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Leveraging the First Futamura Projection for Large-scale Rule Paral-
lelisation in an Industrial Datalog Engine

Abstract:

Incorrect system configurations can cause disruptions in the software development lifecy-
cle from code deployment to system reliability. The correctness of these configurations
can be ensured by an on-site DevOps team or by the developers themselves. A system
that finds the incorrect settings automatically could be highly beneficial.

A company’s internal system called Neodora uses the Open Policy Agent top-down
Datalog engine to check the correctness of repositories and code in pull requests. It gives
developers a faster and easier way to discover and correct mistakes. While the current
implementation fulfils its purpose, it struggles with the near real-time scale that it is
subjected to, leading to high costs.

We present an industrial experience report detailing how a new implementation of
Neodora eliminates this weak point by leveraging the first Futamura projection to cleverly
attain large-scale rule parallelisation. Our changes to Neodora led to a potential reduction
in cost of nearly fifteen times.
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Toostuslikus andmelogimootoris Futamura esimese projektsiooni ka-
sutamine suuremahulise reeglite paralleelsuse saavutamiseks

Liithikokkuvaote: Siisteemi valed konfiguratsioonid vdivad pdhjustada palju probleeme
alates kiivitamisest kuni siisteemi tookindluseni. Nende seadistuste digsuse eest vOib
vastutada DevOpsi meeskond, aga seda vastutust voib laiendada ka arendajatele. Viimane
jaotab tookoormuse paljude inimeste vahel ja digesti tehes tdstab see produktiivsust tervi-
kuna. Arendajate abistamiseks selle iilesande tditmisel on vidga kasu siisteemist, mis leiab
valed sitted automaatselt. Uks selline ettevotte sisemine tooriist kannab nime Neodora,
mis kasutab Open Policy Agent-it koodihoidlate (ing repository) ja tdombekutsete (ing
pull request) koodi digsuse kontrollimiseks. See annab arendajatele kiirema ja lihtsama
viisi vigade avastamiseks ja parandamiseks.

Kuigi Neodora tididab oma eesmirki edukalt, selle joudlust saaks ikkagi suurenda-
da. Neodora t60tab suurepiraselt iiksikute koodihoidlate ja tdombetaotluste puhul, kuid
raskusi tekitab Bulk-Neodora teostus. Bulk-Neodora on moeldud igapédevaseks ettevotte
koodihoidlate skaneerimiseks. Seda tehakse kéivitades Neodorat iga koodihoidla peal.
Moéned Neodora reeglid teevad aga HTTP-péringuid, mis on samad olenemata sellest,
millist koodihoidlat skaneeritakse.

Esitleme Neodora uut versiooni, mis korvaldab selle norga koha, viahendades Bulk-
Neodora todaega mirkimisviirselt. See saavutati Futamura esimese projektsiooni ja



paralleelsuse kasutamisega. Lisaks asendati kettatoimingud (ing disc operations) kii-
remate méilusiseste (ing in-memory) toimingutega. Muudatused Neodoras vihendasid
Bulk-Neodora tooaega peaaegu viisteist korda.

Votmesonad:
Datalog, Open Policy Agent, Rego, Futamura projektsioon, osaline hindamine

CERCS: P170 - Arvutiteadus, arvutusmeetodid, siisteemid, juhtimine
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1 Introduction

Configuration information is used by systems and services to decide how to operate.
It includes, but is not limited to, starting up, shutting down and interacting with other
systems or services. The configuration may be suitable out of the box, but sometimes
custom configuration is needed. However, changing configurations can lead to various
problems if not done correctly.

Bad configuration can lead to the system not starting, running poorly, having un-
expected downtime or data loss. The chance of mishaps rises when it is required to
configure multiple systems or services, for example, in systems that consist of several
microservices. Every microservice can have some configurations that are the same as
for others but also service-specific. Depending on the company, different teams take
care of their services, but it can be limited to the service implementation and logic. The
developers may not handle the configuration, specifying how it should be run together
with other services. For this, a DevOps team is responsible for managing services’
configurations.

DevOps team can be a suitable solution when the service count and uniqueness
are small; otherwise, it can be overwhelming. Every month, thousands of repositories
get hundreds of thousands of changes, and doing it manually is time-consuming and
error-prone. This created a need for a system to validate service configurations in real
time and quickly notify developers if something should be changed. It was solved by
developing a system called Neodora [1].

The core of Neodora is Open Policy Agent (OPA), a high-performance Datalog
engine with JSON semantics. Datalog is a declarative programming language where
rules describing relationships between data elements can be defined. While Neodora
itself fulfils its purpose, periodically running it over all repositories in a company (called
Bulk-Neodora execution) to check if all the rules are satisfied can take a considerable
amount of time.

This paper provides some background on Datalog, Open Policy Agent, Rego, and
Futamura projections. We also look into previous works that use partial evaluation. In
addition, we describe the previous solution and Neodora, bringing out their strong and
weak points. Finally, we look into what takes the most time for Neodora’s execution.

This work aimed to propose a solution using the first Futamura projection and
parallelisation to speed up the periodical Bulk-Neodora execution that validates all rules
over all the repositories. The research questions to answer were:

1. Where is the most time spent during a Neodora or Open Policy Agent rule
execution?

2. Could some work be done utilizing partial evaluation, shifting repeated code
and computation from runtime to compile time?



3. Are there any operations that could be improved to decrease the program’s
runtime?

To find answers to these questions, Neodora’s execution time was inspected, and parts of
the code that could be improved to save time were explored. The main contribution of
this thesis lies in how large-scale Datalog systems that work on high amounts of data
and rely on fetched dynamic information could be improved using partial evaluation
and parallelisation. More specifically, we are looking into how Open Policy Agent and
its rules could be written to support it. However, the same idea could be used for other
cases.



2 Background

This section focuses on three main components that are relevant to Neodora. It also
describes the first Futamura projection and how it can help improve Bulk-Neodora
execution. In addition, to help understand the code examples in this paper, a short
introduction to the Go programming language is given.

2.1 Datalog

Datalog is a declarative language that uses horn clauses to evaluate facts. It allows
one to make queries with sentences containing variables, defining conditions and using
those to evaluate a rule or decision. Using either top-down or bottom-up evaluation for
Datalog [2] is possible. To demonstrate their difference, let’s consider the following rules
and facts (1) for the transitive closure of a simple graph [2]. Rules in Datalog are read
from right to left, meaning if the right side is true, then the left side is also true. Commas
can be read as logical AND operators.

< table p/2
Rules: p(X,Y) «+ e(X,Y).

P(X,Y) « p(X,Z),e(Z,Y). (1)
Facts: e(a,b). e(e,a).

e(d,e). e(b,c). e(cb).

Under facts, we have edges that are known. The first rule says that every edge (e)
is a path (p), and the second rule creates new paths from edges that are already known
or discovered during the evaluation. The top-down evaluation starts with the query and
works its way down to find the answers. The top-down evaluation can be [2]:

1. p(a, A) add query p(a, ?) to table

2. e(a,A) resolve 1 with 1st rule

3. O)A=0b resolve 2 with fact e(a, b), add answer p(a, b) to table

4. p(a,Z),e(Z, A) resolve 1 with 2nd rule

5. e(b,A) resolve 4 with answer p(a, b) from table (2)
6. (JA=c¢ resolve 5 with fact e(b, ¢), add answer p(a, c) to table

7. e(c, A) resolve 4 with answer p(a, ¢) from table

8. (JA=0b resolve 7 with fact e(c, b), p(a, b) in table, don’t add



The query p(a, A) is used to evaluate rules. New facts are created using the first rule
and then using the second rule. The top-down evaluation finds only the facts that are
relevant to the query. The same query in bottom-up evaluation can be [2]:

Iteration O: infer the program facts:
e(a,b),e(e,a),e(d,e),e(b,c),e(cb)
Iteration 1: Use those facts and program rule 1 to infer:

new: p(a,b), p(e, a), p(d, ), p(b, c), p(c,b)
Iteration 2: Use rule 2 and previous inferred facts to infer:
new: p(a, ¢) [from p(a, b) and e(b, ¢)]
p(e, b) [from p(e, a) and e(a, b)]
p(d, a) [from p(d, e) and e(e, a)]
p(b,b) [from p(b, ¢) and e(c, b)] 3)
p(c, ¢) [from p(c, b) and e(b, ¢)]

Iteration 3: Again use rule 2 with previously inferred facts to infer:
new: p(e, ¢) [from p(e, b) and e(b, ¢)]
p(d,b) [from p(d, a) and e(a, )]
(We get duplicates, e.g., p(a, b) from p(a, ¢) and e(c, b), but they aren’t added.)
Iteration 4: Again use rule 2
p(d, ¢) [from p(d, b) and e(b, ¢)]
Iteration 5: Nothing new to infer, so stop

In bottom-up evaluation, all the possible paths are found. The query can be answered
by looking up the paths with a as the first value.

Comparing these two evaluation techniques, we can see that the bottom-up evaluation
also finds paths that are not required to answer the query [2]. The top-down and bottom-
up evaluations can answer the same queries but are mainly used for different goals. The
fact that bottom-up evaluation finds all facts becomes useful when multiple queries with
different arguments are done. This way, the facts can be gathered once, and the answers
to the queries can be found quickly. In addition, while top-down implementation answers
if the fact provided by the user is true or false, the bottom-up implementation can help
find new facts.

Neodora, introduced later in this paper, uses top-down evaluation for Datalog. A
simple example of a rule that it could check is shown next. Let’s say we want to define a
rule (4) that checks one package’s dependence on another; we can define a rule requires
that checks if package X requires a package Y:



depends(X,Y) < requires(X,Y) 4

By using top-down evaluation, we can get the output to be true or false depending
on what the rule evaluates to. The rule in example 1 is evaluated as true if the query is
? < depends(X, Y) and a fact requires(X, Y) is true. The previous rule can be extended
to evaluate the dependency of connected packages by adding another rule (5):

depends(X,Y") < depends(X, 7), depends(Z,Y") (3)

By adding another rule, we can make use of recursion, and upon evaluating the first
rule, we have a fact for the second rule. If there are two facts requires("Packagel", "Pack-
age2") and requires("Package2", "Package3"), then when we query depends("Packagel",
"Package3"), a new connection can be made between "Packagel" and "Package3" without
explicitly defining it.

2.2 Open Policy Agent

Open Policy Agent (OPA) [3] is a general-purpose policy engine providing high-level
declarative language to specify policy as a code. It can validate data using defined
policies (rules) and additional data, which can, for example, be accepted values for some
variables. OPA is not restricted to a certain domain, allowing it to be used to enforce many
different policies. When the facts are evaluated with respect to the program, the results
are returned. The results can be simple boolean values or arbitrary structured data. In
addition to that, it supports features you can expect from a programming language, such
as testing and coverage. The support for policy testing makes creating and modifying
policies easier. The testing format is similar to typical programming languages. Policies
(example in listing 5) and tests (example in listing 6) are contained in separate files, each
test prefixed with fesz_ so that they would be discovered when tests are run.

2.3 Go

To help better understand the code examples in this paper, this section briefly introduces
Go, also known as Golang [4]. Go was developed by Google in 2007. It has a similar
syntax to C and OPA’s policy language, Rego. It is easy to read, has static types, and
supports garbage collection and concurrency. In addition, it already has many packages
that can be used to complete various tasks. The following listing 1 is used to explain the
Go language:



| package main

5 import "fmt"

4

s type Person struct {

6

N

0

name string
location string
age int

info string

2 func getGreeting(person Person, tellMore bool) string {

if person.info != "" && tellMore {
return fmt.Sprintf("Hello, I'm %s from %s. %s", person.name
, person.location, person.info)
} else {
return fmt.Sprintf("Hello, I'm %s from %s.", person.name,
person.location)

3

0 func main() {

const name = "Tom”

fmt.Printf ("Hello %s!\n", name)
name2 := "Peter”

fmt.Printf ("Hello %s!\n”, name2)
name2 = "Alice"”

fmt.Printf("Hello %s!\n", name2)

var person Person

person = Person{name: name, location: "Earth"”, age: 32, info:
"I like Go."}
greeting := getGreeting(person, false)

fmt.Println(greeting)
greeting = getGreeting(person, true)
fmt.Println(greeting)

Listing 1. Go example.

The code example shows different ways to define variables and types and use pack-

ages and functions. On line 1, a package is defined, and on line 3, another package is
imported. Packages are used to organize code, allowing one to import code from one’s
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)

own project or the library (third-party packages). This example uses a package fmt to
create and print sentences. In addition to default variable types (string, bool, int, etc.), it
is possible to create structs (lines 5-10) that can be used similarly to types, as done on
line 28. Type Person has a name, location, info value as a string, and age as an integer.
The types of variables can be explicitly specified (line 28) or left for a compiler to infer
them (for example, lines 21, 23, 30). Keyword var can also be skipped when a variable is
initialized with a value using the := operator. Variables with const keyword can not have
their values reassigned. A function getGreeting (lines 12-18) takes in two variables, a
Person and a boolean, and returns a string. The function returns an extended greeting text
if the Person has info and (&& - logical AND operator) the boolean is frue. Otherwise,
only name and location are mentioned in the greeting. Running the code outputs the
following:

Hello Tom!
Hello Peter!

; Hello Alice!

Hello, I'm Tom from Earth.
Hello, I'm Tom from Earth. I like Go.

Listing 2. Go example output.

The first three sentences are printed using only the name variable. The last two
sentences use the getGreeting function to create a desired greeting.

2.4 Rego

Open Policy Agent uses its declarative language Rego [3], designed to express policies
over data structures. It supports a wide range of data-handling operations.

faultyImages := {"Faulty-dev", "Image-dev-1.3"}

> deny contains msg if {

some service in input.services

service.image in faultyImages

msg := sprintf(”'%v' is not allowed in a service '%v'.", [
service.image, service.namel)

Listing 3. Rego example.

Listing 3 shows a rule that checks if the services’ images are considered faulty. In
the first line, we have defined two images that should not be used. From the second
line, we have a rule that checks services’ images given as input. The input is a JSON
document containing a key "services” with a list of services containing their image as a
value. Keyword some is used to declare a local variable explicitly. In the example, we
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{

loop over services and assign a new value using some. Lastly, we check if the service’s
image is in the faulty images list. If true for a service, the message gets added to the
result.

"deny": [
"'dev-1.3"'" is not allowed in a service 'Service2'."
1,
"faultyImages": [
"dev",
"dev-1.3"
]
}

Listing 4. Rego example output.

Listing 4 1s an example output. In that case, Service2 had an incorrect image. The
deny value will be empty if all services use an allowed image. The same rule in Datalog
(6) could be:

hasFaultyImage(X) <+ services(X ), isIn(X, faultyImages) (6)

Defining rules and reading them is simplified in Rego. It also supports structured
document models such as JSON, providing simple ways to traverse them.

A new file can be created to test a policy. A good option would be to keep all the
single policy files in a separate folder named after the policy to have a clear file structure.
The policy test file can contain multiple tests, each prefixed with fest_, to cover all the
possible cases related to the policy. The following listings 5 and 6 show how testing can
be done in Rego.

allow if (
some X in data.policies
X.name == "test_policy"”

matches_role(input.role)

3

» matches_role(my_role) if input.user in data.roles[my_role]

Listing 5. Policy example [5].

The policy checks if the user’s role that is given as input matches the defined user
role. Information in data is a part of policy definition, data that it uses, and input is what
is given to make a decision. The data can be the file’s contents that are read in and used
when policy is being evaluated.

policies := [{"name”: "test_policy"}]

> roles := {"admin": ["alice"]}

12



; test_allow_with_data if {

allow with input as {"user”: "alice"”, "role”: "admin”}
with data.policies as policies
with data.roles as roles

Listing 6. Policy test example [5].

The test in listing 6 is about the previously shown policy. OPA supports data and
function mocking. In this test, a keyword with is used to mock data and input values,
allowing the evaluation of the policy with different values. The result of a test is either
PASS, FAIL, ERROR (runtime error) or SKIPPED (for tests prefixed with todo_).

$ opa test pass_fail_error_test.rego

> data.example.test_failure: FAIL (253ns)
s data.example.test_error: ERROR (289ns)

pass_fail_error_test.rego:15: eval_builtin_error: div: divide
by zero
PASS: 1/3
FAIL: 1/3
ERROR: 1/3

Listing 7. Executing tests in a command-line interface [5].

Listing 7 shows a command-line output when the tests are run. The output format
can also be changed to JSON, which is useful when integrating OPA with other systems.

2.5 First Futamura Projection

Futamura projections are types of partial evaluations that can be used for program
optimization [6]. In total, there are three Futamura projections. However, only the first is
relevant to this current paper. The first Futamura projection was devised by Yoshihiko
Futamura in 1971, and it states that specialising an interpreter for a given source code
yields an executable. Given a program, we can create an interpreter that takes in input and
returns a specialised program that takes in the remaining input, which returns output the
same as the original program. Because some of the work is already done by specialising
an interpreter, the specialised program is expected to run faster than the original.

Let p be a program and i/ and i2 inputs to this program [7]. We can define the
performance increase like so:

time, (i2) < time, (i1, i2) )

The time,(y) is a numerical value meaning runtime of the program on a given input,
and p;; is a program specialised on input i/. This runtime performance increase comes

13



with the cost of increased compilation time. However, if the compiled program is used
multiple times with different inputs, there is a great payoff. In our case, Neodora builds
and executes the Open Policy Agent. The basic configuration of Neodora and OPA stays
the same between different repository scans, and many rules need the same data, such
as some URL request responses. Let’s call this data iStatic. This means the interpreter
can be specialised to the input iStatic, giving a program prog* [8]. prog* is a compiled
version of iStatic so it does not need to be supplied again. Instead, we can only provide
the remaining data for computing.

We can analyze our program to see what operations are always done over all the
repositories. Instead of doing these for every repository, we can do it only once and have
it in a compiled version.
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3

3 Related works

The idea of program specialisation using Futamura projections is not new. Multiple
works have been done on different programming languages and also on Datalog. This
section of the paper looks more into partial evaluation and a few recent works related to
this paper.

3.1 Partial evaluation

A book by Neil D. Jones and others [9] talks about partial evaluation, highlighting general
principles and giving examples of its use. It delves into partial evaluation, explaining its
ties to program specialisation. Suppose we have a subject program, and that program’s
input has static data for any input. Then, we can have a partial evaluator, shown by the
following equations [9], that creates a specialised program with all the operations on that
static data already done. In the equation 8, p stands for the subject program, and a partial
evaluator is called mix.

Computation in one stage: output = [p][inputl, input2]
in two stages: Pinpur1 = [mix][p, inputl]
output = [Pinput1 |input2 (8)
Definition of partial evaluation: [p][inputl, input2] = [[mix][p, inputl]]input2

J

TV
specialised program

To execute the program, only the remaining dynamic data must be given to the
specialised program to get the output. This way, we already have data from operations
done on static data in the compiled program. This means we can expect a speedup when
executing the program because it has less work to do. If the output is the same as for
the original program, then the specialised program works as intended. The main idea
of partial evaluation can be shown using code. Listing 8 shows an example of a code
that does some calculations on two numbers and returns them. It also requests a secret
number (let that be 4) and uses it to modify return values.

func fetchSecretNumber () (int) {
// Long request to get a daily secret number.

return 4

func calc( x int, y int) (int, int) {
secretNumber := fetchSecretNumber ()
add := x + vy
sub := x -y

15



10 return add + secretNumber, sub + secretNumber

o}

12

3 func main() {

14 fmt.Println(calc(l10, 2)) // 16 12
15 fmt.Println(calc(8, 4)) // 16 8
m}

Listing 8. Original code.

Every day, a new secret number can be accessed from the Internet. If we were to call
this function multiple times, a lot of time is spent just waiting for data. Listing 9 displays
code where partial evaluation is used.

i func fetchSecretNumber () (int) {
// Long request to get a daily secret number.

3 return 4

+ )

¢ func calc() func(x int, y int) (int, int) {
secretNumber := fetchSecretNumber ()

8 return func(x int, y int) (int, int){

9 add := x + vy

10 sub = x -y

1 return add + secretNumber, sub + secretNumber

12 }

5}

14

5 func main() {

16 calcWithSecret := calc()

17 fmt.Println(calcWithSecret (1@, 2)) // 16 12

18 fmt.Println(calcWithSecret(8, 4)) // 16 8

Listing 9. Updated code with partial evaluation.

This way, the secret number is requested only once, and calculations can be made
many times without waiting for the request. The same logic can be used on a whole
program. We can reduce the number of operations by calculating static values and/or
fetching data in advance, assuming they are not expected to change frequently. We can
run the program with different dynamic inputs, and the impact of this becomes clearer
the more we run it.

In addition, they [9] bring out that although partial evaluation has some promising
applications and works well in practice, there are still some possible problems. The
performance increase depends greatly on the base program and how the interpreter is

16



written. Dynamic name binding and dynamic code creation cause the program to do
runtime variable name searches or contain runtime source language text. It is also hard
to predict the speedup by specialising the program and ensuring that the specialised
program works as expected based on a given input.

3.2 Parallel evaluation of C++ constant expressions

Evaluating many expressions during compile time can increase runtime performance,
but it comes with increased compile time. A conference paper by A. Gozillon and
others [10] looks into this problem and proposes a method to levitate some of this
in the programming language C++. They bring out that C++ has constexpr specifier,
allowing functions and variable declarations to be evaluated at compile time. They
introduced ClangOz, a compiler that supports the parallel execution of std::for_each
loops at compile time. They ran five compile-time benchmarks to test their compiler.
Although the average performance benefit was above 50% and reached 100% in one of
the benchmarks, there are still a few problems and limitations to address. Most notable
is that it does not support nested loop parallelism, and only one loop in every function
can be parallelised. In addition, cloning and distributing data among threads can be
expensive, increasing startup costs. When these issues are addressed, the performance
gains could be higher.

3.3 Soufflé

A paper published by H. Jordan and others [11] introduces a tool called Souffié to
overcome the performance limitations of Datalog evaluation. More precisely, they saw
that multiple tools for program analysis that had been developed previously were created
with a "one size fits all" mindset. While it allows the use of these tools for every possible
use case, the tools lack the ability to specialise their evaluation process for a certain
program analysis specification, leaving out possible performance gains.

Souffl€ is currently being used at Oracle Labs for Java security analyses because
of its performance, ease of use and customizability [11]. They did it by synthesising
Datalog specifications to a C++ program. To achieve this, three specialisations were made
using the first Futamura projection. Firstly, they specialised Datalog itself, receiving
a relational algebra machine that was further specialised to receive a C++ code with
OpenMP for parallel execution support. The second specialisation’s main goal was to
improve the worst-case runtime complexity of the relational algebra machine. More
precisely, they improved loop-based join operations and the identification of optimal
index. Dilworth’s theorem-inspired algorithm improved index management by computing
only the necessary indices. The final specialisation was made on the C++ program
received from the second step. Using efficient parallel versions of B-trees and Tries, they
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specialised data structures and algorithms by static information, increasing the runtime
performance.

They [11] ran three analyses on the OpenJDK7 library, comparing Soufflé and three
other Datalog evaluation tools (results shown in table 1).

Table 1. Soufflé test results [11]. Time is in hh:mm:ss and memory in GB.

CI CS Security
Tools Time Memory | Time Memory | Time Memory
bddbddb | 0:30:00 | 5.7 DNF DNF DNF DNF
SQLite | 6:20:00 | 40.2 DNF DNF DNF DNF
uzZ DNF DNF DNF DNF DNF DNF
Soufflé | 0:00:35 | 8.5 6:44:08 | 206.4 14:45:01 | 75.3

Soufflé greatly outperformed the other tools. It used fewer or similar resources and
managed to analyse large code bases that others could not in a reasonable time frame.
They set a reasonable time frame of 18 hours due to the availability of computation
resources.
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4 The setting

The necessity for a tool that can scan all the repositories and evaluate their acceptance
against predefined rules comes from managing cloud-based software as a service con-
taining hundreds of microservices. The company has hundreds of software engineers
who are developing different parts of the software. It is important to have a set of rules
automatically checked with every code update since engineers come and go, and nobody
can remember all of them themselves. Using that kind of tool cuts down on development
time and improves the security and performance of the software.

The company repositories are located in GitHub, along with a continuous integration
system. Engineers work on microservices pulled from Github, make changes locally and
then push a new branch to Github. When the code is ready to be published, a pull request
is made to the master branch. The code to be merged with the master branch has to be
reviewed by another engineer. Automated policy enforcement must take place to reduce
unnecessary work for them.

4.1 Dora

For a while, a tool called Deployment or Repository Analyzer (Dora) [12] was used. It
was created to increase Docker image and container security by analyzing Docker and
Docker Compose files and validating them against Docker’s best practices and defined
policies.

module.exports = async function (config) {
try {
// Negative Lookahead on comments line
const key = “*(?!'#)${config.param};

// Get Base image from Dockerfile.CI

const dockerfileCIResults = await findStringByKey(config,
key);

const dockerFileConfig = { path: 'Dockerfile', param:
config.param };

const dockerfileResults = await findStringByKey(
dockerFileConfig, key);

if (dockerfileCIResults.length > @) {
// Compare the last FROM occurency for both files
const baseImageCI = dockerfileCIResults.slice(-1)[@].1line
.value;
if (dockerfileResults.length > @) {
// Image found in both files
const baseDevImage = dockerfileResults.slice(-1)[0].
line.value.trim();
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if (baselImageCI !== baseDevImage && ~${baselImageCI}-dev
!== baseDevImage && !isGoService()) {
await reporter.report(config, dockerfileCIResults.
slice(-1)[0].1ine);
}
} else {
// Image found only in Dockerfile.CI
await reporter.report(config, dockerfileCIResults.slice
(-1)[0].1line);
}
} else {
if (dockerfileResults.length > 0) {
// Image found only in Dockerfile
await reporter.report(config, dockerfileResults.slice
(-1)[e].1line);
3
}
} catch (err) {
const error = “Error message: ${err}’;
await reporter.reportError(error, config);

Listing 10. Dora rule example [1].

Listing 10 shows a Dora rule that was used to compare parent images in Dockerfile
and Dockerfile.CI. At first, on lines 4 to 8, the files are found and loaded in. The rule
has three primary messages (lines 17, 21, 26) to report, depending on whether the image
is found in both files or one of those. If something goes wrong, then an error is caught
and reported. The necessity for a new tool came from having an excessive amount
of boilerplate code in rules. The rules contained a lot of code that was not about rule
validation but about setting up data for it. For example, the data gathering on the first
lines and obtaining the values from them using slicing, indexes, and trimming (example
on line 15). In addition, there was a need for other policies that were not about Docker.
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o}

3

4.2 Neodora

The new tool that replaced Dora is called Neodora [1]. It uses OPA, which reduces the
complexity of writing and reading rules. In addition, both OPA and Neodora are written
in Go. Listing 11 shows how the previously described rule in listing 10 is written in
Neodora.

imageDefinition[result] {

data.neodora.files["go.mod"”] == null

cilmage := parent_image(input)

normalImage := trim_suffix(parent_image(data.neodora.files.
Dockerfile), "-dev")

cilmage != normallmage

result = {
"cilmage": cilmage,
"normalImage"”: normallImage,

Listing 11. Neodora example [1].

All the unnecessary boilerplate code is gone. Data required for this rule is accessed
using data.neodora.files, which has the data already parsed based on the data type (JSON,
text, YAML, Docker file etc.) and supports the required operations on them. This means
the necessary data finding and reading are done in the background; the rules only have
the rule logic. It helps keep the code clean and readable. Testing the rules was also made
easier since OPA supports writing tests. Dora required to have a repository for failures
and another repository for passes. However, with Neodora, it is possible to write tests in
a separate file where you define an input to your rule as shown in listing 12.

test_allow_internal if {
allow_internal with input as {"ip": "192.168.1.254"%

test_deny_external if {
not allow_internal with input as {"ip": "178.128.73.145"}

Listing 12. Simple rule test example.

If the IP is private, the rule and the test pass. And if the IP is public, the rule fails,
meaning the test has passed. Both input and additional data can be changed to write tests
for the rules. Rule test files can be in the same directory as the rule file, keeping the file
structure clear and code easy to modify.

Figure 1 shows the architecture of Neodora. It requires two compilations, one for
Neodora’s CLI and one for OPA. When CLI is compiled, the rules and their specifications
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are added as strings. The specification contains information about the rule. For example,
it has rule ID, name, documentation, output format, active status, and input data and can
include additional variables. When Neodora is run, OPA compilation takes place. The
rules and specifications are injected into OPA. Since the repositories used in the company
can differ highly, there was a need to adjust Neodora execution per repository. It was
solved by allowing engineers to define a file (example in listing 13) that is read in to
modify Neodora rule configurations.
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"helmCpuReservation”: {
"upperLimitPct”: 500

3,

"sonarConfiguration”: {
"active”: false

3,

"helmCpuReservation”: {
"skipContainers”: "messenger-redis”

}

Listing 13. Repository Neodora config.

Not all the rules defined in Neodora are suitable for all repositories. Services can
use different frameworks and have special requirements that could cause the Neodora
repository check to fail and block the deployment. For example, a rule can be disabled if
it is made clear that it is not relevant for a service or to bypass the check while the fix is
being worked on. The configuration file allows us to eliminate these issues by describing
rule configurations per repository.

The current Neodora implementation takes in a repository branch and runs the rules
against it. It has been a game changer in the company. The ease of use, addition of new
rules, and output have been sufficient. The only current weak point of Neodora has been
running it over all the repositories in a certain interval, also known as Bulk-Neodora.
Bulk-Neodora is a workflow in Github that runs at midnight every day. It aims to check
all microservices’ master branches to detect policy validations in production code.

Bulk-Neodora workflow consists of five steps:

1. Getting a list of repositories to scan.
2. Getting Github token.

3. Going over the list of repositories where for every repository, it clones it and runs
Neodora.

4. Creating a final HTML report based on saved reports.
5. Archiving results.

The way of running Neodora repeatedly for every repository keeps it simple, but
it comes at the cost of total runtime. Currently, this solution takes around 21 minutes
to scan 884 repositories. Network requests are known to be a factor that increases
runtimes. In addition to cloning, some rules make GET requests to fetch up-to-date
information. This raised questions: could Bulk-Neodora be improved by running the rule
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checking simultaneously for multiple repositories, and exactly what takes the most time
for execution and how to reduce it?
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1

S Analyzing rule execution

To speed up the Bulk-Neodora workflow, it was decided to investigate where most of
the time is spent during its execution. It was expected that repository cloning and GET
requests inside the rules were why the workflow took so long. Cloning on repositories
was already done with depth 1. This way, we only get a branch we are interested in
and only the latest commit. Requests in the rules, however, can take some time to get a
response, especially when the server is slow to answer.

5.1 Changes to capture rule runtimes

Some rules have GET requests (shown in listing 14) and do not use already stored data
because some of the accepted values that the rule checks are expected to change. Having
hard-coded data for tests to use would cause the need for many pull requests to keep the
rules up to date.

node_release_date_request = http.send({
"url”: sprintf("https://endoflife.date/api/nodejs/%s.json"”, [
get_nvmrc_version]),
"method”: "get",
"raise_error": false,
"cache": true,
"timeout"”: "10s",
"max_retry_attempts”": 3,

D

Listing 14. GET request inside rule.

In this GET request example, the nvmrc value can vary from service to service.
In addition to nvmrc value differences, many URLSs contain a different service name.
However, many URLs are completely the same, no matter what service. It was decided
to record how long it takes to get the responses for the requests made in the rules.

Getting the start and end times of these requests in Rego was impossible. Although
Open Policy Agent can be easily extended with custom built-in functions [13]. This
means we can create a callable custom function to make a desired request and return the
response while capturing the duration.

func registerBuiltinImpll (bctx rego.BuiltinContext, a *ast.Term
) (xast.Term, error) {
var request map[stringlinterface{}
var elapsed time.Duration
var resp *http.Response
var err error
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if err := ast.As(a.Value, &request); err != nil {
return nil, err

authToken := request[”auth"]

url := request["url”].(string)

ruleName := request["rule_name”].(string)

client := &http.Client{}

req, err := http.NewRequest("GET", url, nil)

req.Header .Add("Authorization”, "token "+authToken.(string))

if authToken.(string) != "" {
start := time.Now()
resp, err = client.Do(req)
elapsed = time.Since(start)
defer resp.Body.Close()
} else {
start := time.Now()
resp, err = http.Get(url)
elapsed = time.Since(start)
defer resp.Body.Close()
}
runtimeResult := RuntimeResult{RuntimeType: "GET", RuleName:
ruleName, RequestTo: url, Duration: elapsed.Microseconds ()}
writeResultToFile(runtimeResult)

if err != nil || resp.StatusCode != http.StatusOK{
return nil, err

}

respBody, err := io.ReadAll(resp.Body)

if err != nil {
return nil, err

}

var bodyAsJson any
json.Unmarshal (respBody, &bodyAsJson)

var interfaceData = ResponseResult{StatusCode: resp.
StatusCode, Body: bodyAsJson}
var responseAsValue, _ = ast.InterfaceToValue(interfaceData)

var asterm = &ast.Term{Value: responseAsValue}
return ast.ArrayTerm(asterm), err

Listing 15. GET request as a custom function.
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Listing 15 shows an implementation part of the custom function. It converts given
Rego values to Go values, returning early in case of an error (lines 7-9), and sets up data
for a GET request (lines 11-16). A GitHub authentication token is sent with a request
for GitHub API requests. Requests are timed, and the time taken is saved for future
analysis (lines 29-30). Lastly, the request’s response is converted to a suitable format for
the Rego language. Duration is measured in microseconds. For every repository, it saves
the runtime results in a new file to avoid locking.

5.2 Runtime results

A custom function allowed gathering runtimes for every rule execution. An example of a
runtime result is shown in listing 16.

A
2 "RuntimeType”: "GET",
"RuleName”: "checkNextNodeRelease”,
4 "RequestTo”: "https://endoflife.date/api/nodejs/18. json",
5 "Duration”: 116308
U

Listing 16. Runtime result.

In addition, the full execution time of every single rule was also captured. Data
analyzing was done in Python, where all the runtimes were aggregated to a single data
frame shown in table 2.

Table 2. Rule runtimes.

1 Type Rule name URL | Duration (ms)
0 GET sonarConfiguration URL 130924
1 GET namespace URL 133442
2 GET checkNextNodeRelease URL 215748

57396 | FULL | helmCompanyTemplateVersionEOL | URL 340844
57397 | FULL sonarScanBranchProtection URL 378100
57398 | FULL helmChartVersion URL 438613

In a table 2, the URLSs are redacted as they can be long. Entries with a type GET
represent only the request time, and entries with FULL are for the total rule execution
time. This way, summing up all the GET and FULL runtimes is possible to see how
much time is spent fetching data.
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Figure 2. Time spent on GET requests & full rule execution time.

Figure 2 shows that 82% of the rules evaluation was spent on GET requests. After
further analysis of URLs where requests are made, it was clear that some requests’
responses could be used for other rule validations. From repository to repository, most
URLSs differed in repository name, version, and key. Still, there were also so-called static
URLs that always returned the same data no matter what repository was being checked.

Before the overhaul of Neodora, it was also decided to test how much faster the tests
run if there is no need for GET requests. It was done by gathering all the required data
and using it as static values for the rules.
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Figure 3. Difference in repository scan, with and without GET requests.

Figure 3 shows the gained difference in data fetching and full runtime for one
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repository. The data fetching was reduced to basically zero since the required data was
already in memory. The total runtime was reduced nearly 6 times. It further proved that
a great performance increase is expected for Bulk-Neodora just by having some GET
request responses already in memory for rule evaluations.
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6 The solution

During the implementation of the faster Bulk-Neodora, there was a lot of investigation
and testing of different possible solutions. The most noteworthy are the ways of gathering
the required repository files and getting around hardware and network limitations. The
flow of operations is shown in figure 4.

. For every repository in
Gather URLs from rules Fetch static URLs batches of 50 Save results

Clone repository in . . . Update rule dynamic URLs
memory Dynamic URLSs to static Fetch static URLs with static

Add URL responses to rule Scan repository files to

q 3 Load config Start evaluation
as a variable runtime

Figure 4. Flow of operations.

The operation chain on a darker background runs for multiple repositories simultane-
ously. Waiting for another repository scan to finish is eliminated. URL requests that all
scans need are made once beforehand.

6.1 Implementation

The high number of repositories in Bulk-Neodora scan made it necessary to change
Neodora’s logic to parallelise repository scans. The main idea was to make all the
necessary GET requests before the rules were evaluated. Previously, URLs were inside
rules, where GET requests were made as shown in listing 17.

I request = response {

2 response := http.send({

3 "method”: "get",

4 "url”: "https://missions.company.tools/api/tribes”,
5 "raise_error"”: false,

6 "cache": true,

7 "timeout"”: "10s",

8 "max_retry_attempts”: 3,

s 1)

0}

Listing 17. GET request in rule.
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By adding URLSs to rule configurations, shown on a listing 18 on line 9, it was possible
to get these at the start of Neodora execution. All the URLs from the rules were gathered
and filtered based on whether they were static or dynamic.

i rule.New(policy).

2 Id("tribeName").
Warning ().
4 Name ("Unknown tribe name”).

Message ("The property “owner™ in “repository.json™ must be
a valid tribe name present in *xmission-trackingx*x*").
6 Documentation(doc).

7 Active ().

8 Input(”"repository.json”).AsJSON().

9 AddVariable("urle”, "https://missions.company.tools/api/
tribes").

10 OutputSchema (func(s #*schema.Schema) {

1 s.Var("file_link")

12 s.Prop("file”).Title("Repository file").RenderInBlock().
AsLink ("file_1link™")

13 s.Prop("status"”").Title("Owner status”).RenderInTable().
AsText ()

y »

Listing 18. Rule configuration.

An example of a static URL is in a listing 18. URL is considered dynamic when
some part of it changes depending on a repository. A simple example would be
https://api. github.com/repos/org/<REPO_NAME>/contents/repository.json where vari-
able <REPO_NAME> is a corresponding repository name. Static URLs were used to
gather data that every repository scan could use. After that, a list of repositories to scan
is fetched, and a single Go goroutine is created for every repository scan.

It was decided that the cloning would be done in memory instead of cloning reposito-
ries to a file system to speed up the program even more. It was achieved using go-git [14],
Git implementation in Go. Its goal is to be fully compatible with Git [15]. While, as of
writing this paper, not all features are supported [16], the features we were interested in
were implemented. More precisely, in-memory cloning and repository traversal. Reposi-
tories were cloned with depth 1, and the file contents were gathered by traversing a tree.
Some variable values in dynamic URLSs depended on values in the repository files. Once
repository files were gathered, repository name, Node version, and Sonar project key
variables in dynamic URLs were given their values. It enabled fetching responses for
previously called dynamic URLs.

URL variables in rule configurations were then overwritten to be specific for a
repository by replacing dynamic URLs with corresponding static ones. This allowed
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accessing URL responses from a map variable that was also added to the rule. The map
variable had URLSs as keys and responses as values. Rules to exclude from scans were
filtered out, and the in-memory repository was scanned. The scanning part had to be
rewritten because previously, it used the files on disk to parse them. It included finding
all the required files for rules and then parsing them to a suitable format. The found files
are cached, and empty files are classified as not found. Previous regex pattern support
was kept, making it possible to find all the files in some directory that can exist anywhere
in the repository. A repository-specific Neodora configuration file was read, and the
required rules were updated. After that, a regular OPA evaluation started, and results for
every repository were saved.

Improved Bulk-Neodora and the current in-use version were run on the same machine
to compare runtime and output. Tests were run on MacBook Pro 2019 with a 2,6 GHz
6-Core Intel Core i7 processor. The network download speed averaged around 850 Mbps.
Tests contained 881 repositories, as three left-out repositories required access permissions
that the used GitHub token did not have. As the output of both versions was a JSON
document, it was easy to do a difference check on output files. Both versions gave the
same output. As of the runtime, for 881 repositories, it previously took 32 minutes. With
the improved version, it was reduced to 2,2 minutes. Reducing the runtime almost fifteen
times.

6.2 Blockers

During the improvement of Bulk-Neodora, multiple approaches were tried. Here are two
main blockers that were encountered during the development.

As not all the repository files are needed for Neodora rule checking, the question of
whether we could gather only the required files was raised. Git cloning does not support
specifying files or folders to fetch, so the other option was to use GitHub API. GitHub
API has an endpoint [17] that could be used for it. It can be used to get the contents
of the files and also the contents of a directory, which would be sufficient. However,
this API has a restriction that makes it unsuitable for Bulk-Neodora. GitHub API has
rate limits [18]. Unauthenticated requests are limited to 60 per hour, and the limit is
increased to 5000 for authenticated users. As the repository count and files needed for the
Bulk-Neodora run are very high, the API rate limit was reached fast, and the run failed.
It could be solved by having multiple tokens for authentication and/or using GitHub
Enterprise Cloud. However, it was not tested as it would involve additional logic, and
many small requests could take more time than one clone operation. Using GitHub API
could be an option if the repository and unique file count are low.

Running many Neodora runs concurrently uses more system resources and has higher
network requirements. In the development phase, it was discovered that while running
Bulk-Neodora for 100 repositories finished, the machine sometimes turned unresponsive,
and many GET requests experienced time-outs. It was clear that there had to be some
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throttling system. The solution was to limit the maximum concurrent scans to 50 and
add retries to GET requests and cloning in case they time out. Exponential back-off
was used for retry attempts. The necessary throttling and timeout lengths depend on the
system and network, so different timeout lengths were tested. The maximum concurrent
repository scans were set to 50 for the system’s stability. When a scan finished, it freed
up a spot for another.
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7 Conclusion

The weak points of Rego rules implementation and Bulk-Neodora flow were investigated.
Neodora runs for repositories were parallelised to cut down on the whole runtime, and
reading data from a disk was replaced with in-memory operations.

This work introduced Datalog, Open Policy Agent, and Rego, gave a short history of
Dora and Neodora, and highlighted their disadvantages. The findings suggest that while
Rego is a fast and clear language for writing rules, its performance of rule evaluation can
greatly suffer when it is waiting to receive data. The main operations that reduced the
runtime of Bulk-Neodora were:

Replacing default cloning with in-memory cloning. Reading and writing to a disk
are much slower than memory operations. If the hardware resources allow it, keeping all
the data in memory improves the execution time.

Removing HTTP requests from rules. Making the required HTTP requests before-
hand and adding the responses to the rule configurations clears the code that is meant to
be only validation logic. In addition to making the rule easier to debug, it also makes it
possible to make these requests in bulk.

Using multiple threads to execute many runs simultaneously. Instead of running
one repository scan after another, it is possible to run multiple at the same time. The
repository scans are not dependent on each other, so we can speed up the process by
allocating more system resources.

The improved version of Bulk-Neodora has not been deployed yet. Some refactoring
is left to do. In addition, it is planned to make it more user-friendly and increase coverage
of the new code. Nonetheless, applying the first Futamura projection can make the
program more specialised and increase performance.
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