2 Modelling Software Systems
This chapter is based on the first supporting research question - What are the means of
creating a verifiable model for TDX-based Sharemind HI? The question can be answered
by answering the following subquestions: (1) What are the key requirements that the
model must capture? (2) How to model the system using software architecture? and (3)
What are the means of verifying the architecture?

2.1 State of the Art
In the first part of the chapter, we give an overview of TEEs with a focus on Intel TDX
and Intel SGX technology. In the second chapter, we explain the SGX-based Sharemind
HI architecture. In the third chapter, we state the goals of the model.

2.1.1 Trusted Execution Environment

Functionally, TEEs enable running workflows in untrusted environments given that the
user trust the implementation of TEE. More concretely however, Sabt et al. [32] explain
the TEE properties as follows:

• the authenticity of the code executed in it;

• the integrity of its runtime states (e.g. CPU registers, memory and sensitive I/O);

• the confidentiality of information stored on persistent memory;

• Remote Attestation (RA) capability;

• resistance against all software attacks;

• resistance against physical attacks against the main memory of the system;

• resistance against attacks using backdoor security flaws.

RA enables extending the trustworthiness of a TEE and its workload to external third
parties. Bartock et al. from the National Institute of Standards and Technology (NIST)
define attestation in Trusted Cloud report [1] as taking measurements of the TEE and
workload and digitally signing them. The recipient of the attestation Quote then verifies
the signature and measurements. The common terminology is to refer to the party which
starts RA to verify workload in the external device as Relying Party, and the party which
provides a Quote as Attester [2].

While both Intel SGX and Intel TDX are TEEs, they differ in terms of their TEE.
Intel SGX technology enables running enclaves, which are process-sized TEEs [5]. On
the other hand, Intel TDX TEE is TD, which is a VM [4]. The size of TEE scopes the

9



workloads that can be run inside it. A large TEE is therefore more flexible, however it
also makes TEE-level isolation of processes less performant. To isolate processes using
TDs, each process would have to have its own OS.

Besides TEE size, we compare Intel TDX and Intel SGX technologies based on
5 building blocks identified by Sabt et al. in [32]. These building blocks are secure
scheduling, secure boot, secure storage, inter-environment communication and trusted
I/O path.

Secure scheduling concerns itself with how shared resources, notably memory and
CPU states, are managed to avoid unauthorised access and tampering. In Intel TDX,
the resource management of TDs is handled by untrusted Virtual Machine Monitor
(VMM). All communication between VMM and TD is relayed through TDX Module.
The TDX Module and TDs run in separate processor mode called Secure Arbitration
Mode (SEAM). SEAM mode has a separate memory range, which is encrypted and
integrity-protected using Intel MK-TME technology. Only other processes running in the
SEAM mode can read and write to memory addresses in SEAM memory range. For each
TD, the TDX Module lets VMM generate private memory to separate it from other TDs
running in the SEAM mode. When a TD exits, its CPU states are stored in the trusted
domain’s private memory space and then wiped from the CPU.[4]. In Intel SGX, each
enclave had its own protected memory, which is only accessible from within the enclave.
When the computation flow exits the enclave, the CPU states are saved in the protected
memory [5].

Secure boot guarantees that only verified code can be started. Since the verification
is always done by some code, there must be some initial piece of logic which acts as a
root of trust. The root of trust is considered to be a priori trustworthy [32]. Both Intel
SGX and Intel TDX have ingrained the root of trust into the hardware [4, 5]. During RA,
trusted hardware packs, among other data, measurements of the loaded software inside
the Quote.

Secure storage enables storing data persistently across system restarts with the
guarantee that only configured parties can decrypt it. This feature is not supported in
Intel TDX out of the box. To achieve data persistence across restarts, Intel recommends
using Key Brokering Service (KBS) [20] to provision a key early in the VM start-up
process. The provisioned key can then be used to decrypt the encrypted disk partition.
Intel SGX offers secure storage capability based on data sealing. Enclave can request the
CPU to encrypt the data according to some policy, which determines which enclaves can
decrypt it.

Inter-environment communication describes whether a TEE can communicate with
other TEEs and regular runtime environments run on the same system. If a TD needs
to communicate with other TDs or legacy VMs, the communication shall be done over
regular network [21]. Intel SGX also provided a mechanism for enclaves to communicate
with each other. In contrast to TDs, enclaves operate in the same OS and as such, regular

10



inter-process communication mechanisms could be used to transmit data between them.
Trusted I/O path is an authenticated and confidential path between I/O devices and

TEE. Intel TDX does not support Trusted I/O path, though Intel has roadmapped TEE
I/O for its TDX 2.0 release [19]. Until then, any I/O device communication is done using
shared memory. The integrity, confidentiality and authenticity of all messages sent over
I/O must be implemented through custom means. Intel SGX supports some trusted paths
with its closed-source Protected Audio Video Path (PAVP) module [15]. However, Intel
SGX does not general trusted I/O paths.

Table 2. Comparison between Intel SGX and TDX extensions.

Category Intel SGX Intel TDX
TEE size Process Virtual machine

Secure Boot HW-based root of trust HW-based root of trust
Secure Storage Supported Not supported

Secure Scheduling Memory and CPU states Memory and CPU states
Inter-environment communication Supported Supported

Trusted I/O Path Limited use cases In TDX 2.0

2.1.2 Sharemind Hardware Isolation

Note: in this chapter Sharemind HI refers to SGX-based Sharemind HI, in the rest of the
thesis, Sharemind HI refers to TDX-based Sharemind HI.

Sharemind HI [6] is a platform for developing privacy-preserving data analytics
applications. The data analytics application has a central server, which stores all uploaded
data and allows application specific Tasks to perform analytics on this data. Only select
users of the application can consume the output data. The privacy-preserving guarantees
are achieved using Intel SGX, access controls (called Dataflow Configuration (DFC))
and organisational controls.

There are two types of stakeholders in Sharemind HI-powered solutions - organ-
isational and application stakeholders (see Table 3). Organisational stakeholders are
concerned with developing the data analysis application. The organisational stakeholders
are Sharemind HI developer, Task developer and Coordinator. Sharemind HI developer
main responsibility are maintaining Sharemind HI Client and Server. Coordinator is
responsible for developing the project-specific application. In DFC, he defines the Tasks
and End-users of the applications and assigns them roles and permissions. Task develop-
ers are responsible for implementing Tasks as specified by the Coordinator. Application
stakeholders are also called End-users, as they are the users of the application created by
organisational stakeholders. There are 6 End-user roles: Data Producer, Data Consumer,
Task Runner, Enforcer, Administrator and Auditor. Single End-user can have multiple
different roles. Data Producer can upload data to data analysis Tasks, Task Runner can

11



start Tasks, Data Consumer can download data, Auditor can inspect the application
runtime logs, Enforcer can verify DFC-s and Administrator can monitor application,
create backups, start recovering from backups and start DFC upgrades.

Table 3. List of stakeholders and their responsibilities in Sharemind HI powered applica-
tion. An application end-user can have multiple roles. For example, Data Producer and
Task Runner are commonly assigned to the same End-user.

Roles Responsibilites and Concerns
Organizational stakeholder

Coordinator Finding business case, defining end-users, their roles and permissions in DFC
Sharemind HI developer Developing new features, finding and fixing bugs

Task developer Developing and deploying task
Application stakeholder

Data Producer Uploading data
Data Consumer Downloading output

Task Runner Starting tasks in TEE
Auditor Inspecting runtime logs
Enforcer Verifying DFC

Administrator Monitoring application, creating backups, recovering from backups

The access controls of Sharemind HI-powered application are described in a single
configuration file called DFC. DFC defines the Tasks and End-users of the system.
Additionally, it contains the permissions of end-users and Tasks at the topic level. Topics
are lists that contain data entries of a certain type. In Fig. 1, Stakeholder1 is Data
Consumer in DataTopicA and has permission to run TaskX. TaskX is a Data Producer
for DataTopicA. Users of the system can verify the enforcement of DFC and authenticity
of Tasks using RA.

Before a Server with a certain DFC is deployed, the DFC must be approved by all
enforcers [6]. Enforcers must verify that the Tasks are valid. To do that, they build the
Tasks locally and see if their fingerprints match the ones given in DFC. Additionally
Enforcers verify that End-user real certificates match the certificate given in the DFC.
This is done by receiving Public Keys from Stakeholders over secure side channels.

Analysis code in Sharemind HI is run in Tasks. Tasks have a single run method
that can be invoked by Task Runners. To access Data Producers’ encrypted data from
persistent storage, they can use special system methods that handle encryption and
decryption for them. Implementation wise, Tasks are enclaves running in separate
processes. This means that the isolation from each other and the rest of the Sharemind
HI is implemented at the TEE level.

2.1.3 Purpose of the Model

The model aims to prove that Intel TDX can be used in Sharemind HI to ease the
development of Tasks. More concretely, the model should be capable of evaluation

12



Figure 1. DFC visualized as a graph [6]. The pointed line to the data topic indicates
being a Data Producer for this topic. A pointed from data topic means that the targeted
Task or Stakeholder is a Data Consumer in this topic. The dotted line to Task shows
permission to run this particular Task.

following five aspects:

• Feature Parity - does the TDX-based Sharemind HI Server have the same function-
alities as its SGX-based counterpart?

• Secure Storage - Intel TDX does not support secure storage. Can data be persis-
tently stored without secure storage, what are the risks and how are they mitigated?

• Isolation of Tasks - Intel TDX operates at VM level. How can the enclave-based
isolation zones of SGX-based Sharemind HI be replicated using Intel TDX

• Performance Overhead - what is the overhead of using TDX-based Sharemind HI?

• Simplifying Task Development - how does TDX-based Sharemind HI remove
programming language constraints and how does it simplify Task development?

2.2 Architecture as a Model of the System
ISO/IEC/IEEE 42010 [23] standard defines software architecture as "fundamental con-
cepts or properties of an entity in its environment and governing principles for the
realization and evolution of this entity and its related life cycle processes". The purpose
of the software architecture to give a holistic yet simplified view of the system. In the
thesis, we aim to create an architecture that shows that TDX-based Sharemind is capable
of solving key requirements captured in the previous chapter.

13



2.2.1 Architecture Description

In [31], Rozanski and Woods propose a framework for describing architecture. The
resulting document, Architecture Description (AD), is composed of different products,
two of which - viewpoints and scenarios - will be used in this thesis. The framework
was chosen because it explains how the products can be used to verify the architecture.
Furthermore, it had clear guidelines and checklists to support the process of creating AD.

Viewpoints Software systems can be complex. Expecting one architectural model
to address the concerns of all stakeholders simultaneously is unrealistic. Kruchten
[26] proposes a solution to this problem by splitting the architecture into different
viewpoints in his "4+1" model [26], each viewpoint having a particular part of the
system it captures. [31] go a step further and propose slicing the architecture into seven
orthogonal viewpoints as follows:

• Context viewpoint describes the external entities with which the system interacts.

• Functional viewpoint describes core functional elements of the systems as well as
the interfaces between them.

• Information viewpoint describes how the system stores, manipulates, manages and
distributes information.

• Concurrency viewpoint maps functional elements to concurrency units and de-
scribes which units can execute concurrently.

• Operational viewpoint describes how the system will be managed during its run-
time.

• Deployment viewpoint captures the environment in which the system will be
deployed.

• Development viewpoint describes how the described architecture should be split
between modules.

Scenarios An architectural scenario or simply scenario is a description of an inter-
action between the system and an external entity. It captures a situation in which the
system will likely find itself and how the system should respond to the situation [31].
The scenarios are divided into functional scenarios and system qualities scenarios based
on their focus.

Functional scenarios focus on explaining what the expected response to external
stimuli should be. Most of the time, they are derived from the use cases [31] and cover
the following aspects:

1. Overview of the situation that the scenario illustrates;

14



2. System state at the start of the scenario with emphasis on stored information;

3. Any significant changes in the system environment at the start of the scenario;

4. External stimulus, which caused the scenario to occur;

5. Required system response from an external observer perspective.

System quality scenarios focus on how the system should respond to changes in
the environment with the emphasis lying on the effect this change has on the quality
attributes. A system quality scenario should explain:

1. Overview of the situation that the scenario covers;

2. System state at the start of the scenario with emphasis on system-wide state;

3. Any significant changes in the system environment at the start of the scenario;

4. Description of the change in the environment;

5. Required system behaviour, given a change in its environment.

2.2.2 Modelling Languages

Viewpoints and scenarios describe what objects should be modelled. Purposefully, they
leave the question of how to model these objects up to the implementer [31]. In this thesis,
we use both non-formal models and formal methods to describe the objects. The non-
formal models are described as they come up. The formal models are based on Universal
Modelling Language (UML) and Business Process Modelling Notation (BPMN). Both
UML and BPMN are defined and managed by Object Management Group [29], and
more detailed information about these methods can be found in their documentation.
UML and BPMN were chosen due to their thorough and example-rich documentation.
The BPMN diagrams were constructed using Camunda [3]. The rest of the models were
drawn using drawio [24].

2.3 Architecture Evaluation Methods
Architecture is an abstract model of the real system. It focuses on aspects considered
relevant and leaves details up to the implementation. As such, it risks making irrelevant
or even wrong abstractions. The purpose of architecture validation methods is to make
sure that the abstraction are reasonable and technically correct [31], thereby increasing
the confidentiality that the architecture is representative of the actual system.

There exist various different methods for validating software architecture. They vary
in their goals, approaches and level of depth. Depending on the project and stage of the

15



development Rozanski and Woods recommend using different methods. For small-scale
high-risk systems such as TDX-based Sharemind HI, they recommend using scenario-
based evaluation, prototypes and skeleton systems [31]. The first two methods should
be prevalent when creating an architecture description. Skeleton systems should be the
go-to method as the project transitions from the architecture development phase to the
system implementation phase. In the thesis, we follow their recommendation to the
extent of using scenarios and prototypes to evaluate the system. Since the actual system
development is beyond the scope of the thesis, the skeleton system validation is left as
future work.

2.3.1 Scenario-based evaluation

Scenario-based evaluation is based around scenarios described in Section 2.2.1. After
identifying the critical scenarios, the architecture is evaluated on the basis of how well
it is capable of tending to the situations described in the scenarios. Scenario-based
evaluation is relatively easy to apply and, at the same time, gives valuable information
about the effects and trade-offs of architectural decisions [31]. However, scenarios are
relatively high-level models leading to non-precise results.

2.3.2 Prototyping

Prototyping is an evaluation method where select parts of the architecture are imple-
mented in a throw-away fashion, e.g. after the evaluation is done, the prototype is
discarded. Compared to scenario-based evaluation, prototypes mock the real system
more closely, making results obtained through prototyping more convincing. On the other
hand, prototyping requires more effort, leading to higher costs and longer development
times.

2.3.3 ISSRM Domain Model

With trusted persistent storage and isolation of Tasks being pushed to Sharemind HI level,
there will be additional security risks the system must mitigate. To describe the risks
that these changes cause, we employ Information System Security Risk Management
(ISSRM) domain model. The domain model identifies and defines common concepts
used in existing standards and security risk management methods [8]. The concepts and
their definitions are as follows:

• Threat agent - an agent that triggers the threat to cause harm to Information System
(IS).

• Attack method - description of how the threat agent carries out the threat.

• Vulnerability - Weakness in the IS.

16



• Impact - negative consequence following the accomplished threat.

• IS asset - a component or part of IS affected in the risk.

• Business asset - informational element having value due to business model of the
IS.

• Risk treatment - how the identified risk is being handled. Possibilities are avoiding
the risk, reducing the risk, transferring the risk and accepting the risk.

The meta-model was chosen due to its good performance in a systematic overview [12]
by Ganji et al. and due to prior experience of the supervisors.

2.4 Chapter summary
This chapter investigated how to create a model to verify the possibility of using Intel
TDX in Sharemind HI. In the first subchapter, we explained what Intel SGX, Intel TDX
and Sharemind HI are and outlined 5 key requirements the model has to address. In the
second subchapter, we introduced a viewpoint-based software architecture framework
and modelling languages that will be used for constructing the model. In the third
subchapter, we described two methods for verifying the model.

17



3 Constructing the Architecture
This chapter deals with the second research question - What is the architectural descrip-
tion of TDX-based Sharemind? The architecture of the system is explained using 4
different views that conform correspondingly to Context, Functional, Information and
Concurrency viewpoints. Operational, Deployment and Development viewpoints were
left out of the scope as they refer to implementation-specific details. The subquestions
that the chapter answers are as follows: (1) How does TDX-based Sharemind HI look
like from a Context viewpoint? (2) How does TDX-based Sharemind HI look like from
Functional viewpoint? (3) How does TDX-based Sharemind HI look like from Informa-
tion viewpoint? (4) How does TDX-based Sharemind HI look like from Concurrency
viewpoint?

3.1 Context View
The purpose of the context view is to model Sharemind HI as a black box and capture
external entities with (1) whom the system interacts, (2) what are the messages and (3)
the required properties of the channel through which the messages are sent.

In total, there are 6 different external entities/environments that interact with either
TDX-based Sharemind HI Server or Client-Key Brokering System, Attestation Provi-
sioning System, Persistent Storage, End-user and System administrator. In the rest of
the subchapter, they are described more thoroughly. The Fig. 2 summarizes the whole
subchapter.

Key Brokering Service A system responsible for storing and retrieving the persistent
keys of TD. This component is necessary as Intel TDX does not provide persistent
storage, and key provisioning by an Administrator would mean that the Administrator
would have unrestricted access to persistent data. The latter goes against the purpose of
Sharemind HI. There are two types of requests that move between KBS and Sharemind
HI server - key store and key retrieve requests. Both requests are initialised at the
Sharemind HI server, and KBS provides responses. When Sharemind HI Server is first
started, it stores a random master key in the KBS. After a reboot, the Sharemind HI
Server requests the key from the KBS. The secrecy of the master key is vital as it acts as
a root of trust. The communication with KBS must be mutually attested, encrypted and
tamper-proof. Through attestation, Sharemind HI Server verifies the trustworthiness of
KBS. On the other hand, the KBS uses Sharemind HI Server attestation result (Quote) as
an authentication method - should the Quote change, the keys stored will be inaccessible.
As a result, after DFC upgrades, all user data uploaded to Persistence Storage is lost by
default.

The KBS ecosystem is relatively new, and as such, there are not many commercially
available off-the-shelf solutions. One notable solution, Trustee, developed by Con-
fidential Containers [noauthor_confidential-containerstrustee_2024] provides tools

18



Figure 2. Context view of the Sharemind HI capturing external entities and environments,
and interactions between them

for creating a KBS capable of returning keys against a Quote. Running Trustee in
a TEE, opens up the possibility for Sharemind HI Server to also verify the Quote of
Trustee-powered application, verifying that the latter does not leak keys in any way.

Attestation Provisioning System. Attestation Provisioning System is responsible
for verifying RA Quotes. It is necessary as it confirms to end users that a certain Quote
was signed by a certain SGX-powered chip. The Attestation Provisiong System is built
upon Intel Data Center Attestation Primitives. The interactions with the Attestation
Provisioning System are done over the network, and the messages must be tamper-
proof and authenticated. The nature of the communication is based on Sharemind HI
Client/Server requests and system responses.

Persistent Storage. When KBS is required to store secrets across restarts, the
Persistent Storage stores the actual data. Two broad categories of requests are associated
with Persistent Storage - storing an retrieving data. In both cases, the Persistent Storage
acts as the responding party. The communication channel between Persistent Storage
and its users does not have any requirements, as Persistent Storage is already considered
to be untrusted. Instead, to achieve integrity and confidentiality of data in Persistent
Storage, we employ encryption and MACs.

End-user. End users are the eventual users of DA application. They have a version
of Sharemind HI Client that they can use to make requests. In contrast to previous
entities, which responded to Sharemind HI Server requests, the client always initialises

19



communication between End-user and Server. The communication channel must be
tamper-proof, encrypted, client-authenticated and the server must attest itself to the
client.

System administrator. System administrator supports the DA application during its
runtime. They are responsible for handling upgrades of DFC and monitoring the system.
The communication channel must be tamper-proof, client-authenticated and the server
must attest itself to the client.

3.2 Functional View
. The purpose of the functional viewpoint is to pick the black box seen in the context
viewpoint apart into runtime parts called functional elements. Functional elements handle
concrete functionalities that map to software code modules [31]. Functional elements
expose interfaces through which they can be accessed by other elements.

The set of functional elements identified for TDX-based Sharemind HI and their
responsibilities is given in the list below:

• Gateway manages communication with the client application. It serves as an entry
point to the Sharemind HI Server - it authenticates the user and handles calling
requested functionalities;

• Attestation Module handles RA Quote generation;

• Persistence Controller is responsible for saving and retrieving data from persistent
storage. It also handles the retrieval and creation of the Master Key.

• DFC Enforcer keeps track of the DFC history and handles DFC upgrades. Based
on the most recent DFC authenticates and authorises users;

• Task Manager manages Tasks. This includes running and sending messages to
Tasks, handling Task setup and failures;

• Task is DA application-specific analysis code. It performs operations on uploaded
data and/or additional parameters passed to it with a Task run call.

Functional elements communicate with each other over interfaces. In total, we
identified 9 necessary interfaces that the functional elements must expose. 6 interfaces
are completely internal. They enable communication between functional elements. The
remaining 3 interfaces are between an internal functional element and an external entity.
Internal interfaces mostly connect elements running in the same process and, as such,
can be called using function calls. Non-internal interfaces are mostly implemented over
HTTP. Fig. 3 displays the functional elements and their interfaces with each other. The
rest of the chapter defines each interface at function intent and signature level.

20



Persistence Controller

Task Manager

Attestation Module

DFC Enforcer

TaskGateway

«external»
Persistence Provider

«external»
Sharemind HI Client

«external»
Key Brokering Service

ServerInterface

AttInterface

{type: http+attestation}

KbsInterface

TmInterface

PcInterface

{type: FUSE}

DfcInterface

{type: http+attestation}

{protocol: http}

TaskInterface

FsInterface

{protocol: tcp/ip}

PpInterface

Figure 3. UML component diagram displaying functional elements and their interfaces.

The functional elements and their interfaces are displayed in the Fig. 3.
ServerInterface. The interface is exposed by Gateway for Administrators and End-

users, who, using Sharemind HI Client library, send HTTP requests to the Sharemind
HI Server. Sharemind HI Client is set up such that it requires attestation proof from
Sharemind HI Server before allowing the use of other functionalities. The interface is
composed of following ten functions:

(Status, ServerSessionPublicKey) createSession1(challenge: Challenge, pub_key:PublicKey)
(Status, Quote) createSession2(sess_pub_key:SessPublicKey)
(Status, DEK) uploadData(confidential_data: byte[], topic: uuid)
(Status, DataEntry) downloadData(data_entry_id: uuid)
(Status, Optional<byte[]) runTask(

task_id: uuid,
additional_args:Optional<byte[]>

21



)
Status uploadDfc(dfc: Dfc)
Status getStagingDfc()
Status verifyDfc(verification_result:boolean)
Status upgradeDfc(dfc:Dfc)
Status startRecovery()

createSession is a two-round-trip function through which the Client and Server applica-
tion establish a symmetric key. It is based on Sign-and-MAC (SIGMA) family of key
exchange protocols proposed by Krawczyk [25]. During the second round-trip, Gateway
extends the key exchange response with an attestation Quote as described in Intel SGX
attestation documentation [17]. The symmetric key serves as a basis for sending authen-
ticated encrypted and tamper-proof messages between server and client. uploadData
function is used to upload data. In response, the user gets Data Encryption Key (DEK)
that was used to decrypt the data in the persistent storage. The key is deterministically
generated based on a nonce and Master Key. This key can be used to regrant the access
to Sharemind HI Server DFC is upgraded and it loses its Master Key. downloadData
function is for retrieving data entries from Persistent Storage. runTask can be used to run
Tasks. Besides having to specify the task, Task Runner can pass in additional variables.
The response to the function depends on the Task. For long running tasks it could be
a verification of starting the computation, for short Tasks it can contain result of the
analysis. uploadDfc is used to upload new DFCs, which can then be queried using
getStagingDfc and verified using verifyDfc. If all Enforcers have approved, the DFC
Administrator can trigger the upgrade using upgradeDFC. startRecovery is a function
for restarting the Server after a failure. Status is an enum describing the result of the
request in this interface as well as the following interfaces.

AttInterface. The interface is composed of two functions:

boolean verifyQuote(Quote: Quote)
Quote getQuote(target: EndUser|KBS )

verifyQuote function is used to verify Quotes provided to Sharemind HI Server. One
example of such Quote provider is KBS. getQuote is used during RA to construct the
Quote. Depending if the target is End-user or KBS, some fields of the Quote vary. gener-
ateKeyPair is used during RA for creating a temporary key pair for establishing a Session
Key. The interface is used by the Persistence Controller and Gateway. TmInterface.
The interface is composed of one function:

(Status, Optional<byte[]) runTask(
task_id: uuid,

22



additional_args:Optional<byte[]>
)

runTask function of ServerInterface is forwarded to TaskMananger for implementation.
Task Manager sends the arguments to the intended Task. The response from the Task is
then relayed back to the Gateway.

DfcInterface. The interface contains four functions:

boolean isUserAuthorised(user: uuid, topic: uuid, operation: Upload|Run|Download
Status updateStagingDfc(dfc: Dfc)
Status fetchDfcHistory()
Status addStagingDfc(dfc: Dfc)

isUserAuthorised function takes in three arguments and verifies if a user with uuid is
allowed to perform an operation in a certain topic. updateStagingDfc starts pulling DFC-s
from Persistent Storage. fetchDfcHistory takes a new version of the staging DFC and
overwrites the existing copy. This action is supposed to be transactional in the sense that
updating the local staging DFC and the version in the Persistent Storage are done in one
transaction. addStagingDfc verifies the correctness of the DFC, uploads to Persistent
Storage and then updates the local DFC History.

FsInterface. The interface is composed of the following three functions:

uuid[] listFiles(topic_name: string)
DataEntry retrieveData(data_entry_id: uuid)
Status storeData(data: byte[], topic: uuid, data_owner: uuid)

The functions are called when Task performs file system operations. listFiles is called
when Task queries the contents of the file system. The response of the function is a
collection of data entry uuids available to the Task. retrieveData is called when Task
reads from a file. The function decrypts the data entry contents and returns it in decrypted
form to the Task. storeDataEntry is called when Task writes results to the filesystem.
The cleartext results are encrypted and persisted as data entry. The redirection of file
system calls to Persistence Controller is done using Filesystem in userspace (FUSE).
More information about FUSE is given in Appendix A. The authorisation of Tasks action
is handled using DFC Enforcers isUserAuthorized function.

PcInterface The interface is composed of the following six functions:

DataEntry retrieveData(data_entry_id: uuid)
Status storeData(data: byte[], topic: uuid, data_owner: uuid)
Status deleteDataEntry(data_entry_id: uuid)

23



DfcHistory retrieveDfcHistory()
Status addStagingDfc(staging_dfc:Dfc)
Status updateStagingDfc(staging_dfc: Dfc)
MasterKey getMasterKey(dfc: Dfc)

The functions are called to perform create, read, update and delete operations on persistent
data. The consumers of the interface are Gateway and DFC Enforcer. The Persistence
Controller, the functional element that implements these functions, handles the encryption
and decryption of the data to be operated on. Additionally, it handles connecting to
different Persistence Storage Providers. The first 6 functions calls will be forwarded to
Persistent Storage, however the last function, getMasterKey is to be performed against
KBS.

TaskInterface. The interface is composed of one function:

byte[] run(additional_args:Optional<byte[]>)

The function is implemented in the Task by Task developers. The function is called by
Task Manager using an HTTP request. The endpoint for the request is defined using a
port assigned to the Task.

PpInterface and KbsInterface are implemented at the vendor side and are left out
of the architecture description.

3.3 Information View
The purpose of the information viewpoint is to explain data entities of the system and
give insights into their lifetime, ownership and identification.

Keys. There are numerous different keys used in TDX-based Sharemind HI with
different lifetimes, so we look at two different categories of keys. One category of keys is
related to persistently storing data, and the second category is related to session creation.

The Persistence key chain begins with the Master Key. The Master Key is created
at KBS based on Sharemind HI Server Quote. It is then ephemerally stored in the
Sharemind HI Server until the Server dies. Once the Server is restarted with a new DFC
version, the Master Key is lost. Per application there exists one Master Key at a time.
Each time data is uploaded, a new DEK is created based on the Master Key and a secret
that will always be used to decrypt and encrypt the uploaded data. The DEK is encrypted
using Master Key and the resulting eDEK is stored in Persistent Storage. The DEK is
then returned to Client and wiped from the Server. DEK is introduced to enable quick
restoring (only DEK needs to be sent to the Server) of Data Producers’ Data Entries after
DFC Upgrade, should the Data Producer wish that.

24



Session creation-related keys are used to authenticate the End user and the Sharemind
HI Server. Each End-user of Sharemind HI has an asymmetric Client key pair that is
used to authenticate them across sessions. This key pair is created during the deployment
of Sharemind HI and remains constant across DFC upgrades and Server restarts. The
public key of the key pair is fixed in DFC. On the other hand, Sharemind HI Server
is authenticated by its hardware key and Intel Attestation Provisioning Service. The
hardware key is ingrained in CPU fuses and can not be pulled or modified. Keys described
so far are only used for authentication of users communication between Client and Server
is protected by a symmetric Session Key. The Client and Server use temporary Session
Creation Key Pairs to establish an ephemeral Session Key.

Table 4. Table showing persistence and attestation keys used in TDX-based Sharemind
HI

Key Creation Creation place Storage Lifetime Count
Persistence keys
Master Key Deterministically

based on Server
Quote

KBS Ephemeral DFC version 1

DEK Randomly based
on Master Key

Sharemind HI
Server

Ephemeral DFC version
(extendable by
Client)

1 per Data Entry

eDEK Deterministically
based on DEK and
Master Key

Sharemind HI
Server

Persistent Stor-
age

DFC version 1 per DEK

Session creation
keys
Hardware key Engrained in CPU

during manufac-
tury

Out of AD scope CPU fuses CPU lifetime 1 per CPU

Client key pair DFC generation Out of AD scope End user local
storage

Application life-
time

1 per Client

Client Session
Creation Key
Pair

Randomly during
Session creation

Sharemind HI
Client

Ephemeral Session 1 per session

Server Session
Creation Key
Pair

Randomly during
Session creation

Sharemind HI
Client

Ephemeral Session 1 per Enduser

Session Key Session Creation
based on ex-
changed Creation
Keys

Sharemind HI
Client and Server

Ephemeral Session 1 per session per
End user

Persistence.TDX-based Sharemind HI requires persistent storage of following three
different types of data - DFCs, Data Entries, and the Master Key. Data Entry is a complex
data structure containing encrypted data, data identifier, eDEK, topic identifier, retention
date, data owner identifier and a MAC calculated over all other fields using Master Key.

DFC is a complex data structure containing 4 further each other referencing complex
data structures - Stakeholders, Topics and Tasks and Approvals. Additionally each DFC
holds a boolean whether a DFC is in staging phase an incrementing version number

25



a MAC that contains all other fields and Admin’s signature of the MAC. The MAC is
added by the uploading Admin.

The Master Key storage is handled by Key Brokering Service.
Attestation Structures. The result of the remote attestation is a Quote. Quote is a

Report that has been signed by the hardware-specific key. The Quote can be verified in
Attestation Provisioning System. If the Quote is correct, then the Report indeed describes
the workflow of the attesting system. Report contains measurements of different parts of
the system that can be compared by the Relying Party against some known good values.
Additionally, Report contains a field called Reportdata, which, in comparison to other
fields, can be constructed by the workload itself.

3.4 Concurrency View
Sharemind HI server is composed of one central Hub Process and at least one guest
Task Process. Task Processes have two separate communication channels with the Hub
Process, but no immediate methods to communicate with each other.

The Hub Process contains all TDX-based Sharemind HI logic. It hosts functional
components Persistence Controller, Task Manager, Attestation Module, DFC Enforcer
and Gateway. Depending on the capabilities of the underlying hardware, each functional
component can employ multiple threads.

Task processes hold the Tasks and additionally must host an HTTP server. They are
meant to listen on an HTTP port and, when a request arrives, then perform the analytics
task. Depending on the request, the task process might want to fetch data from the
database. Should a task die, then the server is responsible for logging the error and
restarting the task.

The concurrency viewpoint is modelled in the following graph Fig. 4.

3.5 Chapter Summary
In the chapter, TDX-based Sharemind HI architecture was proposed. We modelled
the system from different viewpoints, each explaining a different slice of the system.
Context view gave a big-picture view of the external components which interact with the
Sharemind HI Server. The Functional view listed 6 functional elements and 9 interfaces,
which they expose. The Informational view explained different data objects used in
TDX-based Sharemind HI. This included a description of different keys, persistently
stored Data Entries and DFCs, and data structures used in RA flows. The concurrency
view explained that Sharemind HI Server is composed of 2 two types of processes. There
is one Hub process running the majority of functional components and multiple Task
processes, each running a separate Task.

26



Sharemind HI Server

«process»
Hub Process

«thread»
Gateway Worker Thread

(count '1..n')

«process»
 Task Process

(count '1..10')

Task
(type='filesystem_call')

«thread»
Persistence Controller

 Thread
(count '1..n')

Persistence 
Controller

«thread»
DFC Manager Thread

(count '1..n')

DFC Manager

«thread»
Attestation Module

 Thread
(count '1..n')

Attestation 
Module

«thread»
Task Manager

 Thread
(count '1..n')

Task
Manager

(type='http_socket')

Gateway

Figure 4. Model displaying functional elements of an architecture built around Intel TDX
trusted domains

27



4 Verifying the Architecture
This chapter answers the last supporting research question - How does the new architec-
ture solve the requirements?

It does this by answering the following subquestions:(1) How will the requirements
be verified? (2) What are the results of scenario-based evaluation? (3) What are the
results of prototype-based performance evaluation?

4.1 Creating Verification Plan for Requirements
The purpose of the architecture developed in the thesis is to show that Intel TDX could be
used in Sharemind HI. More concretely, in Section 2.1.3, we defined 5 requirements that
the architecture must be able to verify - Feature Parity, Unrestricted Task Development,
Secure Storage, Isolation of Tasks and Low Performance Overhead.

To verify Feature Parity, we select core use cases of SGX-based Sharemind HI and
construct functional scenarios based on them. We then create BPMN diagrams using
context view elements as BPMN Pools, functional elements as BPMN lanes, functions
as flow symbols between swimlanes and data entities as data objects. In the following
list are the use cases and reasoning for their inclusion:

• Session creation - necessary prerequisite for other use cases

• Data download - necessary for data analysis purposes.

• Data upload - necessary for data analysis purposes.

• Run task - necessary for data analysis purposes.

• Verify DFC - necessary for explaining trust generation in TEE-based data analysis
application.

• Start recovery - explains recovery of state across restarts in Intel TDX.

• Upgrade DFC - a complex process which requires verification.

For verification of Secure Storage and Isolation of Tasks, we formulate them as security
quality scenarios. We find the parts of BPMN diagrams that are affected by the TEE
change, find applicable attacks to these parts and formulate risks according to ISSRM
domain model. Furthermore, we propose technical controls that could be used to mitigate
these risks. Unrestricted Task Development requirement is verified by showing that the
architecture nor the TEE restrict using programming languages commonplace in data
science. To verify performance-related requirements, we create a prototype of the system
according to the architecture. We then use the prototype to run end-to-end flows in both
regular VM and TD. From that, we obtain Intel TDX overhead, which we can compare
with that of Intel SGX

28



4.2 Verifying Scenarios
In this chapter, we show how the architecture described in Section 3 can be used to verify
fulfilling functional, security and ease of development scenarios.

4.2.1 Functional Scenarios

The functional scenarios explain how the system should respond to given stimuli. In this
chapter, we construct 7 scenarios based on the core use cases of Sharemind HI. We then
verify using BPMN diagrams and architecture description constructed in Section 3 that
the expected path from stimuli to response can be created. This verifies the requirement
for feature parity because it shows that the new architecture can handle Sharemind core
HI use cases.

Session creation. Client-server session creation in TDX-based Sharemind HI is a
mutually authenticated key exchange composed of two round trips between the Client
and the Server. During the second round trip, Server responds with a generated Quote.
The main purpose of the Quote is to give proof to the client of the specific workload run
on the server. Having a session is a prerequisite for all other client-server communication
(except for querying DFC). It is invoked whenever a client makes a request requiring
client-side authentication and no existing session exists. In the main success scenario,
a symmetric key is created between Client and Server, and Client has verified Server’s
workload. A description of the scenario is given in Table 5.

Table 5. Scenario description of session creation given in a tabular format

Overview
Sharemind HI Client and Sharemind HI Server establish a trusted
connection.

System state Sharemind HI Server application is running. No sessions exist
between Server and participating Client.

System environment As usual.
External stimulus Client initialises the connection with Sharemind HI Server.

Required system
response

Main success scenario Symmetric key is exchanged, client
has established trust with Share-
mind HI Server through TA.

Suspicious Quote Cancel session creation
Server signature is re-
voked

Cancel session creation

Server timeout Cancel session creation.

The key steps of how the session creation process is handled in the architecture is
visualised in Section 4.2.1 and given below:

29



1. Client initiates the client session creation handshake by sending the Challenge to
the Server. This corresponds to createSession function.

2. Gateway receives the request and forwards it to Attestation Module for handling
using generateKeyPair.

3. Attestation Module creates Session Creation Key Pair.

4. Attestation Module signs Server’s session creation public key and a handshake-
specific signature signed by hardware encoded secrets.

5. Gateway sends the signed public key to Client.

6. Client verifies the signature by the Attestation Provisioning Service. On failure
session creation is stopped, on success the process continues.

7. Client creates Session Creation Key Pair.

8. Client derives the Session Key using the Server’s Session creation public key and
its own Session Key.

9. Client sends its session creation public key to Server.

10. Gateway derives Session Key and creates random bytestring as an identifier for the
session.

11. Gateway requests Quote creation from Attestation Module using getQuote function.

12. Attestation Module session identifier starts Report creation and adds session iden-
tifier to the Report creation request. The Report is generated by the TDX Module.

13. Attestation Module uses TDX built-ins to turn the Report into a Quote. The Quote
is signed using hardware secrets exposed through Intel TDX in-built functions.

14. Attestation Module returns the Quote to the Client

15. Client verifies Quote.

Data upload describes the process through which Data Producers their data to the
Sharemind HI Server in order to make it available to analytics tasks. The process starts
when Data Producer has entered data and topic to the Sharemind HI Client. In the main
success scenario, the data is stored in Persistent Storage as a Data entry, and the Client
receives DEK, which is used to encrypt the Data Producer’s data. If Data Producer’s
session can not be found at the Server side, a new session must first be established. If
Data Producer does not have permission to upload data to given topic, the process should
be cancelled. Any timeout at the Client or Server side must trigger, ending the process.
See Table 6 for a summarised scenario description.

Using the constructed architecture, the scenario can be completed as follows (see ):

1. Client uploads confidential data using uploadData function.

30



Sharemind HI Client

S
ta

rt
ha

nd
sh

ak
e

E
nd

 u
se

r
in

iti
al

iz
es

 r
eq

ue
st

H
an

dl
e

re
sp

on
se

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
h

R
es

po
ns

e
su

cc
es

sf
ul

?

D
is

pl
ay

 e
rr

or
m

es
sa

ge

V
er

ify
 S

er
ve

r
S

ig
na

tu
re

F
in

is
h

S
ig

na
tu

re
 v

al
id

?

C
re

at
e 

ke
y 

pa
ir

H
an

dl
e

re
sp

on
se

V
er

ify
 Q

uo
te

Q
uo

te
 v

al
id

?

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
h

F
in

is
h

C
om

m
it 

to
se

ss
io

n

S
en

d 
pu

bl
ic

 k
ey

C
re

at
e 

S
es

si
on

K
ey

F
in

is
h

S
er

ve
r 

S
es

si
on

cr
ea

tio
n 

pu
bl

ic
ke

y

C
lie

nt
 s

es
si

on
cr

ea
tio

n 
pu

bl
ic

ke
y

C
lie

nt
 s

es
si

on
cr

ea
tio

n 
pr

iv
at

e
ke

y
S

es
si

on
 k

ey

T
im

eo
ut

Y
es

N
o

Y
es

N
o

N
o

Y
es

Sharemind HI Server

Attestation ModuleDFC EnforcerGateway

R
ec

ei
ve

 r
eq

ue
st

F
in

is
h

R
ec

ei
ve

 c
lie

nt
pu

bl
ic

 k
ey

C
an

ce
l s

es
si

on
cr

ea
tio

n

G
et

 S
es

si
on

cr
ea

tio
n 

ke
y

pa
ir

C
P

U
 s

pe
ci

fic
 k

ey

S
en

d 
S

er
ve

r
pu

bl
ic

 k
ey

E
nd

 u
se

r
pu

bl
ic

 k
ey

C
ha

lle
ng

e

C
re

at
e 

ke
y 

pa
ir

S
ig

n 
pu

bl
ic

 k
ey

S
er

ve
r 

se
ss

io
n

cr
ea

tio
n 

pu
bl

ic
ke

y

S
er

ve
r 

S
es

si
on

cr
ea

tio
n 

pr
iv

at
e

ke
y

C
re

at
e 

S
es

si
on

w
ith

 C
lie

nt S
es

si
on

 k
ey

C
re

at
e 

R
ep

or
t

T
ur

n 
R

ep
or

t
in

to
 Q

uo
te

R
et

ur
n 

Q
uo

te
Q

uo
te

S
es

si
on

 id
en

tif
ie

r

S
en

d 
re

sp
on

se

F
in

is
h

ge
ne

ra
te

K
ey

P
ai

r

ge
tQ

uo
te

cr
ea

te
S

es
si

on
cr

ea
te

S
es

si
on

Figure 5. BPMN diagram of session creation process

31



Table 6. Data upload scenario description

Overview
Data Producer uploads data to Sharemind HI Server to make it
available for analysis.

System state A session between Sharemind HI Server and Data Producer has
been established.

System environment As usual
External stimulus Data upload request is made by Data Producer

Required system
response

Main success scenario Data is saved as Data Entry in
Persistent Storage, Client receives
DEK.

Session expired Initialise new session brokering pro-
cess, then repeat data upload.

Unauthorised action Cancel data upload.
Server/Persistent Storage
timeout

Cancel data upload.

2. Gateway authenticates the user based on the session identifier. On failure, the
Client will try to recreate the session.

3. Gateway uses DFC Enforcer’s isUserAuthorised function to request authorisation
of the user.

4. DFC Enforcer verifies that Client can upload data to given topic. On failure, a
corresponding exception is returned to the client.

5. Gateway requests Persistence Controller to store the data using storeData function.

6. Persistence Controller generates DEK using nonce.

7. Persistence Controller generates eDEK using Master Key and DEK.

8. Persistence Controller constructs DataEntry and uploads it to the Persistent Storage.

9. Persistent Storage stores the Data Entry.

10. Persistent Storage responds to Persistence Controller with a success response.

11. Persistence Controller returns DEK to the Gateway.

12. Gateway returns the DEK along with a success message to the Client.

Data download is a process through which Data Consumers get access to analytics
results. The process starts with Data Consumer creating a request for data with specific
identifier. In the main success scenario Server responds with data entry of given id. If
the Data Consumer’s session can not be found based on the Server-side, then a response
requiring reestablishment of the session is sent. If the Data Consumer does not have
permission to download this data, a corresponding exception message should be returned,

32



S
ha

re
m

in
d 

H
I C

lie
nt

Data upload

End user
initializes request

Handle
response

Display error
message

Finish

Response type

Session
creation

Display error
message

Show success
message

Finish

Finish

No session
exception

Other exceptions

Success

Timeout

S
ha

re
m

in
d 

H
I S

er
ve

r

G
at

ew
ay

D
F

C
 E

nf
or

ce
r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

Dataflow
configuration

Check user
permissions

data topic_id

User

Can upload to
topic?

Request end

Send response
Upload data

Join

Check user
authorization

Session exists?

Authenticate
user

Receive request

Data EntryNonce

Encryption key
derivation

Encrypt Data

DEK

Encrypt DEK
Construct Data

Entry

Encrypted Data

Send data

Data uploaded

session identifier

eDEKMaster key

storeData

Yes

No

Timeout

isUserAuthorized

No

Yes

P
er

si
te

nt
S

to
ra

ge

uploadData

Figure 6. BPMN diagram of data upload process

and the process should stop. If the Server or Persistent Storage takes longer, the process
is stopped, and a timeout exception should be shown in the Client application. See
Section 4.2.1 for a summary of the scenario.

Using the constructed architecture, the scenario can be completed as follows (also
see Section 4.2.1):

33



Table 7. Data download scenario description

Overview
End user marked in the DFC as a Data Consumer in a topic down-
loads data from said topic.

System state End user has established trust or trusts Sharemind HI instance.
System environment As usual
External stimulus Data download request is made from the end user

Required system
response

Main success sce-
nario

Data is downloaded

Session expired Initialise new session brokering process,
then repeat data download

Unauthorised ac-
tion

Cancel data download

Server/Persistent
Storage timeout

Cancel data download

1. Client sends a request to Server to fetch data with certain identifier using dataD-
ownload function.

2. Gateway authenticates the user based on session identifier. On failure, the Client
will recreate the session.

3. Gateway uses DFC Enforcer’s isUserAuthorised function to request authorisation
of the user.

4. DFC Enforcer verifies that Client can download given Data Entry. On failure, a
corresponding exception is returned to the client.

5. On success, the Persistence Controller fetches data from Persistent Storage using
retrieveData.

6. Persistence Controller decrypts the DEK, from the eDEK and Master key.

7. Persistence Controller decrypts data using DEK.

8. Persistence Controller sends decrypted data to Gateway.

9. Gateway sends decrypted data as response to the Client.

Run task. Run task scenario describes how Tasks are run on the server. The request
starts when an end user creates task run requests through Sharemind HI Client. The main
success scenario is that the server runs the Task and the Tasks returns a Response to
the Task Runner. If Task Runner’s session is expired, a session recreation is requested
before rerunning the Task. If Task Runner aims to run a Task for which he does not have
permission, a corresponding exception must be thrown. Similarly, Task run should be
cancelled when a request to the Server times out or an unhandleable exception occurs in
the Task. The scenario is summarised in Table 8.

34



S
ha

re
m

in
d 

H
I C

lie
nt

Download data

End user
initializes request

Handle
response

Finish

Display error
message

Response type

Show data

Display error
message

Finish

Finish

Session
creation

No session
exception

Other exceptions

Success

S
ha

re
m

in
d 

H
I S

er
ve

r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

D
F

C
 E

nf
or

ce
r

G
at

ew
ay

Request end

Master keyeDEK

Decrypt DEK
Receive

encrypted data
entry

user

Check user
permissions

Dataflow
configuration

Encrypted data
entry

DEK
Request data
from storage

Decrypt and
Integrity check

Data

Send response

Receive request

Find user
session

Check user
authorization

Session exists?

Can download
from topic?

Get data

Join

data entry id

session identifier

Timeout

isUserAuthorized

Yes

No

No

Yes

P
er

si
te

nt
S

to
ra

ge

dataDownload

Figure 7. BPMN diagram of data download process

Using the constructed architecture, the scenario can be completed as follows (also
see Fig. 8):

1. Client sends a request to Server to run a task using runTask function.

2. Gateway authenticates the user using a session identifier. On failure, its response re-

35



Table 8. Task run scenario description

Overview
End user marked in the DFC as a Task Runner runs analysis in the
Server.

System state End user has established trust or trusts Sharemind HI instance.
System environment As usual
External stimulus End user starts Task run.

Required system
response

Main success scenario Task is run
Session expired Initialise new session broker-

ing process, then repeat task
run

Unauthorised action Cancel task run
Unhandleable exception in
Task

Cancel task run

Server timeout Cancel task run

quires recreating the session, which the Sharemind HI Client handles automatically
before resubmitting the data download request.

3. Gateway uses DFC Enforcer’s isUserAuthorised function to request authorisation
of the user.

4. DFC Enforcer verifies the client’s authorisation to run the task. On failure, a
corresponding exception is sent to the client.

5. On success, Gateway requests Task Manager to run the task using Task Manager’s
runTask function.

6. Task Manager requests the Task to run the analysis by calling Task’s run method. .

7. The Task performs the analytics, reading and writing data to persistent storage over
file system using FsInterface and eventually sends a response to Task Manager

8. Task Manager relays Tasks response to Client over Gateway.

Verify DFC Each version of DFC must be verified by all Enforcers before it goes
active. Before activated, they are in a staging state. This scenario describes the process
of querying DFCs and publicly stating trust or distrust in a given staging DFC. In the
main success scenario, the verification result is stored in the Persistent Storage and a
success response is returned to the Enforcer. If Enforcer gives an invalid verification
result or attaches a valid verification result to an invalid or expired staging DFC, the
process stops with an exception. Similarly, when a regular End user, who is not marked
as an Enforcer in the DFC, attempts to verify the DFC, the process is stopped. The
scenario is summarised in Table 9.

Using the constructed architecture, the scenario can be completed as follows (also
see Fig. 9):

36



S
ha

re
m

in
d 

H
I C

lie
nt

End user
initializes request

Run task
Handle

response

Display error
message

Finish

Show data

Response type

Session
creation

Display error
message

Finish

Finish

Timeout

Success

No session
exception

Other exceptions

S
ha

re
m

in
d 

H
I S

er
ve

r

Ta
sk

 P
ro

ce
ss

H
ub

 P
ro

ce
ss

Ta
sk

 M
an

ag
er

D
F

C
 E

nf
or

ce
r

G
at

ew
ay

Analysis code

Task started

Get user data
Perform

calculations

Write
calculation

results

Task finished

Finish

Return
response

Run task

Return task
result

Invoke task

Is allowed to run
task?

user

Receive task
request

task_idtask_arguments

Receive request

Issue resolved?
Handle

exception
Start task

Check user
Permissions

Check user
Authorization

Session exists?

Dataflow
configuration

Find user
session

session identifier

Yes

No

Yes

No

run

runTaskisUserAuthorised

Yes

No

runTask

Figure 8. BPMN diagram of task run process

1. Enforcer requests Staging DFC from Persistent Storage.

2. Enforcer verifies the DFC.

3. Enforcer sends the verification result using Sharemind HI Client library to Share-
mind HI Server.

4. Client sends the request to Gateway using verifyDFC function.

37



Table 9. Verify DFC scenario description

Overview Enforcers can verify staging DFC.
System state Sharemind HI Server application is running.
System environment As usual.
External stimulus Client initialises the connection with Sharemind HI Server.

Required system
response

Main Success Scenario Enforcer’s verification result is
added to the staging DFC.

Enforcer uploaded DFC
staging DFC is not valid

Cancel DFC verification.

Enforcer gives invalid ver-
ification response

Cancel DFC verification.

Unauthorised action Cancel DFC verification.

5. Gateway authenticates the user based on the session identifier.

6. Gateway request authorisation check of the user form DFC Enforcer using isUser-
Authorised method.

7. Persistence Controller either downloads the staging DFC to the database or returns
it from the cache.

8. The staging DFC is sent to the Client.

9. Enforcer can give approval or deny the version of DFC.

10. Client transmits the verdict to Server.

11. Persistence Controller stores the verdict in Persistent Storage. The integrity of the
verdict is protected using MAC.

12. Once Persistent Storage has confirmed the storage of verdict, the Persistence
Controller can relay the success response to the Client.

Upgrade DFC As the business environment may change, so it is also necessary that
the DFC be upgraded accordingly. The process is started by the Administrator, who
provides a new DFC. In the main success scenario, the DFC is approved and upgraded.
If, however, any of the Enforcers reject the DFC, the DFC is discarded. Similarly, DFC
is discarded if errors are detected during early syntax check. See Table 10 for scenario
summary.

Using the constructed architecture, the scenario can be completed as follows (also
see Fig. 10):

1. Client sends a request for uploading a staging DFC using uploadDFC function.

2. Gateway forwards the request to DFC Enforcer using addStagingDFC function of
DfcInterface.

38



C
lie

nt
 a

pp
lic

at
io

n

End user
initializes request

Response
successful?

Join

Get staging
DFC

Handle
response

Staging DFC

Get Enforcer
verification

Display error
message

Finish

Send Enforcer
response

Receive
confirmation

Finish

Yes

No

S
ha

re
m

in
d 

H
I S

er
ve

r

G
at

ew
ay

D
F

C
 E

nf
or

ce
r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

Store updated
staging DFC

User can verify
DFC?

Store DFC
verifyication

result

Verify DFC
correctness

Join

Is DFC correct?

Update local
DFC

Confirmation
received

Check User
Permission

user

DFC

Send response

Request end

Check user
authorization

Authenticate
user

Receive
request

DFC Verification
Result

Yes

updateStagingDfc

isUserAuthorised

No

Yes

No

updateStagingDfc

P
er

si
st

en
t

S
to

ra
ge

verifyDfc

Figure 9. BPMN diagram of verify DFC process

39



Table 10. DFC upgrade scenario descriptions

Overview Process describing how DFC can be updated.
System state Sharemind HI Server application is running.
System environment As usual.
External stimulus Administrator uploads a new DFC.

Required system
response

Main Success Scenario DFC is upgraded, server is restarted
in recovery mode.

Enforcer disapproves DFC DFC is disqualified.
DFC is not syntactically
correct

DFC is disqualified. Problem is
given.

3. DFC Enforcer controls the syntax of uploaded DFC. If errors are found, an excep-
tion is thrown, else the DFC is stored using addStagingDFC function of PsInter-
face.

4. Persistent Controller stores the DFC in Persistent Storage.

5. Once Persistent Controller receives confirmation from Persistent Storage, a re-
sponse is sent to the DFC Enforcer.

6. DFC Enforcer adds DFC to local DFC History.

7. DFC Enforcer returns through the Gateway a success response to the Client.

8. Client informs Administrator of DFC being uploaded.

9. Administrator informs Enforcers through out-of-bands medium of the staging
DFC.

10. Enforcers either unanimously accept the DFC or the DFC is discarded.

11. If the staging DFC is accepted, Administrator marks the DFC in Persistent storage
as active.

12. Administrator then uses Client to restart the server using upgradeDfc function.

Server recovery Server recovery scenario describes situation where Administrator
starts Sharemind HI Server after shutdown. The process starts at Client library after the
request from Administrator has been created. In the main success scenario the Server is
booted up, the DFC History and Master Key are restored. If DFC History is tampered, the
Server recovery stops. Notably, there is no protection against replay attacks - Persistent
Store can store a history of valid DFC Histories and at the recovery give any one of these
valid DFC Histories. See Table 11 for summary of the scenario.

Using the constructed architecture, the scenario can be completed as follows (also
see Fig. 11):

40



Sharemind HI Client

U
pl

oa
d 

ne
w

D
F

C

A
dm

in
 in

iti
al

iz
es

re
qu

es
t

H
an

dl
e

re
sp

on
se

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
hR

es
po

ns
e 

ty
pe

S
es

si
on

cr
ea

tio
n

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
h

A
ll 

ac
ce

pt
ed

?
F

ix
 e

rr
or

s

M
ar

k 
D

F
C

 a
s

ac
tiv

e
W

ai
t f

or
co

nf
irm

at
io

n
R

es
ta

rt
 w

ith
ne

w
 D

F
C

F
in

is
h

W
ai

t
en

fo
rc

er
er

s'
re

sp
on

se
s

N
ot

ify
 e

nf
or

ce
rs

T
im

eo
ut

N
o 

se
ss

io
n

ex
ce

pt
io

n

O
th

er
 e

xc
ep

tio
ns

S
uc

ce
ss

no ye
s

Sharemind HI Server

Gateway DFC Enforcer Persistence Controller

S
en

d 
re

sp
on

se

R
eq

ue
st

 e
nd

R
ec

ei
ve

 r
eq

ue
st C
on

tr
ol

 D
F

C
sy

nt
ax

Is
 D

F
C

sy
nt

ac
tic

al
ly

co
rr

ec
t?

D
at

af
lo

w
co

nf
ig

ur
at

io
n

A
dd

 s
ta

gi
ng

D
F

C

U
pd

at
e

P
er

si
st

en
t

S
to

ra
ge

D
F

C
 u

pl
oa

de
d

S
av

e 
st

ag
in

g
D

F
C

 lo
ca

lly

N
o

ad
dS

ta
gi

ng
D

fc

Y
es

ad
dS

ta
gi

ng
D

fc

Persitent
Storage

up
lo

ad
D

F
C

up
gr

ad
eD

F
C

Figure 10. BPMN diagram of upgrading DFC

41



Overview Administrators starts recovery of Sharemind HI Server after reboot.
System state System is started, DFC History and Master Key are missing.

System environment If server failed due to hardware failure, the failing parts are re-
placed.

External stimulus Administrator starts server recovery.

Required system
response

Main success sce-
nario

Server is restarted and the state is recovered.

Tampered DFC Stop recovery process. Show corresponding
Exception.

Bad KBS Quote Stop recovery process. Show corresponding
Exception.

Table 11. Server recovery scenario descriptions

1. Client sends a request to Gateway to start the recovery process using startRecovery
function.

2. Gateway sends a request to DFC Enforcer to fetch the DFC history using fetchD-
fcHistory function of DfcInterface.

3. DFC Enforcer forwards the request to Persistence Controller using fetchDfcHistory
function of PcInterface.

4. Persistence Controller fetches the DFC History from Persistent Storage.

5. Persistence Controller verifies the integrity of DFC History. If a modification is
detected, the DFC History is discarded and the process stops with an exception.

6. DFC Enforcer starts Master Key retrieval with the latest non-staging DFC in DFC
History using getMasterKey function.

7. Persistence Controller acts as Relying Party and requests Quote from the KBS.

8. KBS sends its Quote to Persistence Controller.

9. Persistence Controller requests Attestation Module to verify the KBS Quote using
verifyQuote function.

10. Attestation Module verifies KBS Quote using Attestation Provisioning Service.

11. Persistence Controller request Master Key from KBS.

12. KBS acts as a Relying Party and requests Quote from Sharemind HI Server.

13. KBS gives a Master Key against the Quote.

14. KBS returns the key to the Persistent Contoller.

15. Persistent Controller returns a success response back to Client.

42



S
ha

re
m

in
d 

H
I C

lie
nt

Start server
recovery

Handle
response

FinishAdmin initializes
request

S
ha

re
m

in
d 

H
I S

er
ve

r

A
tte

st
at

io
n 

M
od

ul
e

G
at

ew
ay

D
F

C
 E

nf
or

ce
r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

Request end

Send response

Join

DFC History

Get Quote

Get Latest DFC

History is valid?

Receive DFC
History

Get DFC
History

Fetch DFC
History

Sync DFC
history

Receive request

DFC

Verify Quote Get Master Key

Quote

Quote is valid?
Master Key

received

Verify Quote

getMasterKey

Yes

No

fetchDfcHistory

fetchDfcHistory

verifyQuote

YesNo

P
er

si
te

nt
S

to
ra

ge
K

ey
 B

ro
ke

rin
g

S
er

vi
ce

startRecovery

Challenge

Challenge Attest

Attest

Figure 11. BPMN diagram of server recovery

4.2.2 Security Scenarios

The main security goal of Sharemind HI is to protect user data against unauthorised
access [7]. In the White Paper of SGX-based Sharemind HI a total of 12 threats are
highlighted distributed among various Threat agents. It then states requirements to
negate these threats and then lists technical and organisational controls that fulfil the
requirements. By providing secure data persistence using Persistent Storage Provider
and KMS, and expanding the TEE size to a VM, a new Threat agent and additional
attack methods for existing Threat agents were created. Going over different software
and network attacks given in Common Attack Pattern Enumerations and Classifications
(CAPEC) [35], a set of new potential attacks were detected and described using ISSRM
meta-model.

43



Malicious Task gets deployed in production Verifying code correctness is diffi-
cult and through clever stenography techniques Task Developers could hide malicious
functionality to bypass enforcers’ reviews. This scenario considers the situation, where
a malicious Task is in the Sharemind HI Server (Enforcers have accepted the DFC
containing malicious Rask) and we look at different attacks it can perform. While the
confidentiality of topic data intended for the Task is broken as the malicious Task can
extract it in the response to Task Runner, it is required that the malicious Task could not
access data in other topics. In other words breaches should be isolated.

We found two attacks that a malicious could perform - Port Stealing (CAPEC-151:
Identity Spoofing), and Privilege Escalation and Abuse (CAPEC-233, CAPEC-122). Port
Stealing is an attack, where one Task(T1) binds to port meant for another Task(T2). As a
result, when the Task Manager wants to send a TaskRun request with Confidential task
arguments to T2, T1 intercepts the message. To extract the data, malicious Task can
write the confidential parameters to a topic the attacker has access to, or if networking is
not closed, the malicious Task can send the data to attacker defined address. The attack
negates confidentiality of task parameters and damages availability of other tasks as they
can no longer start the HTTP server due to port already being in use. The attack exploits
lack of authentication methods and therefore its closest counterpart in CAPEC database
is Identity Spoofing attack (CAPEC-151).

To protect against this attacker, Sharemind HI Server must assign and enforce the
ports of the Tasks it hosts. This could be done in Linux by running each Task under
different user and then creating strict firewall rules that filter out all other traffic through
other ports. Note that, this still leaves the possibility to damage availability of other
Tasks. To solve that issue, Task Manager could preemptively kill Tasks holding multiple
ports or alternatively if a Task reports port-in-use exception, Task Manager could kill the
occupying processes. The risk is summarised in Table 12.

While the task process by default should not have permissions to read memory of
other processes as a user space program, the attack surface of an operating system is large
and therefore weaknesses might slip in, which could be used to gain these permissions.
The privilege of reading memory of other processes could be used to get access to the
master key, which could then be extracted to break confidentiality of Data Producers’ data.
Additionally owning Master key further attacks on integrity are possible by colluding
with Persistent Storage. The associated risk is summarised in Table 13. To tackle this
attack the tasks would have to be run in sandboxed environments. An established way to
sandbox applications in Linux is using seccomp [33]. The library enables management
of syscalls that a process can do, thereby limiting attack surface for privilege escalation
attacks. seccomp is supported in systemd, a service manager in Linux distributions,
which provides an accessible interface for implementing policies at service level [10].
We propose to run Tasks as systemd services and use its sandboxing methods to limit the
attack surface.

44



Table 12. Description of R1

Name R1 - Port Stealing
Threat agent Task code developer

Attack method

1. Malicious Task is deployed in the Server.
2. Malicious Task systematically connects to all available ports.
3. Malicious Task captures all incoming Task Run requests.
4. Malicious Task reads confidential parameters from the requests.
5a. Malicious Task writes confidential parameters to a topic,
which is available to the attacker.
5b. Alternatively Malicious Task returns the Confidential data to
Task Runner with whom the malicious Task develop has colluded
with.
5c. Alternatively Malicious Task extracts data through I/O devices,
e.g sends the data over network.

Vulnerability CWE-287: Improper Authentication - No authentication is imple-
mented for connecting to ports.

Impact Negation of confidentiality in all messages sent between Task
manager and Task Processes.

IS asset R1.1, R1.2 - In Task run process, intended Task’s functionality is
overridden by Malicious Task, see Fig. 19

Business asset
R1.1 - User arguments (C)
R1.2 - Task response (I)

Severity Medium
Difficulty Medium
Risk treatment Reducing the risk through technical controls - firewall rules.

Malicious Persistent Storage Administrator tries to exploit his privileges. Per-
sistence Storage Administrator has read/write access to DA applications persistent data
as well as all control over the network of the Persistent Storage. The security goal is to
protect confidentiality and integrity of all data entries, as well as integrity of DFC history.
We identified total of 3 attacks against this goal: Object Injection, Resource Location
Spoofing and Data Reconstruction Attack.

As the Persistent Storage Administrator has write permissions, he can modify data
such that it can even trigger remote code execution during deserialisation. The described
attack is called Object Injection (CAPEC-586) in CAPEC attack library. In TDX-based
Sharemind HI, the deserialisation occurs in the Persistent Storage Controller, which
as a system component has higher level privileges. In worst case, the injected code
could extract Master Key from the Server leading to loss of confidentiality of user
data. Having the Master Key, the Administrator can modify MAC protected objects

45



Table 13. Description of R2

Name R2 - Privilege Escalation and Abuse (CAPEC-122)
Threat agent Task code developer

Attack method

1. Malicious Task process is run inside Sharemind HI Server TEE.
2. Malicious Task manages gain privileges he is not supposed to
have.
3. Malicious Task process identifies a process that runs alongside
in the Sharemind HI Server.
4. Malicious Task process reads memory of target process.
5. Malicious Task process locates and reads confidential user data
in the memory.

Vulnerability
CWE-269: Improper Privilege Management - Task process should
not have permission to read memory of other processes.
CWE-653: Improper Isolation or Compartmentalisation - Task
process should not be able to detect other processes running in
the system.

Impact Confidentiality and integrity of all business assets are negated,
Sharemind HI Server process flow disturbed.

IS asset Sharemind HI Server
Business asset All business assets that move through Sharemind HI Server appli-

cation.
Severity Extremely high
Difficulty Very high
Risk treatment Reducing the risk - sandboxing

Transferring the risk - enforcers of the DFC

in Persistent Storage and calculate a new MAC, leading to negation of integrity. To
avoid Object Injection, the verification of the data object must be done before attempting
to deserialize it. This means that in TDX-based Sharemind HI the communication
with Persistent Storage must happen over Persistence Controller to limit attack surface.
Additionally, existing and established crypto libraries such as libsodium [28] should be
used Authenticated Encryption with Associated Data (AEAD). For summary of the risk
see Table 14.

Secondly, the Persistent Storage Administrator can perform a Resource Location
Spoofing attack. When a Task request certain data entry, the Persistent Storage Adminis-
trator can configure his service to respond with another valid data entry from other topic.
As the data entry is valid Persistent Controller deserialises, decrypts it and sends it to the
Task. However, the Task might not be allowed to access this data, thereby potentially
breaking confidentiality of data passed to the Task. On the other hand, the integrity of the

46



Table 14. Description of R3

Name R3 - Object Injection (CAPEC-586)
Threat agent Persistent storage provider

Attack method

1. Data is uploaded to persistent storage.
2. Sharemind HI requests data from persistent storage.
3. Persistent storage carefully constructs message that during
deserialisation causes malicious code to be run.
4. Persistent storage controller deserialises the data and causes
remote code to be run in the server.

Vulnerability CWE-502: Deserialization of Untrusted Data - Persistent storage
controller implementation deserializes data before verifying its
integrity.

Impact Deserialization of untrusted Data can lead to remote code execu-
tion [35].

IS asset R3.1 - Persistence Controller in Fig. 18
R3.2 - Task process in Fig. 19
R3.3 - Persistence Controller in Fig. 22
R3.4 - Client application in Fig. 20

Business asset
R3.1 - Data Entry (I, C)
R3.2 - Data Entry (I, C)
R3.3 - DFC (I)
R3.4 - DFC (I)

Severity Very High
Difficulty Medium
Risk treatment Reducing the risk - established crypto library and limiting attack

surface.

Task output data can be considered to be broken as the input was maliciously altered. To
resist against this attack, identifiers of data stored in Persistent Storage must be assigned
by unique and under integrity protection. When data is read from the Data Storage,
Persistence Controller must verify that the received data identifier is that of the requested
data identifier.

In the context of this work Data Reconstruction Attack is an attack foremost against
integrity of the datasets. Persistent Storage Administrator can carefully construct a
dataset by removing or hiding entries. This means that he can create either biased or
one-row datasets. When a Task requests data for its analysis, the Persistent Storage will
respond with the modified dataset, which means that the result of the computation is
also influenced by it. In addition to impacting the integrity of the dataset, the attack
could put confidentiality of the Data Producer’s data in risk if the Administrator can

47



Table 15. Description of R4

Name R4 - Resource Location Spoofing (CAPEC-154)
Threat agent Persistent storage provider

Attack method

1. Sharemind HI requests list of available data in persistent stor-
age.
2. Persistent storage provider creates a map of data entries with
each entry containing identifier and a URI.
3. Persistent storage provider manipulates the list by replacing
URI of one data entry with URI of an another.
4. Persistent storage provider returns the list to Sharemind HI
Server.
5. Sharemind HI requests data as per URI matching the identifier
from persistent storage.
6. Unexpected data is returned to Sharemind HI Server, which
might be passed to task processes, which do not having the per-
missions to operate on this data.

Vulnerability No related vulnerability.
Impact The integrity and possibly confidentiality of business asset is

negated

IS asset

R4.1 - Persistence Controller in Fig. 18.
R4.2 - Task Process in Fig. 19.
R4.4 - Persistence Controller in Fig. 22
R4.4 - Client application in Fig. 20

Business asset

R4.1 - Data Entry (I, C)
R4.2 - Data Entry (I, C)
R4.3 - DFC (I)
R4.4 - DFC (I)

Severity Medium
Difficulty Medium
Risk treatment Reducing the risk - unique and authenticated identifiers, and lim-

iting attack surface.

access the result of the computation. The risk of this attack can be mitigated by using
Circular Message Authentication Code (CMAC) as proposed by Silverio et al. in [34].
By adding additional field called CMAC to Data Entry, which is calculated based on
the MAC of previous Data Entry and MAC of current Data Entry, there forms a chain
from the first data entry to the last one as seen in Fig. 12. The CMAC of the first Data
Entry is recalculated during each data upload to contain the MAC of the uploaded Data
Entry, thereby turning the chain into circle. If Persistent Storage obstructs sharing certain

48



Data Entries, the omission can be detected. CMAC does not protect against replay attack,
meaning that first uploaded Data Entries are still vulnerable to Data Reconstruction
Attack. To protect these Data Entries additonal rules could be set for running Tasks, that
forbid running them when less than configured amount of Data Entries are present.s The
overview of the risk is given in Table 16.

Figure 12. Visualisation how CMAC is used to protect integrity of the data table [34]

4.2.3 Ease of Development Scenario

We showed that the only requirement for the programming language is that it must be
able to start an HTTP server in order to receive run invocations. In order to fetch Data
Entries, file system operations should also be available in the programming language.
These are very lenient requirements, and in practice, it means that any programming
language can be used. The focus of this chapter is extending the argument and how ease
of development increases in the scenario where programming language and libaries are
not restricted.

Firstly, C/C++ does not have built-ins required for the compiler to detect unsafe
memory operations. This means that the developer requires a lot more effort to write
and review code. Meanwhile, there are languages such as Rust and Go that, through
additional language features, can find these problems automatically at compile time,
reducing the load on the developer. This issue was highlighted by White House’s report
[14] in the context of security, however it is equally valid from ease-of-development

49



Table 16. Description of R5

Name R5 - Data Reconstruction Attack
Threat agent Persistent storage provider

Attack method

1. Task process requests collection of data entries from persistent
storage provider.
2. Persistent storage crafts a subset of data and passes it to the
task.
3. Task process performs some aggregate analytics on the dataset.
4. Task process obtains biased result from the analytics.

Vulnerability No related vulnerability.
Impact Integrity of the dataset is negated. Confidentiality of Data Entries

is in risk.
IS asset R5 - Task process in Fig. 19
Business asset R5 - Data Entry (I)
Severity High
Difficulty Medium
Risk treatment Reducing the risk - CMAC

perspective. Using memory-safe language eases the development of Sharemind HI
because the Sharemind HI developer does not have to verify the code himself.

Secondly, in the data science domain, generally, higher-level programming languages
such as Python and R are used. For example, at the time of writing, there were a total of
1804 courses under the Data Science category. Searched by skills, only 2 of those courses
were tagged with C++. On the other the same number was 406 for Python and 157 for
R [37]. This indicates that people in data science domain have more experience with
these programming languages. Therefore, having the ability to choose the programming
language makes Task developer’s job easier because they can use the language they are
familiar with.

Thirdly, commonly a data analysis already exists, which requires additional security
protection from cloud provider. In the proposed architecture, to port these solutions
to Task, the I/O interfaces need to be refactored such that analysis data is read from
files, all results are written to files, and an HTTP must be set up. In the old architecture,
the changes would have required rewriting the application in C/C++. If the program
was already in C language, then the previous step could be avoided, however library
dependencies would have to be still checked. If any of the used libraries is not in SGX
SDK’s supported list [18] the Task developer would have to find an alternative.

50



4.3 Measuring Overhead
While compared to other PETs that offer data-in-use protection, TEEs have much lower
overhead [36], a recognisable performance penalty still exists. Intel’s report on Intel
TDX performance considerations brings out three culprits: transitions in and out of
trusted domain require extra steps compared to entering and exiting VMs; cache misses
in TEE workflows have a higher cost as all reads from memory must include decrypting
its contents and verifying integrity before actually being able to use it; I/O calls are
implemented using a shared unencrypted memory range between IO device and the TD,
which means that the TEE has to encrypt all data it takes from the shared memory and
decrypt all data it wants to make available.

To measure the effect of these sources of overhead in practice, we prototyped a
system mock-up that followed the proposed architecture and 2 different performance
test flows. Both tests were run in TD and regular VM. The prototype code is written
in C++, the persistent storage is a PostgreSQL database. The mocked Sharemind HI
Server was deployed in Google Cloud as a c3-standard-4 VM instance. According to
Google Cloud’s documentation [13], the VM instance has Intel’s 4th Generation Scalable
Xeon, with 4 hardware threads or logical cores and 16 GB of RAM. Whether the VM is
deployed as a regular VM or TD could be configured at the VM creation. The hardware
was physically located in the West-Europe.

The test flows were designed to capture different parts of data lifecycle in Sharemind
HI’s data analysis model. Processes involving data are always between the Server and
Client, Server and Persistent Storage or inside the Server. The first performance test
flow aims to measure the overhead of the Client-Server data transit and the second
performance test flow aims to measure the overhead of Database-Server data transit. The
part measuring the overhead of data inside the server was left out of scope due to limited
time. Additionally, Task code is highly specific to the project, and therefore, tests would
likely not be more accurate than Intel’s 5% overhead found in [22]. The number was
obtained from running 5 different CPU and memory-intensive processes.

PT1. Client - Task roundtrip. The test measures the time it takes for the Client
to send a message to Task and get a response. Furthermore, additional measurements
are taken in Gateway and Task during entrances and exits, see Fig. 13. The test mocks
situations, where a Client has already established a trusted session with the Server and
sends request to the Server. The purpose of the test is to measure the overall overhead
of the Client-Task interaction latency and the overhead inside the Server when message
is passed to Task. To see the effect, which task arguments size has on the overhead, we
repeat the test with argument sizes increasing tenfold at each call, ranging from 1 byte to
10 megabytes. In total for each argument size, we ran the test 4000 times. The code is
provided in Listings 1 to 3.

The results of the first test flow show no or minimal overhead in all places of
measurement (Task, Gateway and Client). In Gateway, there seem to be higher overhead

51



Client TaskGateway

arguments

arguments

<empty>

VM/TD

Time spent in Task

Round Trip Time

Time spent in Gateway

<empty>

Figure 13. UML sequence diagram of the PT1. Different colours of grey signify the part
of the workflow, which were measured during the test flow

numbers than in Client and Task, though the difference is small and could be due to high
standard deviation. In terms of data size, it seems TD seems to perform better with larger
bitstrings, while with smaller data sizes VM seems to have an advantage. For example,
with bitstring size of 1 MB there was a negative overhead of -10.27% measured in Client.
The results are displayed in Tables 17 to 19

Table 17. Time spent in Tasks measured in PT1. The table displays absolute runtime of
the same workload in different execution environments and relative overhead of TD.

TD Regular VM
Bitstring size Mean average Standard deviation Mean average Standard deviation Mean overhead

(B) (ms) (ms) (ms) (ms) (%)
100 0.0187 0.0058 0.0186 0.0039 0.4103
101 0.0187 0.0046 0.0187 0.0042 0.0107
102 0.0189 0.0041 0.0189 0.0041 0.1455
103 0.0189 0.0041 0.0189 0.0038 0.5105
104 0.0259 0.0050 0.0256 0.0049 1.0892
105 0.0789 0.0123 0.0795 0.0128 -0.7500
106 0.8304 0.0758 0.8778 0.0765 -5.3954
107 9.9438 1.1535 9.9992 1.1664 -0.5547

PT2. Server - Persistent Storage The second test is initialised in the Server, which
then requests data from the Persistent Storage. The persistent storage fetches data entries
and responds to the Server. The test aims to measure, the overhead of reading data from
Persistent Storage and see the impact of size of the requested data on the overhead. The
Persistent Storage used in the test contains random bitstrings starting from one byte and

52



Table 18. Time spent in Gateway as measured in PT1. The table displays absolute
runtime of the same workload in different execution environments and relative overhead
of TD.

TD Regular VM
Bitstring size Mean average Standard deviation Mean average Standard deviation Mean overhead

(B) (ms) (ms) (ms) (ms) (%)
100 0.339 0.039 0.331 0.040 2.507
101 0.340 0.032 0.330 0.030 3.005
102 0.340 0.033 0.331 0.037 2.463
103 0.339 0.028 0.331 0.029 2.408
104 0.346 0.029 0.336 0.032 3.133
105 0.414 0.036 0.406 0.036 1.994
106 1.203 0.081 1.244 0.085 -3.293
107 10.480 1.154 10.560 1.168 -0.762

Table 19. Total round-trip time measured in PT1. The table displays absolute runtime of
the same workload in different execution environments and relative overhead of TD.

TD Regular VM
Bitstring size Mean average Standard deviation Mean average Standard deviation Mean overhead

(B) (ms) (ms) (ms) (ms) (%)
100 41.09 4.61 41.21 6.03 -0.29
101 40.94 5.98 40.58 4.04 0.88
102 40.46 1.40 40.54 1.47 -0.21
103 40.65 4.38 40.66 1.77 -0.03
104 40.48 1.87 40.59 3.16 -0.27
105 46.82 13.14 48.01 14.38 -2.47
106 289.44 75.71 322.72 83.42 -10.31
107 2661.40 730.66 2710.12 823.27 -1.80

going up to 500 MB, increasing ten-fold at each interval. To get more robust results, the
tables contained up to 1000 different bitstrings for each size, going lower as the length
of the bitstrings increased. In one test case, all of the available data entries for specific
bitstring size were queried and the average response time was found. For each bitstring
size, the test was repeated for 250 times.

We did not detect any overhead for running processes in TD. In fact, for TDX-based
workflows actually slightly outperformed their non-confidential counterparts for all
bitstring sizes with results ranging from overhead of -1.05% to -0.21%. No patterns
related to size were detected. The result are shown in Table 20 and visualized in Fig. 14 .

Evaluating the results. While cloud-based performance tests mimic the way the
workloads are used in practice, their results are difficult to interpret as details necessary
for analysis are abstracted away by cloud service providers. On one hand, network
effects and multitenancy cause unstable results due to sharing resources with other
tenants. On the other hand, when looking at Round-Trip-Time of PT1 and PT2 results,

53



Table 20. Total response time of a data request from database measured in PT2. The
table displays absolute runtime of the same workload in different execution environments
and relative overhead of TD.

TD Regular VM
Bitstring size Mean average Standard deviation Mean average Standard deviation Mean overhead

(B) (ms) (ms) (ms) (ms) (%)
100 3.71 0.20 3.73 0.17 -0.74
101 3.72 0.20 3.74 0.17 -0.58
102 3.74 0.21 3.78 0.28 -1.05
103 3.96 0.24 4.00 0.22 -0.79
104 4.12 0.25 4.12 0.23 -0.06
105 5.54 0.31 5.59 0.32 -0.84
106 49.30 2.74 49.43 2.23 -0.26
107 124.03 14.43 124.87 16.28 -0.67
108 1387.27 165.9 1390.15 176.02 -0.21

5 ∗ 108 7529.64 881.85 7548.95 939.90 -0.26

Figure 14. Violin plot of PT2 results, showing the similarity of VM-based and TD-based
workflows in terms of performance.

there seemed to be a consistent negative overhead across all data sizes. One reason could
be due to the price difference between running VMs and TDs in the cloud. Turning
on confidential computing increases the price of computing [30]. Therefore, it could

54



be that there exists a lower demand for confidential computing compared to regular
computing. Alternatively, Google Cloud could try to balance the performance of different
computation environments.

4.4 Chapter Summary
The chapter focused on the last supporting research question "How does the new archi-
tecture solve the requirements?". In the first part we explained how the fulfilment of
requirements will be verified. The main conclusion was that for performance require-
ments prototyping is more suitable as it gives more accurate estimations, and for all other
requirements we use scenario based validation. In the second chapter we showed using
scenarios-based evaluation that (1) TDX-based Sharemind HI is capable of solving core
use cases of Sharemind HI, (2) in total 5 risks additional risks arise from using Intel
TDX, all of which can be mitigated using technical controls (3) Intel TDX removes pro-
gramming language and library constraints and provided 3 arguments why it simplifies
development. In the third chapter, we demonstrated using prototpyed performance tests
that TDX overhead in Sharemind HI related data flows in minimal.

55



5 Concluding Remarks
In the thesis we showed using an architecture how Sharemind HI could use Intel TDX to
ease the development of DA applications. First we captured 5 requirements, which we
wanted to verify using the architecutre. We then constructed the architecture description
based on viewpoint-based framework. We then evaluated the architecture against the
captured requirements.

5.1 Answers to Research Questions
The main research question of the thesis was stipulated as "How could Sharemind HI use
Intel TDX to simplify task development?". The question was split into three supporting
questions that when combined provide a sufficient answer to the original main research
question.

What are the means of creating a verifiable model for TDX-based Sharemind
HI? - The model of TDX-based Sharemind HI must be able to verify 5 requirements
that arise from Intel TDX peculiarities and DA domain. The system was modelled using
software architecture description from established framework that enables verifying
requirements.

What is the architectural description of TDX-based Sharemind? - When looking
at Sharemind HI as a black box, we see that it takes in requests from Sharemind HI
Client and sends request to Persistent Storage and KBS during its lifecycle. The latter
two components make it possible to persist data over restarts. Inside Sharemind HI
Server there are seven functional elements distributed among a hub process and task
processes. There are 6 different interfaces between functional elements that define the
communication means between components.

How does the new architecture solve the requirements imposed on it? - We
demonstrated using BPMN diagrams how the architecture is capable of solving core
use cases of Sharemind HI. We used the diagrams to detect risks that lack of trusted
persistence and merging execution environment of Tasks and the Server create, and
proposed methods to mitigate these risks. The performance requirements were verified
by developing system prototypes and performance tests that were then ran in TD and
regular VM. The measured overhead was negligible.

5.2 Limitations and Future Work
There are three main limitations of the thesis, that could benefit from further work:

• "Bubbles don’t crash" is an alleged quote by Bertrand Meyer [31] meant to in-
vigorate healthy distrust in models. Models are not formal proofs, nor can they
be tested against real-world scenarios. It is a well-noted criticism and is very

56



relevant in the context of this thesis. Even though established frameworks were
used to capture the architecture, and we verified its completeness using 7 scenarios,
there remains a risk that complications may arise during the implementation of
the system. The complications are most likely to occur in Task sandboxing, KBS
integration and development of the FUSE interface as they are completely new
architecture-specific. The risk could be mitigated by first developing skeleton code
to verify that it is possible to use them as described in the thesis.

• Cloud-based performance tests did not give conclusive results due to lack of
transparency. For further work, we propose two paths. To better estimate the
TDX-related, we recommend repeating the tests in a bare-metal local server. This
would eliminate network and multitenancy effects, which otherwise overshadow
the impact of different execution environments. Another interesting aspect would
be to compare the performance of an application developed using SGX-based
Sharemind HI and TDX-based Sharemind HI. This would give additional insight
into the performance overhead of supporting processes such as encryption, policy
enforcing and inter-process communication.

• Security aspects are only captured from the architectural angle and only captured
select flows related to Task isolation and Persistent Storage. The remaining portion
of the architecture and underlying TEE technology provide further attack vectors,
which were left out of the scope of this thesis due to time constraints. This aspect
deserves further investigation, especially considering that Sharemind HI promises
to eliminate trust in cloud providers, a party with the means and motivation to
perform hardware attacks.

57



References
[1] Michael Bartock et al. Trusted cloud :: security practice guide for VMware hybrid

cloud infrastructure as a service (IaaS) environments. en. Tech. rep. NIST SP
1800-19. Gaithersburg, MD: National Institute of Standards and Technology (U.S.),
Apr. 2022, NIST SP 1800–19. DOI: 10.6028/NIST.SP.1800-19. URL: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-
19.pdf (visited on 01/15/2024).

[2] Henk Birkholz et al. Remote ATtestation procedureS (RATS) Architecture. Request
for Comments RFC 9334. Num Pages: 46. Internet Engineering Task Force, Jan.
2023. DOI: 10.17487/RFC9334. URL: https://datatracker.ietf.org/doc/
rfc9334 (visited on 05/14/2024).

[3] Camunda. The Universal Process Orchestrator. en-US. URL: https://camunda.
com/ (visited on 05/10/2024).

[4] Pau-Chen Cheng et al. Intel TDX Demystified: A Top-Down Approach. en. arXiv:2303.15540
[cs]. Mar. 2023. URL: http : / / arxiv . org / abs / 2303 . 15540 (visited on
11/26/2023).

[5] Victor Costan and S. Devadas. “Intel SGX Explained”. In: IACR Cryptol. ePrint
Arch. (2016). URL: https://www.semanticscholar.org/paper/Intel-SGX-
Explained-Costan-Devadas/a42e086f2382d518a0213879050e344539c2bcfa
(visited on 12/15/2023).

[6] Cybernetica. Sharemind HI Overview :: Sharemind Developer Zone. URL: https:
//docs.sharemind.cyber.ee/sharemind-hi/4/general/sharemind-hi-
overview.html (visited on 05/09/2024).

[7] Cybernetica. Sharemind HI White Paper. en. Jan. 2021. URL: https://cyber.
ee / uploads / sharemind _ hi _ white _ paper _ ec24e8189a . pdf (visited on
03/07/2024).

[8] Eric Dubois et al. “A Systematic Approach to Define the Domain of Information
System Security Risk Management”. In: Intentional Perspectives on Information
Systems Engineering (May 2010). ISSN: 978-3-642-12543-0. DOI: 10.1007/978-
3-642-12544-7_16.

[9] Filesystem in Userspace. en. Page Version ID: 1198800987. Jan. 2024. URL:
https : / / en . wikipedia . org / w / index . php ? title = Filesystem _ in _
Userspace&oldid=1198800987 (visited on 02/12/2024).

[10] freedesktop. systemd.exec. URL: https://www.freedesktop.org/software/
systemd/man/latest/systemd.exec.html (visited on 05/14/2024).

[11] FUSE — The Linux Kernel documentation. URL: https://www.kernel.org/
doc/html/next/filesystems/fuse.html (visited on 02/12/2024).

58

https://doi.org/10.6028/NIST.SP.1800-19
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-19.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-19.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-19.pdf
https://doi.org/10.17487/RFC9334
https://datatracker.ietf.org/doc/rfc9334
https://datatracker.ietf.org/doc/rfc9334
https://camunda.com/
https://camunda.com/
http://arxiv.org/abs/2303.15540
https://www.semanticscholar.org/paper/Intel-SGX-Explained-Costan-Devadas/a42e086f2382d518a0213879050e344539c2bcfa
https://www.semanticscholar.org/paper/Intel-SGX-Explained-Costan-Devadas/a42e086f2382d518a0213879050e344539c2bcfa
https://docs.sharemind.cyber.ee/sharemind-hi/4/general/sharemind-hi-overview.html
https://docs.sharemind.cyber.ee/sharemind-hi/4/general/sharemind-hi-overview.html
https://docs.sharemind.cyber.ee/sharemind-hi/4/general/sharemind-hi-overview.html
https://cyber.ee/uploads/sharemind_hi_white_paper_ec24e8189a.pdf
https://cyber.ee/uploads/sharemind_hi_white_paper_ec24e8189a.pdf
https://doi.org/10.1007/978-3-642-12544-7_16
https://doi.org/10.1007/978-3-642-12544-7_16
https://en.wikipedia.org/w/index.php?title=Filesystem_in_Userspace&oldid=1198800987
https://en.wikipedia.org/w/index.php?title=Filesystem_in_Userspace&oldid=1198800987
https://www.freedesktop.org/software/systemd/man/latest/systemd.exec.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.exec.html
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://www.kernel.org/doc/html/next/filesystems/fuse.html


[12] Daniel Ganji et al. “Approaches to Develop and Implement ISO/IEC 27001 Stan-
dard - Information Security Management Systems: A Systematic Literature Re-
view”. In: 12 (Dec. 2019), pp. 228–238.

[13] Google. General-purpose machine family for Compute Engine | Compute En-
gine Documentation. en. URL: https://cloud.google.com/compute/docs/
general-purpose-machines (visited on 04/27/2024).

[14] Grant Gross. White House urges developers to dump C and C++. en. Feb. 2024.
URL: https://www.infoworld.com/article/3713203/white-house-urges-
developers-to-dump-c-and-c.html (visited on 05/14/2024).

[15] Matthew Hoekstra et al. “Using innovative instructions to create trustworthy soft-
ware solutions”. In: Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy. HASP ’13. New York, NY,
USA: Association for Computing Machinery, June 2013, p. 1. ISBN: 978-1-4503-
2118-1. DOI: 10.1145/2487726.2488370. URL: https://doi.org/10.1145/
2487726.2488370 (visited on 12/29/2023).

[16] Intel. Architecture Specification: Intel® Trust Domain Extensions (Intel® TDX)
Module. Feb. 2023. URL: https://www.intel.com/content/www/us/en/
developer/tools/trust-domain-extensions/documentation.html (vis-
ited on 04/08/2024).

[17] Intel. Code Sample: Intel® Software Guard Extensions Remote Attestation... en.
URL: https://www.intel.com/content/www/us/en/developer/articles/
code-sample/software-guard-extensions-remote-attestation-end-to-
end-example.html (visited on 01/21/2024).

[18] Intel. Intel® Software Guard Extensions (Intel® SGX). en. URL: https : / /
download . 01 . org / intel - sgx / sgx - linux / 2 . 23 / docs / Intel _ SGX _
Developer_Guide.pdf (visited on 03/07/2024).

[19] Intel. Intel® TDX Connect Architecture Specification. Mar. 2023. URL: https:
//cdrdv2-public.intel.com/773614/intel-tdx-connect-architecture-
specification.pdf (visited on 03/07/2024).

[20] Intel. Intel® TDX Virtual Firmware Design Guide. Dec. 2023. URL: https :
//cdrdv2-public.intel.com/733585/tdx-virtual-firmware-design-
guide-rev-004-20231206.pdf (visited on 03/07/2024).

[21] Intel. Intel® Trust Domain Extensions (Intel® TDX). Feb. 2023. URL: https:
//www.intel.com/content/www/us/en/developer/tools/trust-domain-
extensions/documentation.html (visited on 04/08/2024).

59

https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://www.infoworld.com/article/3713203/white-house-urges-developers-to-dump-c-and-c.html
https://www.infoworld.com/article/3713203/white-house-urges-developers-to-dump-c-and-c.html
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1145/2487726.2488370
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/software-guard-extensions-remote-attestation-end-to-end-example.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/software-guard-extensions-remote-attestation-end-to-end-example.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/software-guard-extensions-remote-attestation-end-to-end-example.html
https://download.01.org/intel-sgx/sgx-linux/2.23/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.23/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.23/docs/Intel_SGX_Developer_Guide.pdf
https://cdrdv2-public.intel.com/773614/intel-tdx-connect-architecture-specification.pdf
https://cdrdv2-public.intel.com/773614/intel-tdx-connect-architecture-specification.pdf
https://cdrdv2-public.intel.com/773614/intel-tdx-connect-architecture-specification.pdf
https://cdrdv2-public.intel.com/733585/tdx-virtual-firmware-design-guide-rev-004-20231206.pdf
https://cdrdv2-public.intel.com/733585/tdx-virtual-firmware-design-guide-rev-004-20231206.pdf
https://cdrdv2-public.intel.com/733585/tdx-virtual-firmware-design-guide-rev-004-20231206.pdf
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html


[22] Intel. Performance Considerations: Intel® Trust Domain Extensions. en. Sept.
2023. URL: https://www.intel.com/content/www/us/en/developer/
articles / technical / trust - domain - extensions - on - 4th - gen - xeon -
processors.html (visited on 05/15/2024).

[23] ISO. ISO/IEC/IEEE 42010:2022(en), Software, systems and enterprise — Archi-
tecture description. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec-
ieee:42010:ed-2:v1:en (visited on 05/15/2024).

[24] jgraph/drawio. original-date: 2016-09-06T12:59:15Z. May 2024. URL: https:
//github.com/jgraph/drawio (visited on 05/15/2024).

[25] Hugo Krawczyk. “SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated
Diffie-Hellman and Its Use in the IKE Protocols”. en. In: Advances in Cryptology
- CRYPTO 2003. Ed. by Gerhard Goos et al. Vol. 2729. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 400–425. ISBN: 978-3-540-40674-7 978-3-540-45146-4. DOI: 10.1007/978-
3-540-45146-4_24. URL: http://link.springer.com/10.1007/978-3-540-
45146-4_24 (visited on 02/01/2024).

[26] Philippe Kruchten. “Architectural Blueprints—The “4+1” View Model of Software
Architecture”. en. In: ().

[27] libfuse/libfuse. original-date: 2015-12-19T20:27:34Z. Feb. 2024. URL: https:
//github.com/libfuse/libfuse (visited on 02/12/2024).

[28] libsodium. Internals. en. URL: https : / / doc . libsodium . org/ (visited on
01/21/2024).

[29] OMG. The OMG® Specifications Catalog. URL: https://www.omg.org/spec/
(visited on 05/15/2024).

[30] Pricing | Compute Engine: Virtual Machines (VMs). en. URL: https://cloud.
google.com/confidential-computing/confidential-vm/pricing (visited
on 05/14/2024).

[31] Nick Rozanski and Ein Woods. Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. 2nd ed. Addison-Wesley Profes-
sional, Oct. 2011. ISBN: 978-0-321-71833-4.

[32] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. “Trusted
Execution Environment: What It is, and What It is Not”. In: 2015 IEEE Trust-
com/BigDataSE/ISPA. Vol. 1. Aug. 2015, pp. 57–64. DOI: 10.1109/Trustcom.
2015.357. URL: https://ieeexplore.ieee.org/document/7345265 (visited
on 12/16/2023).

[33] seccomp - manned.org. URL: https://manned.org/seccomp.2 (visited on
05/14/2024).

60

https://www.intel.com/content/www/us/en/developer/articles/technical/trust-domain-extensions-on-4th-gen-xeon-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/trust-domain-extensions-on-4th-gen-xeon-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/trust-domain-extensions-on-4th-gen-xeon-processors.html
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en
https://github.com/jgraph/drawio
https://github.com/jgraph/drawio
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
http://link.springer.com/10.1007/978-3-540-45146-4_24
http://link.springer.com/10.1007/978-3-540-45146-4_24
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://doc.libsodium.org/
https://www.omg.org/spec/
https://cloud.google.com/confidential-computing/confidential-vm/pricing
https://cloud.google.com/confidential-computing/confidential-vm/pricing
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://ieeexplore.ieee.org/document/7345265
https://manned.org/seccomp.2


[34] Anderson Luiz Silverio, Marcelo Carlomagno Carlos, and Ricardo Felipe Custodio.
“Efficient Data Integrity Checking for Untrusted Database Systems”. en. In: (2014).

[35] The Mitre Corporation. CAPEC - Common Attack Pattern Enumeration and
Classification (CAPEC™). URL: https : / / capec . mitre . org/ (visited on
05/13/2024).

[36] The United Nations. THE UNITED NATIONS GUIDE ON PRIVACY-ENHANCING
TECHNOLOGIES FOR OFFICIAL STATISTICS. 2023. URL: https://unstats.
un.org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.
pdf (visited on 04/08/2024).

[37] Top Data Science Courses - Learn Data Science Online. en. URL: https://www.
coursera.org/search?query=data%20science&topic=Data%20Science
(visited on 05/15/2024).

61

https://capec.mitre.org/
https://unstats.un.org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.pdf
https://unstats.un.org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.pdf
https://unstats.un.org/bigdata/task-teams/privacy/guide/2023_UN%20PET%20Guide.pdf
https://www.coursera.org/search?query=data%20science&topic=Data%20Science
https://www.coursera.org/search?query=data%20science&topic=Data%20Science


Appendix

A FUSE - Filesystem in Userspace
FUSE is a software interface for creating filesystems managed by userspace handlers.
This means that file operations, regularly handled by the OS kernel, can have custom
implementation defined by the user. It is demonstrated in Fig. 15, where response to the
Unix ’ls’ command is provided by a user defined ’./hello’ method. FUSE is especially
useful for extending the abstraction that the file system interface provides. For example,
when the underlying files actually exist in cloud, or the data written or read from files
needs to be encrypted/decrypted, the users of the file system do not have to know that.

FUSE composes of kernel driver (FUSE in Fig. 15), libfuse library and user defined
handlers. The first two components are provided by the FUSE project [27, 11]. The last
one is up to Sharemind HI Developers to develop.

The kernel module is responsible for mounting the filesystem and forwarding request
to handlers. The libfuse library assists developers of custom handlers in communication
with the kernel module.

Figure 15. Overview of FUSE as depicted in Wikipedia[9]

62



B BPMNs with Risks

Sharemind HI Client

S
ta

rt
ha

nd
sh

ak
e

E
nd

 u
se

r
in

iti
al

iz
es

 r
eq

ue
st

H
an

dl
e

re
sp

on
se

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
h

R
es

po
ns

e
su

cc
es

sf
ul

?

D
is

pl
ay

 e
rr

or
m

es
sa

ge

V
er

ify
 S

er
ve

r
S

ig
na

tu
re

F
in

is
h

S
ig

na
tu

re
 v

al
id

?

C
re

at
e 

ke
y 

pa
ir

H
an

dl
e

re
sp

on
se

V
er

ify
 Q

uo
te

Q
uo

te
 v

al
id

?

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
h

F
in

is
h

C
om

m
it 

to
se

ss
io

n

S
en

d 
pu

bl
ic

 k
ey

C
re

at
e 

S
es

si
on

K
ey

F
in

is
h

S
er

ve
r 

S
es

si
on

cr
ea

tio
n 

pu
bl

ic
ke

y

C
lie

nt
 s

es
si

on
cr

ea
tio

n 
pu

bl
ic

ke
y

C
lie

nt
 s

es
si

on
cr

ea
tio

n 
pr

iv
at

e
ke

y
S

es
si

on
 k

ey

T
im

eo
ut

Y
es

N
o

Y
es

N
o

N
o

Y
es

Sharemind HI Server

Attestation ModuleDFC EnforcerGateway

R
ec

ei
ve

 r
eq

ue
st

F
in

is
h

R
ec

ei
ve

 c
lie

nt
pu

bl
ic

 k
ey

C
an

ce
l s

es
si

on
cr

ea
tio

n

G
et

 S
es

si
on

cr
ea

tio
n 

ke
y

pa
ir

C
P

U
 s

pe
ci

fic
 k

ey

S
en

d 
S

er
ve

r
pu

bl
ic

 k
ey

E
nd

 u
se

r
pu

bl
ic

 k
ey

C
ha

lle
ng

e

C
re

at
e 

ke
y 

pa
ir

S
ig

n 
pu

bl
ic

 k
ey

S
er

ve
r 

se
ss

io
n

cr
ea

tio
n 

pu
bl

ic
ke

y

S
er

ve
r 

S
es

si
on

cr
ea

tio
n 

pr
iv

at
e

ke
y

C
re

at
e 

S
es

si
on

w
ith

 C
lie

nt S
es

si
on

 k
ey

C
re

at
e 

R
ep

or
t

T
ur

n 
R

ep
or

t
in

to
 Q

uo
te

R
et

ur
n 

Q
uo

te
Q

uo
te

S
es

si
on

 id
en

tif
ie

r

S
en

d 
re

sp
on

se

F
in

is
h

ge
ne

ra
te

K
ey

P
ai

r

ge
tQ

uo
te

cr
ea

te
S

es
si

on
cr

ea
te

S
es

si
on

Figure 16. Session creation diagram BPMN diagram with TDX-specific risks marked in
red

63



S
ha

re
m

in
d 

H
I C

lie
nt

Data upload

End user
initializes request

Handle
response

Display error
message

Finish

Response type

Session
creation

Display error
message

Show success
message

Finish

Finish

No session
exception

Other exceptions

Success

Timeout

S
ha

re
m

in
d 

H
I S

er
ve

r

G
at

ew
ay

D
F

C
 E

nf
or

ce
r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

Dataflow
configuration

Check user
permissions

data topic_id

User

Can upload to
topic?

Request end

Send response
Upload data

Join

Check user
authorization

Session exists?

Authenticate
user

Receive request

Data EntryNonce

Encryption key
derivation

Encrypt Data

DEK

Encrypt DEK
Construct Data

Entry

Encrypted Data

Send data

Data uploaded

session identifier

eDEKMaster key

storeData

Yes

No

Timeout

isUserAuthorized

No

Yes

P
er

si
te

nt
S

to
ra

ge

uploadData

Figure 17. Data upload process BPMN diagram with TDX-specific risks marked in red

64



S
ha

re
m

in
d 

H
I C

lie
nt

Download data

End user
initializes request

Handle
response

Finish

Display error
message

Response type

Show data

Display error
message

Finish

Finish

Session
creation

No session
exception

Other exceptions

Success

S
ha

re
m

in
d 

H
I S

er
ve

r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

D
F

C
 E

nf
or

ce
r

G
at

ew
ay

Request end

Master keyeDEK

Decrypt DEK
Receive

encrypted data
entry

user

Check user
permissions

Dataflow
configuration

Encrypted data
entry

DEK
Request data
from storage

Decrypt and
Integrity check

Data

Send response

Receive request

Find user
session

Check user
authorization

Session exists?

Can download
from topic?

Get data

Join

data entry id

session identifier

Timeout

isUserAuthorized

Yes

No

No

Yes

P
er

si
te

nt
S

to
ra

ge

dataDownload

R3.1
R4.1

Figure 18. Data download process BPMN diagram with TDX-specific risks marked in
red

65



S
ha

re
m

in
d 

H
I C

lie
nt

End user
initializes request

Run task
Handle

response

Display error
message

Finish

Show data

Response type

Session
creation

Display error
message

Finish

Finish

Timeout

Success

No session
exception

Other exceptions

S
ha

re
m

in
d 

H
I S

er
ve

r

Ta
sk

 P
ro

ce
ss

H
ub

 P
ro

ce
ss

Ta
sk

 M
an

ag
er

D
F

C
 E

nf
or

ce
r

G
at

ew
ay

Finish

Return
response

Run task

Return task
result

Invoke task

Is allowed to run
task?

user

Receive task
request

task_idtask_arguments

Receive request

Issue resolved?
Handle

exception
Start task

Check user
Permissions

Check user
Authorization

Session exists?

Dataflow
configuration

Find user
session

session identifier

Forward task
response to

Gateway

Task Response

Task started

Get user data
Perform

calculations

Write
calculation

results

Task finished

No

No

No

Yes

runTask

Yes

run

isUserAuthorised

Yes

runTask

R1.1
R1.2

R3.2,
R4.2
R5

Figure 19. Run task process BPMN diagram with TDX-specific risks marked in red

66



C
lie

nt
 a

pp
lic

at
io

n

End user
initializes request

Response
successful?

Join

Get staging
DFC

Handle
response

Staging DFC

Get Enforcer
verification

Display error
message

Finish

Send Enforcer
response

Receive
confirmation

Finish

Yes

No

Timeout

S
ha

re
m

in
d 

H
I S

er
ve

r

G
at

ew
ay

D
F

C
 E

nf
or

ce
r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

Store updated
staging DFC

User can verify
DFC?

Store DFC
verifyication

result

Verify DFC
correctness

Join

Is DFC correct?

Update local
DFC

Confirmation
received

Check User
Permission

user

DFC

Send response

Request end

Check user
authorization

Authenticate
user

Receive
request

DFC Verification
Result

Yes

updateStagingDfc

isUserAuthorised

No

Yes

No

updateStagingDfc

Timeout

P
er

si
st

en
t

S
to

ra
ge

verifyDfc

R3.4,
R4.4

Figure 20. DFC verify process BPMN diagram with TDX-specific risks marked in red

67



Sharemind HI Client

U
pl

oa
d 

ne
w

D
F

C

A
dm

in
 in

iti
al

iz
es

re
qu

es
t

H
an

dl
e

re
sp

on
se

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
hR

es
po

ns
e 

ty
pe

S
es

si
on

cr
ea

tio
n

D
is

pl
ay

 e
rr

or
m

es
sa

ge

F
in

is
h

A
ll 

ac
ce

pt
ed

?
F

ix
 e

rr
or

s

M
ar

k 
D

F
C

 a
s

ac
tiv

e
W

ai
t f

or
co

nf
irm

at
io

n
R

es
ta

rt
 w

ith
ne

w
 D

F
C

F
in

is
h

W
ai

t
en

fo
rc

er
er

s'
re

sp
on

se
s

N
ot

ify
 e

nf
or

ce
rs

T
im

eo
ut

N
o 

se
ss

io
n

ex
ce

pt
io

n

O
th

er
 e

xc
ep

tio
ns

S
uc

ce
ss

no ye
s

Sharemind HI Server

Gateway DFC Enforcer Persistence Controller

S
en

d 
re

sp
on

se

R
eq

ue
st

 e
nd

R
ec

ei
ve

 r
eq

ue
st C
on

tr
ol

 D
F

C
sy

nt
ax

Is
 D

F
C

sy
nt

ac
tic

al
ly

co
rr

ec
t?

D
at

af
lo

w
co

nf
ig

ur
at

io
n

A
dd

 s
ta

gi
ng

D
F

C

U
pd

at
e

P
er

si
st

en
t

S
to

ra
ge

D
F

C
 u

pl
oa

de
d

S
av

e 
st

ag
in

g
D

F
C

 lo
ca

lly

N
o

ad
dS

ta
gi

ng
D

fc

Y
es

ad
dS

ta
gi

ng
D

fc

Persitent
Storage

up
lo

ad
D

F
C

up
gr

ad
eD

F
C

Figure 21. DFC upgrade process BPMN diagram with TDX-specific risks marked in red

68



S
ha

re
m

in
d 

H
I C

lie
nt

Start server
recovery

Handle
response

FinishAdmin initializes
request

S
ha

re
m

in
d 

H
I S

er
ve

r

A
tte

st
at

io
n 

M
od

ul
e

G
at

ew
ay

D
F

C
 E

nf
or

ce
r

P
er

si
st

en
ce

 C
on

tr
ol

le
r

Request end

Send response

Join

DFC History

Get Quote

Get Latest DFC

History is valid?

Receive DFC
History

Get DFC
History

Fetch DFC
History

Sync DFC
history

Receive request

DFC

Verify Quote Get Master Key

Quote

Quote is valid?
Master Key

received

Verify Quote

getMasterKey

Yes

No

fetchDfcHistory

fetchDfcHistory

verifyQuote

YesNo

P
er

si
te

nt
S

to
ra

ge
K

ey
 B

ro
ke

rin
g

S
er

vi
ce

startRecovery

Challenge

Challenge Attest

Attest

R3.3
R4.3

Figure 22. Server recovery process BPMN diagram with TDX-specific risks marked in
red

69



C Performance Test Code
The test code and analysis code is available in Github through following link https:
//github.com/Ratsemaat/thesis-perf-tests. Furthermore for convenience, the
test code is duplicated in the next two subsections.

C.1 PT1
1 i n t main ( i n t a rgc , c h a r ** a rgv ) {
2 g rpc : : ChannelArguments c h a n n e l _ a r g s ;
3 c h a n n e l _ a r g s . SetMaxSendMessageSize (1024 * 1024 * 1024) ; / / 1 GB
4 c h a n n e l _ a r g s . Se tMaxRece iveMessageSize (1024 * 1024 * 1024) ; / / 1 GB
5

6 c h a r * h o s t _ e n v = g e t e n v ( "HOST" ) ;
7 s t d : : s t r i n g h o s t _ a d d r e s s = h o s t _ e n v ? h o s t _ e n v : " l o c a l h o s t " ;
8 s t d : : s t r i n g s e r v e r _ a d d r e s s = h o s t _ a d d r e s s + " :50051 " ;
9

10 HIMockerCl i en t g r e e t e r ( g rpc : : Crea teCus tomChanne l (
11 s e r v e r _ a d d r e s s , g rpc : : I n s e c u r e C h a n n e l C r e d e n t i a l s ( ) , c h a n n e l _ a r g s

) ) ;
12

13 g r e e t e r . I n i t S e s s i o n ( ) ;
14

15 s t d : : o f s t r e a m o u t ;
16 f o r ( s i z e _ t i = 0 ; i < 8 ; i ++)
17 {
18 o u t . open ( " / tmp / " + s t d : : t o _ s t r i n g ( i ) + " . t x t " ) ;
19 f o r ( s i z e _ t j = 0 ; j < 3000 ; j ++) {
20 a u t o s t r = r a n d o m _ s t r i n g ( pow ( 1 0 , i ) ) ;
21 a u t o s t a r t = s t d : : ch rono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
22 g r e e t e r . SendData ( s t r ) ;
23 a u t o s t o p = s t d : : ch rono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
24 a u t o d u r a t i o n = s t d : : ch rono : : d u r a t i o n _ c a s t < s t d : : ch rono : :

mic roseconds >( s t o p − s t a r t ) ;
25 o u t << d u r a t i o n . c o u n t ( ) << " us ; " << s t d : : e n d l ;
26 }
27 o u t . c l o s e ( ) ;
28 }
29 r e t u r n 0 ;
30 }

Listing 1. Client code

70

https://github.com/Ratsemaat/thesis-perf-tests
https://github.com/Ratsemaat/thesis-perf-tests


1 S t a t u s SendData ( g rpc : : S e r v e r C o n t e x t * c o n t e x t , c o n s t SendDataReques t *
r e q u e s t , Empty* r e s p o n s e ) {

2 t r y {
3 a u t o s t a r t = s t d : : ch rono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
4 CURL* c u r l = c u r l _ e a s y _ i n i t ( ) ;
5 i f ( ! c u r l ) {
6 s t d : : c e r r << " F a i l e d t o i n i t i a l i z e cURL" << s t d : : e n d l ;
7 r e t u r n g rpc : : S t a t u s ( g rpc : : S t a t u s C o d e : :UNKNOWN, " F a i l e d t o

i n i t i a l i z e cUR" ) ; }
8

9

10 s t d : : s t r i n g u r l = " l o c a l h o s t :8081 " ;
11 c u r l _ e a s y _ s e t o p t ( c u r l , CURLOPT_URL, u r l . c _ s t r ( ) ) ;
12 c u r l _ e a s y _ s e t o p t ( c u r l , CURLOPT_POST , 1L ) ;
13 c u r l _ e a s y _ s e t o p t ( c u r l , CURLOPT_POSTFIELDSIZE , ( r e q u e s t −>

message ( ) ) . l e n g t h ( ) ) ;
14 c u r l _ e a s y _ s e t o p t ( c u r l , CURLOPT_POSTFIELDS , r e q u e s t −>message ( ) .

c _ s t r ( ) ) ;
15 s t d : : s t r i n g r e s p o n s e _ d a t a ;
16

17 / / Send t h e HTTP GET r e q u e s t
18 CURLcode r e s = c u r l _ e a s y _ p e r f o r m ( c u r l ) ;
19 i f ( r e s != CURLE_OK) {
20 s t d : : c e r r << " F a i l e d t o pe r fo rm cURL r e q u e s t : " <<

c u r l _ e a s y _ s t r e r r o r ( r e s ) << s t d : : e n d l ;
21 c u r l _ e a s y _ c l e a n u p ( c u r l ) ;
22 r e t u r n g rpc : : S t a t u s ( g rpc : : S t a t u s C o d e : :UNKNOWN, " F a i l e d t o

pe r fo rm cURL r e q u e s t " ) ; }
23

24 c u r l _ e a s y _ c l e a n u p ( c u r l ) ;
25 a u t o end = s t d : : ch rono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
26 a u t o e l a p s e d = s t d : : ch rono : : d u r a t i o n _ c a s t < s t d : : ch rono : :

mic roseconds >( end − s t a r t ) ;
27 s t d : : c o u t <<" s i z e " <<( r e q u e s t −>message ( ) ) . l e n g t h ( ) <<" ; t ime "<<

e l a p s e d . c o u n t ( ) << s t d : : e n d l ;
28

29 r e t u r n g rpc : : S t a t u s : : OK;
30 } c a t c h ( s t d : : e x c e p t i o n e ) {
31 s t d : : c o u t << e . what ( ) << s t d : : e n d l ;
32 r e t u r n g rpc : : S t a t u s ( g rpc : : S t a t u s C o d e : :UNKNOWN, " " ) ;
33 }
34 }

Listing 2. Server side implementation of SendData

71



1 s v r . P o s t ( " / " , [&] ( c o n s t a u t o& req , a u t o& r e s , c o n s t C o n t e n t R e a d e r &
c o n t e n t _ r e a d e r ) {

2 a u t o s t a r t = s t d : : ch rono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
3

4 i f ( r e q . i s _ m u l t i p a r t _ f o r m _ d a t a ( ) ) {
5 M u l t i p a r t F o r m D a t a I t e m s f i l e s ;
6 c o n t e n t _ r e a d e r (
7 [&] ( c o n s t M u l t i p a r t F o r m D a t a &f i l e ) {
8 f i l e s . push_back ( f i l e ) ;
9 r e t u r n t r u e ;

10 } ,
11 [&] ( c o n s t c h a r * da t a , s i z e _ t d a t a _ l e n g t h ) {
12 f i l e s . back ( ) . c o n t e n t . append ( da t a , d a t a _ l e n g t h ) ;
13 r e t u r n t r u e ;
14 } ) ;
15 } e l s e {
16 s t d : : s t r i n g body ;
17 c o n t e n t _ r e a d e r ( [ & ] ( c o n s t c h a r * da t a , s i z e _ t d a t a _ l e n g t h ) {
18 body . append ( da t a , d a t a _ l e n g t h ) ;
19 r e t u r n t r u e ;
20 } ) ;
21 }
22 r e s . s t a t u s = 200 ;
23

24 a u t o end = s t d : : ch rono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
25 a u t o l e n = s t d : : ch rono : : d u r a t i o n _ c a s t < s t d : : ch rono : : mic roseconds >(

end − s t a r t ) ;
26 s t d : : cou t <<" Time i n t a s k : "<< l e n . c o u n t ( ) << s t d : : e n d l ;
27 } ) ;

Listing 3. Task implementation of task run endpoint

72



C.2 PT2

1 u s i n g namespace s t d : : ch rono ;
2

3 s i z e _ t s i z e s [ ] = {1 ,10 ,100 ,1000 ,10000 ,100000 , 1000000 , 10000000 , 100000000 , 500000000};
4 s i z e _ t s i z e s _ s i z e s [ ] = { 1 0 0 0 , 1 0 0 0 , 1 0 0 0 , 1 0 0 0 , 1 0 0 0 , 1 0 0 0 , 1 0 0 0 , 1 0 0 , 1 0 , 1 } ;
5

6 i n t make_a_query ( pqxx : : c o n n e c t i o n & C , s i z e _ t s i z e , i n t numer ) {
7 t r y {
8 i f (C . i s _ o p e n ( ) ) {
9 pqxx : : work w(C) ;

10 pqxx : : r e s u l t r = w. exec ( "SELECT * from i n d e x e d _ d a t a _ "+ s t d : : t o _ s t r i n g ( s i z e )
+ " _ b y t e WHERE i d ="+ s t d : : t o _ s t r i n g ( numer ) ) ;

11 r e t u r n 1 ;
12 } e l s e {
13 s t d : : c o u t << " Can ’ t open d a t a b a s e " << s t d : : e n d l ;
14 }
15 r e t u r n 0 ;
16 } c a t c h ( c o n s t s t d : : e x c e p t i o n &e ) {
17 s t d : : c e r r << e . what ( ) << s t d : : e n d l ;
18 r e t u r n −1;
19 }
20 }
21

22 i n t main ( i n t a rgc , c h a r * a rgv [ ] ) {
23 t r y {
24 s t d : : o s t r i n g s t r e a m o s s ;
25 / / I n i t i a l i z e c o n n e c t i o n s
26 o s s << " dbname = p o s t g r e s u s e r = p o s t g r e s password = p o s t g r e s h o s t =" << g e t e n v ( "DB_HOST

" ) << " p o r t =5432 " ;
27 pqxx : : c o n n e c t i o n C( o s s . s t r ( ) ) ;
28 s t d : : o f s t r e a m m y f i l e ;
29 m y f i l e . open ( " t 1 _ r e s u l t s . t x t " ) ;
30 make_a_query (C , s i z e s [ 0 ] , 1 ) ;
31 f o r ( s i z e _ t i = 0 ; i < 1 0 ; i ++)
32 {
33 a u t o s t a r t = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
34 f o r ( s i z e _ t j = 1 ; j <= s i z e s _ s i z e s [ i ] ; j ++) {
35 i f ( make_a_query (C , s i z e s [ i ] , j ) < 1 ) {
36 th row s t d : : r u n t i m e _ e r r o r ( " " ) ;
37 }
38 }
39 / / Get en d in g t i m e p o i n t
40 a u t o s t o p = h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
41 a u t o d u r a t i o n = d u r a t i o n _ c a s t < m i l l i s e c o n d s >( s t o p − s t a r t ) ;
42 myf i l e << s i z e s [ i ]<< " ; "<< d u r a t i o n . c o u n t ( ) << "ms \ n " ;
43 s t d : : c o u t << s i z e s [ i ]<< " ; "<< d u r a t i o n . c o u n t ( ) << "ms" << s t d : : e n d l ;
44 }
45 m y f i l e . c l o s e ( ) ;
46 r e t u r n 0 ;
47 }
48 c a t c h ( c o n s t s t d : : e x c e p t i o n &e ) {
49 s t d : : c e r r << e . what ( ) << s t d : : e n d l ;
50 r e t u r n −1;
51 }
52 }

Listing 4. PT2 server-side code

73



D Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Herman Rull,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Towards practical privacy-preserving data analysis with Intel TDX-based
Sharemind HI,

( title of thesis)

supervised by Armin Daniel Kisand and Raimundas Matulevičius.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Herman Rull
17.05.2024

74


	Introduction
	Modelling Software Systems
	State of the Art
	Trusted Execution Environment
	Sharemind Hardware Isolation
	Purpose of the Model

	Architecture as a Model of the System
	Architecture Description
	Modelling Languages

	Architecture Evaluation Methods
	Scenario-based evaluation
	Prototyping
	ISSRM Domain Model

	Chapter summary

	Constructing the Architecture
	Context View
	Functional View
	Information View
	Concurrency View
	Chapter Summary

	Verifying the Architecture
	Creating Verification Plan for Requirements
	Verifying Scenarios
	Functional Scenarios
	Security Scenarios
	Ease of Development Scenario

	Measuring Overhead
	Chapter Summary

	Concluding Remarks
	Answers to Research Questions
	Limitations and Future Work

	References
	Appendix
	FUSE - Filesystem in Userspace
	BPMNs with Risks
	Performance Test Code
	PT1
	PT2

	Licence


