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Practical Zero-Knowledge within the European Digital Identity Frame-
work: Implementing Privacy-Preserving Identity Checks

Abstract:
The eIDAS regulation defines standards within the European Union (EU) for elec-

tronic identification, authentication, and trust services. Its successor eIDAS2 expands the
standard and proposes establishing an ecosystem of interoperable national digital identity
services for EU citizens. The new regulation will mandate member states to make these
services available, and work is ongoing to define the technologies and protocols that will
constitute the European Digital Identity (EUDI) framework. The framework is expected
to facilitate many use cases that require a person’s identity to be verified with a high
degree of assurance. These include opening a bank account and authenticating to online
services in different EU countries. It will also be possible to hold and present valid
digital documents, such as driving licenses and other permits, medical prescriptions, and
professional and educational certificates. Widespread adoption of the EUDI framework
would significantly increase the volume of digital identification events, which include
sensitive personal data and metadata about when and where credentials are used.

This poses a threat to the privacy of EU citizens who wish to access the many benefits
of digital identity services. The eIDAS2 regulation includes a provision for the use
of privacy-preserving technologies, which enable performing business logic on data
that remains hidden. Zero-knowledge proof systems are one such technology. A zero-
knowledge toolchain can be used to obtain a cryptographic proof that some statement is
true while revealing nothing else about the statement itself. ZK-SecreC is a language
developed by Estonian research and development company Cybernetica for writing zero-
knowledge programs, which are then compiled into equivalent circuit descriptions. This
thesis explores using ZK-SecreC to program the real-world identity checks performed by
Finnish company Talenom in conjunction with their user onboarding process. The input
data for the program is assumed to be a valid EUDI credential under the current reference
architecture, and as such is formatted according to the ISO/IEC 18013-5 standard for
mobile driving licenses. The technical contribution of the thesis is a ZK-SecreC program
and two variants thereof that perform the desired identity checks. The runtime of the
resulting circuits are benchmarked with two different proving backends. The thesis
also describes the steps required to integrate zero-knowledge proofs into the EUDI
architecture.
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CERCS: P170 Computer science, numerical analysis, systems, control
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Praktiline nullteadmustõestus Euroopa digitaalse identiteedi raamis-
tikus: privaatsust säilitavate identiteedikontrollide rakendamine
Lühikokkuvõte:

eIDAS määrus kirjeldab Euroopa Liidus kasutatavaid standardeid elektroonilise iden-
tifitseerimise, autentimis- ja usaldusteenuste jaoks. Selle edasiarendus eIDAS2 laiendab
neid standardeid ja pakub välja ELi kodanike jaoks koostalitlusvõimelise riiklike di-
gitaalsete identiteediteenuste ökosüsteemi loomise. Uus määrus kohustab liikmesriike
tegema need teenused kättesaadavaks ning praegu töötatakse selle nimel, et kokku
leppida tehnoloogiad ja protokollid, mis moodustavad Euroopa digitaalse identiteedi
(EUDI) raamistiku. Raamistik peaks toetama paljusid kasutusjuhtumeid, mis nõuavad
isiku identiteedi kõrge kindlusega kontrollimist, nagu näiteks erinevates ELi riikides
pangakonto avamine või võrguteenustele autentimine. Samuti võimaldab EUDI kehtivate
digidokumentide haldamist ja esitamist, nagu juhiload ja muud load, ravimiretseptid
ning kutse- ja haridustunnistused. EUDI raamistiku laialdane kasutuselevõtt kasvataks
märkimisväärselt selliste digitaalsete tuvastuste arvu, mille käigus töödeldakse tundlikke
isikuandmeid ning metaandmeid selle kohta, millal ja kus volitusi kasutatakse.

See kujutab endast ohtu digitaalse identiteedi teenustest kasu saada soovivate EL-i ko-
danike isikuandmete kaitsele. eIDAS2 määrus sisaldab sätet selliste privaatsust säilitavate
tehnoloogiate kasutamise kohta, mis võimaldavad töödelda andmeid ilma neid töötlejale
avalikustamata. Üheks selliseks tehnoloogiaks on nullteadmustõestused, mille abil on
võimalik saada krüptograafiline tõend mingi väite tõesuse kohta, avaldamata mingit
muud infot selle väite kohta. ZK-SecreC on Eesti teadus- ja arendusettevõtte Cybernetica
välja töötatud keel selliste nullteadmuses tõestatavate programmide kirjutamiseks; need
programmid kompileeritakse seejärel samatähenduslikeks loogikalülitusteks. Käesolevas
magistritöös uuritakse ZK-SecreC kasutamist Soome ettevõttes Talenom uue kasuta-
ja registreerimisprotsessi käigus tehtava identsuskontrolli realiseerimisel. Programmi
sisendandmetena eeldatakse kehtiva etalonarhitektuuri alusel kehtivat EUDI tõendit,
mis on sellisena vormindatud vastama digitaalse juhiloa standardile ISO/IEC 18013-5.
Lõputöö tehniline osa koosneb ZK-SecreC programmist ja selle kahest variandist, mis
viivad läbi vajaliku identiteedikontrolli. Saadud loogikalülituste käitusaega mõõdetakse
kahe erineva nullteadmustõestusprotokolle realiseeriva tagasüsteemi abil. Samuti kirjel-
datakse magistritöös vajalikke samme, et integreerida nullteadmuse tõestamist EUDI
arhitektuuriga.

Võtmesõnad:
nullteadmus, digitaalne identiteet, digitaalne juhiluba, eIDAS2

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction
Privacy-preserving technologies refer to technologies that enable the collection, storage,
and analysis of data without compromising the privacy of that data. With applications
in targeted advertising and influence, predictive analytics, and training neural networks,
data holds enormous economic potential, and has been called the oil of the 21st century.
[SUP14] However, the mining of this data represents a significant threat to the privacy
of involved parties. Privacy-preserving technologies include federated learning, homo-
morphic encryption, secure multi-party computation, trusted execution environments
in hardware, and zero-knowledge proof systems. [CGL20] These technologies make it
possible to perform business logic on data that remains hidden.

Legal identity documents, such as passports or identity cards, are among the most
valuable and the most sensitive data a person can hold. Traditional paper identity doc-
uments have weaknesses: they may be slow or expensive to obtain and can only be
authenticated in-person. More personal data than is necessary can be revealed inad-
vertently when using paper identity documents. For example, to access age-restricted
products or services, a person often reveals their birth date, name, and personal identity
code to the clerk when proving their age with a driving license. Paper signatures are
also easy to forge relative to their electronic counterparts. It is increasingly necessary to
supplement or replace paper identity documents with equivalent digital identities.

A digital identity identifies an individual or organisation in the digital world and often
serves as a credential to access online services. Many commercial service providers, such
as Google, Apple, and Facebook, offer digital identity solutions to manage credentials
to many services with one digital identity. This eases user experience and mitigates the
risk of using insecure duplicate passwords, but exposes more metadata about the user’s
online behaviour to these service providers. Services requiring "strong authentication",
or authentication of legal identity, are increasingly being brought online. These services
may include banking, taxation, voting, and creating electronic signatures for binding
contracts. The providers of strong authentication services are varied, and may include
banks or teleoperators in addition to governments, as in the Nordics. [Sig21]

The provision of digital identity documents "by social media providers and financial
institutions, raise privacy and data protection concerns." [EU21] Governments are an
intuitive alternative, and many governments provision digital identity documents to
residents or citizens in some form, such as electronic identity cards or mobile identities.
[dig24] These can be used to authenticate oneself online and in-person, as well as create
digital signatures. Regulations can be used to define what algorithms and hardware
constitute a legal electronic identity document. One such regulation is the eIDAS, which
stands for Electronic Identification, Authentication and Trust Services. The regulation
defines standards for electronic identification and trust services within the EU. [EU14]
Its successor, eIDAS2 [EU21], proposes the creation of a European digital identity
infrastructure and wallet (EDIW) for EU citizens.
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eIDAS2 [EU21] will "mandate cross-border interoperability in the EU and facilitate
use cases such as opening bank accounts, making payments and holding digital docu-
ments, such as a mobile Driving Licence (mDL), a medical prescription, a professional
certificate or a travel ticket." [EU] This national identity can be read by public bodies,
companies, and institutions to verify the identity of EU citizens. eIDAS2 allows for the
use of privacy-preserving technologies, such as zero-knowledge attestations, in national
identity solutions. [EU21] These technologies would allow citizens to benefit from the
EDIW without losing control over their personal data.

Zero-knowledge proof systems were introduced in 1989 by Goldwasser, Micali and
Rackoff [GMR89]. They allow for proving the veracity of a statement while revealing
nothing about the statement itself. They can also produce a short proof of a long
statement, and so have applications in solving scalability problems [BFL90]. Several
practical zero-knowledge systems have been created in recent years, as shown in Table 2.
A major application for zero-knowledge proofs has been found in blockchain networks,
which "consist of mutually distrusting parties that wish to transact, or generally update
collective state according to state evolution rules, using secret information." [Asz] The
potential of using zero-knowledge toolchains in other real-world systems, such as digital
identity management, is in the process of being realized.

1.1 Thesis Structure
This thesis details the process of using ZK-SecreC, a zero-knowledge DSL, to construct
practical proofs of identity according to a mobile driving license specification. It also
explores the legal, political, and technical considerations of adopting such technologies
in a large-scale identity architecture like the European Union Digital Identity (EUDI)
framework. Chapter 1 provides background information and preliminaries. Chapter 2
explores related work on other languages for verifiable computation and zero-knowledge
programming. Chapter 3 describes ZK-SecreC and presents some of its unique language
features. Chapter 4 presents the EUDI ecosystem of roles, technologies, and standards.
Chapter 5 defines a particular use case relating to customer onboarding and the associated
identity checks to a Finnish accounting company called Talenom. Chapter 6 explains the
ZK-SecreC program that leverages the EUDI framework as it is currently specified to re-
create these identity checks in zero-knowledge. Chapter 7 presents some discussion about
potential future work and barriers to adopting zero-knowledge technologies. Finally,
Chapter 8 provides some concluding remarks about working with ZK-SecreC and the
zero-knowledge and digital identity landscapes.

1.2 Verifiable Computation
Protocols for verifiable computation make it possible to verify the correctness of a
computation more efficiently than by repeating the computation itself. This enables
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outsourcing computation to untrusted parties and has applications in cloud computing
and cryptocurrency frameworks. [KPS18]

A public verifiable computation V C consists of a set of three polynomial-time
algorithms (KeyGen, Compute, Verify) defined as follows: [Par+16]

• (EKF , V KF )← KeyGen(F, 1λ): The randomized key generation algorithm takes
the description of the function F to be outsourced and security parameter λ: it
outputs a public evaluation key EKF and a public verification key V KF .

• (y, πy)← Compute(EKF , u): The deterministic worker algorithm uses the public
evaluation key EKF and input u. It outputs y ← F (u) and a proof πy of y’s
correctness.

• 0, 1← Verify(V KF , u, y, πy): Given the verification key V KF , the deterministic
verification algorithm outputs 1 if F (u) = y, and 0 otherwise.

Related definitions for the notions of correctness, security, and efficiency [Par+16] are
given below:

• Correctness: For any function F , and any input u to F , if we run (EKF , V KF )←
KeyGen(F, 1λ) and (y, πy) ← Compute(EKF , u), then we always get
1 = Verify(V KF , u, y, πy).

• Security: For any function F and any probabilistic polynomial-time adversary A,
where A(EKF ) outputs û, ŷ and π̂y and F (û) ̸= ŷ, we have that
Pr[Verify((û, ŷ, π̂y)) = 1] ≤ negl(λ).

• Efficiency: KeyGen is assumed to be a one-time operation whose cost is amortized
over many calculations, but we require that Verify is cheaper than evaluating F .

1.3 Arithmetization
In practical proof systems, the statement to be proven is represented as a set of polynomial
equations over a finite field to be solved in a process known as arithmetization. The result
of arithmetization can be one of many representations depending on the proof system in
question: an arithmetic circuit, a Quadratic Span Program, Rank 1 Constraint System
(R1CS), or an Algebraic Intermediate Representation (AIR). [GPR21] An arithmetic
circuit is a directed acyclic graph, in which nodes are connected to one another with
directed edges. Nodes and edges can also be called gates and wires respectively. The
input passes through gates to produce an output. The gates of an arithmetic circuit are
field operations such as multiplication or addition. [SML18] For example, Figure 1
shows the circuit that computes the polynomial (x1 + x2)(x1 + 1).
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Figure 1. An arithmetic circuit computing the polynomial (x1 + x2)(x1 + 1).

The task of arithmetization is often performed by a compiler, which takes code as
input and outputs an executable representation of the equivalent polynomial equations.
The compiler can become a bottleneck for zero-knowledge applications, and so its
efficiency is a central design concern. Additionally, "only terminating programs can be
arithmetized in this way" [SML18], which adds constraints to the higher-level programs
that can be compiled.

1.4 Zero-knowledge proofs
Interactive proof systems were presented in [GMR85] and in general consist of a prover
and a verifier that operate on shared common input, called the instance, and private input
known only to the prover, called the witness. The proof system takes in both inputs and
determines whether the witness validates the instance, i.e. whether the statement is true
or false. [Bog+22]

More formally, an interactive proof [GMR85] consists of k rounds of communica-
tion between a probabilistic polynomial-time (PPT) verifier V and a computationally
unbounded prover P . The prover P attempts to prove a statement, i.e. that a word
belongs to a language. After the exchange, V either accepts or rejects the statement.
Proof systems can be made more robust by increasing the number of rounds k, or by
introducing randomness called coins. [Min22] In a private coin protocol, the random
choices made by V are kept secret from P , while in a public coin protocol, they are
visible to both parties. The proof must satisfy the following properties:

• Completeness: Given a statement and a witness, the prover can convince the
verifier.

• Soundness: A malicious prover cannot convince the verifier of a false statement.

In addition, a proof system may have the property of being zero-knowledge, which means
that no other information besides its veracity is revealed in this process. In particular, the
prover’s witness is not revealed. The proofs produced by zero-knowledge systems are
probabilistic, rather than deterministic, meaning that the probability of the existence of a
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valid but forged proof is negligibly small. Zero-knowledge proof systems can be further
categorised into Succinct Non-Interactive ARguments of Knowledge (zk-SNARKs) and
Scalable Transparent ARguments of Knowledge (zk-STARKs). As shown in Table 2,
which lists practical implementations of zero-knowledge proof systems, zk-SNARKs are
overwhelmingly the protocol of choice in production systems.

A zk-SNARK scheme involves two parties, a prover P and a verifier V , where P
proves the correctness of executing a program F on an input x̃ from V , and (optionally)
a secret input ũ from P . P sends V both the output ỹ and a proof π̃ to verify the
result. Formally, the a SNARK scheme consists of the following three polynomial-time
algorithms:

• (PKF , V KF ) ← Setup(F, 1λ): given an outsourced program F and a security
parameter λ, output a public proving key PKF and a verification key V KF . The
verification key may be public or private depending on the setting.

• (ỹ, π̃)← Prove(F, PKF , x̃, ũ): given a program F , the public proving key PKF ,
the public input x̃, and the prover’s secret input ũ, the output ỹ ← F (x̃, ũ), and
the proof π̃ proving the correctness of the computation.

• 0, 1← Verify(V KF , x̃, ỹ, π̃): given the verification key V KF , the proof π̃, and
the statement (x̃, ỹ), output 1 iff ỹ = F (x̃, ũ).

zk-SNARKs are non-interactive proof systems with small proof size and efficient proving
speed. They "support general computations, i.e., they can be used to prove the correctness
of arbitrary, polynomial-sized computation" [KPS18] zk-SNARKs require a setup phase
to generate initial parameters for the proof process, which is carried out by trusted parties.

zk-STARKs were introduced by Eli Ben-Sasson et al. [Ben+18] in 2018. The term
transparency refers to public verifiability without the need for a trusted setup, which
mitigates the corruption or attacks than can occur during this phase with zk-SNARKs.
Scalability means that proving time scales quasilinearly and verification time scales
poly-logarithmically with respect to the size of the witness. [Min22] Transparency means
that all messages sent by the verifier are public random coins. zk-STARKs are consid-
ered plausibly quantum-secure, because they rely on either the existence of a family of
collision-resistant hash functions or common access to a random function. [Ben18] These
characteristics make zk-STARKs an attractive object of research for zero-knowledge
systems. However, the proof size of zk-SNARKs is approximately 1000 times shorter
than that of zk-STARKs, making them a more viable choice in practical systems. Short-
ening proof size, or aggregating and compressing proofs using incrementally verifiable
computation is a open problem in the development of zk-STARKs. [Ben+18]

While zk-SNARKs and zk-STARKs are popular proving systems, according to
[Bau+20], their memory constraints and prover runtimes mean they cannot support
proofs of very large statements consisting of billions of instructions. Secure multi-party
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computation (MPC) protocols are an alternative that can also be used to produce zero-
knowledge proofs with bandwidth costs that scale linearly with circuit size. In secure
MPC, mutually distrusting parties perform joint computations on private data. In general,
the system consists of an n-party functionality (y1, ...yn) = f(x1, ..., xn) in which player
Pi knows xi. A secure MPC protocol Π for f allows the n parties (P1, ..., Pn) to learn
the outputs such that player Pi learns yi and nothing more. [CD05] Depending on the
security measures taken, Π may also be secure against certain collaborations between
some parties in P1, ..., Pn or against parties who deviate from the protocol. Two-party
computation is an instance of multi-party computation where n = 2. Zero-knowledge
proof protocols can be constructed as two-party computation protocols which are secure
against parties deviating from the instructions of the protocol and optimized for the case
where one of the parties (the prover) knows all the inputs.

1.5 Concise Binary Object Representation (CBOR)
CBOR is a data serialization format which is defined in the Internet Standard RFC 8949
[BH20]. The encoding of CBOR is inspired by the popular JSON format and is similarly
self-descriptive. The 3 higher-order bits in the initial byte contain the major type. The
major types are listed in Table 1. Additional information is contained in the 5 lower-order
bits.

Major Type Meaning Content
0 unsigned integer N -
1 negative integer -1-N -
2 byte string N bytes
3 text string N bytes (UTF-8 text)
4 array N data items (elements)
5 map 2N data items (key/value pairs)
6 tag of number N 1 data item
7 simple/float -

Table 1. The seven major CBOR types as specified in [BH20].
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System Publication Year Protocol
Pinocchio [Par+16] 2013 zk-SNARK
TinyRAM [Ben+13] 2013 zk-SNARK
vnTinyRAM [Ben+14] 2014 zk-SNARK
Buffet [Wah+15] 2015 zk-SNARK
Geppetto [Cos+15] 2015 zk-SNARK
Groth16 [Gro16] 2016 zk-SNARK
EMP Toolkit [WMK16] 2016 zk-SNARK
ZKBoo [GMO16] 2016 zk-STARK
Ligero [Ame+17] 2017 zk-SNARK
BulletProof [Bün+18] 2018 Bulletproofs
Hyrax [Wah+18] 2018 zk-SNARK
vRAM [Zha+18] 2018 zk-SNARG
ZoKrates [ET18] 2018 zk-SNARK
xJsnark [KPS18] 2018 zk-SNARK
libSTARK [Ben18] 2018 zk-STARK
OpenZKP [Blo19] 2019 zk-STARK
Aurora [Ben+19a] 2019 zk-SNARK
zk-STARK [Ben+19b] 2019 zk-STARK
Fractal [COS19] 2019 zk-SNARK
Halo [BGH19] 2019 zk-SNARK
Sonic [Mal+19] 2019 zk-SNARK
Marlin [Chi+20] 2019 zk-SNARK
PLONK [GWC19] 2019 zk-SNARK
Hodor [Lab19] 2019 zk-STARK
Virgo [Zha+19] 2020 zk-SNARK
genSTARK [Gui20] 2020 zk-STARK
SuperSonic [BFS20] 2020 zk-SNARK
MIRAGE [Kos+20] 2020 zk-SNARK
Spartan [Set20] 2020 zk-SNARK
Zilch [MT21] 2021 zk-STARK
Nova [KST21] 2021 zk-SNARK
Halo 2 [ZCa22] 2022 zk-SNARK
Winterfell [Fac23] 2023 zk-STARK

Table 2. An overview of practical zero-knowledge proof systems. * Research project.
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2 Related Work
In this chapter, we explore other zero-knowledge domain-specific languages (DSLs) and
describe their applications, which are primarily in blockchain technologies. Languages
developed for verifiable computation are closely related to ZK-SecreC, and they are also
described here. We also explain the SIEVE program, a coordinated initiative to develop
different components of producing zero-knowledge proofs for large statements.

2.1 Zero-knowledge DSLs
This section provides an overview of domain-specific DSLs designed for zero-knowledge
applications. Many DSLs are designed for use with commercial blockchain technologies,
highlighting support for writing smart contracts and distributed applications. Many of
these languages are imperative and some are developed for use with a specific blockchain,
such as Ethereum, Mina, or Aleo.

Cairo is an open-source language and framework to create provable programs for
general programming. Various supplementary tools are available, such as a compiler
from the Cairo language to Cairo byte code and a virtual machine for simulating Cairo
executions. [Sta23] Cairo is developed by StarkWare and designed for use with Ethereum.
The idea is to produce an off-chain prover to process large computations, such as large
batches of transactions, and produce exponentially smaller validity proofs, which can
be verified on-chain. The proofs produced by Cairo are STARKs. [Sta20b] Cairo has a
Turing-complete von Neumann architecture which defines a set of universal polynomial
equations which can represent the execution of an arbitrary computer program written
for some fixed instruction set. [GPR21] Thus, a single verifier can be used to verify any
program written in Cairo.

Noir is an open-source Rust-based language for writing zero-knowledge circuits and
programs. Noir compiles to an intermediate language called ACIR (Abstract Circuit
Intermediate Representation), which can then be compiled to an arithmetic circuit or an
R1CS, making it compatible with various proving systems such as "Aztec Brettenberg,
Turbo Plonk, and potential future integrations like Groth16 and Halo2". [Azt23] Noir is
developed by Aztec and is designed for integration with the Aztec blockchain network.
Noir offers direct compilation of verifiers into Solidity smart contracts.

o1js is a TypeScript framework for writing zero-knowledge applications developed
by O(1) Labs. o1js is an evolution of SnarkyJS and designed to work with Mina, a
recursively verifiable blockchain. [Lab23b] Mina uses zk-SNARKs for verification,
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resulting in a compact blockchain which is around 22kb in total size. [Lab24] The Mina
Protocol supports zero-knowledge smart contracts written in o1js.

Leo is a functional, statically typed high-level language, which is designed for writing
private applications for the Aleo blockchain. [Wu23] Leo is complemented by a toolkit
which includes a testing framework, package registry, import resolver, remote compiler,
and theorem generator. Leo programs are compiled to intermediate Aleo instructions,
which can be further compiled to byte code to be executed by the Aleo Virtual Machine
(AVM). Programs are formally verified upon compilation.

Circom is a language designed for zero-knowledge circuit development and developed
by iden3. [Bay23] It has been used in several real-world applications such as Dark
Forest and Tornado Cash. The circom compiler, which is written in Rust, compiles
circuits written in the circom language. Compatible proving systems developed by
iden3 are available in various packages: SnarkJS in JavaScript and pure Web Assembly,
wasmsnark in native Web Assembly, and rapidSnark in C++ and Intel Assembly. The
CircomLib library contains templates for implementing standard functions such as
comparators, but the language is otherwise low-level and designed for writing custom
zero-knowledge circuits.

Lurk is a functional programming language for recursive zk-SNARKs. It is a statically
scoped Lisp dialect. A Rust implementation called lurk-rs generates binaries with
rustc and supports the full range of features available in Lurk: expression evaluation,
proof of correct evaluation, and proof verification. A Common Lisp reference imple-
mentation, lurk, provides a language specification and expression evaluation. Lurk
is designed to integrate with various backend proving systems, such as Groth16 with
SnarkPack+ and Nova, or Halo2 in theory. According to [Lab23a], "[t]he most interesting
uses of Lurk are those which require proofs of evaluation. A Lurk proof may verifiably
attest that X evaluates to Y while revealing no other information."

2.2 Verifiable Computation
Snårkl ("Snorkel") is an open-source Haskell DSL for verifiable computation which
supports features found in functional languages, such as sums, products, user-defined in-
ductive datatypes, and case analysis. In Stewart, Merten, and Leland [SML18], constraint
minimization, as applied to the arithmetic encodings of programs written in Snårkl, is
shown to generate small circuits with low proving and key-generation times. The result
of the Snårkl compiler shown in Figure 2 is an R1CS, which is compatible with the
libsnark backend.

14



Figure 2. A diagram of the Snårkl compiler as described in [SML18].

Figure 3. The Pinocchio toolchain as described in Parno et al. [Par+16]. The system
transforms a high-level C program into a distributed set of executables that run a verifiable
program.

Pinocchio is a system for verifying general computations, with intended applications
in outsourced or distributed computing. The system [Par+16] describes a worker and a
client, which are analogous to a prover and verifier respectively. The client chooses the
input data and desired function, and the worker performs the computation. In order to
verify the computation, the client creates a public evaluation key, which the worker can
use to produce a signature of computation. This signature is then publicly verifiable using
a verification key also created by the client. The system also supports zero-knowledge
verifiable computation, in which the worker convinces the client that it knows some input
without revealing any information about the input. The Pinocchio toolchain shown in
Figure 3 compiles a subset of C into programs that implement the verifiable computation
protocol.
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Figure 4. Overview of the xJsnark framework as defined by Kosba, Papamanthou, and
Shi [KPS18].

xJsnark is a programming framework for verifiable computation using SNARKs.
[KPS18] The framework aims to combine accessibility to programmers with circuit
optimizability. This is achieved by an approach in which the source language and
compile-time optimizations are co-designed with the goal of minimizing the compiled
circuit. The contributions by Kosba, Papamanthou, and Shi [KPS18] include circuit-
friendly algorithms for frequent operations such as memory accesses and short and long
integer arithmetic which can be expressed as a compact arithmetic circuit with a minimal
number of multiplication gates. The xJsnark framework emits circuits compatible with
libsnark. Figure 4 shows an overview of the xJsnark system.

2.3 SIEVE Program
The DARPA initiative for Securing Information for Encrypted Verification and Evaluation
(SIEVE) [Wal] is a program for advancing the state of the art for zero-knowledge, with the
specific goal of verifying large, complex statements in a plausibly post-quantum secure
way. The program is an international effort to coordinate solving various sub-problems
of the overall objective: developing a language to express statements, an encoding of
statements into intermediate representations, and protocols to conduct proofs between
the prover and verifier. [Bar23]

SIEVE Circuit IR The SIEVE Circuit intermediate representation (IR) is a standard-
ized format for encoding zero-knowledge proof statements produced by a zero-knowledge
frontend as arithmetic or boolean circuits, which can then be used as input for a zero-
knowledge backend as shown in Fig 5. The SIEVE IR specification [Bun+22] defines
two isomorphic formats: text, which is readable by humans, and binary, for automated
use. Two backends that currently integrate with the SIEVE IR are the EMP Toolkit and
Mac’N’Cheese. They implement two-party secure computation protocols that have been
optimized to the case where the prover knows all the inputs.
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Figure 5. The SIEVE IR is a standard interface between circuit compilers and proving
suites from [Gal23]

The EMP Toolkit The EMP Toolkit [WMK16] can be used to perform secure multi-
party computation (MPC) in a research and development setting. The toolkit includes the
EMP-zk tool, which provides zero-knowledge proof protocols for Boolean and arithmetic
circuits and polynomials. The zero-knowledge protocols in the suite include QuickSilver
[Yan+21], Mystique [Wen+21], and Wolverine [Wen+20]. The EMP compiler translates
the SIEVE IR into its native C++ dialect. It can also interface directly with the ZK-SecreC
compiler.

Mac’N’Cheese Mac’N’Cheese [Bau+20] is an interactive proof system developed
by Galois, Inc. for boolean and arithmetic circuits which is designed to support large
circuits. The system uses the commit-and-prove paradigm using Message authentication
Codes (MACs). It supports efficient proving over a network and can also be made non-
interactive. The integration of the ZK-SecreC compiler with Mac’N’Cheese supports
multithreading, preallocation of wires, and variable buffer size.
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3 ZK-SecreC
In this chapter, we describe the ZK-SecreC language and present the features that will
be relevant later in the thesis. A program from the documentation [Cyb24] specifying a
circuit to prove that a prover knows the cube root of a number is described.

3.1 General
ZK-SecreC is a functional DSL for creating zero-knowledge proofs developed by Cyber-
netica and published in 2022 [Bog+22]. In contrast to other zero-knowledge DSLs, many
of which are designed specifically for use with blockchain, the use cases envisioned for
ZK-SecreC are existing industrial applications that may benefit from a zero-knowledge
integration. [Reb23] In such applications, the proof sizes are very large and the structure
of input data may be complex. In order to support the scope of these potential use cases,
the language provides a high degree of granularity in defining where computations are
performed (on or off the circuit) and which parties the computations are visible to.

ZK-SecreC is strongly typed, which ensures that non-supported operations cannot
be added to the arithmetic circuit. The ZK-SecreC type system also supports the free
interleaving of local (off-circuit) computations with computations on the circuit. The
language defines two stages and three domains to specify the availability of values to
different parties on or off the circuit. The stage $pre denotes that a value is available for
local computations by the prover and verifier, while $post indicates its availability in the
circuit. The domain @prover denotes that only the prover knows the value, @verifier
that it is known to both prover and verifier, and @public that the value is known at
compile time.

The ZK-SecreC compiler takes as input a program written in the ZK-SecreC language,
public parameters, witness and instance. The latter three input files must contain exactly
one JSON object that represents all input values as strings or nested arrays of strings.
[Nes22] Integer inputs must be represented as strings (52→ "52") and string inputs must
be encoded as arrays of the numeric values of the byte encoding of the string ("test"
→ 0x74657374→ ["116", "101", "115", "116"]). Byte arrays can be similarly
represented as strings of the numeric values of the bytes. The front-end of the ZK-SecreC
compiler is implemented "in about 20kLoC of Haskell code" [Bog+22], which includes a
lexer, parser, type and effect checker, @public precomputation engine, and a translater to
a simpler intermediate language called Core ZK-SecreC. The back-end of the compiler,
which is written in Rust, compiles Core ZK-SecreC to produce a SIEVE Circuit IR. The
prover can use the same circuit description to convince the verifier about the witnesses
for several different instances.
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3.2 Cube Root
ZK-SecreC programs have the extension .zksc. The following program determines
whether the prover knows the cube root of a number:

type N : Nat = 0x1FFFFFFFFFFFFFFF;

fn cube(x : uint[N] $post @prover) -> uint[N] $post $@prover {
let a = 1;
let b = a * x;
let c = b * x;
let d = c * x;
d

}

fn main() where Field[N] {
let z = wire { get_instance("z") };
let x = wire { get_witness("x") };
let y = cube(x);
assert_zero(y - (z as @prover));

}

The first line defines the type-level natural number N, which is the 9th Mersenne
prime 261 − 1 in hexadecimal notation. ZK-SecreC requires the number to be a prime,
and the programmer must ensure primality. The function cube takes takes one parameter,
x, which has the type constraint uint[N]. This means it must be an element of a finite
field of size N. In addition, it must be in the stage $post i.e. on the circuit and in the
domain @prover i.e. known only to the prover. The function cubes the input and returns
the result. An alternative way to program this would be to use the mut keyword to create
a mutable variable.

fn cube(x : uint[N] $post @prover) -> uint[N] $post $@prover {
let mut result = 1;
result = result * x * x * x;
result

}

In both cases, the stage and domain of the result do not need to be explicitly declared
because the compiler uses the constraints on the input and output of the function to infer
them. Functions can also be polymorphic

fn cube[N: Nat, $S, @D](x : uint[N] $S @D) -> uint[N] $S $@D {
let mut result = 1;
result = result * x * x * x;
result

}

in which case the function can be used with values in different stages, domains, and
moduli. Branching is also supported, so that different functionality is executed depending
on the stage or domain.

The function main() is the entry point for the program. The keyword where indicates
a Field type constraint for the function, and declares that N satisfies this constraint. The
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functions get_instance and get_witness fetch fields from the input JSON files for
instance and witness. These functions produce results in the $pre stage. In order to lift
them to the circuit, the values are wrapped in a wire construct, which creates an input
wire to the circuit and changes the stage of the value to $post. The value x is cubed
and the result y is compared with the value z from the instance. Because y and z are
in different domains, z must be lifted to the prover’s domain (as @prover). Finally,
the assert_zero function asserts that the difference between two inputs is zero. The
following contents can be found in the witness file

{ "x": "101" }

and the instance file

{ "z": "1030301" }

respectively. To compile the program, we run the command

./runrust cube.zksc '' cube_instance.json cube_witness.json -o cube

which takes as arguments paths to the public, instance, and witness files. Since there
is no public input, the first argument is an empty string. The -o flag indicates what the
output files should be named. The three files that comprise the SIEVE IR are produced:
the circuit in cube.rel

version 2.1.0;
circuit;
@type field 2305843009213693951;
@begin

$0 <- @public(0);
$1 <- @private(0);
$2 <- @mulc(0: $1, <1>);
$3 <- @mul(0: $2, $1);
$4 <- @mul(0: $3, $1);
$5 <- @mulc(0: $0, <2305843009213693950>);
$6 <- @add(0: $4, $5);
@assert_zero(0: $6);

@end

the prover’s input stream in cube_0.wit

version 2.1.0;
private_input;
@type field 2305843009213693951;
@begin

<101>;
@end

and the verifier’s input stream in cube_0.ins.
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version 2.1.0;
public_input;
@type field 2305843009213693951;
@begin

<1030301>;
@end

The first line declares the version of the SIEVE IR and the second indicates which of
the three files is in question. When running a zero-knowledge protocol on this data, the
prover has access to the circuit and both input streams, and the verifier only has access to
the cube.rel and cube_0.ins files. Although these two files are always used together,
they are differentiated to reflect the conceptual difference between the relation and public
input. Some backends may also perform preprocessing that only uses the .rel file, such
as creating a relation-specific common reference string (CRS) with a trusted setup.

ZK-SecreC provides various libraries for standard building blocks for programming
such as Integer, String, Float, Date etc. The standard toolkit includes support for
cryptographic constructs like SHA-256 and elliptic curves. For real-world applications,
functionality for parsing data in different input formats like JSON and CBOR have also
been built. Another such library is Challenges, which implements verifier challenges.
These random challenges are issued after the prover has committed to some part of the
witness. The prover must then construct the remainder of the witness so that the proof
will be accepted. A common application of verifier challenges is in proving that two
committed lists are permutations of one another. These libraries are available for import
in ZK-SecreC programs and used in our application.
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4 The European Union Digital Identity (EUDI) Frame-
work

This chapter provides an overview of the technologies and standards within the EUDI
framework. The roles in the architecture and the state of EUDI development in Finland
are also described.

4.1 General
The European Commission adopted a recommendation [Bre] in June of 2021 to develop a
Union Toolbox, which includes the European Digital Identity Architecture and Reference
Framework (ARF) [Exp22]. The ARF is a document that defines a set of standards,
technical specifications, best practices and common guidelines for interoperable EUDI
wallet technologies. The ARF may also encompass functionality or security recommen-
dations that are not mandatory for compliance, but a subset of the results of the Toolbox
development will form the basis upon which solutions developed by member states are
accepted into the actual EUDI ecosystem. The Toolbox is an open collaboration between
teams representing the interests of member states, which can be followed on GitHub.
[De +] Two privacy guarantees to take into consideration with respect to architectural
choices are selective disclosure and unlinkability.

Selective disclosure refers broadly to the possibility to share a minimum required
subset of attributes or attestations instead of an entire credential. For example, when only
age is required, the relying party does not learn any other attributes about the user when
checking their credential. Unlinkability is a privacy guarantee regarding the meta-data
of the credential. By monitoring the circumstances under which a credential is used,
a profile of the user’s behavior and attributes can be built. Unlinkability refers to the
amount of data that colluding verifiers, who in this case are relying parties, can infer
about a user. [ETS23] For example, although a user has shared their data selectively
with different verifiers, it may be possible for them to use a correlating factor such as a
public key to synchronize the data they have each obtained about a user. Collusion with
issuers is also possible. High unlinkability means that little can be learned about the user
through collusion.

4.2 Standards
The standard credential formats selected for the Type 1 or primary configuration of the
wallet are the ISO mobile driving license (mDL) and the W3C Verifiable Credentials with
SD-JWT. These standards were chosen because they are mature and have been approved
by the Senior Officials Group for Information Systems (SOG-IS), which is a requirement
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for use with EUDI. [ETS23] The ARF also specifies a Type 2 or secondary configuration
which accounts for technologies that are less mature or are pending auditing and approval.

4.2.1 Selective Disclosure - JSON Web Token (SD-JWT)

The draft presented by Fett, Yasuda, and Campbell [FYC24] specifies conventions for
selectively disclosing individual elements of a JSON object secured by the JSON Web
Signature (JWS). The data in the JWT payload are called claims. They are represented
in JSON and digitally signed, so that the recipient can verify that the set of claims have
not been modified since being signed. The JWT is encrypted during transit, but an
unencrypted JWT can be used to read all signed claims in plaintext. The EUDI ARF,
as well as other verifiable credential schemes, call for JWTs that are signed when they
are issued, and then re-used with different verifiers. In this case, in order to verify the
one claim has not been modified, the verifier would learn the JWT holder’s entire set
of signed claims. Selective disclosure enables the user to share only a minimum subset
of the signed claims required by a verifier to ascertain the integrity of those claims
cryptographically.

4.2.2 Mobile Driving License (mDL) / MobileSecurityObject (MSO) Scheme

The ISO/IEC 18013 family of documents [Sta20a] is a standard published in 2020
which specifies the requirements for physical and mobile driver’s licenses (mDL) for
government use. [Fla24] Part ISO/IEC 18013-5 specifies the mdoc format, a structure
for mDLs. Two modes of retrieval are specified in the standard: online and offline. In
online retrieval, the end user authorises a trusted authority to share an mDL stored on
their servers with a relying party. In offline retrieval, the trusted authority issues the mDL
to a device, which the user can share directly with relying parties. Because the device is
not trusted, the trusted authority issues supplementary MobileSecurityObjects (MSOs),
which contain fieldwise hashes of the mDL signed by the issuer. The relying party can
use these to verify the integrity of the data supplied by a untrusted device.

In online retrieval, "the trusted authority is present in each transaction" [Sta20a]
and can therefore easily monitor the user’s behaviour and their use of the mDL. Offline
retrieval is decentralized, and as such can be used to facilitate a self-sovereign identity
(SSI) scheme, in which users have full control of a credential after it has been issued.
Then the issuer cannot monitor the user, and the mDL can be used without access to a
centralized authority. The trust model for both modes of retrieval is founded on public
key infrastructure (PKI), and "requires a mechanism to distribute and disseminate the set
of Certification Authorities certificates from issuing authorities." [Sta20a] The relying
party is responsible for checking the status of the issuer certificate. The architectural
differences between the two retrieval modes are are compared in Figure 6.
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Figure 6. The offline and online retrieval modes in the ISO mDL specification.

4.2.3 Alternative Standards

The selected standards for the Type 1 configuration provide the privacy guarantee of se-
lective disclosure, but they do not directly facilitate exchanging zero-knowledge proofs or
using stronger privacy-preserving protocols. Various such protocols have been standard-
ized: AnonCreds by Hyperledger, the BBS Signature Scheme by IETF, BBS Cryptosuite
and the Verifiable Credentials Data Model by W3C. [ETS23] Discussion on the EUDI
ARF GitHub acknowledges that these protocols would provide strong privacy guarantees,
but identifies barriers to integration: lack of widespread hardware support and archi-
tectural incompatibility. [GSM] The zero-knowledge toolchain presented in this thesis
differs from these alternative standards in that ZK-SecreC programs can be tailored
to the existing mDL data structures. Only a protocol communicating zero-knowledge
proofs about a credential would need to be standardized. This would lower the thresh-
old to access privacy-preserving credentials under EUDI by minimizing the amount of
architectural changes required.

4.3 The EUDI Ecosystem
The EUDI ARF [Exp22] defines the various roles in the ecosystem, which are summarized
below. The same organisation may assume several different roles in a given member
state. The dependencies between the roles are illustrated in Figure 7.
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Figure 7. A diagram of the different roles in the EUDI ecosystem, excluding CABs and
supervisory bodies, which supervise the whole system.
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End users are legal or natural person who uses the wallet to receive, store, and share
personal identification data (PID) and attestations (QEAA, EAA).

Wallet issuers are organisations mandated or recognized by member states to make
wallets available to end users. Wallet issuers are responsible for the wallet complying
with the functional, non-functional, and security requirements described in the ARF.

Personal Identification Data (PID) providers are responsible for verifying the identi-
ties of end users and maintain a standardized interface to issue PIDs to wallets. They
also maintain information needed by relying parties to verify the validity of PIDs such as
revocation lists and public keys.

Qualified Electronic Attestation of Attributes (QEAA) providers are Qualified
Trust Service Providers (QTSPs) that interface with authentic sources and wallets to
provide attestations, such as electronic signatures, regarding the veracity of PIDs.

Non-Qualified Electronic Attestation of Attributes (NQEAA) providers can provide
various trust services, such as attestations for professional qualifications. Such attestations
would have to be technically compliant with EUDI in order to be stored in the wallet, but
may be subject to legal and contractual frameworks other than eIDAS2.

Providers of other trust services such as timestamps or certificates may be compo-
nents of the ecosystem. These may be qualified or non-qualified as demanded by the use
case.

Authentic sources are public or private repositories containing valid data about the
attributes of legal or natural persons. This data may include names, birth date, civil
status, and gender, while other repositories may contain information about education,
professional qualifications, or permits and licenses.

Relying parties are natural or legal persons who request electronic attestations or
attributes in the PID dataset from end users. Their reliance on the wallets of end users
may be a consequence of a legal requirement, a contractual obligation, or their own
decision. In mutual authentication, relying parties may themselves share attestations or
attributes. Relying parties are responsible for the authentication of the attestations or
attributes they receive.
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Conformity Assessment Bodies (CABs) are accredited public or private bodies that
perform regular audits of providers in the ecosystem. They are responsible for conferring
the qualified status to EAA providers and ensuring compliance of other providers being
introduced to the ecosystem.

Device manufacturers and related subsystem providers refer to all device manufactur-
ers and service providers underpinning the ecosystem: manufacturers of mobile hardware,
operating systems, and sensors, developers of networking protocols, cryptographic al-
gorithms, and secure hardware, and cloud storage and app store providers, etc. Which
devices and services comply with EUDI security requirements will be defined by the
ARF.

Supervisory bodies supervise QTSPs and NQEAA providers.

Trusted registries may maintain trusted registries of any of the above roles. They
may be responsible for processing applications and admitting new parties into trusted
registries and providing real-time information on their trust status. The management
of such registries represents an open problem in the architecture, depending on the
demanded scope. A registry of relying parties, for example, could number in the tens of
millions.

4.4 EUDI in Finland
The Digital and Population Data Services Agency of Finland (DVV) is responsible for
national co-operation with the eIDAS2 Toolbox process. This entails implementing
compliant pilot applications and ensuring the interests of the country, such as offline
usage, are represented in the development of the ARF. The Finnish EUDI Wallet Demo
enables testing various use cases in the EUDI framework. [PL] The application refer-
ences the open-source identity-android wallet application developed by the Open Wallet
Foundation for Android. [Ope] This wallet application matches the ISO mDL / MSO
specification and uses QR codes to encode requests and responses. In the proximity
or in-person use case, a PID or QEAA approved by the user is presented to an mDL
reader application on another device. In the online or cross-device use case, the wallet
application reads a request for PIDs or QEAAs from another device, such as a laptop.
These two use cases are demonstrated in Figure 8. In both use cases, the pilot application
assumes offline retrieval according to the ISO mDL specification in order to minimize
reliance on trusted authorities.
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(a) Proximity use case. (b) Cross-device use case.

Figure 8. Screenshots from the demo video of the EUDI wallet application developed by
DVV. [PL]

5 Defining the Use Case: User Onboarding
In this section, we scope out a potential use case under the future EUDI framework. The
use case concerns Talenom, a Finnish accounting company that also provides third-party
financial services, such as accounting, payment, and banking services. The primary
customers of the company are businesses, which are represented by persons who have a
mandate to act on behalf of the business. In order to onboard a new customer, Talenom
must obtain the following assurances:

• user’s age is over 18

• user’s nationality is EU

• user possesses mandate to act on behalf of the organisation in question

First we describe how these checks are implemented under the existing digital identity
infrastructure in Finland, and then we propose how these assurances might be obtained
with a zero-knowledge extension of EUDI.

5.1 Current Strong Authentication Flow
Strong authentication in Finland is facilitated by the Finnish Trust Network (FTN), a
national registry of identification service providers that is managed by the National Cyber
Security Centre Finland (NCSC-FI). The NCSC-FI is a department of Traficom, the
Finnish Transport and Communications Agency. The FTN is a list of service providers
that are licensed to provide identification means, identification broker services, or both.
[Kyb24] The identification means available in Finland are online banking credentials,
mobile certificates issued by teleoperators, and identification certificates stored on smart
cards issued by the Digital and Population Data Services Agency (DVV). Identification
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broker services aggregate identification means providers and forward identification
events to them. Banking credentials are overwhelmingly the most popular means of
identification [MSV19], making up 95.3% of identification events recorded by major
identification broker service Suomi.fi in 2018, followed by mobile certificates at 4.1%
and other methods at 0.6%.

eIDAS defines three levels of assurance, which indicate "the degree of confidence in
the claimed identity" [Com24]. Identity solutions are classified as either Low, Substantial,
or High assurance based on a security assessment, number of authentication factors,
and integrity of the enrolment process. The level of assurance of the most popular
identity means in Finland is classified as Substantial, because customers are required to
present a valid identity document in person in order to open a bank account or phone
contract. Authentication with these credentials requires at least two of the following
factors: knowledge-based (username and password), inherent (biometric), or ephemeral
(one-time) factors.

Provider Type Service Assurance
Aktia bank P.L.C. Bank Means Substantial
Danske Bank A/S Bank Means, Broker Substantial

DNA PLC Teleoperator Means, Broker* Substantial
Elisa Corporation Teleoperator Means, Broker Substantial

Nets Branch Norway Commercial Trust Broker High
Nordea Bank ABP Bank Means, Broker Substantial

Oma Savings Bank PLC Bank Means Substantial
OP Cooperative † Bank Means, Broker Substantial
POP Bank Group Bank Means Substantial

Signicat AS Commercial Trust Broker Substantial
S-Bank Ltd Bank Means Substantial

Svenska Handelsbanken AB Bank Means Substantial
Säästöpankkiryhmä Bank Means Substantial
Telia Finland Oyj Teleoperator Means, Broker Substantial

Population Register Centre (DVV) Agency Means High
Bank of Åland PLC Bank Means Substantial

Assently AB Commercial Trust Broker Substantial
Megical Oy Commercial Trust Means, Broker Substantial

Table 3. Registered identification services in Finland. [Kyb24] † Provides Suomi.fi
broker service for public services. * For other teleoperators only.

The typical strong authentication flow under the current system is shown in Figure 9.
The customer is redirected to a portal hosted by an information broker service, such as
the one shown in Figure 10. The customer selects their identity means provider, and is
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Figure 9. Current strong authentication flow with broker, identification means providers,
and Suomi.fi API.

prompted to perform two-factor authentication with their online bank credentials, mobile
phone, or smart card. The identification means providers interface with Suomi.fi, an
online Web API that facilitates access to the following national databases and registers
[Suo23]:

• personal data in the Population Information System [Digital and Population Data
Services Agency]

• system of environmental division of real estate [National Land Survey of Finland]

• trade register [National Board of Patents and Registration of Finland]

• registers of associations and religious communities [National Board of Patents and
Registration of Finland]

• vehicle data and watercrafts [Traficom]

• driving licence data [Traficom]

• check your own employment pension institution [The Finnish Centre for Pensions]

• right to study and education information [Finnish National Board of Education]
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Figure 10. A typical view from an identification broker service in Finland. This particular
broker service is the teleoperator Telia.

Data requested by a third party from any of the above are delivered back with a JWT
along with a status message that describes the success of the authentication. For some use
cases, such as login, only the successful status message from the strong authentication is
required, and any other data returned by Suomi.fi can be discarded. In other use cases,
such as customer onboarding, the FTN is used to fetch data from the national database,
such as the personal identity code, name, nationality, or address, which may be used to
perform due diligence checks. These are determined by Know-Your-Customer (KYC)
legislation and best practices, and include checking that the customer’s nationality is not
considered "high-risk", that their name is not subject to sanctions, or that their permanent
place of residence is in Finland.

Suomi.fi e-Authorisations is a service which enables a relying party to "verify the
mandates of a person or a company to act online on behalf of another person or a company
they represent" [Suo24]. Here, mandates are fetched from a national registry. Different
API endpoints allow either fetching all mandates or checking a specific mandate. Often,
the user selects which organisation they want to share their mandate for from a menu
in the browser. In some cases, a person does not have a mandate to act alone on behalf
of a organisation, but has a mandate to act together with another person. Synchronising
authentication between several parties for this use case is an open problem.

5.2 Target Zero-Knowledge Flow with EUDI
The components for this use case are the presentation protocol, the ZK-SecreC compiler
and programs, and the proving backend. In accordance with the goal of making zero-
knowledge technologies available inside the existing EUDI framework, the presentation
protocol should leverage the existing issuing architecture and format of credentials issued
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to the wallet. The CDDL structure of an mDL Reader Request sent by a relying party is
the following:
OfflineRequest = {
"version" : tstr, ;
"docRequests" : [+ DocRequest] // Requested DocType, NameSpace and data elements.
}
DocRequest = {
"itemsRequest" : ItemsRequestBytes,
? "readerAuth" : ReaderAuth
}
ItemsRequestBytes = #6.24(bstr .cbor ItemsRequest)
ReaderAuth = COSE_Sign1
ItemsRequest = {
? "docType" : DocType,
"nameSpaces" : NameSpaces,
? "requestInfo" : {* tstr => any} // Additional info the reader wants to provide.
}
DocType = tstr
NameSpaces = {
+ NameSpace => DataElements // Requested data elements for each NameSpace.
}
NameSpace = tstr
DataElements = {
+ DataElement => IntentToRetain
DataElement = tstr
IntentToRetain = bool

The docType defines the type of document being requested or returned. For the ISO
mDL, the docType is org.iso.18013.5.1.mDL. The nameSpace specifies a definition
for the data elements within the document. Different countries and issuing authori-
ties are expected to add their own namespaces for defining local data representations.
The recommended naming convention for new namespaces appends the ISO 3166-
1 alpha-2 country code or the ISO 3166-2 region code to the mDL namespace i.e.
org.iso.18013.5.1.EU-FI. One document can accommodate a request for several dif-
ferent namespaces. For requesting and returning zero-knowledge proofs, a new docType
would need to be defined. For our use case, the relying party requests zero knowledge
assurances for their age, EU citizenship, and a mandate for acting on behalf of the
organization with business code "1234567-8". The address and port to connect to to
execute the proving backend could be communicated in the optional requestInfo field.
A deserialized ItemsRequest might then look like the following:
{

"docType": "org.iso.zk.1",
"nameSpaces":
{

"org.iso.zk.1.EU-FI":
{

"is_over_18": true,
"is_citizen": "EU",
"has_mandate": "1234567-8"

},
}
"requestInfo": "192.168.0.0:30000"

}
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A component in the wallet application or a separate user application could then interpret
this request and interface with the mDL by sending a request of its own for the items it
needs for these assurances:

{
"docType": "org.iso.18013.5.1.mDL",
"nameSpaces":
{

"org.iso.18013.5.1.EU-FI":
{

"birth_date": true,
"issue_date": true,
"expiry_date": true,
"nationality": true,
"mandates": true

}
}

}

Here we assume that the local Finnish namespace defines a field that contains a list
of mandates to act on behalf of an organisation. The OfflineResponse in the mDL
specification has the following structure:

OfflineResponse = {
"version" : tstr,
? "documents" : [+Documents],

}
Documents = {

+ DocType => ResponseData
}
DocType = tstr
ResponseData = {

"issuerSigned" : IssuerSigned, // Responded data elements signed by the issuer.
}
IssuerSigned = {

? "nameSpaces" : IssuerNameSpaces,
"issuerAuth" : IssuerAuth

}
IssuerAuth = COSE_Sign1 // The payload is the MobileSecurityObject.
IssuerNameSpaces = {

+ NameSpace => [ + IssuerSignedItemBytes ]
}
IssuerSignedItemBytes = #6.24(bstr .cbor IssuerSignedItem)
NameSpace = tstr
IssuerSignedItem = {

"digestID" : uint // Dynamic identifier to correlate with value digests in MSO.
"random" : bstr // 16-byte salt for value digest.
"elementIdentifier" : tstr // Field name as shown in Appendix.
"elementValue" : any

}

The array of serialized IssuerSignedItem structures is what we obtain as secret input for
the ZK-SecreC circuit. The MSO structure contains hashes of each IssuerSignedItem
signed by the issuing authority. This will be the verifier’s input for the circuit. Examples
of these two structures are described in more detail in Section 6.1. In our imagined
communication protocol, the prover would then return the .rel and .ins files produced
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by the compiler and the MSO to the verifier. The response could have the following
structure:

{
"docType": "org.iso.zk.1",
"responseData": {
"nameSpaces":

{
"issuerSigned": {

"org.iso.zk.1.EU-FI":
{

".rel": 0x123, // CBOR serialization of .rel
".ins": 0x123, // CBOR serialization of .ins

},
"issuerAuth": Cose_Sign1 // Signed hashes of the used items.

}
}

}
}

The relying party can then check the signature on the MSO and ensure that the verifier
input stream in the .ins file contains the signed hashes. A compatible proving backend
such as Mac’N’Cheese can then be executed over the network on to obtain the requested
assurances. Figure 11 demonstrates the target zero-knowledge flow with EUDI.

Figure 11. The flow for presenting zero-knowledge credentials within the EUDI frame-
work.
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6 Applying ZK-SecreC to User Onboarding
In this section, we explore the ZK-SecreC program that implements the functionality
described in Section 5. We also describe verifying this program with the EMP Toolkit
and Mac’N’Cheese and present some performance metrics on the program.

6.1 Inputs
It was established in Section 5.2 that five fields in the mDL are required for performing
our checks: birth_date, issue_date, expiry_date, nationality, and mandates.
The three CBOR types for these fields are tagged date, string, and an array of strings. The
mandates field contains a list of business codes the credential holder has the right to act
on behalf of. Although we assume here that the mandate list is a field in the mDL, it could
also be a completely separate credential under EUDI. DigestIDs for these items are
chosen randomly between 1 and 100. This results in the following IssuerSignedItem
objects:

[
{

"digestID": 93,
"random": 0x48d7eed5bf382f1566e6df48610b81e9,
"elementIdentifier": "birth_date",
"elementValue": CBORTag(18013, "06-06-1998")

},
{

"digestID": 77,
"random": 0xfc219632fd0c4cd9488f1891d152e004,
"elementIdentifier": "issue_date",
"elementValue": CBORTag(18013, "01-01-2024")

},
{

"digestID": 85,
"random": 0x85aaee0944928ab9f890de2c5a3a3217,
"elementIdentifier": "expiry_date",
"elementValue": CBORTag(18013, "12-12-2024")

},
{

"digestID": 21,
"random": 0x611d3485bb478fd4143100188302f74a,
"elementIdentifier": "nationality",
"elementValue": "FI"

},
{

"digestID": 35,
"random": 0x05835315a86dddfe1d64d2f65f17637b,
"elementIdentifier": "mandates",
"elementValue": ["1234567-8", "7654321-8"]

},
]

The associated MSO has the following structure, with irrelevant fields omitted:
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MobileSecurityObject = {
"digestAlgorithm" : tstr,
"valueDigests" : ValueDigests, // Array of digests of all data elements.
"validityInfo" : ValidityInfo

}
ValueDigests = {

"nameSpaces" : NameSpacesDigests
}
NameSpacesDigests = {

+ NameSpace => DigestIDs
}
DigestIDs = {

+ DigestID => Digest
}
ValidityInfo = {

"signed" : tdate,
"validFrom" : tdate,
"validUntil" : tdate,

}
NameSpace = tstr // NameSpace as used in IssuerSigned.
DigestID = uint // DigestID as used in IssuerSignedItem.
Digest = bstr // digest(IssuerSignedItem)

The MSO corresponding to the above IssuerSignedItems:

MobileSecurityObject = {
"digestAlgorithm": "SHA-256",
"valueDigests": {

"nameSpaces": {
"org.iso.18013.5.1": {

93: "7924993d7ee9b47be4985899bae5b6ba8eb4e43b32c42ce08107b35dc2b277eb",
77: "4f93e0b17309c979e88f5ee6e002ec4bf5f99b989d2c330ce4576c01959c6b45",
85: "cf87cb6bfdbadf147c5d15502da677ee864c0edf3fad552a6a391a050aa871a6",
21: "925ed3b4d7d8166e638e31946b35bb3241095904d3fa710b6678a43f4271a7e2",
35: "da787a19101303d8f972190bb18e4db005b1972a56c9fb448337cc66317ac0c4"

}
}

},
"validityInfo": {

"signed": CBORTag(18013, '2024-02-01'),
"validFrom": CBORTag(18013, '2024-02-01'),
"validUntil": CBORTag(18013, '2024-06-06')

}
}

A Python script was written for pre-formatting inputs according to the assumptions
presented in Section 5.2. The IssuerSignedItems and MSO objects are generated and
then serialized in CBOR, and the resulting bytes are represented as numeric strings
for input into the circuit. The public parameters include publicly known informa-
tion like the list of EU countries for comparing nationality to, and the current date.
For checking the mDL holder is of age, their birth_date must be earlier than or
equal to the date 18 years ago. There is no need to compute this date on circuit, so
the born_by date is provided in the public parameters. The lengths of any variable
size arrays (mso_cbor_len, mandates_num, lens_issuer_signed_items) and data

36



describing the shape of the mDL (mDL_field_val_lens, mDL_field_max_strlens,
mDL_field_max_sublens, mDL_field_max_deps) are also provided in the public pa-
rameters

{
"today_year": "2024",
"today_month": "5",
"today_day": "7",
"eu_countries_num": "27",
// Each element of the array contains the numeric value of the ASCII bytes
spelling the ISO country code.
"eu_countries": [["65", "84"], ["66", "69"], ["66", "71"], ["67", "89"],
["67", "90"], ["68", "69"], ["68", "75"], ["69", "69"], ["69", "83"],
["70", "73"], ["70", "82"], ["71", "82"], ["72", "82"], ["72", "85"],
["73", "69"], ["73", "84"], ["76", "84"], ["76", "85"], ["76", "86"],
["77", "84"], ["78", "76"], ["80", "79"], ["80", "84"], ["82", "79"],
["83", "69"], ["83", "73"], ["83", "75"]],
"born_by_year": "2006",
"born_by_month": "5",
"born_by_day": "12",
"issuer_signed_items_len": "5",
// The bytelengths of the IssuerSignedItems serialized in CBOR.
"lens_issuer_signed_items": ["92", "92", "93", "81", "97"],
"mso_cbor_len": "333",
"mandates_num": "2",
// Data for configuring the CBOR parser to the shape of the mDL and MSO.
// See 'Parsing CBOR' below.
"mDL_field_val_lens": ["10", "10", "10", "9", "11"],
"mDL_field_max_strlens": ["17", "17", "17", "17", "17"],
"mDL_field_max_sublens": ["4", "4", "4", "4", "4"],
"mDL_field_max_deps": ["3", "3", "3", "2", "3"],
"mso_val_len": "30"

}

instance,

{
// Numeric values of the ASCII bytes spelling "1234567-8"
"mandate": ["49", "50", "51", "52", "53", "54", "55", "45", "56"],
// Bytes that represent MobileSecurityObject serialization in CBOR.
"mso_cbor": ["163", "111", "100", ..., "48", "54"]

}

and witness.

{
"issuer_signed_items": [
["164", "104", ... , "54"], // birth_date IssuerSignedItem bytes in CBOR.
["164", "104", ... , "49"], // issue_date IssuerSignedItem bytes in CBOR.
["164", "104", ... , "50"], // expiry_date IssuerSignedItem bytes in CBOR.
["164", "104", ... , "83"], // nationality IssuerSignedItem bytes in CBOR.
["164", "104", ... , "56"] // mandates IssuerSignedItem bytes in CBOR.
]

}
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6.2 Program
Preamble We initialize the circuit with the type-level natural number N61, which is
the prime number 261 − 1 in hexadecimal notation. The number must be a prime, but
this particular prime is chosen because the it is supported by the EMP proving backend.
type N61 : Nat = 0x1FFFFFFFFFFFFFFF;

We also declare the use of the following standard libraries and extra programs hashes
and cbor:
use Std::*;
use String::*;
use Date::*;
use Integer::*;
use Inequalities::*;
use hashes::*;
use cbor::*;

In ZK-SecreC, structs are finite sequences of values of various types. The following
structs aid extracting the contents of the IssuerSignedItems by extending the Date
and String types in the ZK-SecreC stdlib with a native digestID.
struct MDL_date[$S, @D] {

value: Date[$S, @D, N61],
digest_id: uint[N61] $S @D

}

struct MDL_string[$S, @D] {
value: String[$S, @D, N61],
digest_id: uint[N61] $S @D

}

struct MDL_string_list[$S, @D] {
value: list[String[$S, @D, N61]],
digest_id: uint[N61] $S @D

}

The structs called MDL and MobileSecurityObject reflect the data structures in the
ISO specification:
struct MDL[$S, @D] {

birth_date: MDL_date[$S, @D],
issue_date: MDL_date[$S, @D],
expiry_date: MDL_date[$S, @D],
issuing_country: MDL_string[$S, @D],
nationality: MDL_string[$S, @D],
mandates: MDL_string_list[$S, @D]

}

struct ValidityInfo[$S, @D] {
signed: Date[$S, @D, N61],
validFrom: Date[$S, @D, N61],
validUntil: Date[$S, @D, N61]

}

struct MobileSecurityObject[$S, @D] {
valueDigests: list[list[uint[N61] $S @D]],
validityInfo: ValidityInfo[$S, @D]

}
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Parsing CBOR IssuerSignedItemBytes and the payload in COSE_Sign1 are serial-
ized in CBOR. To parse input data in this format, we make use of the CBOR parsing
library in ZK-SecreC presented in [Nes22] to extract the contents of the mDL from the set
of IssuerSignedItems. The CBOR parser provides functions to extract definite-length
data of major types 0 and 1 (integers), 2 (byte strings), 3 (text strings), 4 (arrays), 5
(maps), and dates, which are recognized as such by the tag number 18013. This number
refers to the ISO mDL specification. According to [Nes22], "zero knowledge does not
enable transforming an input in the CBOR format to some delimited representation
reflecting its semantic structure since the sizes of subtrees and the number of them are
not necessarily known". In order to parse the CBOR, a configuration structure must
be initialized with information about the expected shape of the mDL. The functions
extract_MDL and extract_MSO shown below initialize the configuration and extract the
desired contents.

fn extract_MDL(
issuer_signed_items: list[list[uint[N61] $post @prover]],
mandates_num: uint $pre @public)
-> MDL[$post, @prover] where Field[N61], Challenge[N61] {
fn extract_MDL(
issuer_signed_items: list[list[uint[N61] $post @prover]],
mandates_num: uint $pre @public) -> MDL[$post, @prover] where Field[N61], Challenge[N61] {
let mDL_fields = length(issuer_signed_items);

// Values for CBOR configuration. Each value corresponds to an IssuerSignedItem.
let mDL_field_val_lens : list[uint $pre @public] = get_public("mDL_field_val_lens");
let mDL_field_max_strlens : list[uint $pre @public] = get_public("mDL_field_max_strlens");
let mDL_field_max_sublens : list[uint $pre @public] = get_public("mDL_field_max_sublens");
let mDL_field_max_deps : list[uint $pre @public] = get_public("mDL_field_max_deps");

// ASCII bytes spelling digestID.
let digestId_key = [100, 105, 103, 101, 115, 116, 73, 68];
// ASCII bytes spelling elementValue.
let elementValue_key = [101, 108, 101, 109, 101, 110, 116, 86, 97, 108, 117, 101];

// Configure CBORs.
let mut cbors = for i in 0 .. mDL_fields {

let config = CborConfig
{

total_len: length(issuer_signed_items[i]),
val_len: mDL_field_val_lens[i], // Number of CBOR headers.
max_strlen: mDL_field_max_strlens[i], // Maximum string length.
max_sublen: mDL_field_max_sublens[i], // Maximum number of pairs in map or element in array.
max_dep: mDL_field_max_deps[i] // Maximal depth of nesting.

}
; let arrays = cbor_init_arrays(config)
; let stores = cbor_init_stores()
; Cbor { config: config, arrays: arrays, stores: stores }

};

// Fetching the values is omitted.

MDL {
birth_date: birth_date_mdl_date,
issue_date: issue_date_mdl_date,
expiry_date: expiry_date_mdl_date,
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issuing_country: issuing_country_mdl_string,
nationality: nationality_mdl_string,
mandates: mandates_mdl_string_list

}
}

The array of CborConfig structures describe each IssuerSignedItem. Therefore, the
ordering of items must be consistent, or a proof cannot be successfully generated. The
types of the items can be inferred from the configuration: the maximum depth of nesting
for an IssuerSignedItem representing a tagged date or arrays is 3, and the maximum
depth of nesting for one representing a string is 2. The number of CBOR headers in
the IssuerSignedItem is 10 for tagged dates, 9 for strings, and 9 + len(array) for
an array. The maximum number of pairs in an IssuerSignedItem is 4 by default,
unless the item represents an array of length longer than 4. The maximum length for
each of these particular IssuerSignedItems is 17, the length of the longest string
’elementIdentifier’. The length of strings can be obscured by setting some upper
limit rather than the actual maximum length of a string in the item, but this is less
efficient.

fn extract_MSO(
mso_cbor: list[uint[N61] $post @prover],
mdl: MDL[$post, @prover]
) -> MobileSecurityObject[$post, @prover] where Field[N61], Challenge[N61] {
let mso_val_len : uint $pre @public = get_public("mso_val_len");
// Configure CBOR.
let config = CborConfig {

total_len: length(mso_cbor),
val_len: mso_val_len, // Number of CBOR headers in MSO.
max_strlen: 32, // SHA-256 length.
max_sublen: length(issuer_signed_items), // Maximum number of elements in array or pairs in map.
max_dep: 5 // Maximal depth of nesting.

};

// Fetching values is omitted.

MobileSecurityObject {
valueDigests: value_digests_val,
validityInfo: validity_info

}
}

Integrity Checks Checking the integrity of the supplied mDL entails asserting that the
fieldwise hashes match those provided in the MSO. This is performed by the function
check_integrity() shown below.

fn check_integrity(
mso : MobileSecurityObject[$post, @prover],
digest_ids : list[uint[N61] $post @prover],
issuer_signed_items : list[list[uint[N61] $post @prover] $pre @public] $pre @public,

) where Field[N61] {
for i in 0 .. length(digest_ids) {

// Check that IssuerSignedItem hashes match MSO valueDigests.
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check_hash(issuer_signed_items[i], mso.valueDigests[i]);
};

}

Validity Checks Verification of the issuer’s signature and validation of the issuer’s
certificate can happen off-circuit. On-circuit checks include validating that the current
date is between the valid_from and valid_until fields in the MSO and that the validity
period is between the issue_date and expiry_date in the mDL. This function takes as
one of its parameters ref sizeasserter. A SizeAsserter is a mutable object that can
be used to check that a binary representation of a number fits into a fixed number of bits.
The SizeAsserter object is initialized in main() with the number of bits given as an
argument. This is then given to check_validity as a pass-by-reference indicated by the
keyword ref.

fn check_validity(
mdl : MDL[$post, @prover],
mso : MobileSecurityObject[$post, @prover],
ref sizeasserter : SizeAsserter[N61, $post, @prover]

) where Field[N61] {
let today_year = wire { get_public("today_year") };
let today_month = wire { get_public("today_month") };
let today_day = wire { get_public("today_day") };
let today_date : Date[$post, @public, N61] = date(today_year, today_month, today_day);

// The timestamp of ‘validFrom’ shall be equal or later than the ‘signed’ element.
date_assert_le(mso.validityInfo.signed, mso.validityInfo.validFrom, ref sizeasserter);

// The value of the validUntil timestamp shall be later than the ‘validFrom’ element.
date_assert_le(mso.validityInfo.validFrom, mso.validityInfo.validUntil, ref sizeasserter);

// The ‘validFrom’ timestamp shall not be before the value of the ‘issue_date’ element from the mDL.
date_assert_le(mdl.issue_date.value, mso.validityInfo.validFrom, ref sizeasserter);

// The ‘validUntil’ timestamp shall not be beyond the value of the ‘expiry_date’ element from the mDL.
date_assert_le(mso.validityInfo.validUntil, mdl.expiry_date.value, ref sizeasserter);

// The 'validFrom' timestamp is before or equal to today.
date_assert_le(mso.validityInfo.validFrom, date_to_prover(today_date), ref sizeasserter);

// Today is before or equal to the 'validUntil' timestamp.
date_assert_le(date_to_prover(today_date), mso.validityInfo.validUntil, ref sizeasserter);

}

Assurances The function assurances() checks the three specific use case require-
ments:

fn assurances(
mdl: MDL[$post, @prover],
ref sizeasserter : SizeAsserter[N61, $post, @prover]

) where Field[N61] {
// Nationality must be in the EU.
let eu_countries_num : uint $pre @public = get_public("eu_countries_num");
let eu_countries_pre : list[list[uint[N61] $pre @public]] = get_public("eu_countries");
let eu_countries : list[list[uint[N61] $post @public]] = for i in 0 .. eu_countries_num {
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for j in 0 .. 2 { wire { eu_countries_pre[i][j] } }
};
let eu_countries_strs : list[String[$post, @public, N61]] = for i in 0 .. eu_countries_num {

String { chars: eu_countries[i], len: 2 }
};

let mut is_eu_citizen = false;
for i in 0 .. eu_countries_num { is_eu_citizen = is_eu_citizen |

string_eq(mdl.nationality.value, string_to_prover(eu_countries_strs[i]), 2)
};

// Age must be over 18.
let born_by_year = wire { get_public("born_by_year") };
let born_by_month = wire { get_public("born_by_month") };
let born_by_day = wire { get_public("born_by_day") };
let born_by_date : Date[$post, @public, N61] = date(born_by_year, born_by_month, born_by_day);

date_assert_le(mdl.birth_date.value, date_to_prover(born_by_date), ref sizeasserter);

// Must possess specified mandate.
let mandate_pre : list[uint[N61] $pre @verifier] $pre @verifier = get_instance("mandate");
let mandate_chars = for i in 0 .. 9 { wire { mandate_pre[i as @verifier] } };
let mandate : String[$post, @verifier, N61] = String { chars: mandate_chars, len: 9 };

let mandates_num : uint $pre @public = get_public("mandates_num");
let mut has_mandate = false;
for i in 0 .. mandates_num { has_mandate = has_mandate |

string_eq(string_to_prover(mandate), mdl.mandates.value[i], 9)
};

assert(is_eu_citizen & has_mandate)
}

6.3 Verification
EMP Toolkit Running the EMP proving backend with the produced program required
some changes to be made to the program. As the EMP Toolkit is for research and
development, the EMP backend does not support verifier challenges, which the cbor
library functions utilise. This was solved by using permutation networks instead of
verifier challenges for the underlying sorting requirements of the CBOR parser by
importing and using the standard Waksman library. This has the disadvantage of being
slower than using verifier challenges. Running the compiler with the EMP flag replaces
the SIEVE IR generation with calls to the EMP-zk tool through a wrapper. The compiler
takes as the first four arguments paths to the program, public parameters, instance, and
witness respectively. The additional circuits argument loads the SHA-256 circuit. The
prover and verifier are run concurrently with the following commands

./runrust mdl_checker.zksc mdl_checker_public.json mdl_instance mdl_checker_instance.json \\
mdl_checker_witness.json circuits --emp --prover

./runrust mdl_checker.zksc mdl_checker_public.json mdl_instance mdl_checker_instance.json \\
mdl_checker_witness.json circuits --emp --verifier

to obtain a result.
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Mac’N’Cheese The Mac’N’Cheese backend supports verifier challenges, and so it
was possible to run the program without modifications. Setting the –mnc flag runs the
ZK-SecreC compiler with the Mac’N’Cheese integration. The Mac’N’Cheese amount
of threads, and the amount of threads per field can be set with the flags –threads and
–threads-per-field respectively. The –preallocate flag can be used to preallocate
a specific number of wires for the circuit, which is 200 000 000 by default. The
–buffer-size flag defines how often the prover and verifier must communicate. The
buffer size is 200 000 by default. Similarly to the EMP Toolkit, the prover and verifier
are run concurrently with the following commands

./runrust mdl_checker.zksc mdl_checker_public.json mdl_checker_instance.json \\
mdl_checker_witness.json --mnc --addr 127.0.0.1:30000 --preallocate 20000 \\
--buffer-size 2000 --threads 7 --threads-per-field 2

./runrust mdl_checker.zksc mdl_checker_public.json mdl_checker_instance.json \\
mdl_checker_witness.json --mnc --verifier --addr 127.0.0.1:30000 --preallocate 20000 \\
--buffer-size 2000 --threads 7 --threads-per-field 2

6.4 Performance
Flamegraphs can be used to visualize the stack traces of software. Profiling the Rust
code generated by the compiler using a flamegraph utility can provide insight into which
parts of the program are the most resource-intensive. The functions extract_MDL and
extract_MSO have the deepest stack traces, while the most resource-intensive function
is check_integrity. This indicates that the number of fields in the mDL, and therefore
the amount of hashes that need to be checked, represents a potential bottleneck for the
program.

Since the cost of the other functions in the application are minimal, a ZK-SecreC
program for benchmarking the combination of CBOR parsing and integrity checks was
written. Here we skip the assurances() and check_validity() functions. For sim-
plicity, we assume all fields are strings, and so each IssuerSignedItem can use the same
CborConfig. Since we only need the digestID to correlate the IssuerSignedItems
with the ValueDigests in the MSO, we need not extract the actual element values of
the fields. A new function extract_digest_ids() was written for this purpose:

fn extract_digest_ids(
issuer_signed_items: list[list[uint[N61] $post @prover]]
) -> list[uint[N61] $post @prover] where Field[N61], Challenge[N61] {
let mDL_fields = length(issuer_signed_items);
// ASCII bytes spelling digestID.
let digestId_key = [100, 105, 103, 101, 115, 116, 73, 68];

// Configure CBORs.
let mut cbors : list[Cbor[N61, $post, @prover]] = for i in 0 .. mDL_fields {

let config = CborConfig
{

total_len: length(issuer_signed_items[i]),
val_len: 9, // Number of CBOR headers for string type IssuerSignedItem.
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No of Fields Compilation –buffer-size 200000 –buffer-size 2000
5 72.9s 4.1s 8.1s

10 73.5s 6.1s 12.6s
15 73.7s 8.5s 16.3s
30 74.1s 14.8s 29.6s
50 74.3s 24.7s 45.1s
70 75.2s 34.6s 63.1s

100 77.7s 47.3s 89.0s

Table 4. Effect of number of fields and –buffer-size flag on runtime.

max_strlen: 17, // Maximum string length from 'elementIdentifier'.
max_sublen: 4, // Maximum number of pairs in string type IssuerSignedItem map.
max_dep: 2 // Maximal depth of nesting in string type IssuerSignedItem.

}
; let arrays = cbor_init_arrays(config)
; let stores = cbor_init_stores()
; Cbor { config: config, arrays: arrays, stores: stores }

};

// Initialize CBORs.
let mut large_sizeasserter = sizeasserter_new(log2(N61)-2);
let mut small_sizeasserter = sizeasserter_new(5);
let mut medium_sizeasserter = sizeasserter_new(50);

for i in 0 .. length(issuer_signed_items) {
cbor_init(

issuer_signed_items[i],
ref cbors[i],
ref large_sizeasserter,
ref small_sizeasserter,
ref medium_sizeasserter

);
};

// Get digestId pointers.
let digest_id_vals : list[uint[N61] $post @prover] = for i in 0 .. mDL_fields {

let digest_id_ptr = cbor_lookup_map_strkey_with_check(ref cbors[i], 0, digestId_key);
cbor_get_val(ref cbors[i], digest_id_ptr)

};

digest_id_vals
}

The functions extract_mso() and check_integrity() remain unchanged. A Python
program was written to generate different sizes of input data, i.e. arrays of
IssuerSignedItems for the program. The program was benchmarked on a laptop
with an Intel i5-8350U CPU from 2017. The results of running Mac’N’Cheese with
default options on different datasets are shown in Table 4. The significance of network
latency was demonstrated by limiting communication between the prover and verifier
using the –buffer-size flag.
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6.5 Security Properties
In summary, using the described zero-knowledge protocol provides the relying party
with strong assurances that the attributes of the prover fulfil their requirements. The
authenticity and validity of the credentials used to generate proofs stem from the under-
lying EUDI framework, which facilitates issuing credentials by trusted authorities. By
definition, the zero-knowledge proof reveals nothing about else about the statement to
be proved. In particular, the relying party does not learn the prover’s age, nationality, or
list of mandates. The relying party does learn the shape of the mDL and the length of
the mandate list in particular, as these are public. The shape of the mDL includes the
ordering, types, and maximum lengths of the IssuerSignedItems.
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7 Discussion
In this chapter, we explore the future work to be done to integrate with the mDL standard
and other potential applications related to our use case. Other legislative and social
challenges to adopting zero-knowledge technologies are also addressed.

7.1 Future Work
Further functionality demanded by the ISO mDL specification includes adding support
for two other digest algorithms, SHA-384 and SHA-512, and support for the tdate
format, as the ValidityInfo in the MSO is provided in tdate format. Support for the
full range of CBOR types would complete the zero-knowledge CBOR parsing library.
The results from benchmarking indicate a strong correlation between the number of fields
in the mDL and runtime, with one field adding approximately 0.4 seconds to the runtime
with the default buffer size. Since the number of fields in the mDL can reach up to over a
hundered fields [Sta20a], verifying the entire mDL would take between one and several
minutes depending on network latency. The efficiency of hashing is then an important
area of development for this use case. Another approach would be to utilise the support
for polymorphism over moduli in ZK-SecreC and Mac’N’Cheese and compute hashes
mod 2 and other checks mod N61. Using the SD-JWT standard to expose a minimum
subset of items which still have a valid signature could also be used to minimize the
amount of hashing required for integrity checks.

7.2 Other Challenges
In an open letter [Ope23] to the European Parliament, critics of eIDAS2 question why
the regulation only enables, rather than mandates, the use of privacy-preserving tech-
nologies and unlinkability guarantees in the EUDI Wallet. Given the requirements for an
interoperable architecture, the member state that implements the weakest security guar-
antees for its citizens will determine the available protections for all other EU citizens.
Service providers, such as Google or Facebook, can exploit this loophole by registering
in the member state with the protections most amenable to their business. Thus, the
development of strong technical protections risks being undermined by legislation that
does not explicitly mandate that they be used.

Another potential barrier to accessing the privacy benefits of privacy-preserving
technologies with eIDAS2 for EU citizens is the lack of broad adoption of the new infras-
tructure. In Finland, most public and private services have already been brought online.
The use of online banking credentials to authenticate to these services is ubiquitous and
familiar to the majority of citizens. According to a 2019 report by the Finnish Ministry of
Finance [MSV19], the "Substantial" level of assurance provided by these identification
means is sufficient and even preferable to the "High" alternative due to cost-efficiency, as
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development and maintenance costs have been outsourced to commercial identification
means providers. These factors result in low motivation on part of relying parties to add
support for novel authentication methods. This is a problem even for adopting the mDL
standard, and support for a zero-knowledge namespace could be even harder to motivate.
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8 Conclusion
This thesis explored the potential of using zero-knowledge technology within the EUDI
framework in its current state. A potential use case for this technology in the Finnish
digital identity landscape was identified and a ZK-SecreC program to perform the
required checks was produced by adapting an existing implementation for parsing
CBOR. A test suite was constructed for benchmarking the program under different
conditions, which indicated that the number of mDL fields represents a bottleneck for
the verification program. Since the mDL can have up to 30 fields, optimizing the hash
checking is instrumental to ZK-SecreC being adopted for the use case described in this
thesis. For ZK-SecreC to be integrated with the EUDI ecosystem generally, protocols for
communicating zero-knowledge proof requests and responses must be standardized, and
ZK-SecreC should be developed either within EUDI wallet applications or as a separate
user application.

As someone new to both zero-knowledge and functional programming, getting
accustomed to programming in ZK-SecreC took some time. In addition to the usual
constraints in a statically typed language, dealing with stages and domains presented
an extra layer of complexity. Exploring the unique language features of ZK-SecreC by
writing a "simple" program from scratch proved difficult. The language is both flexible, in
that it is possible to interleave $pre and $post computations and cast between domains,
and strict, in that this is hard to do correctly. As a beginner, it felt easier to write
programs that relied on standard library functions, as type inference from the underlying
functions laid the foundation for what could be done with the program, and resulted in
more straightforward errors. Programming was greatly aided by the Visual Studio Code
extension, which provided syntax highlighting and error descriptions. Example code and
documentation were also very helpful in understanding how to use the language.

The fields of zero-knowledge technologies and digital identity solutions are both
evolving rapidly, with notable changes taking place throughout the process of writing this
thesis. ZK-SecreC is under active development to achieve open-sourcing by autumn 2024.
Development goals include making more use of different Rust native types other than
BigInt in the compiler front-end, and the possibility to directly call Rust functions if all
values are in the $pre stage. Other privacy-preserving standards such as BBS+ are also
undergoing approval by cryptography boards. The EUDI pilot projects and discussion
on the EUDI ARF development forum are ongoing [Eurb], and a new EUDI Wallet
core library project was initialized on GitHub [Eura] in March of 2024. Development
is challenging with so many areas of the problem in flux, but the opportunity to offer
privacy-preserving technologies to EU citizens is open.
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