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Classification and Prediction of Business Incidents Using Deep Learn-
ing for Anomaly Detection

Abstract: Companies today use a number of software systems to carry out various
business activities. Such enterprise standard software solutions consist of a large number
of components usually developed by different teams and/or different software vendors
using various technologies. In such complex software systems, there can be various
issues ranging from problems in the software itself to issues in network.

In order to measure the operational performance of applications and infrastructure as
well as key performance indicators (KPIs) e.g. new customers, revenue, that evaluate
the success of the organization, a lot of business metrics is collected. These metrics
have certain data patterns which represent normal business behaviour. Anomalies are
the unexpected changes within these data patterns such as degradation or a sudden
surge in business metrics values. Additionally, a small change in software system
configuration can cause unexpected behaviour in business flows. Version upgrades of
different components can introduce compatibility problems. These problems could lead
to a change in the normal behaviour of business metrics and cause anomalies. These
anomalies if not resolved quickly results in business and financial losses. Therefore, it is
necessary for businesses to take proactive steps to manage such business incidents before
they can adversely affect it. This brings us to the need for an analytics platform which
can analyze patterns of data streams, identify and differentiate normal behaviour of a
business metric from anomalous behaviour and could generate notifications.

The current anomaly detection and alert system in Playtech plc uses a simple anomaly
detection technique that follows a rule based approach and it is observed that it is not
efficient. Thus, a more robust, modular and efficient business incident/anomaly detection
solution based on advanced machine learning techniques is needed that could work
in conjugation with the current system. This thesis proposes, describes and evaluates
a business incident/anomaly detection system based on deep learning approach that
categorises and predicts the business incidents/anomalies using the available business
metrics information.
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Äriintsidentide klassifitseerimine ja prognoosimine kasutades süva-
õpet anomaaliatuvastusel
Lühikokkuvõte: Tarkvarasüsteemid omavad tänapäeva äriettevõtetes elutähtsaid funkt-
sioone ja nad on tihti ka äritegevuseks primaarse tähtsusega. Taolised süsteemid võivad
koosneda väga suurest hulgast komponentidest, mis on arendatud erinevate meeskonda-
de või ettevõtete poolt ning enamasti ka kasutades erinevaid tehnoloogiaid. Keerukate
süsteemide korral võivad olla vead nii rakendustes kui ka võrgus.

Probleemid võivad ilmneda konfigureerimisel, mis võib põhjustada ootamatuid pöör-
deid ärivoos, samuti võivad versiooniuuendused tekitada kooskõlaprobleeme. See kõik
võib põhjustada ärile maine- ja finantsilist kahju. Seetõttu on ärile vajalikud proaktiivsed
sammud, et tulla toime äriintsidentidega enne nende ebasoodsat mõju teistele komponen-
tidele. See toob kaasa vajaduse analüütilise platvormi järele, kus oleks võimalik eristada
süsteemi normaalset käitumist anomaalsest meetrika alusel.

Playtech plc kasutab taoliseks automaatseks tuvastamiseks ja häirete tõstatamiseks
tüüpilist anomaaliate tuvastamise lähenemist: reeglitel põhinevat tuvastamist. Playtech
plc, tarkvarasüsteemides jälgitakse tuhandeid meetrikuid, alustades infrastruktuuri ja
süsteemitarkvara ning lõpetades rakenduste ja ärimeetrikutega. Samas on tarkvara paigal-
datud ja opereerib rohkem kui 40-s asukohas, igas neist erinevate lõppkasutajate ning
ärimudelitest tulenevate erinevustega. Lisaks sellele, on tarkvara pidevas muutumises,
nädalaste arendustsüklite tulemustena uuendatakse igal teisel nädalal komponente üle
kõigi asukohtade ja paigalduste. Reeglitel põhinev lähenemine on piisavalt efektiivne
tuvastamise kiiruse ja täpsuse osas, kuid nõuab palju inimressursse reeglite haldamise
ja täppisseadistamise tõttu sellises muutuvas keskkonnas. Seetõttu nähti vajadust lei-
da lahendus mis suutaks automaatselt kohaneda muutuvas keskkonnas ning erinevates
tarkvara seadistustes ilma inimese pideva sekkumiseta. Antud töö eesmärk ongi masi-
nõppel põhineva mudeli väljatöötamine ja treenimine, mis tuvastaks ja kategoriseeriks
taolisi intsidente. Töö kirjeldab detailselt, kuidas kasutatakse anomaaliate tuvastamise
ja süvaõppe tehnikaid täiendamaks olemasolevat lahendust intsidentide tuvastamisel ja
klassifitseerimisel.

Võtmesõnad:
Anomaalia tuvastamine, äriintsidendid, masinõpe, süvaõpe, konvolutsioonilised närvivõr-
gud, klassifitseerimine, ennustav analüüs, Playtech

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, juhtimine (automaatjuhtimisteoo-
ria)
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1 Introduction
This chapter describes the problems that motivate this thesis, the research questions and
briefly mentions the proposed solution. Section 1.1 describes the problem of business
incidents on an application server. It mentions the importance of detection and cate-
gorisation of such incidents. Section 1.2 gives an overview of the goals to be met, the
contributions made during the course of this work and the research questions. Section
1.3 gives the outline of this thesis and the following chapters.

1.1 Motivation and Problem Statement
An anomaly means a deviation from normal behaviour or occurrence of something
unusual [1]. Any unexpected change in the data patterns or an event that does not
conform to the usual operation or expected actions is considered to be an anomaly and
often termed as business incidents, exceptions etc. An organization observes different
business incidents like unavailability of web services, unreasonable high number of
failed financial transactions, unusual user logins, high error rate, web server’s CPU usage,
network issues, abrupt drop in the organization’s business key performance indicators
(KPI) and metrics in a day to day operation and so on.

The increasing number of business incidents have become a top concern for orga-
nizations as they lead to disruptions in normal operations and causes financial losses.
This could also have adverse effects on the organization’s reputation. Therefore, it is
important to detect such business incidents.If these incidents are not detected and acted
upon, they could cause the other related components in the system to misbehave or stop
working completely. Moreover, there could be temporary overloads on other parts of the
system which causes more time, effort and costs to maintain the normal business KPIs
and metrics.

Delayed, slow or no detection of business incidents can have serious business impact.
For example, according to ITIC’s 2017-18 Global Server Hardware, Server OS Reliability
Survey [2], unplanned outage of an organization business server resulted in an average
cost of 300K US dollars. Therefore, it is necessary for businesses to detect and identify
such business incidents. An organization does this with the help of some monitoring,
profiling, logging and other tools to detect anomalies. In a practical scenario, business
incidents are inevitable, so it is important that an organization dedicates efforts to detect
and categorise such incidents in time. Fast and correct categorisation of business incidents
is important to make sure that high priority incidents are managed first to reduce the
overall impact on the business. For example, it is important to deal with anomalies in
financial transactions before as compared to lower priority incidents like reduced server
average response time.
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Playtech plc1, a leading gambling software provider company, also faces similar
challenges. It offers a variety of products such as software for Casino, Poker, Bingo
etc. Its platform is maintained and managed by the Integrated Management System
(IMS)2 team. It is observed that there are certain deviations from normal behaviour like
unusual drops or surges in their business metrics and KPIs at times. Playtech plc aims
to proactively manage these anomalies and business incidents before they affect their
customers and lead to financial losses. Hence, there is a need to detect anomalies as well
as to take necessary steps like raising alert to the concerned team and applying corrective
measures.

Playtech plc initially used a Hewlett Packard’s business service management software
solution called Service Health Analyzer (SHA) [3] for anomalies detection. According
to the teams using the SHA system in Playtech plc, as the number of business metrics
increased, it was not possible to rely on just SHA as it gave a lot of false positives. More-
over, a lot of effort was required in the configuration. Therefore, Playtech plc, in 2017,
decided to migrate to an advanced and quicker approach using rules matching engine
(see Section 5.1) to search for any anomalies and send out notifications to the concerned
team. Consequently, it was found that rules matching approach has certain disadvantages
such as managing all the syntactic rules manually, adding violation messages etc. Also,
the rules matching engine does not give the capability to automatically classify incidents
based on severity. The manual process is repetitive and time-consuming. Thus, Playtech
plc decided to employ machine learning techniques to automatically detect and categorise
business incidents/anomalies.

The idea is to discover if these machine learning methods work for this business
problem. It is a research-based project aiming at solving a real-life industry problem by
using a research-driven approach and methods. The approach for this proposed solution,
which uses deep learning, is discussed over the course of this work. Such a solution
would help to identify the business incidents, reduce the time taken to fix the issues and
avoid disruptions in day to day business operations.

1.2 Research Questions
Anomaly detection and categorisation of business incidents is quite an extensive topic.
So in this work, we limit ourselves to the below-mentioned goals.

The main objective is to design and develop a solution that identifies and categorises
anomalies/business incidents. This thesis explores the possibility of using deep learning
approach i.e. Convolutional Neural Network (CNN) to achieve the main objective and
determine how effectively CNN functions in this real-life operational setting.

The project lasted for about eight months and comprised of various activities includ-

1https://www.playtech.com/
2https://www.playtech.com/technology/
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ing a clear understanding of business requirements and use case. The activities involved
was to collect, clean and transform large data, implementing, training and evaluating the
chosen machine learning model. In the course of the project, the following main question
(MQ) was addressed:

MQ - How to detect anomalies/business incidents and categorise them using ma-
chine learning?
While achieving the main objectives of this thesis, it is anticipated that the proposed
solution also contributes to answering additional sub-questions (SQs) as follows:

SQ1 - What are the current approaches and solutions that exist for anomaly de-
tection?
Study of different research-based approaches as well as commercial anomaly detection
solutions to learn and understand the current state of the art.

SQ2 - How to design and develop a viable solution for the detection of anomalies
and categorisation of business incidents?
The information from SQ1 is used to design and develop a solution using a deep learning
approach.

SQ3 - What is the efficiency of the proposed solution for detection of anomalies
and categorisation of business incidents and how is it measured?
This SQ incorporates what are the methods to evaluate the model and the developed
solution.

1.3 Thesis Organization
The rest of this thesis is structured as follows and contributes to providing a detailed
answer to the main question (See MQ in 1.2).

Chapter 2 discusses the state of the art anomaly detection solutions. It focuses on
the different related research works carried out in this field along with few commercial
solutions.

Chapter 3 provides a brief explanation of the important terms and background knowl-
edge necessary to understand the thesis. It also describes the environment setting where
the proposed solution is to be used and the preliminary system currently used in Playtech
plc.

Chapter 4 describes in detail the software requirement specification (SRS) by spec-
ifying functional and non-functional requirements that is expected from the proposed
solution.

Chapter 5 discusses the design and architecture of the proposed solution, the involved
workflow and different individual components. It also describes the structural properties
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of the data and necessary pre-processing of data along with the assumptions and scope.
Chapter 6 describes the CNN based model used in the proposed solution.
Chapter 7 gives the details of a prototypical implementation of the proposed solution

along with the interaction among various components. It details the data pre-processing
techniques and the implementation of the CNN based model.

Chapter 8 illustrates the evaluation of the CNN based method and the proposed
solution. It also includes the experimental setup, performance evaluation data and the
results.

Chapter 9 finally concludes this thesis and presents the outlook of the future work.
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2 Related Work
This chapter discusses the state of the art and describes different related works done
in this field. It provides an answer to the first sub-question (SQ1 in Section 1.2). To
answer this question in detail, it is broken down into three sub-questions: 1) What is
anomaly detection? 2) What are the research-based approaches? 3) What are the current
commercial solutions available? Sections 2.1, 2.2 and 2.3 provide answers to these
questions respectively.

2.1 Anomaly Detection
An anomaly can be described as an event that does not conform to an expected pattern in
the data [1]. It is the set of values that does not seem regular or unfit in a usual dataset. In
the context of an organization’s network and application servers, these anomalies can be
a sudden increase or an unusual drop in certain activities like delayed average response
time or high error rate which is not commonly observed.

Authors Schwartz and Jinka define anomaly detection as a set of techniques and
approaches to find unusual behaviours and/or states in systems and their observable
signals [1]. Anomaly detection is the identification of items, observations or events that
differ significantly from the majority of data [4]. There are three main broad categories
of anomaly detection: 1. Unsupervised which detect anomalies in an unlabeled dataset
with the assumption that most of the data points have normal usual values. 2. Supervised
anomaly detection techniques which detect anomalies in a labelled dataset with both
normal and abnormal class labels [5]. 3. Semi-supervised anomaly detection where only
the normal class data has labeled instances.

An anomaly detection software solution enables the organizations to automatically
or semi-automatically detect anomalies. Such detection software compare events or
deviations in patterns against already defined normal behaviour. Solutions from different
anomaly detection software providers use different techniques such as statistical methods,
cluster-based techniques and machine learning approaches [6]. These software also exist
for domain specific detection of anomalies like network intrusion detection in software
security domain, fraudulent transaction detection in financial domain etc. An anomaly
detection software monitors events and derive patterns from the metrics. It can then
identify certain deviations and notify the users by sending alerts. This software can be
integrated with the monitoring systems and dashboards can be used for visualizing the
metrics.

This thesis aims to design and develop a solution for the detection and categorisation
of business incidents/anomalies. This is an extensive research area and the next Subsec-
tion describes the two broad categories of existing solutions: 1. Research-based solutions
2. Commercial solutions.
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2.2 Research-based Anomaly Detection Solutions
Anomaly detection is an active research topic and there exists a plethora of research in
different domains for example in security domain for intrusion and fraud detection, for
fault detection in safety-critical systems, in health care and so on. Hence, in this section,
only a few categories of the researches done in this field which is partly related to the
solution present in this thesis are explained.

Patcha et al. [6] provided a comprehensive survey of anomaly detection systems
and hybrid intrusion detection systems. They described various statistical methods,
data-mining based methods, machine learning based techniques and hybrid approaches
proposed for anomaly detection along with the advantages and drawbacks.

Chalapathy et al. [7] in their work reviewed deep learning-based anomaly detection
in various domains such as in social networks, system logs analysis, time series analysis
and assessed the effectiveness of the used methods.

The following works describe the use of unsupervised, supervised, graph-based and
CNN approaches for anomaly detection in different domains. In their study [8], Lane
et al. presented a traditional machine learning approach for anomaly detection with the
goal to automatically detect violations of security policy of a website hosted on UNIX
server.To learn characteristic patterns of actions of the users, their proposed system
used the sequence of actions as the fundamental unit of comparison. The underlying
hypothesis is that a user responds in a similar manner to similar situations, leading to
repeated sequences of actions [8].

According to Görnitz et al. [9], the predictive performance of purely unsupervised
anomaly detection often fails to match the required detection rates in many tasks and
there exists a need for labeled data to guide the model generation. So they devised a
semi-supervised anomaly detection algorithm for their work. They proposed a very
interesting active learning strategy to automatically filter candidates for labeling and
observe that this methodology requires much less labeled data while achieving higher
detection correctness.

Schindler et al. [10] analyzed real-world log data and tried to detect anomalies to
defend against advanced persistent threats. They used a graph analysis based approach to
successfully detect simulated attacks by analysing the log data of a simulated computer
network. It is shown that the proposed solution significantly reduces the detection time
of breaches and react faster to newer attack vectors [10].

In [11], Chouiekh et al. used a Deep Convolutional Neural Network (DCNN) for
detecting fraudulent activities in the mobile communications domain. They measured
the performance of CNN against traditional machine learning algorithms.

CNN is used widely for image recognition tasks but lately, research has been carried
out to use them with other types of data such as time series data. In this thesis, the data is
business metrics data and the focus is to use CNN based model to detect anomalies/busi-
ness incidents in a real enterprise environment. Few works which employ CNN based
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models on different types of data are listed below.
Zhengyao et al. [12] proposed an extensible reinforcement-learning framework

solving the general financial portfolio management problem. They used a CNN based
approach in their experiments to realize the framework. The input to the network is a
price tensor and the output is the portfolio vector. They used CNN in evaluation process
for Reinforcement Learning applied to time-series data (financial data) and by results, it
was concluded that CNN implementation had the best performance in several evaluations.

In another similar work [13], Wang et al. used a Fully Convolutional Network (FCN)
for time series classification without any heavy pre-processing of the raw data and it
showed better performance than other state of the art. In a different work [14], Oats et
al. followed an approach to encode time series data as different types of images namely
Gramian Angular Fields (GAF) and Markov Transition Fields (MTF). They used Tiled
CNN to identify structure in time series and to classify GAF and MTF representations
on 12 different datasets.

In their work [15], Yang et. al proposed a systematic feature learning method
for human activity recognition problem. This method adopts CNN to investigate the
multichannel time series data and automate feature learning from the raw inputs in a
systematic way. There are 18 classes in this activity recognition task and the proposed
CNN method consistently performs better than the baseline methods.

Cui et. al [16] propose a new model based on CNN called Multi-scale Convolutional
Neural Network (MCNN) to carry out feature selection and classification of time series
data in a single framework. The first layer of MCNN contains multiple branches that
perform various transformations of the time series, including those in the frequency and
time domains, extracting features of different types and time scales.

2.3 Commercial Anomaly Detection Solutions
In this section, commercial solutions for anomaly detection and business analytics such
as Anodot3 and IBM Watson4 are discussed.

Anodot is a software as a service (SaaS) AI platform from Anodot Ltd. that monitors
time-series data from different sources and uses machine learning techniques to discover
anomalies in real time. Anodot is an autonomous analytics platform. This aim of this
thesis is to create a prototypical implementation that looks somewhat similar to Anodot
but which uses CNN based classifier.

Anodot makes use of their patented machine learning method and system to analyze
business data in real time and alert whenever an incident occurs [17]. It identify and
notifies the anomalies at an early stage before they lead to a major issue.

3https://www.anodot.com/
4https://www.ibm.com/watson/
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Unlike traditional anomaly detection tools which monitor only infrastructure-centric
data sources such as log files, CPU and memory metrics, Anodot helps to look for spikes
in the data that might indicate a problem. It analyzes anomalies within the patterns
of anomalies themselves [18]. Anodot can further distinguish between important and
not-so-important anomalies. It also allows to create sophisticated composite functions to
track advanced business logic that ties directly to KPIs. The result is business intelligence
in real-time, leveraging all available data sources relevant to business performance.

Anodot follows a five-step process for anomaly detection: 1. Collection of business
metrics 2. Learning normal behaviour 3. Learning abnormal behaviour 4. Topological
study of normal and abnormal behaviour 5. Acquiring and processing data in real-time
[18].

Furthermore, Anodot claims to be a data agnostics solution. It is able to input any
type of time-series data in real time and immediately detect anomalies. It analyses input
data to determine its normal range and detects anomalies. The anomalies are assigned
a significance score depending on how unusual the anomaly is or for how long it lasts.
Anodot chooses the most appropriate algorithm which best describes the data pattern. It
can handle complex patterns such as trends and changing data behaviours.

IBM Watson is another commercial solution which is capable of doing advanced data
analytics and computer vision. Although, anomaly detection is not the focus of IBM
Watson platform but it could be used for the same. It is a machine learning based software
platform of business-ready AI services and applications [19].

IBM Watson Machine Learning (WML) 5 is a service integrated with IBM Watson
Studio that uses open source libraries such as Scikit-learn 6 and Apache Spark MLlib 7

for various machine learning modeling and statistical methods. WML works with data
from different domains and allows user to create customized data analysis and prediction
pipelines.

Watson Analytics (WA) 8 is another product of IBM Watson platform that provides
data analytics and visualization services that one can use to quickly discover patterns
and properties of large dataset. It enables automated predictive analytics and cognitive
capabilities such as natural language dialogue to get the answer[20]. WA leverages
deep content analysis and evidence-based reasoning to accelerate and improve machine
learning decisions, reduce operational costs, and optimize outcomes [20]. It helps to
analyze a trend or to visualize report data in a dashboard which can be used further to
identify anomalies.

Besides the above described solutions, there are many other commercial solutions
that exist for anomaly detection as well as for non-specific data analytics similar to IBM

5https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-overview.html/
6https://scikit-learn.org/stable/
7https://spark.apache.org/mllib/
8https://developer.ibm.com/watson-analytics/
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Watson and some of which are briefly mentioned below.

Loom Systems 9 gathers and analyzes different types of logs and metrics automatically
and over time learns their behaviour. It detects and reports anomalies and trends including
the root cause and resolutions for the anomalies. In Loom systems everything is done
automatically without any manual data pre-processing or feature selection.

Numenta 10 is based on principles of the ’neocortex’. They argue that it is ideal for
large-scale analysis of continuously streaming data sets and excels at modeling and
predicting patterns in data for detection of anomalies.

SAP Predictive Analytics 11 uses automation to build sophisticated predictive models
that can be embedded in business processes to help in anticipating future behaviour,
predicting outcomes and lead to profitable decision-making across digital businesses.
One aspect of the solution is clustering analysis to analyse groups of products, customers,
employees and improve decision making. SAP Predictive Analytics provides an auto-
mated module for clustering in the Automated Analytics interface which helps in defining
and generating clustering models [21]. SAP Predictive Analytics solution has many other
applications relative to the needs of the user.

2.4 Summary
In this chapter, the state of the art and commercial solutions are discussed to answer the
research question "What are the current approaches and solutions that exist for anomaly
detection?" (SQ1 in Section 1.2).

9https://www.loomsystems.com/
10https://numenta.com/
11https://www.sap.com/products/predictive-analytics.html
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3 Background
To achieve the goals defined in Section 1.2, it is required to understand some background
on key technologies and mechanism that are tightly integrated with this thesis. This
chapter describes the key topics and terms like Machine Learning, Machine Learning
Process, Convolution Neural Networks, Time series etc. Section 3.3 describes the method
and the environment setting of this thesis explaining existing Playtech plc anomaly
detection system and the used technologies. It is recommended to go through it to better
understand the later chapters.

3.1 Time Series
Time series is a continuous sequence of values of a variable or events which are collected
at equally spaced fixed time intervals [22]. Time series are analyzed to understand the
long term trend, to forecast the future values and trends or perform various other analysis.
A time series can have increasing, decreasing or seasonality trends (variations specific
to a particular time frame) [23]. Real-time surveillance systems and network sensors
generate time series data which can be collected for valuable insights.

Time series data is used to obtain an understanding of the underlying forces that
produced the observations, fit a model and aid in the monitoring and forecasting. Time
series analysis has been used in multiple applications like sales forecasting, stock market
analysis, census analysis and so on and so forth. Each of these applications has a
chronologically listed data points like the number of sales, the value of stock etc. This
data usually shows a trend line or some metrics which can be studied in order to forecast
after the analysis.

A time series is stationary, if the mean and variance of the series is constant [24].
Figure 1 shows stationary and non stationary time series. If the time series is not
stationary, one cannot build a model for time series. Modeling is done using moving
statistics for mean and variance. A moving average is kind of a low-pass filter that passes
signals with a frequency lower than a certain cutoff frequency. It is used to make the
resulting time series data smoother and remove the noise but it leaves intact the main
trend lines [23]. This approach has been used to monitor systems effectively and it helps
to detect outliers and anomalies.

3.2 Machine Learning
Machine learning [25] is a field of computer science where a computer learns using
some sample data without being programmed explicitly. Machine learning focuses on
the development of algorithms and processes which can learn and make predictions
for future data from the data provided/already available data. The two main types of
machine learning are supervised and unsupervised learning. Supervised learning [26] is
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Figure 1. Stationary and non-stationary time series (adapted from [24])

used when the data has labeled inputs. This type of learning is primarily used to solve
regression and classification problems. In supervised learning for classification, the main
goal is to train the model to learn and classify an input accurately. Unsupervised learning
[26] is used when the data has no predefined set of labels. It focuses more on exploratory
data analysis and uses methods such as pattern matching and clustering. Clustering [26]
is a technique where similar examples/instances in data are grouped together in clusters
and are used to discover patterns in data. It can also be used to classify an unlabeled
dataset which can further be used for supervised learning.

3.2.1 Machine Learning Process

Machine learning process is an iterative process which requires choosing and developing
a machine learning model, evaluating the model and then repeating the steps until the
required results are achieved. Figure 2 represents a standard machine learning process.

The first step is to get the data and structure it the way as required by the process.
Data cleaning and pre-processing [28] is one of the tedious and most time-consuming
parts of the whole machine learning process but it is important so that the process could
understand the data. It is necessary to check for outliers, redundant values, missing
values and tackle them either by filling them with suitable values or removing such rows
altogether. The next step is to visualize the available structured data so as to have a
clearer picture of the data and come across any obvious patterns in the data. The next task
is feature engineering where important features are selected, extracted and engineered, to
be used as input for the machine learning models. Once the features are available, the
algorithms could be applied to the selected features from the data. This is an iterative
process. The result of the algorithm applied data is a candidate model meaning the first
most appropriate model that is trained. In course of time, several candidate models are
produced through the iterative process and evaluated based on certain metrics until the
model is finalised and deployed. The final model can then be used to test further data
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Figure 2. Machine learning process (adapted from [27])

and predict future data values.

3.2.2 Traditional Machine Learning

Traditional machine learning [29] models have been used far and wide to carry out
the regular machine learning tasks like regression, classification and prediction. For
classification and regression problem, there are multiple choices of machine learning
models like Naive Bayes Classifier, Decision trees, Random Forest [29]. Each of these
models follows a different algorithm approach and performs differently under different
data set and parameters. Traditional machine learning algorithms need a lot of domain
expertise and human intervention. In traditional machine learning techniques, the features
should be identified by a domain expert so that the complexity of the data is reduced
and the patterns are more visible to learning algorithms to work. In these techniques,
the problems are broken into different parts to be solved first and then their results are
combined at the final stage while deep learning tends to solve the problem end to end.
Below, a few of the methods are described in brief.

Naive Bayes [30] is one of the many techniques to construct a classifier that assigns
class labels. The Naive Bayes model is based on the Bayesian theorem and is used when
there is a high number of input dimensions. The Bayesian analysis uses the concept
of prior probability, conditional probability and maximum likelihood. Naive Bayes is
called ‘naive’ as it assumes that all of the features in a dataset are equally important and
independent.

A decision tree [30] is a technique that uses a tree-like structure representing the
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possible consequences and decisions to be taken at each step, including the chance of
every event outcome. The internal nodes represent a condition or a decision test and
each of the branches represents the outcome or consequences. The leaf nodes of the
tree represent the final class labels and the path from the root of the tree until the leaves
represent classification rules or decision rules. It makes use of the ID3 algorithm.

Another very important and widely used approach is the Random Forest Model [31].
It is an ensemble method for both classification and regression tasks [32]. It operates by
building multiple decision trees while training and outputting the class (in classification
task) or value (in regression task).

3.2.3 Artificial Neural Networks

Artificial Neural Network (ANN) [33] is a collection of human-brain inspired supervised
learning models which are intended to replicate the way humans learn [34]. A neural
network is composed of three main layers: an input layer, a hidden layer which consists
of units that transform the input into something that the output layer can use and an
output layer [35]. Each layer is composed of neurons which are interconnected to all the
neurons in the next layer to construct a fully connected network as shown in Figure 3.
They are very useful for finding patterns too complex for a human brain to recognize
easily. The more advanced networks today are deep learning [36] neural networks in
which the different layers extract different features until it can recognize the pattern it is
looking for.
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Figure 3. (a) A single neuron (b) 2-layered artificial neural network (adapted from [35])
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Figure 4. Google trends for machine and deep learning over the years (taken from [38])

3.2.4 Deep Learning and Convolutional Neural Networks

Deep learning [36] and Convolutional Neural Networks (CNNs) or ConvNets [37] have
been used widely for complex pattern matching and recognition. It has gained popularity
over the years [38] as shown in Figure 4. One of the reasons is the increased computation
power and the ever-increasing amount of generated data [39].

There are multiple CNN architectures that have emerged over time like LeNet-5 [40],
AlexNet [41], VGGNet [42], GoogLeNet [43] and many other. All these were trained
on the ImageNet data [44] to classify high-dimensional patterns like handwritten digits.
CNN also has a similar structure as a regular neural network having an input layer, a
hidden layer made up of hidden units called neurons and an output layer. But it is more
complex and the layers of a CNN have neurons arranged in 3 dimensions i.e. width,
height, depth.

CNN process the input data through hidden layers made up of units which perform
non-linear transformation of the input data in order to compute the output. The layers
help to automatically detect patterns and more complex patterns can be detected with
increasing layers. With the increase in the number of layers, the complexity of the
network increases as well as data abstraction also increases [45]. It has become even
more popular cause of the multi-use quality i.e. this deep learning method can be used
to solve supervised, unsupervised or semi-supervised problems. CNN architecture and
model is explained in more detail in Chapter 6.
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3.3 Environment Description
This thesis is done in collaboration with Playtech plc in Tartu, Estonia. In this section,
the Playtech Integrated Management System (IMS) unit and other relevant setting of
the system is described. It also includes the explanation of the state of the art system in
Playtech plc and the need for change to a new system for anomaly detection.

3.3.1 Playtech plc IMS unit

Playtech plc was founded in Tartu, Estonia in the year 1999 by entrepreneurs from the
casino, multimedia and software engineering industries. From then onwards, it has grown
significantly and has been a leading company in providing software and licenses of web
and mobile application gambling gaming software to the digital gaming industry. It offers
many different products e.g. Live Casino, Bingo network, iPoker network, land-based
offering, Videobet, Mobile Casino etc., and has many customers.

The Playtech plc IMS 12 unit offers ancillary services such as online marketing,
customer support, CRM system, fully-managed poker and bingo gaming networks, sports
betting trading room services, hosting and disaster recovery services, payment processing
and advisory services management tools needed by the customers to interact and manage
their players throughout their life cycle. This unit serves as the backbone of the product
as it provides the customers/licensees with all the tools required by them to run their
businesses. IMS enables the licensees to manage their operations in an efficient and
profitable way as it unifies all the products into one and provides capabilities to licensees
for accessing and using the products.

3.3.2 Anomalies Detection in Playtech plc

An anomaly can be defined as an abnormal occurrence that does not conform to an
expected pattern or to the normal behaviour of any system, as described earlier in Section
2.1. Playtech plc also faces anomalous behaviour and deviations in their business metrics.
So, there arises a need to detect these anomalies and take necessary steps like alert
the concerned team, use curative measures etc. Playtech plc used a Hewlett Packard
solution which will be discussed in Section 3.3.3 and then migrated to a new approach
using rules matching engine which is discussed in Section 3.3.4. As the approach using
rules matching engine has certain issues, the idea is to employ deep learning to detect
anomalies and determine if its a suitable solution for such scenarios.

12https://www.playtech.com/technology
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3.3.3 State of the art in Playtech plc

Initially, Playtech plc used a solution from Hewlett Packard (HP) called Service Health
analyzer (SHA) which over time did not provide very convincing results and is considered
to be reaching its limit in providing even satisfactory results. SHA13 uses the Run-Time
Service Model (RTSM) and enables the user to analyze SHA anomalies using the familiar
topology and metric views. SHA uses a run-time analytics engine that can anticipate IT
problems before they occur, by analyzing abnormal service behaviour and alerting IT
managers of real service degradation before an issue impacts the business [46].

(1) SHA, according to HP, takes data streams from multiple sources and uses pre-
dictive algorithms to alert and diagnose problems before they actually occur. (2) SHA
uses a self-learning algorithm to analyze historical data, learn normal behaviour, and
create baseline thresholds. (3) SHA detects an anomaly, reports on the current state of
abnormal IT services and sends out an SHA event using abnormal metrics and topology
information.

According to the Service Operations team experts, the problem with this solution is
the configurations where one can not tune or change any parameters or settings. So in
case of any issues, one needs to contact HP for solutions which takes a long time and
with no effective results. Another problem was the increase of false alerts. The number
of alerts rose upto 1,000 alerts per week, 90% of which were false alerts. This means that
there were wrong event detections and sometimes even if the event occurs, no detection
was done.

SHA’s granularity was 15 minutes. This means that the minimum time SHA takes to
detect a problem was 15 minutes. But 15 minutes is too long from a business perspective
as such a delay can cause tens of thousands of revenue loss.

3.3.4 Current Alert System in Playtech plc

The architecture follows a service oriented approach and is very complex due to the
complex business logic and financial transactions. Therefore, there was a need for an
alert monitoring system to quickly detect and notify about the anomalies. As mentioned
earlier in Section 3.2 HP Service Health analyzer was not efficient enough in terms
of configuration ease, cost and reaction speed. So there was a need for an alternative
monitoring and alerting system.

Monitoring a distributed system is not a trivial task. It requires a lot of expertise and
knowledge to be able to monitor efficiently and effectively [47]. Low-level monitoring
includes monitoring of the infrastructure, CPU, disk and memory usage, networking, etc.
In this case, simple measures such as using threshold values, peak analysis can be used.
But in high-level monitoring where the monitoring metrics are KPIs or business metrics
such as logins, payments, transactions, it is quite challenging to have good monitoring

13https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03111081/
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metrics and results. The need was to develop a simple and fast solution for Playtech plc
specifically, which works best and is effective for their system in particular. The main
task of the new alert monitoring system were [48]: (1) search for any anomalies in the
metrics and send out notifications if such anomalies are found. (2) The next task was
to utilise this information received to make decisions whether these represent any real
problems or not. (3) The alert system used a rules matching engine to do this task [48].

The Rules Matching Engine is the main component where all the rules are created,
matched and any anomalies are detected. It receives data from all events. YAML (human-
readable data serialization language) is used for defining the rules. An example of a
rule can be ’Send an alert if one metric is decreasing’. These rules are set using simple
prefixes or suffixes for the metrics names. An abstract syntax tree is built and each
violation message is checked against it [48]. If a rule matches and is triggered, an alert
is sent out to notify. All the Rules Matching Engine computations are performed in
memory, so the average time taken in checking one violation message against the rules is
less than 1ms. This means that 1,000 messages per second can be checked. Moreover,
every Rules Matching Engine’s process is independent, so it is very easy to shard it [48].

Figure 5 shows the count of incidents detected in Playtech plc from 2016 to 2019
quarterly. The red color region shows the count of incidents detected by customers and
the green color region shows the incidents detected by monitoring systems in Playtech
plc. Once the current solution was deployed during the third quarter in 2018, the number
of customer detected incidents have decreased and the number of incidents detected by
monitoring systems have increased. In 2016 and 2017, SHA was used and in mid of
2018, the current solution was deployed in production.

Implementation of this solution is done in Python programming language and the
metrics are stored in InfluxDB14 database. The solution has an event-driven design and all
communication is done asynchronously using message queue to achieve high throughput.
Some details of the components of the system is given in Section 5.1.

This solution was an improvement from the previous solution that uses HP’s SHA
as can be seen in Figure 5. It provided better results and the response time was about 3
minutes (to detect anomalies and send an alert) which is quite less in comparison to 15
minutes taken by SHA. As this solution was based on rules matching, the idea was to try
and use deep learning approach and see if it is a suitable approach for the same problem
of anomaly detection and classification of business incidents. So, the requirement was to
have a second component or Machine Learning Engine (see section 5.1) which can do
the same task of decision making without using the rules matching approach and this
work provides a solution for the same.

14https://www.influxdata.com/
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Figure 5. Count of detected business incidents quarterly (taken from Playtech plc internal
IT services platform ServiceNow)

3.4 Summary
In this chapter, the necessary terms and knowledge for the understanding of this work
are explained. This contributes to answering the research question “What are the current
approaches and solutions that exist for anomaly detection?” (SQ1 in Section 1.2).

In the next chapter, we proceed to create a requirement specification for the solution.
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4 Requirements
This chapter describes the requirement specification for the proposed solution and an-
swers the second sub-question (SQ2 in Section 1.2). To answer this question better, it
is broken down into the following six sub-questions: 1) What are the functional and
performance requirements of this proposed solution? This chapter lists and describes the
requirements.

The remaining sub-questions: 2) What is the overall design and system architecture of
the proposed solution? 3) What are the data collection and transformation techniques? 4)
What are the assumptions and scope of the proposed solution? are answered in 5. Chapter
6 answers the sub-question: 5) What is the method used for analysis of the fetched data?
Chapter 7 answers the last sub-question: 6) How are the different components of the
proposed solution implemented and how do they interact with each other?

4.1 Functional Requirements
Functional requirements include the main tasks, the actions and activities to be performed
by the solution. Figure 6 illustrates the use cases of the required system. Each of the use
cases15 is mapped to a functional requirement.

• F1: An analyst shall be able to fetch the data within a given time range: The data
is fetched from the database within a given time range and for particular sites. The
use case UC1 is mapped to this requirement.

• F2: An analyst shall be able to transform the data: Once the data is collected, the
data is pre-processed, meaning the data is cleaned and the missing values are filled.
The data values are then normalized and thus transformed into features which
can be used further as train and test data. The use case UC2 is mapped to this
requirement.

• F3: An analyst shall be able to detect anomalies using the proposed solution: The
developed solution should implement a CNN based machine learning model for the
detection of anomalies and business incidents. The machine learning model shall
be able to perform analysis of metrics data for multiple sites and detect business
incidents. The use case UC3 is mapped to this requirement.

• F4: An analyst shall be able to classify business incidents categories: The
developed solution should implement a CNN based machine learning model to
categorise business incidents. The machine learning model shall be able to detect
and categorise business incidents into different categories. The use case UC4 is
mapped to this requirement.

15The use cases are defined using use case textual templates (Tables 9-14 in the Appendix I)
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• F5: An analyst shall be able to predict business incident categories: The developed
solution should implement a CNN based machine learning model to categorise and
predict business incidents. The machine learning model shall be able to predict
business incidents into different categories based on probability values. The use
case UC5 is mapped to this requirement.

• F6: An analyst shall be able to evaluate the model results: The developed solution
has a CNN based machine learning model which is used to categorise and predict
business incidents. The results from this model i.e. the categorised incidents
should be evaluated. The use case UC6 is mapped to this requirement.

It is important to mention that the solution, which detects anomalies, categorises and
predicts business incidents, is to be used in conjugation with the current monitoring and
alert system in Playtech plc.

4.2 Performance Requirements
Performance requirement specifies the extent to which the functional requirements must
be executed and measured in terms of quantity and quality.

• P1: Memory: The developed solution should be efficient in terms of memory to
have practical use and so that it could be adopted by Playtech plc. The memory
requirement is set based on the data size and is less than 6GB. The typical machine
learning phases like training the model must be supported seamlessly.

• P2: Computation Speed and Efficiency: The time taken for data collection, pre-
processing and training the proposed CNN based classifier should be less than 10
hours. The developed solution must yield optimized results and this should be
measured by metrics like accuracy, precision, recall and f1-measure.

• P3: Extensibility: The proposed solution should allow the addition of new statis-
tical and machine learning algorithms and be upgradable to multiple sites when
required. The system shall be built as a set of loosely coupled individual compo-
nents which makes it possible to extend the system and add features independently
without the problem of breaking something.

Security is not the focus of this work but certain aspects of security are taken into
consideration while designing the proposed solution such as data confidentiality. Only
the authorized user can read and process the intended data (in this case Playtech plc). A
secure connection to the database (DB) is established for data collection.

The traceability between requirements and design of the proposed solution is given
in Appendix II.
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4.3 Summary
In this chapter, the requirements for the proposed solution are gathered and a requirement
specification is created. This contributes in answering the research question "How to
design and develop a viable solution for the detection of anomalies and categorisation of
business incidents?" (SQ2 in Section 1.2).

After gathering the requirements, in the next chapter, we proceed to discuss design of
the proposed solution.
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5 Proposed Solution Design
This chapter describes the architecture of the proposed solution and contributes in
answering the second sub-question (SQ2 in Section 1.2). The following sub-questions
are answered in this chapter: 2) What is the overall design and system architecture of the
proposed solution? 3) What are the data collection and transformation techniques? 4)
What are the assumptions and scope of the proposed solution?

Section 5.1 discusses the system architecture in brief and then the individual compo-
nents of the proposed solution are explained. Section 5.2 describes the data fetching and
feature engineering mechanism. The assumptions and scope of the proposed solution are
mentioned in Section 5.3.

5.1 Architecture Overview
This section describes the system architecture of the proposed solution. It details the
individual components/modules of the proposed system such as the data fetcher and
preparation modules, Analysis module.

The proposed solution consists of a Machine Learning Engine. This engine uses a
CNN based model for the detection of anomalies and categorisation of business incidents
[]. The data comprises of various business metrics such as user logins, payments,
transaction amounts which is fetched from the InfluxDB. This engine collects and
transforms the data, perform certain analytical computations, categorises the business
incidents and predicts probabilities for business incidents. In this thesis, a CNN based
model is used to categorise the business incidents and the model is evaluated using
metrics such as accuracy, precision.

Figure 7 shows the system architecture of the Playtech plc monitoring and alert
system (consisting of Rules Matching Engine and other related components) along with
the proposed Machine Learning Engine.

The solution is designed as a set of loosely coupled components. The communication
between system components is done using a message queue and in an asynchronous way
to achieve higher throughput. In this case, ActiveMQ16 is used but any message queue
following Simple Text Oriented Messaging Protocol (STOMP) can be used [48].

Python programming language, with its various data analysis and computation li-
braries such as Pandas17, NumPy18, Scikit-learn19, is chosen for implementation. The
business metrics are stored in InfluxDB as it is quite fast and reliable for time series [49].

16http://activemq.apache.org/
17https://pandas.pydata.org/
18http://www.numpy.org/
19https://scikit-learn.org/stable/
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The Event Streamer, Worker, Rules Matching Engine and Reporting components
(although not part of the proposed solution) are discussed in brief as they are necessary
for the understanding of the current system in Playtech plc and the information flow.

Worker: It is the main working unit that has a set of models along with meta-data. The
worker performs I/O operations in the InfluxDB. It has a handler and a data connector
[48]. The handler receives data from the data connector and tests it against a set of
models using a specific strategy.

Event Streamer: This component has all the workers and fetches data regularly.

Rules Engine/Rules Matching Engine: This component receives the information pro-
vided by the Event Streamer as input. This is done by subscribing to a specific topic
in ActiveMQ. The Rules Matching Engine is subscribed to a specific topic and every
violation message is added to the tree of dictionaries that is associated with every site
(a tag is used in the InfluxDB) [48]. The system stores all the events received within a
specific time range. After new messages are received, the previous old events are deleted.

Every message is sent to the Rules Matching Engine where the analysis is done.
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YAML Ain’t Markup Language (YAML), a human readable data serialization language,
is used for defining the rules. A rule can be any metrics based decision (For ex: ’An
alert should be sent, if a particular metric is decreasing and another one is increasing’).
The rules are set by using regular expressions or prefixes for the names of the metrics.
At the start of the Rules Matching Engine, an abstract syntax tree is created and every
violation message is checked against this tree. If a rule is matched, an alert will be sent
[48]. There is a possibility that an event triggers more than one rule. In that case, the
rule hierarchy defines which rule is more important and what alert should be sent.

Analysis module

Recorded
Incidents

file

Evaluation module

Machine Learning Engine

Secured Connection

InfluxDB

Data Preparation 
module

Data Fetcher
module

Categorized
Business
Incidents

Figure 8. Block diagram of the proposed solution

Here, the speed and acceleration of the degradation of the metrics with respect to
time is important, as it shows the severity of the incident. Speed is a discrete derivative
or an angular coefficient of a particular metric which is calculated for every violation.
Acceleration is the second order derivative. The speed and acceleration values are set in
the rules and used in the overall assessment of an incident [48].
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The average time of checking one violation message against the rules is around 1 ms
for the configuration [48]. This means that more than 1,000 messages per second can be
checked.

Reporting: This component creates dynamic reports which record all the alerts and all
the metrics that are related to the rules. A report link is generated, when an alert is fired
by the Rules Matching Engine [48].
As the rules matching engine had certain disadvantages for ex: creating a new rule would
require code changes. This led to the requirement for another Machine Learning Engine
where the detection and categorisation could be done automatically.

Machine Learning Engine: The Machine Learning Engine is the main focus of the
design and implementation of the proposed solution. Figure 8 depicts the block diagram
of the Machine Learning Engine. It consists of four main modules: 1. Data Fetcher
module, 2. Data Preparation module, 3. Analysis module and 4. Evaluation module.

1. Data Fetcher module: This is the module that fetches the data from the InfluxDB
through an established secure connection as shown in Figure8. The InfluxDB is
used as it is a fast access database and is quite reliable [49]. The tasks performed
by this module are explained in Subsection 5.2.2 and the implementation details
are given in Chapter 7.

2. Data Preparation module: This module, as the name suggests, is responsible for
performing the pre-processing and transformation on the fetched data. There are
three main tasks performed in the module. The first task is to clean the fetched data
and fill any missing values. The missing values are replaced by 1 to avoid division
by zero error during the next normalization step. The next task is to normalize
the data and make sure that all the data values are in between the range of 0 and
1. The last task is to slice the normalized data into small windows which can be
used as input to the model. The tasks performed by this module are explained in
Subsection 5.2.3 and the implementation details are given in Chapter 7.

3. Analysis module: This module comprises of the CNN based model. This model
will be discussed in detail later in Chapters 6 and 7. The CNN based model is used
to detect, classify and predict business incidents. For this a recorded incidents file
is also used as shown in Figure8, which assists in implementing the supervised
learning model.

4. Evaluation Module: This module, as the name suggests, is used to evaluate
the model implemented by using various evaluation metrics such as accuracy,
precision, recall. The results of the evaluation are provided in Section 8.2.
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5.2 Data Collection and Pre-processing
In this section, the method to collect and pre-process data is described. the Subsections
5.2.1, 5.2.2 and 5.2.3 include the details about the time series database (TSDB) used and
the data flow during the fetching and pre-processing stages. The business metrics data is
collected using multiple sources which retrieve data and feed to the DB as well as the
event streamer and workers. The focus of this section is data fetching from the DB as the
other sources and event streamer is out of scope for this work.

5.2.1 Data Structural Property

The data is business metrics data. It consists of metrics for each site or licensee such as
number of login and sign-ups, number of payments and transactions carried out, various
casino gaming win and bet counts etc. It is organized such that for each metric say casino
gaming, there are many aggregate values such as win counts, bet counts, games count
etc. Another metric payments has aggregate values such as number of withdraw requests,
withdraw count, deposits count and so on.

TSDB is used to store time series data efficiently. It is a database that is optimized
for handling time series data or any serial data indexed by time [50]. The efficiency
considerably improves based on the fact that time is considered as a discrete quantity
rather than a continuous one. A TSDB enables to insert, read, update and delete time
series data easily and helps to organize it better than relational DB.

As mentioned before, InfluxDB is used for managing the time series business data
available in Playtech plc. It is a cross platform, open source and MIT licensed TSDB
developed by InfluxData 20. InfluxDB is specifically optimized for fast retrieval of time
series data. It promises a high-availability storage option and is popular in the fields of
operations monitoring which suits the needs of this solution [50]. It is also a good option
as database for real-time analytics and fast processing operations.

InfluxDB provides a SQL-like language called InfluxQL with built-in time-centric
functions for querying a data structure composed of measurements or series or data
points [51]. Each point consists of several key-value pairs called the fieldset and an
associated timestamp. These are grouped together to define a series, as a set of key-value
pairs called the tagset. These series can be grouped together by a string identifier to form
a measurement. The points are indexed by their associated timestamp and tagset. The
queries run periodically and results are stored in a target measurement.

An example of a tagset, in a measurement, is as follows: A tagset comprises of a
root tag and an aggregate tag. The root tag has the site (licensee name) name and say the
aggregate tag consists of an operation. This operation can have metric values related to
user logins, casino gaming metrics, payments metrics etc. An example for value of the
aggregate tag (termed as aggregate value in this solution) can be failed login count.

20https://docs.influxdata.com/influxdb/v1.7/
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5.2.2 Data Fetcher module

The business metrics are collected regularly from multiple sources and stored in the DB.
This is done by specific data fetching operations which collect business metrics after
every 1,800 seconds. The details of this business metrics collection is out of scope of
this thesis.

The Data Fetcher module fetches the business metrics data stored in InfluxDB for
individual sites. A list of available sites (licensees) is maintained and the data is fetched
within a given time range. For this, a secure connection to the database is established
by specifying the database name, username, password and other parameters which is
discussed in detail in the implementation Section 7.2.1. Once the secure connection is
established, the measurements of the business metrics are retrieved.

Each measurement consists of various business metrics which are retrieved and read
as follows: The root tag value is the name of the site. The aggregate tag consists of the
metrics name casino_gaming, logins and their values. The aggregation list comprises of
casino, clientplatform and operation. The metric name, operation name and aggregate
value combines to form the aggregate tag. For each site, there can be multiple metrics.
Therefore, the dictionary sites_metrics stores all the site names as keys and the metrics
as values. Once the aggregate tag is available, it is used to query and retrieve results from
the metric table by providing the site name. The results are retrieved in a list. For each
individual query, a 1,000 records dataframe with a unique field/column name containing
aggregate tag and metric values are retrieved. The data is collected for a specific time
range using the start and end date.

Data Normalization: Normalization is done to make the data uniform so that it can
be used as input to the CNN model. The data is subsetted within a given time range
and normalized. Normalization is used to adjust the data so that it is approximately of
the same scale. Here, the data is rescaled to have values between 0 and 1. This can be
achieved by the equation 1.

xnew =
x− xmin

xmax − xmin

(1)

Once the data is normalized, the subsets are combined to form a single data frame.
This data frame, with multiple fields/columns specifying the different metrics values, for
a particular site is then returned to the Data Preparation module.

5.2.3 Data Preparation module

Once the data frame is retrieved from the Data Fetcher module, the Data Preparation
module performs certain transformations and convert it into a suitable form for input to
the CNN model. As stated in the Section 5.2.2, on retrieving the subset of the data within
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a given time range, the data is normalized and the maximum values are set to be 1.

Filling Missing Values: Another important operation is to fill the missing values with
some common value or a mean/median value. The value chosen here was 1 to avoid
division by zero error. Using the mean value doesn’t quite provide any advantage as the
data being used is already normalized.

Data Slicing: The next task is to slice data and create different matrices of data.
The data subset or slice with 5 rows and 12 columns is used. Each of these slices’
rows is traversed and the timestamps are matched against the incident times from the
recorded incidents file. The incident flag is set to True or False accordingly. Furthermore,
the sliding window method is used. A sliding window is a sub-list that runs over an
underlying collection. For ex: for a list of size 7 [A, B, C, D, E, F, G], a sliding window
of size 3 will have elements like [A, B, C], [B, C, D],..., [E, F, G]. Following the same
approach, a window with parameters window_height and window_width containing data
points is created and then the window is moved one step at a time for each step of
iteration, until the end of data points is reached.

The window size parameters are modifiable according to the requirements. In this
solution, a window size of 5x5 meaning window_height = 5 and window_width = 5
is chosen for the transposed slice of data. These window slices of size 5x5 are then
converted into a matrix/2-D array which has values between 0 and 1. The incident
flag is again checked and the slice matrix is added to the incident marked list or non-
incident marked list based on the value of incident flag. Thus, using the above mentioned
approach, the data is sliced into smaller matrices using a 5x5 window and checked for any
incidents or anomalies. Finally once all slice matrices are segregated, they are labeled
using ’1’ for the incidents and ’0’ for non incidents. The final result list is combined
from the two lists: the incident marked list and the non-incident marked list.

5.3 Assumptions and Scope
The following assumptions are made while designing and developing the proposed
solution:

• It is assumed that the historical data of business metrics and events are already
present as a time series and stored in a database.

• In order to avoid memory errors during the training of CNN model on a single
machine, it is decided to set the maximum data size to be trained around 400 MB.
Although, the final implemented solution in production is to use large dataset i.e.
in orders of GBs.
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• It is assumed that the training dataset is balanced i.e. count of incidents and
non-incident event is similar so as to avoid the classifier being biased towards one.

• It is assumed that the proposed solution will exist in conjugation with the rules
matching engine which already exists as a current solution in Playtech plc.

The other supporting components like metrics collection component and DB manage-
ment is out of scope of this thesis. The dashboards to visualize the alerts are not included
in this work as well.

The main focus of this work is only on designing and developing a solution for data
pre-processing, implementing a CNN based machine learning model and evaluation of
this model.

5.4 Summary
In this chapter, the architectural design of the proposed solution, the data collection and
data transformation methods are described. This contributes in answering the research
question "How to design and develop a viable solution for the detection of anomalies
and categorisation of business incidents?" (SQ2 in Section 1.2). The assumptions and
scope of this work are also mentioned here.
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6 Analysis Module
This chapter describes the CNN based model and contributes in answering the second
sub-question (SQ2 in Section 1.2). The question: 5) What is the method used for analysis
of the fetched data? is answered in this chapter. To analyse the data, a deep learning
approach is followed which uses Convolutional Neural Network.

6.1 Convolutional Neural Network (Deep Learning Approach)
The idea was to use a deep learning approach for the task. A Convolutional Neural
Network is chosen as it is best known for its ability to recognize patterns. This suits the
main task in the proposed solution that is to detect reoccurring patterns and/or anomalies.
In this chapter, the design of CNN, the types of layers and the different hyperparameters
that can be used are discussed. It also includes discussion about layers and parameters
relative to the proposed solution’s CNN model. Chapter 7 describes the implemented
CNN model.

CNN or Convnet is a sequence of layers where every layer transforms one volume of
activations to another through a differentiable function [52]. Classification using CNN in-
cludes many steps and several layers. It has multiple hidden layers which perform a set of
mathematical operations for extracting low-level features through applying convolutional
filters, activation functions, max-pooling operation, resizing the layer, transforming layer
to fully-connected layer. The neurons inside the hidden layers use weights on inputs to
produce the output. Figure 9 shows an example of a CNN.

Input

Convolution Layer Pooling Layer Convolution Layer

Dropout Layer

Dense Layer Output

Convolution Max Pooling Convolution

Pooling Layer

Max Pooling Drop Out 
p = 0.5 

Fully Connected

Figure 9. An example of a convolutional neural network (adapted from [40])

The Analysis module (as mentioned in 5.1) comprises of the CNN based model. Al-
though CNNs can have various network architectures, they contain similar components
which are described below:
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Convolutional/Conv Layer: It is the core building block of a CNN that does most of
the computations. A 2-D convolutional layer is used which applies sliding convolutional
filters to the input i.e. applying matrix filter. The computations include dot multiplication
between two matrices and sum up the received values [53]. One of these matrices is
the set of learnable parameters known as a kernel and the second matrix is the receptive
field’s values. The size of the Convolution kernel is much smaller than the input image
[53]. Figure 10 shows an example of convolution on input matrix data using a 3x3 kernel
matrix/filter.

Input matrix Kernel matrix / Filter Output Matrix

1*1 + 1*0 + 1*1 + 0* 0 + 1*1 + 1*0 + 0*1 + 0*0 + 1*1 = 4 
1*1 + 1*0 + 0*1 + 1*0 + 1*1 + 1*0 + 0*1 + 1*0 + 1*1 = 3 

Operations

Figure 10. An example of convolution on input matrix using a 3x3 filter (adapted from
[54])

The first convolutional layers in the networks usually detect low-level features such
as lines, edges and curves [55]. Once the network becomes deeper through max-pooling
operations and convolutional layers, they can detect more complex features. For every
convolution filter, we must specify the filter size that is how many pixels are used in a
filter. A filter is any algorithm that starts with some image I(x, y) and computes a new
image I′(x, y) by computing for each pixel location x, y. The template that defines both
this small area’s shape, as well as how the elements of that small area are combined, is
called a filter or a kernel [56].

Stride and Padding: Stride specifies the number of pixels by which the convolution
filter is shifted at each step during convolution [54]. The default value is one. As we
increase the stride, the output feature map reduces in size as some potential locations are
skipped in this process. In order to maintain the same size/dimensionality, padding is
used. As the filters are square and if there is no padding, the filter might be outside the
input matrix, so additional padding is used which extends the margins of input matrix and
fills those margins with zero-values [54]. This helps to preserve the size of the feature

37



maps or else they would shrink at each layer. Figure 11 shows the strides and padding
techniques.

Input Matrix with Stride 1 Input Matrix with stride 2

Input Matrix with padding 

Figure 11. Strides and padding (adapted from [54])

Activation Functions: Activation functions are applied after Conv layer to transfor-
m/modify the output values in desired form [53]. The layer with activation function
maps the resulting values depending on the activation function used. Figure 12 shows the
different activation functions. The sigmoid function curve takes a S-shape. The sigmoid
function is used for models where we have to predict the probability as an output and
as probabilities can be between 0 and 1, the function also ranges between 0 to 1. The
softmax function is a logistic activation function that is used for multi-class classification.
The tanh function is also like the logistic sigmoid but the range is from (-1 to 1). The
ReLU is half rectified i.e. f(x) is zero when x is less than zero and f(x) is equal to x
when x is above or equal to zero. The range is [0 to infinity). All the negative values are
transformed to zero. It is applied to the output of the Conv layer to extract linear and
non-linear relations in the data.

In this work, ReLu activation function is used for convolutional layers and sigmoid
function is used to categorise whether a business incident is detected or not.

Pooling Layer: This layer is inserted between successive convolutional layers [53]. It
is applied to the output from the ReLU to extract the most meaningful information. It
progressively reduces the spatial size of the representation and thus reduces the amount
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Sigmoid tanh ReLu

Figure 12. Different activation functions (adapted from [53])

of parameters and computation in the network. This helps in controlling overfitting [52].

Fully connected Layer: This layer acts as a classifier[53]. In this layer, each neuron is
connected to every neuron in the previous layer, and each connection has its own weight
[52]. The connection pattern makes no assumptions about the features in the data. It is
very expensive in terms of memory (weights) and computation (connections). The con-
volutional layers provide a meaningful, low-dimensional space and the fully-connected
layer learns a function in that space.

Dropout Layer: This layer randomly sets the input elements to zero with a given
probability. It deactivates a certain percentage of neurons for the specific layer during
the training. It is used to prevent overfitting in the network [55].

Output Layer/Classification Layer: This layer computes the cross entropy loss for
multi class classification with mutually exclusive classes. It uses softmax or sigmoid
functions.

In this work, a sequential model is created using Keras21 and convolution layers are
added. There are two convolutional layers in the model. Both layers have the same
number of hidden units i.e. 64, the ReLu activation function and a default stride value of
1x1. The number of hidden units were chosen to be 64 as it is between the size of the
input layer and size of output layer. Other option e.g. 128 was also tried. It did not have
any significant impact on the final model results instead increased the training time. So,
it was decided to use 64 hidden units to avoid underfitting as well as overfitting and to
reduce the training time.

The filter size in both the layers is different. It is 4x4 and 3x3 in the first and second
convolutional layer respectively. The idea is based on the fact that as the patterns are
small, it is recommended to use small filters relative to the input matrix size (5x5). As

21https://keras.io/
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the incident list consists of slice arrays of size 5x5, kernel size was chosen to be 4x4 and
3x3.

Two pooling layers are used with the same pool size 2x2 and stride 1x1. For the fully
connected layer, 32 hidden units and the ReLu activation function is used. The dropout is
set to 25% to avoid overfitting. The batch size is kept at 64. Although other batch sizes
e.g. 32 were also tested but in this case, 64 suits the best. The parameter values along
with other implementation details will be discussed in 7.2.2.

6.2 Summary
In this chapter, the CNN model used for detection and categorisation of business inci-
dents, used in the Analysis module as part of the proposed solution, is explained. This
contributes in answering the research question "How to design and develop a viable
solution for the detection of anomalies and categorisation of business incidents?" (SQ2
in Section 1.2).
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7 Proposed Solution Implementation
This chapter describes the implementation of the proposed solution and contributes in
answering the second sub-question (SQ2 defined in Section 1.2). This chapter answers
the question: 6) How are the different components of the proposed solution implemented
and how do they interact with each other? Section 7.1 explains the interaction between
the individual components of the proposed solution. Section 7.2 gives the implementation
details. Section 7.2.1 describes the data pre-processing along with code snippets from
the implemented solution. Section 7.2.2 describes how the CNN model is implemented
along with code snippets.

The proposed solution is implemented in Python programming language and uses
several other open source libraries e.g. Pandas library is used for data pre-processing and
transformation. The deep learning library Keras is used for the implementation of CNN
based model.

7.1 Component Interaction
In this section, the different components of the proposed solution and their interaction
among each other are discussed. The data and information flow among different modules
is also described. Figure 13 and Figure 14 depicts the working of various involved
modules and components. Figure 15 shows a detailed view of the relationship between
the modules. The work of the Data Fetcher and Data Preparation modules is separated
from the Analysis module and Evaluation module for modularity, easier maintainability
and understanding.

Data Fetcher and Data Preparation module: Figure 13 illustrates the data collection
and transformation process. The main function initiates the data preparation phase. The
Data Fetcher module initiates the connection to the DB by providing the username, pass-
word, URL and other necessary arguments over secure connection. Once a connection
is made to the DB, it performs a select operation to fetch data for a particular business
site and returns the result set to the Data Preparation module. The data comprises of
various business metrics like login counts, games count, win counts, bet counts, pay-
ments, withdraw count, closed fund transfers etc. The fetched result set data is then
cleaned. This operation is performed iteratively until data for all sites is fetched and
cleaned. Afterwards, when the data from all sites is fetched, the result dataset is passed
to the Data Preparation module.

The Data Preparation module now initiates a call to the Incident Data Manager and
receives the recorded incidents file. This file contains the historical list of incidents,
along with time values, which is used to generate labels. Once the recorded incidents are
received, the Data Preparation module uses this recorded incidents data as well as the
cleaned fetched data and perform certain transformations which is described later. Data
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Slicing operation (as described in 5.2.3) is performed and the incident times from this
recorded incidents file is used to label the data. This data is passed to the main function
as a combined list of incidents and non-incidents data, with normalized metrics values
and the associated labels.

Main Data Preparation Module Data Fetcher Module

initiate DB
connection

perform data
cleaning 

operations on data

call 
Data Fetcher
module

call Incident
Data Manager
module

initiate data fetching

receive cleaned data

initiate incident data
fetch from file

pass cleaned
 data

receive incidents 
data from file

perform matrix operation 
and preprocess data

in required format

Incident Data Manager

get incidents from
incidents file

pass incident list

incidents file
present?

no

keep trying until 
file is present.

initiate data
preparation

get data for site
pass data

connect to DB

<<Loop>>
[test] for all sites in the sitelist

DB

connection to 
DB 

established?

no

keep trying until 
connection established

call 
Data Preparation
Module

yes

receive 
resultant data return result data

yes

Figure 13. Data fetcher and data preparation modules

Analysis and Evaluation Module: Figure 14 illustrates the Analysis module and
Evaluation module. It shows the information flow between these two modules. The
analysis of data is initiated by calling the Analysis module. This module comprises
of the CNN based model. The earlier cleaned and transformed data received from the
Data Preparation module is shown in Figure 13 fed to the CNN model. The business
incidents are then detected, categorised and predictions are made. The results, including
the predicted values, from this model is returned to the main function in the form of lists.
These results are then passed on to the Evaluation module for evaluation. The evaluation
of the model is done on the basis of metrics such as precision, recall, f-measure, accuracy
and finally the evaluation results are passed to the main function.

Figure 15 shows the detailed structure of the proposed solution. The diagram although
does not show each and every functions, yet the most important ones which are required
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Main Analysis module Evaluation module

evaluation metrics

perform evaluation of 
model results

calculate precision, recall,
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CNN model

return analysis results

call Evaluation module

initiate analysis

call Analysis module
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initiate evaluation

receive model 
evaluation results

pass model results

Figure 14. Analysis and evaluation modules
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to understand the overall information flow are shown.

IncidentDataManager

+ incidents_filename : String
+ list_incident : ArrayList<incidents>

+ incident_extract_from_csv  
(site: String) : ArrayList<incidents>

DataFetcher

- site : String
- metric : String
- from_date : Date
- to_date : Date

+ fetch(self, value_site : String) : ArrayList<data> 

+ __fetch_within_timerange__(agg_value :String, aggregation: String,
date: Date, metric: String, value_site : String) : ArrayList <data> 

+ normalize_data(subset : ArrayList<data>, mean: ArrayList<data>):  
ArrayList<data> 

+ get_last_week_date__() : Date

DataPreparator

+ test_list : ArrayList<sites>
- resultdf : ArrayList<data>

+ prepare_data(window_height : int, window_width: int) :  
ArrayList<data>

Models

- X_train : ArrayList<data>
- X_test : ArrayList<data>
- X_valid : ArrayList<data>
- Y_train : ArrayList<data>
- Y_test : ArrayList<data>
- Y_valid : ArrayList<data>

+ data_model_cnn(incident_marked_list : ArrayList<incidents>,  
incident_marked_list_test: ArrayList<incidents>, window_height : int, window_width: int) :  
ArrayList<data>, ArrayList<data> 

+data_model_rf(incident_marked_list : ArrayList<incidents>,  
incident_marked_list_test: ArrayList<incidents>) : ArrayList<data>, ArrayList<data>

Evaluation

- precision : double
- recall : double
- f1measure : double
- accuracy : double

+evaluation_metrics(Y_test: ArrayList<data>,
Y_pred: ArrayList<data>) :  
void

Main

InfluxDBConnector

+ url : String
+ username : String
+ password : String
+ database : String

+ connect() : void 
+ get_data(metric : String, window : int
, fields_dict : ArrayList<data> , field :
String) : String1

*
1

1

1 1

connects 1

uses

analyses

1

1

1 1

uses

1

evaluates

Figure 15. Low level diagram of the proposed solution

The main classes which correspond to the main modules of the proposed solution are
shown in Figure 15. It consists of a DataPreparator class which uses the DataFetcher
class to collect the data. The DataFetcher class connects to the database using the
InfluxDBConnector class in order to fetch the data. The Data Preparator class also uses
the IncidentDataManager class to import recorded incidents file. The DataPreparator
class transforms the fetched data and then passes the prepared data lists to the Models
class (Analysis module) which performs the analysis on the data and categorises and
predicts the business incidents. Lastly, the Evaluation class performs evaluation of the
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categorised business incidents.

7.2 Implementation Details
In this section, the implementations details of the different modules and the main func-
tion are described along with code snippets. The data pre-processing implementation is
detailed in 7.2.1 and the CNN model is described in 7.2.2.
Each of the four modules in the proposed solution, as described in Section 5.1, is im-
plemented as a separate package in an object-oriented programming paradigm to have
separate functional responsibility. The different packages are then tied together with a
main file.

The ’main.py’ file contains the main script which controls all the modules and manages
the information flow between different modules. A code fragment from this file is shown
in listing 1. Here, the following operations are performed:

• Specify the site (licensee) names for which the business metrics data should be
collected in test_list.

• The parameters window_width and window_height are used to define the window
size for input data matrix in the CNN model.

• The IncidentDataManager class (’incident_management.py’) creates a list of al-
ready occurred incidents using the incident_time_manager object. These incidents
are read from a csv file which has manually recorded incidents during the period
of March and April 2018.

• The fetcher object of class DataFetcher (file ’fetcher.py’) is passed to the Dat-
aPreparator class.

• The data_preparator object of the DataPreparator class (file ’data_preparator.py’) is
initialized with the test_list sites, the fetcher object and the incident_time_manager.

7.2.1 Data collection and pre-processing Implementation:

As we discussed data pre-processing in Section 5.2, here the implementation details are
given for the same including code snippets for illustration.

Data Fetcher module:
In the DataFetcher class, the important method is fetch(). The influx_connector is used
to connect to the InfluxDB and retrieve the business metrics data. The following steps
are performed in this method.
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incident_time_manager = IncidentDataManager(incidents_filename)

fetcher = DataFetcher(from_date, to_date)
data_preparator = DataPreparator(test_list, fetcher,
incident_time_manager, type = 'train_')

result_list = data_preparator.prepare_data
(WINDOW_HEIGHT, WINDOW_WIDTH)

data_preparator = DataPreparator(test_list, fetcher,
incident_time_manager, type = 'test_')

result_list_test = data_preparator.prepare_data
(WINDOW_HEIGHT, WINDOW_WIDTH)

dm = Models(result_list, result_list_test)
Y_test, Y_pred = dm.data_model_CNN(result_list,
result_list_test, WINDOW_HEIGHT, WINDOW_WIDTH)

eval = Evaluation(eval_metrics=None)
eval.evaluation_metrics((Y_test[:,0]), Y_pred)

Listing 1. Code snippet from the file ’main.py’

• The first step is to check if the site_metrics’s value i.e. the list of metric, ag-
gregation, agg_value is already present in site_metrics dictionary or not. If not,
an empty list is added to this value. Next for all aggregation values, from the
aggregation_list i.e. the aggregate tags like casino, operation, the following steps
2 - 4 are followed.

• For each agg_value in aggregation_values_unique_list, we append the sites_metrics
dictionary values and increment the count of all_metrics.

• Next step is to fetch the data within a specific time range. For ex: if we want
to get values between last week and current date, we specify the last week
date using the __get_last_week_date__() method and to_date accordingly. The
__fetch_within_timerange__ () method is used to get the subset of data by specify-
ing the agg_value, aggregation, date, metric and value. The metric values obtained
are extracted into dictsubset using subset operation on the ‘measurement_value’
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for site in self.test_list:
fetched_dataframe = self.data_fetcher.fetch(site)
fetched_dataframe = fetched_dataframe.fillna(1)
fetched_dataframe.to_pickle(self.type + site + '.pckl')
fetched_dataframe.index = pd.to_datetime(fetched_dataframe.index)
incident_times = self.incident_time_manager.incident_extract_
_from_csv(site)

Listing 2. Code snippet from the file ’datapreparator.py’

column and converting it into a dictionary. This is carried out in a while loop and
is then concatenated into a resultant dataframe result_df. The date parameter in
the __fetch_within_timerange__ () method is updated by deducting 7 days in each
iteration till the to_date date is reached.

Finally, the metric_name is formed by concatenating the value, metric, aggregation
and agg_value. This is then used to rename the ‘measurement_value’ column
of the dataframe to the new column name which is the ’metric_name’ and the
result_df is then returned.

An example of the data fetched is from the site ’Megasport’ which has around
120,000 rows (timestamp values) and 12 columns (metrics).

The __fetch_within_timerange__ () method has two subsequent methods. The
get_model() method is used to create a model from the metric, value, aggregation,
agg_value etc. The normalize_data() method uses the subset data (subset of
‘measurement_value’ column) and normalizes it using the div operation by mean
(mean of ‘measurement_value’ column). If there are missing values, they are
filled with ’1s’ and all values greater than 1 are replaced by 1 as max value.
The __fetch_within_timerange__ () method basically gets the date, start_week
and end_week using the get_week_range () method. It calculates the mean and
generates a dataframe. The dataframe values where the aggregation column values
are same as agg_value are then aggregated and grouped by column ‘time’. Thus
the subset data frame is created by normalizing the data values.

Figure16 shows the normalized measurement values for site ’Megasport’ alongwith
timestamps.

Data Preparation module:
In the DataPreparator class, the most important method is prepare_data(). It takes as
input the window_width and window_height parameters as specified in file ’main.py’.
The following steps are performed here.

47



Figure 16. Normalized measurement values for site ’Megasport’

• The first step is to fetch the business metrics data from InfluxDB using the fetch()
method which resides in the DataFetcher class (file ’fetcher.py’) and storing it in
a dataframe. The data is fetched between a given time range and the values are
normalized between ’0’ and ’1’. The missing values are filled with ’1s’. If we
fill them with zeros, on normalizing such zero values, there are a lot of infinite
values. Serialization 22 is performed on the dataset and the data is stored as a pickle
file along with the site name for quicker read operations later. The dataset can
then be read using read_pickle into a dataframe and is indexed using the datetime
function provided by Pandas library. The incident_times i.e. the time ranges where
an incident is recorded, are extracted from the csv file. All the above steps are
done for each site in the test_list of site names. Code fragments from the file
’datapreparator.py’ are given in listing 2 which shows the code for data fetching,
listing 3 which shows the code for the data slicing operation and listing 4 which

22https://docs.python.org/3/library/pickle.html
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for x in range(0, fetched_dataframe.shape[0] - window_width):
slice = fetched_dataframe[x:x + window_width]
for index, row in slice.iterrows():

if check_for_incident(index, incident_times):
incident = True

else:
incident = False

Listing 3. Code snippet from the data pre-processing file ’datapreparator.py’

for item in incident_marked_list:
result_list.append((item, 1))

return result_list

Listing 4. Code snippet from the data pre-processing file ’datapreparator.py’

shows the code for combining the incidents and non incidents list into a single
result list with labels.

• Next step is to slice the data frame according to the window_width and win-
dow_height, iterate over all the values of the slice rows and check for incidents
(check_for_incident() method) using the incident_times which were extracted in
the first step. In the check_for_incident() method, the whole incident times list is
traversed and the timestamps in the business metrics data are compared with the
start and end time values of the incident times list. Based on whether there is an
incident or not, the incident flag is updated with either a True or False boolean
value.

• The slice is then transposed and sliding window technique is followed to create
a window_slice. Figure17 shows a window_slice of size 5x5. Here, a window
size of 5x5 i.e. window_height = 5 and window_width = 5 is chosen. This win-
dow_slice is then converted into a slice_matrix which is a 2D array containing
data values. The incident flag is again checked and the slice matrix is added to
the incident_marked_list or non_incident_marked_list based on the boolean value
of the incident flag and the corresponding incident flag values are set as labels.
Both, the incident_marked_list and non_incident_marked_list are a list of tuples
having the sliced matrix and flag value (either 0 or 1) indicating an incident or not
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an incident. A combined result list, containing values from incident_marked_list
and non_incident_marked_list, is then returned back to the main script ’main.py’.
Figure 18 shows few tuples of the incident_marked_list which has the slice matrix
as well as the label for site ’Megasport’.

Figure 17. Window slice (5x5) for site ’Megasport’

Figure 18. Example of incident marked list for site ’Megasport’

7.2.2 CNN based model Implementation

In this section, the design and implementation details of the CNN based model are
explained. This model is part of the Analysis module.

In the Models class, the method data_model_cnn() comprises of the CNN model used
for detecting and categorising business incidents. It takes as input the final_list and
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final_list_test along with the input matrix window_height and window_width.

Convolutional Neural Network model: The input to the CNN model is the final_list
which is divided into train and validation sets in 80:20 ratio. The final_list_test is used as
the test set. The listing 5 shows the code snippet for the same.

train = final_list[:int(len(final_list)*0.80)]
valid = final_list[int(len(final_list)*0.80):]
test = final_list_test[int(len(final_list_test) * 0.100):]

Listing 5. Train, validation and test dataset

Listing 6 is a code block depicting the sequential model generated using Keras. The
model specifics are given below.

• There are two convolutional layers which uses input of the shape (5,5,1). There
are 64 hidden units, the kernel size is 4x4 and 3x3 in the first and second layers
respectively and activation unit type is ReLu.

• There are two pooling layers with pool size 2x2.

• The dropout is set to be 0.25.

• Lastly there is a dense layer of output functions which uses number of classes as 2
and the activation function as sigmoid.

• The value of batch_size which signifies how much data is processed in one iteration
is 64

• The number of epochs is 10.

• Adadelta optimizer is used.

• The number of classes is 2 (in case of incident and non-incident classification).

The sequential model is generated using the Keras library. The train data and
validation data is used for fitting the model. Next the model is evaluated on the test data
using evaluation metrics like precision, recall, f-measure and accuracy. A confusion
matrix is also plotted to show the true positives, false positives, true negatives and false
negatives.

The first fully-connected (dense) layer contains the largest number of trainable
parameters in comparison to other layers. The sigmoid activation function is used to
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detect if an incident is present or not (two-class classification). The probability for every
class is also computed and label with the highest probability/confidence is chosen as the
predicted label. The results of the experiments are given in 8.2.

model = Sequential()
model.add(Conv2D(64, kernel_size=(4, 4), strides=(1, 1),
name='layer_conv1', activation='relu', input_shape=(rows, cols,1),
border_mode='same'))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1),
name='maxPool1'))

model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1),
name='layer_conv2', border_mode='same', activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1),
name='maxPool2'))

model.add(Flatten())
model.add(Dense(32, activation='relu', name='fc1'))
model.add(Dropout(0.25))
model.add(Dense(num_classes, activation='sigmoid', name='fc2'))

Listing 6. The implemented Convolutional Neural Network model
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Evaluation Module:
In the Evaluation class, the method evaluation_metrics() is used to calculate the metrics
such as precision, recall and f-measure. It takes as input the actual test values y_test
and the predictions y_pred. The evaluation metrics are calculated using the confusion
matrix values. The formula for calculating precision, recall and f-measure is given by
the equations 2,3 and 5 respectively. The accuracy of the CNN model can be measured
during the training of the model. The values of the evaluation metrics for different
experiments is given in the Section 8.2.

7.3 Summary
In this chapter, the prototypical implementation of the proposed solution including the
data pre-processing mechanism and the CNN based analysis model is detailed alng with
code snippets. The chapter also explains the interaction between the components of
the proposed solution. This contributes in answering the research question "How to
design and develop a viable solution for the detection of anomalies and categorisation of
business incidents?" (SQ2 in Section 1.2).
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8 Evaluation
This chapter provides an evaluation of the proposed design and the implemented prototype
It also includes the evaluation of the implemented CNN based model thus answering
the third sub-question (SQ3 in Section 1.2). This question was subdivided into the
following questions: 1) What is the system/hardware configuration? 2) What are the
results and means of evaluating the model? 3) How to interpret the results and assess the
performance of the proposed solution?

Section 8.1 describes the system and environment configuration. Next, this chapter
mentions results in Section 8.2 and explanation of performance measurements using
these results. Section 8.3 discusses the requirement evaluation and summarizes the
performance and results of the developed prototype.

8.1 Baseline and Methodology
In this section, the system configuration requirements are listed.

System/Hardware Configuration The implementation is done using Python (version
3.6.3) and keras (version 2.1.5) using tensorflow libraries, on a physical machine with
the configuration as shown in Table 1.

Table 1. System configuration

Operating System Microsoft Windows 10.0.15063 LTS 64 Bit (Linux Kernel 4.4.0.x)
RAM Memory 23,8 GB
Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz, 2 Core(s)
Physical Memory 476 GB

Pycharm IDE 23 (PyCharm 2017.3.2 Community Edition) is used for the implemen-
tation of Convolutional Neural Network based model. The data is stored in InfluxDB
(version 4.1.1). The main python libraries used are Python pandas and NumPy for data
pre-processing and Scikit-learn for the CNN model. The details of the versions of these
libraries are provided in Table 2.

23https://www.jetbrains.com/pycharm/
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Table 2. Main Python packages and libraries used

Packages Version
python 3.6.3
pandas 0.20.1
keras 2.1.5
tensorflow 1.6.0
scikit-learn 0.19.1
ipython 6.1.0
matplotlib 2.1.2
numpy 1.13.3

8.2 Convolutional Neural Network Model Results
This section consists of the results of the CNN based model. The model is run multiple
times with different data sizes and parameters. Some of the experiment results including
the data size, time taken for the model to train and the different evaluation metrics24 are
listed here. It also includes the confusion matrix and the plots for training and validation
accuracy and loss to better understand the model.

Experiment 1
For experiment 1, the data was collected from 17 sites and each site had 12 business
metrics. The data was pre-processed and transformed in order to be used for training the
model. Table 3 shows the first results. It has the values of the time taken to fetch and
preprocess the train and test data, the time taken to train the model and the time taken
to calculate evaluation metrics. The table 4 shows the evaluation metrics values for the
same trained model on test data. The accuracy value is 48% and the model run time is
slight over 16 hours. Therefore, it was decided to try and train the model with 5 sites and
check if there was an error in the data pre-processing.

Table 3. First run: time measurements (in mins)

Run
#

Fetching
& pre-
processing
time (Train-
ing Data)

Fetching
& pre-
processing
time (Test
Data

Model Run
time

Evaluation
metrics cal-
culation
time

1 224.47 122.48 968.72 1.047

24These evaluation metrics used to assess the CNN model results like accuracy, precision, recall are
described in Appendix III
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Table 4. First run: evaluation metrics (CNN)

Run# Activation
function

Precision Recall F-measure Accuracy

1 Sigmoid 0.29 0.02 0.04 0.48

Experiment 2
As the training time in experiment 1 was ~16 hours, the idea was to reduce the num-
ber of sites and see if it reduces the time taken as well as improve the accuracy. So
the number of sites was reduced to 5. The table 5 shows the results for 5 sites. It
includes model run time and evaluation metrics. It is observed that the model run time
has reduced considerably from 16 hours to 1 hour. However, there is no significant
change in the accuracy of the model which still remains 48%. The size of the data
and the time taken for pre-processing the data is given in table 5 and the evaluation
metrics are given in table 6. An addition in these tables is the size of the input data inci-
dent points and non-incident points for the sites before it is sent to the model to be trained.

Experiment 3
So from Experiment 2, it is found that reducing the number of sites reduces the training
time although it does not affect the accuracy. Therefore, for the next experiment, there
were changes made to the data pre-processing and incident detection code. The model
was then trained again for 17 sites. Also, it was made sure that the size of the input
data incident points and non-incident points for the sites is comparable and balanced.
The following tables 7 and 8 give the results and evaluation metrics. The accuracy
value is ~58.53%. In table 7, the first row depicts an imbalance in the data for incident
and non incidents. The training time is over 4 hours with an accuracy of 54%. The
next observation has a more balanced dataset. Figures 19 and 20 show the training and
validation loss and accuracy respectively. Figure 21 shows the confusion matrix.
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Figure 19. Loss (CNN)

Visualization of Weights in Convolutional Layers: As the CNN architecture is like
a black box, the weights of the convolutional layers of the network are visualized as
shown in Figures 22 and 23. In the first convolution layer, the size of the matrix is 4x4
while in the second convolution layer it is 3x3. In the Figure 23, one can observe the
changing intensities implying that the kernels are changing over time during the training.
Some of the highlighted kernels (red) show similarity to Laplacian kernel [56] and Sobel
kernel [56] which helps in edge detection. Other kernels (highlighted by green) show
linear filters as well as separable kernels. A separable kernel can be thought of as two
one-dimensional kernels, which is applied by first convolving with the x-kernel and then
with the y-kernel [56].

8.3 Discussion
This section evaluates the requirements of the solution as described in Chapter 4 and
discusses the results.

8.3.1 Requirements Evaluation

This section provides an evaluation of our proposed design and the implemented prototype
based on the requirements as discussed in Section 4.
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Figure 20. Accuracy (CNN)

• F1: An analyst shall be able to fetch the data within a given time range: The de-
veloped prototype supports that the data is fetched from the database within
a given time range and for particular sites. The connection is established to the
InfluxDB using the necessary parameters for the connection. The data received is
then cleaned in the Data Fetcher module.

• F2: An analyst shall be able to transform the data: The developed prototype sup-
ports that once the data is collected, the data is pre-processed and transformed in
the Data Preparation module. The data values are normalized, sliced into matrices
and thus transformed as input to the CNN model.

• F3: An analyst shall be able to detect anomalies using the proposed solution: The
developed prototype implements a CNN based model for the detection of anomalies
and business incidents categorisation in the Analysis module.

• F4: An analyst shall be able to classify business incidents categories: The devel-
oped prototype supports the categorisation of business incidents. This is done
using a CNN based model.
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Figure 21. Confusion matrix (CNN)

• F5: An analyst shall be able to predict future business incidents categories: Addi-
tionally, the developed prototype supports the prediction of business incidents
using the CNN based model.

• F6: An analyst shall be able to evaluate the model results: The developed proto-
type supports that the implemented model can be evaluated. The evaluation is done
on the basis of the categorised business incidents. This is done in the Evaluation
module .

• P1: Memory: The developed prototype runs on a 24GB RAM and 467 GB machine.
The maximum memory requirement based on the data size and computations is
roughly between 4GB and 6GB.

• P2: Computation Speed: The speed of the developed prototype is measured in
terms of time taken. The optimal time taken for CNN model to prepare data and
perform training is approximately between 2-4 hours when the data is read from
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Figure 22. Visualization of weights in convolutional layer 1

Figure 23. Visualization of weights in convolutional layer 2

the saved pickle files otherwise fetching data from the database takes additional
time of about 3-6 hours (depending on number of sites and time range).

• P3: Extensibility: The developed prototype allows easy addition of new statistical
and machine learning algorithms as we can provide the fetched input data with
minor changes and use it to do the categorisation task. It is easily upgradable to
multiple sites by just adding the sites name to the list of sites for which the analysis
needs to be performed.

8.3.2 Interpretation of Results

This section discusses and interprets the results. The difference between the solutions
used by Playtech plc and the proposed solution is also discussed.

Model Results: The CNN model gives an accuracy of 58% and the time taken for
the model to run is approximately 2 hours. The time for data collection and data
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preparation/pre-processing for training and test data combined is between 3 - 6 hours.
These values are for input data from 17 sites. As the number of sites are increased, the
data fetching, pre-processing and model run times increase too.

However, it is worth mentioning that this method didn’t contain a benchmark of other
CNN architectures. In fact, this serves as a benchmark and reference model for future
when the prototype will be tested and deployed in production at Playtech plc.

Comparison with Previous Solutions at Playtech plc: As mentioned earlier, accord-
ing to the service operation team experts, in case of HP SHA, there were very limited
option for configuration and for small changes and tuning, one needed to contact HP
services. Moreover, there were around 800 false alerts each week and this worsened
during daylight savings time transitions. This made the system almost impractical to use
in practical scenario.

In case of Playtech plc’s current rule based solution, the business incidents are de-
tected and an alert is sent to the concerning team. The number of alerts were successfully
reduced to less than 450 per month thus reducing the number of false alerts. Although
with the current solution, there is a possibility of configuration but a lot of time and effort
is required to setup and prepare the statistical models for each metric of each site. There
are around 360 software upgrade deployments per month, in over 40 production sites and
on an average, approximately 50,000 components get updated bi-weekly. This kind of
modifications in the configuration takes approximately 5 - 6 hours per site. Therefore, it
is important to reduce the effort in maintaining the statistical models as the maintenance
costs are too high. The proposed solution aimed to improve on this and use a deep
learning approach to categorise business incidents. The proposed solution does not
require indepth analysis of site metrics, behaviour or configuring any predefined rules
which reduces the time and efforts required in configuration.

Next is the speed of reaction to the business incidents. SHA took about 15 minutes
to detect any unusual behaviour in metrics while the current solution takes about 3-4
mins to detect anomalies and send out notification. As the proposed solution is to be
used in conjugation with the current solution, as a parallel engine. Although it is not yet
deployed but the reaction time is the expected as the current prototypical implemented
solution. For now, to evaluate the CNN model, the accuracy and time performance of the
implementation is taken into consideration and is detailed in the results section 8.2. This
will serve as a benchmark for the solution when deployed in production.

Also, according to the service operations at Playtech plc, there were a lot of false
positives for incident detection. So, it was required to have a trustworthy solution with
less false incidents. The proposed prototypical implementation showed fewer false
positives for the test data. In the interviews conducted in Playtech plc for research
purposes, the results of the proposed solution were presented and the general consensus
was that the results look promising. In conjugation with the rule matching engine, this
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solution would contribute in reduction of false positives.
The additional improvements for future could be to filter the type of business incidents

occurred and where they occur such as in application layer or network layer. The business
metrics at a more granular can be used for this purpose.

8.4 Summary
In this chapter, evaluation of the proposed solution and the CNN model is done which
helps in providing an answer to the research question “What is the efficiency of the
solution for detection of anomalies and categorisation of business incidents and how
is it measured?” (SQ3 in Section 1.2). The system and environment configuration of
the proposed solution is outlined. Requirements evaluation is discussed and the results
for the CNN based model are provided along with the interpretation of the results and
comparison with previous solutions.
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9 Conclusion and Future Work
This section concludes this thesis. Section 9.1 answers the main question (MQ) and SQs
as discussed in Section 1.2. Section 9.2 gives the concluding remarks along with some
limitations of the prototype solution which motivates the next Section 9.3 i.e. the future
work possibilities.

In the course of this work, several contributions were made both on a theoretical and
practical level. At first, the need for early detection of business incidents and their correct
categorisation faced by Playtech plc is explained, thus stating the problem description.
The current state of the art and related work is mentioned, discussing the different
types of systems and analysis methods in use for similar problems. An overview of the
machine learning and deep learning is given, building the background knowledge needed
to understand the thesis. Later, the environment setting i.e. the Playtech plc system and
their current solutions are outlined.

This thesis then listed the requirement specification for the proposed solution which
laid the foundation for the design and the implementation of the proposed solution.
The main objective was to detect anomalies and categorise business incidents which is
achieved as well as evaluated. For this, the thesis presents a deep learning approach. The
main aim here was to use a CNN model and determine if this approach works in this
business case scenario. Finally, some results were listed for the CNN model used and
illustrated with the help of tables and figures.

9.1 Answers to Research Questions
In the goals and contribution Section 1.2, the main question (MQ) -
“How to detect anomalies/business incidents and categorise them using machine
learning?” was divided into three sub-questions.

SQ1 - What are the current approaches and solutions that exist for anomaly de-
tection?
In this thesis, anomaly detection and the techniques to do anomaly detection are men-
tioned. The different research-based anomaly detection approaches and commercial
solutions are discussed constituting the state of the art.

The background knowledge necessary for the understanding of thesis such as machine
learning process, deep learning, traditional machine learning approaches etc. are outlined.
The environment setting i.e. the Playtech plc system and the solutions used by them are
also described.
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SQ2 - How to design and develop a viable solution for the detection of anomalies
and categorisation of business incidents?
The information from the state of the art and requirement specifications is used to propose
a solution using a deep learning approach. The solution is designed and a prototype is
implemented to detect anomalies, categorise and predict business incidents which used
the CNN model(deep learning approach).

SQ3 - What is the efficiency of the solution for detection of anomalies and cate-
gorisation of business incidents and how is it measured?
In order to find the efficiency of the analysis method in the proposed solution, various
evaluation metrics such as accuracy, precision, recall are used. The model is compared
to the current solution for assessment too.

9.2 Conclusion
The developed prototype solution is able to detect anomalies and categorise business
incidents with an accuracy value of 58%. The model was trained and run several times
using different data sizes and different layers of the Convolutional Neural Network in
order to achieve the optimal results. The final results are listed in Section 8.2 for the
CNN model. The precision, f-measure and confusion matrix values, kernel visualizations
reflect that the model performed well and successfully categorised the business incidents.

The proposed solution overcomes the problem of delayed detection of business
incidents which led to adverse financial effects. This solution is viable and could be
utilised for faster detection and categorisation of the incidents,This enables the specialists
using this solution to react swiftly to the business incidents and take relevant actions
for the resolution of the same. This solution is also beneficial for setting timelines and
planning for downtimes.

The work done in thesis not only helps Playtech plc to effectively as well as proac-
tively monitor and manage the business incidents but can also serve as research for people
working in related fields and building similar projects.

Limitations: There are few limitations or challenges that were faced while working on
the proposed solution which are worth mentioning.
The proposed solution is designed and developed for Playtech plc environment setting
but the concepts are generic enough to apply it under any other business setting. The
developed solution is implemented in Python programming language for quicker proto-
typical implementation which is comparatively slower than more low level languages e.g.
C, Rust.

The most time consuming activity was fetching and preparing the data for input to
the CNN model. The data transformations were quite challenging as the business metrics
data was not structured in the way that could be provided directly to model for training.
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The imbalance in incidents and non-incidents data was quite challenging to remove
as the non-incident data data was more than the incident data. Additionally, most of the
incidents were new and non-repeating which posed a problem while training the machine
learning model.

The amount of time the proposed model takes for initial training is about 3 - 6 hours
that posed difficulty to try and implement models with different hyperparameters, kernel
values and number of layers.

9.3 Future Work
The proposed solution and the developed prototype could be improved further. The
first addition could be to classify the business incidents according to priority into three
different categories i.e. Priority A (high), B (medium), C (low) using several additional
parameters. This is being developed and partially done in the case of Playtech plc.
Although, this solution requires certain business metrics at a more granular level in order
to improve the accuracy and efficiency of the solution.

From the results in Section 8.2, it is found that there were some incidents which
were either not detected (False Negatives) or misclassified as incidents (False Positives).
To tackle this issue, the model could be improved by supplying better labeled data and
balance the incident and non-incident data. But providing proper labeled data for an
anomaly detection solution in itself is a challenge.

Another important thing to improve on is to balance the training data for incidents
and non-incidents. Additionally, as mentioned in the limitations, each business incident
differs slightly from the other because its own contextual sense and as mentioned in the
problem statement 1.1, all new or non-repeating business incidents might or might not
be detected through the machine learning solutions.

As mentioned before, fetching and preparation of training data set took a lot the time
while working on this thesis. So, in future AutoML techniques could be used that clean
and prepare the features automatically.

Another important addition could be using a graphical user interface which would
improve usability. There are many tools available such as Dash25 which can be used.

A relatively new approach was used for anomaly detection with the hope of getting
better results in this business case. There is always a scope for improvement as the
Convolutional Neural Networks evolve with time which results in more sophisticated
and deeper layers.

25https://plot.ly/products/dash/
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Appendix

I. Use Case description templates

Table 9. Use case description UC1

Usecase ID UC1
Name Fetch Data
Description This use case represents fetching of data from the InfluxDB.
Actors Analyst

Pre Conditions Network connection and connection to the DB is active.
Site name, start and end dates are entered

Basic Flow 1. The start date, end date and site name are entered and the method fetch() is called.
2. The data is collected week wise from start date to end date.

Alternate Flows There is a connection error. The system shows an error message.
Extensions -
Post Conditions The data is successfully fetched.

Table 10. Use case description UC2

Usecase ID UC2
Name Transform Data
Description This use case represents transforming the fetched data into sliced matrices with normalized data values.
Actors Analyst

Pre Conditions Network connection is active.
The sliced window height and window width are entered.

Basic Flow
1. The fetched data is cleaned and the missing values are filled.
2. The fetched data values are normalized.
3. The normalized values are sliced into small matrices.

Alternative Flows
There is a connection error. The system shows an error message.
There is a memory error. The system shows an error message and ends execution.
There is a value error. The system shows an error message.

Extensions Includes UC1: Fetch Data
Post Conditions The fetched data is normalized and sliced into matrices.
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Table 11. Use case description UC3

Usecase ID UC3
Name Detect Business Incidents
Description This use case represent the detection of anomalies and business incidents.
Actors Analyst

Pre Conditions Network connection is active.
The sliced matrices with normalized values are available.

Basic Flow 1. The normalized data values are entered to the function.
2. The machine learning model performs computations and detects an incident.

Alternative Flows There is a connection error. The system shows an error message.
There is a memory error. The system shows an error message and ends execution.

Extensions Includes UC2:Transform Data
Post Conditions The machine learning model performs computations and detects an incident.

Table 12. Use case description UC4

Usecase ID UC4
Name Categorise Business Incidents
Description This use case represent the categorisation of business incidents.
Actors Analyst

Pre Conditions Network connection is active.
The business incidents are detected.

Basic Flow 1. The incident lists are entered to the function.
2. The machine learning model performs computations, detects and categorises the business incidents.

Alternative Flows There is a connection error. The system shows an error message.
There is a memory error. The system shows an error message and ends execution.

Extensions Includes UC3: Detect Incidents and Extends UC6: Evaluate incident categories
Post Conditions The machine learning models performs computations, detects and categorises the business incidents.
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Table 13. Use case description UC5

Usecase ID UC5
Name Predict Business Incidents
Description This use case represent the prediction of any future business incidents.
Actors Analyst

Pre Conditions Network connection is active.
The business incidents are detected and categorised.

Basic Flow
1. The incident lists are entered to the function.
2. The machine learning model performs computations, detects and categorises the business incidents.
3. The predictions are made

Alternative Flows There is a connection error. The system shows an error message.
There is a memory error. The system shows an error message and ends execution.

Extensions Includes UC4:Classify Incidents
Post Conditions The machine learning models performs computations and predictions are made.

Table 14. Use case description UC6

Usecase ID UC6
Name Evaluate Model Results
Description This use case represents the evaluation of the categorised classes of the business incidents.
Actors Analyst

Pre Conditions Network connection is active.
The business incidents are detected and categorised.

Basic Flow

1. The incident lists are entered to the function.
2. The machine learning model performs computations, detects and categorises the business incidents.
3. The categorised incidents are evaluated using evaluation metrics like precision, recall, accuracy.
6. The models are evaluated for performance, for example time taken for fetching data and
the time taken for the model to run.

Alternative Flows
There is a connection error. The system shows an error message.
There is a memory error. The system shows an error message and ends execution.
There is a value error. The system shows an error message.

Extensions -
Post Conditions The model is evaluated using evaluation metrics such as precision, accuracy, recall.
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II. Traceability between Requirements
Traceability between requirements and design of the proposed solution can be maintained
in multiple ways. To list a few of the requirements which are taken care of in the
design of the proposed solution are as follows. Figure 24 shows the traceability model
and shows that the design of the solution will satisfy the functional and performance
requirements. Table 15 shows the requirements traceability matrix. This can be explained
by an example: The data is fetched from the DB over a secure connection which is then
pre-processed and transformed. This fulfils the functional requirements F1 and F2.

Another inference can be that the machine learning model is used for detection of
anomalies which fulfils the functional requirement F3 and performance requirements P1
& P2.

Traceability artefact Traceability
realtionship

Functional
Requirements

Performance
Requirements

satisfies

1..* 0..*

0..*

0..1

1..* 0..*

traces

source

target

Figure 24. Traceability model

Table 15. Requirements traceability matrix

F1 F2 F3 F4 F5 F6
P1 satisfies satisfies satisfies satisfies
P2 satisfies satisfies satisfies satisfies
P3 satisfies satisfies satisfies
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III. Evaluation Metrics
The different evaluation metrics26 are described below:

Precision: Precision [57] is the proportion of predicted positive cases that are correctly
actual positives. In a classification task, a precision 1.0 means that every item labeled as
belonging to a particular class actually belongs to that class. Precision can be considered
as a measure of a classifier’s exactness. A low precision means a large number of False
Positives. It is given by the equation 2.

Precision =
TP

TP + FP
(2)

where TP – True Positive, TN – True Negative, FP – False Positive, FN – False Negative.

Recall: Recall [57] is the proportion of actual positives which are correctly predicted
positives by the model. If recall is 1.0, this means that every item from a particular
class was labeled as belonging to that class. Recall can be considered as a measure of a
classifier’s completeness. A low recall means there are many False Negatives. It is given
by the equation 3.

Recall =
TP

TP + FN
(3)

Recall can also be referred as the True Positive Rate or Sensitivity. Specificity [57] is
True Negative Rate and is given by.

True negative rate =
TN

TN + FP
(4)

F-measure: Precision and recall does not give the best interpretation and are not used
in isolation. Therefore, both the measures can be combined into a single measure such as
F-measure [57]. F-measure or F1-score is the weighted harmonic mean of precision and
recall. It is given by the equation 5.

Fmeasure = 2 · precision · recall
precision+ recall

(5)

Accuracy: Accuracy [58] is the ratio between number of correct predictions given by
the model and the total number of data points. Accuracy alone is not the best measure in
case of a class-imbalanced data set, where there is a lot of disparity between the number
of positive and negative labels. Therefore, its better to use precision and recall along
with it. It is given by the equation 6.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

26https://scikit-learn.org/stable/modules/model_evaluation.html
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Confusion Matrix: A confusion matrix [58] is a table which describes the performance
of a classification model on a set of test data by giving the false positives and false
negatives values. Figure 25 depicts an example of a confusion matrix for a 2-class
classifier. Each row of the matrix represents the instances in a predicted class while each
column represents the instances in an actual class or vice versa [57]. It helps to analyze
the results and gives clues as to where the classifier is wrong.

Figure 25. Example of a confusion matrix for 2-class classification
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