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A Survey of Machine Learning Methods and their Applicability for
Security Analysis

Abstract:
The problem highlighted in this thesis is to determine which Machine Learning (ML)

and Deep Learning (DL) methods should be applied for detecting information technology
(IT) security threats. As IT security attacks are becoming difficult to detect with current
technology and resources, today’s detection systems require solutions that utilize artificial
intelligence (AI) subsets for robustness and automation. The solution to solve this
problem is an analysis of ML and DL methods, estimating their applicability across 3
security cases: User and Entity Behavior Analytics (UEBA), vulnerability detection,
and phishing detection. This analysis covers both supervised and unsupervised methods,
including random forest, support vector machines, logistic regression, k-nearest neighbor,
clustering algorithms, association rules, recurrent neural networks, convolutional neural
networks, stacked autoencoders, and generative adversarial networks. These methods
are considered based on their inputs, outputs, strengths, and weaknesses for specific
security cases. The study approach ensures classification, patterns recognition, anomaly
identification, and penetration testing, enhancing the robustness and automation of
security systems. This solution provides security professionals with guidance on selecting
the ML or DL techniques that should be applied to specific IT security tasks, thereby
reducing risks and mitigating security threats.
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tion
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Masinõppemeetodite ja Nende Turvaanalüüsi Kohaldatavuse Uuring
Lühikokkuvõte:

Selles lõputöös esile tõstetud probleem on määrata, milliseid Masinõppe ja Sü-
vaõppe meetodeid tuleks infotehnoloogia (IT) turvaohtude tuvastamiseks rakendada.
Kuna IT-turberünnakuid on praeguse tehnoloogia ja ressurssidega üha raskem tuvas-
tada, vajavad tänapäevased tuvastussüsteemid lahendusi, mis kasutavad tehisintellekti
alamhulki töökindluse ja automatiseerimise tagamiseks. Lahendus selle probleemi lahen-
damiseks on Masinõppe ja Süvaõppe meetodite analüüs, mis hindab nende rakendatavust
kolmel turbejuhtumil: kasutajate ja üksuste käitumise analüütika tuvastamine, haava-
tavuse tuvastamine, ja andmepüügi tuvastamine. See analüüs hõlmab nii järelevalvega
kui ka järelevalveta meetodeid, sealhulgas otsustusmetsa, tugivektormasinaid, logisti-
list regressiooni, K-lähimaid naabreid, klasterdamist, assotsiatsioonireegleid, korduvaid
neurovõrke, konvolutsioonilisi neurovõrke, virnastatud autokodeerijaid ja vastandlikke
generatiivseid võrke. Neid meetodeid käsitletakse konkreetsete turvajuhtumite sisendite,
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väljundite, tugevate ja nõrkade külgede põhjal. See õppemeetod tagab klassifitseerimise,
mustrite äratundmise, anomaaliate tuvastamise ja läbitungimise testimise, suurendades
turvasüsteemide töökindlust ja automatiseerimist. See lahendus annab turbespetsialistide-
le juhiseid Masinõppe ja Süvaõppe tehnikate valimiseks, mida mida tuleks rakendada
konkreetsete IT-turbeülesannete puhul, vähendades seeläbi riske ja leevendama turbeoh-
tusid.

Võtmesõnad:
Tehisintellekt, Masinõpe, Süvaõpe, Ohuanalüüs, Ohu Tuvastamine

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
In today’s digital era, threat actors developing new ways to bypass detection and pro-
tection systems. Therefore, security detection systems require constant development
to protect organizations and individuals. Implementing ML and DL methods provides
automation and robustness to security operations.

1.1 Scope Of Thesis
This thesis observes ML and DL methods and their applicability in detecting security
threats across 3 cases: UEBA, vulnerability detection, and phishing detection. Also, it
determines the criteria these methods are applicable for classification, pattern recognition,
anomaly identification, and penetration testing. The study analyzes the methods’ inputs,
outputs, strengths, and weaknesses. Based on this analysis, the approach provides
insights into which of these observed methods should be applied to specific security tasks.
During the writing, chatGPT’s text robot assistance and Grammarly web application1

were used to receive feedback on the content of the thesis, the structuring of chapter
outlines and the correctness of language usage in the text of the chapters. Based on
the received feedback, the text of the thesis has been refined, and language errors have
been corrected [Ope24]. Also, the University of Tartu course [MIA24] was used for
reference formatting.

1.2 Problem and Research Question
As security professionals need to enhance detection systems with automation and relia-
bility using AI, they need to comprehend which AI subset methods can be applied for
security threat detection. This leads to the research question: "What machine learning
and deep learning methods are applicable for detecting different security threats?"

1.3 Contribution
To answer research question, the study provides a literature review based on various types
of reviews, including scoping reviews, systematic reviews, and traditional (narrative)
literature reviews. Information for the literature review was collected from databases
like SpringerLink2, arXiv3, ResearchGate4, and IEEEXplore5. For searching in these
databases, various queries, including ML and DL method names, were used to find

1https://www.grammarly.com/grammar-check
2https://link.springer.com/
3https://arxiv.org/
4https://www.researchgate.net/
5https://ieeexplore.ieee.org/Xplore/home.jsp
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information for the survey. Additionally, for the analytical part, queries, including ML
and DL names with keywords related to threat detection cases, were used to find research
proving the methods’ applicability. The study first reviews ML and DL methods and
determines their output criteria. Afterward, to answer our research question, 3 example
cases from various threat detection cases across the world were selected. The thesis
provides the methods’ strengths, weaknesses, practical examples, and outputs for each
threat detection case in the analytical sections, with research proof for the applicability of
some methods for these security cases. This approach identifies each method’s pros and
cons and real-world performance, determining the applicable methods and their criteria
for each of the 3 security cases to answer the research question.

1.4 Structure Of Thesis
The rest of this document is organized as follows: chapter 2 reviews ML and DL methods,
including their inputs, training processes, outputs, and real-world applications in the
information technology security field. It also identifies the methods’ output results
across criteria: classification, pattern recognition, anomaly identification, and penetration
testing. Chapter 3 discusses threat detection, how it’s done without ML and DL, and
why these methods are needed. The next 3 chapters analyze the application of these
methods in 3 specific cases: UEBA, vulnerability detection, and phishing detection,
identifying the methods’ applicability for specific criteria. These chapters also provide
output examples of the methods that are recommended to be applied for specific cases.
The final chapter concludes by summarizing the findings, discussing work limitations,
addressing the research question, and providing directions for future investigation.
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2 Review of Machine Learning Methods
This chapter discusses the methods within the core subsets of AI — ML and DL (see
Figure 1). AI is a technology for the simulation of human intelligence by a system
or a machine [MB22]. Machine Learning is a subset of AI, that involves algorithms
that enable computers to learn from data and perform tasks without explicit program-
ming [WDCP22]. Deep Learning, a subset of ML, models the human brain’s learning
process through artificial neural networks [MB22]. The goal of this chapter is to observe
various ML and DL methods and determine the criteria for which they are suitable. The
review includes input data, training processes, outputs, and real-world applications of
each method within the IT security context. Based on this review, the aim of this chapter
is to identify the criteria for which each method is applicable: classification, pattern
recognition, anomaly detection, and penetration testing.

Figure 1. The Subsets of Artificial Intelligence [Ahm19]

2.1 Machine Learning Paradigms
The machine learning field has 4 paradigms: supervised learning, unsupervised learning,
reinforcement learning, semi-supervised learning. Supervised learning is a machine
learning paradigm that trains systems to understand the input-output relationship using
labeled training data [LW12]. The goal of this paradigm is to make accurate predic-
tions for new, previously unseen inputs. Unsupervised learning is a machine learning
paradigm that deals with unlabeled data [Ed20]. The goal of this paradigm is to uncover
hidden patterns without predefined output values. Reinforcement learning is a machine
learning paradigm that involves learning to make decisions through trial-and-error experi-
ence [Bar97]. The goal of this paradigm is to develop a dynamic approach for sequential
decision-making aimed at maximizing rewards over time [Li22]. Semi-supervised learn-
ing is a machine learning paradigm that "increases the effectiveness of supervised or
unsupervised learning by leveraging a mix of both labeled and unlabeled data" [vEH20].
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The chapter gives a review of the ML and DL methods that belong to supervised and
unsupervised learning paradigms. Reinforcement learning and semi-supervised learning
are excluded. Reinforcement learning, despite its power in simulated environments, is not
suitable for real-world applications due to a pronounced difference between controlled
experimental conditions and poorly defined realities of real-life systems [DALM+21].
Despite its promise, semi-supervised learning meets performance challenges when includ-
ing unlabeled data [vEH20]. While progress has been made, its real-world applications
are still limited compared to the established paradigm of supervised learning.

Table 1. Machine Learning and Deep Learning Algorithms

Paradigms/
AI subsets Machine Learning Deep Learning

Supervised
Learning

Random Forest
Support Vector Machines

Logistic Regression
K-Nearest Neighbor

Decision Tree

Convolutional Neural Networks
Recurrent Neural Networks

Unsupervised
Learning

Clustering Algorithm
Association Rules

Generative Adversarial Networks

Deep Boltzmann Machines
Stacked Autoencoder

Generative Adversarial Networks

Table 1 presents the categorizations of the methods observed in the chapter. The
supervised machine learning methods include random forest, support vector machines
(SVM), logistic regression, k-nearest neighbor (KNN), and decision tree. The unsuper-
vised machine learning methods include clustering algorithms, association rules, and
generative adversarial network (GAN). Here is a need to mention that GAN is classified
as both a machine learning method and a deep learning method. The GAN method itself
belongs to machine learning, but because the GAN is based on 2 deep learning methods:
a generator network and a discriminator network, it also, can be categorized as a deep
learning method [GZ19]. Based on its components, in the study, GAN is considered
as a deep learning method. The supervised deep learning includes convolutional neu-
ral network (CNN), and recurrent neural networks (RNN) [Zai18]. And unsupervised
deep learning methods include deep boltzmann machines, stacked autoencoder (SAE),
GAN [Gee]. The chapter does not cover deep boltzmann machines, due to the method’s
slow processing speed, which hampers its functionality and performance [LMM+21].
Additionally, the decision tree is excluded because, compared to random forest, which
integrate multiple decision trees, random forest provide more accurate predictions than a
single decision tree [IBMc].
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2.2 Random Forest
Description Random forest, also known as random decision forest, is a set of decision
trees where each tree is constructed using a randomly selected subset of data [Bre01].
This selection is independent for each tree but follows the same distribution across
the forest. The effectiveness of a random forest is determined by the strength of the
individual trees and their degree of correlation. A diverse collection of uncorrelated trees
ensures the robustness of the model’s predictions.

Algorithm Input For a random forest model, the input comprises a dataset with various
features and their respective labels, with each instance characterized by its feature val-
ues [IBMf] [SKK23] [MW12]. During training, a subset of features is randomly chosen
to construct each tree at every node, utilizing bagging and bootstrapping techniques to
mitigate the overfitting common in individual decision trees. This method trains multiple
trees on different subsets of the data, with replacement, enhancing the model’s robustness
by reducing variance without significant bias.

Figure 2. Example of Random Forest Regression Tree [PSSS20]

Algorithm Output The output of an random forest algorithm is the class prediction
that presents the majority vote across all the decision trees in the random forest (Fig-
ure 2) [IBMf] [SKK23] [MW12]. This collective decision-making process leverages
the ’wisdom of the crowd’ with the collection of various uncorrelated tree predictions,
producing a more accurate result than any individual tree within the model.

Examples Random forest methods are useful for the robustness and accuracy of
machine learning detectors [ALMdO+23]. The study "Hardening Random Forest Cyber
Detectors Against Adversarial Attacks" [AACM20] provides examples of random forest
methods usage for different threat detections, such as PDF malware detections and
flow-based botnet detections, producing detection rates close to 0.99.
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2.3 Support Vector Machines
Description Support Vector Machines are a supervised machine learning algorithm
that operates by identifying an optimal hyperplane that maximizes the margin between
different classes in an N-dimensional space [CV95] [IBM23a]. This method is applicable
in both linear and nonlinear classification tasks, making it versatile across various data
types. The SVM algorithm was developed within the framework of statistical learning
theory by Cortes and Vapnik in 1995 [CV95].

Algorithm Input SVM transforms input vectors into a higher-dimensional feature
space to create a linear decision surface [CV95] [IBM23a]. Initially, data is divided
into a training set and a testing set, often preceded by exploratory data analysis to
identify any outliers or missing data. Afterward, the SVM model is trained on the
training set where it learns to classify data by finding the optimal hyperplane that
maximizes the margin between the classes. Performance is evaluated using metrics
like accuracy, f1-score, precision, and recall. Additionally, hyperparameters such as the
kernel type, regularization, and gamma are tuned through methods like grid search and
cross-validation to improve the model’s performance.

Algorithm Output The output of an SVM is a model with high generalization capa-
bility, classifying new data based on the learned hyperplane [CV95] [IBM23a]. SVM
is applied in classification tasks across various fields due to its ability to handle high-
dimensional data, choose kernel functions, and generate complex decision boundaries.

Examples SVM could be used for classification, and prediction in the IT security field,
achieving an accuracy rate of 96.99% as provided by article "Cyber Security Approach
In Web Application Using SVM" [CSD12]. Also, SVM is applicable in managing
high-dimensional, heterogeneous, and unbalanced datasets, making it useful in intrusion
detection systems (IDS) [SBZH21].

2.4 Logistic Regression
Description Logistic regression is a statistical method used to investigate the relation-
ship between independent variables (either categorical or continuous) and a dichotomous
dependent variable [Leo98] [IBMd]. This method calculates the log odds of the prob-
ability that an event will occur, which are then transformed by the logistic function to
convert these log odds into a probability that lies within the 0 to 1 range.

Algorithm Input The input to logistic regression consists of independent variables,
which can be categorical or continuous, paired with a dichotomous dependent variable
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representing two classes (e.g., success/failure) [Leo98] [IBMd]. During training, the
model constructs a relationship between the independent variables and the dependent
variable’s log odds, which is the natural logarithm of the probability ratio of success
to failure. This relationship is captured using the sigmoid function, which maps any
real-valued number into the (0, 1) interval, estimating the probability that the dependent
variable belongs to a particular class. The model parameters are optimized through
maximum likelihood estimation (MLE) to fit the model best to the observed data.

Algorithm Output Logistic regression output is a probability estimate, ranging be-
tween 0 and 1, generated using a sigmoid function [IBMd]. This probability represents
the likelihood of a specific event occurring based on the input variables provided to the
model. This method is applicable in classification and predictive analytics.

Examples Logistic regression can be applied in IT security for classification and attack
detection problems [EM17]. It is helpful in threat detection systems, such as detection
systems in security operations centers (SOC), where it is needed to reduce the amount
of false positives. For example, the method could identify and categorize potentially
suspicious URLs, as presented in the article "Machine Learning Algorithms for Detection
of Cyber Threats Using Logistic Regression" [Gon23].

2.5 K-Nearest Neighbor
Description K-nearest neighbors is a non-parametric, supervised learning method. The
method used for classification and regression tasks [IBMg]. This algorithm classifies
individual data points based on the majority vote of their k-nearest neighbors, with the
assumption that similar data points are close. KNN is applied for analytical tasks due to
its simplicity and applicability in capturing the essence of the data’s underlying structure.

Figure 3. Example of K-Nearest Neighbor Classification [AMK+20]
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Algorithm Input For KNN model training the input data should consist of a labeled
dataset with examples, which is characterized by a set of variables [Nad16] [IBMg].
During training, KNN calculates the distance between the new sample and all training
samples to find the nearest k neighbors (Figure 3). After, it classifies the new sample
based on the majority category among these neighbors. If there is no agreement, further
rules are applied to score each possible category and determine the most likely category
for the new sample [Wan19].

Algorithm Output The output of an KNN is a classification or a prediction for previ-
ously unknown data points, determined by the most common class among the nearest k
neighbors [IBMg]. This algorithm is utilized across various applications, especially for
classification tasks.

Examples KNN could be useful in intrusion detection. The article "Use of K-Nearest
Neighbor classifier for intrusion detection" [LV02] utilized KNN to classify program
behaviors as normal or intrusive by analyzing the frequencies of system calls, which
are treated as words in documents. This method detects intrusive attacks with a low
false positive rate. Additionally, the study "On the Robustness of Deep K-Nearest
Neighbors" [SW19] demonstrated that despite vulnerabilities, the deep k-nearest neighbor
(DKNN) enhances the robustness against adversarial attacks.

2.6 Clustering Algorithms
Description Clustering algorithms or cluster analysis are a methods used to divide data
objects into distinct groups known as clusters or subclasses [YLL23]. This methods aims
to ensure that the objects within each cluster are as similar as possible to one another
(maximizing homogeneity), and at the same time, as different as possible from the objects
in other clusters (maximizing heterogeneity).

Algorithm Input Clustering algorithms input involves a array of data types, both
structured and unstructured, including the large and various datasets [OIO+19]. The
clustering have different methods: partitional clustering, hierarchical clustering, soft
clustering, ensemble clustering, grid based clustering, density-based clustering and
model based clustering. For example, partitional clustering divides a dataset into distinct
clusters ensuring each data point belongs only to one cluster. Hierarchical clustering
organizes data into a tree-like structure called a dendrogram, that enables data analysis at
multiple granularity levels, and making it suitable for understanding complex structures.
Soft clustering allows data points to belong to multiple clusters with varying degrees of
membership, thus increasing the flexibility in cluster assignment.
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Algorithm Output The outputs of clustering algorithms depending on the method em-
ployed [OIO+19]. As example, partitional clustering results in distinct, non-overlapping
groups of data points. Hierarchical clustering, on the other hand, provides a dendrogram
that represents hierarchical relationships among the data, which is useful for analyz-
ing information at different levels of detail. Soft clustering allows data points to have
memberships across multiple clusters, thereby offering flexibility in data categorization.
Grid-Based clustering organizes data into a structured grid of cells, each representing a
cluster, simplifying the processing of spatial data.

Examples Clustering techniques are used in IT security to detect and analyze threats,
as provided in the research article "The Role of Machine Learning in Cybersecu-
rity" [ALMdO+23]. For example, clustering employed in Android malware detection
helps to achieve success rates over 95% and enables the grouping of malware to focus
efforts on unknown clusters. Another example from the same study is that clustering can
help identify protocols and network ports frequently targeted by attackers.

2.7 Association Rules
Description Association rules are a method in data mining for uncovering recurring
patterns, correlations, and associations within large datasets [YMA+23]. The goal of
association rules is to detect connections between disparate sets of items by indicating
implicit or previously unknown, potentially valuable information. The structure of these
rules is "X → Y," suggesting the likelihood of Y occurring when X is present, where X
and Y represent the antecedent (condition) and consequent (result).

Algorithm Input Association rules mining is compatible with a wide range of data
types, encompassing binary, discrete, and numerical attributes [YMA+23]. This flexibil-
ity makes association rules applicable in various scenarios where discovering patterns and
connections within data sets is essential for informed decision-making. The generation
of association rules involves sifting through all possible combinations of frequent item
sets and then refining the rules based on the confidence criterion6. This iterative process
ensures that only relevant and reliable rules are retained.

Algorithm Output The output of the association rules algorithm is a set of association
rules that represent relationships between different sets of items [YMA+23]. These rules
assist in identifying correlations between attribute values and offering information about
the relationships within the data.

6https://athena.ecs.csus.edu/ mei/associationcw/RuleGeneration.html
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Examples Association Rules could be used in Process Activity Monitoring, to flag
unusual patterns in process activity, summarizing features like event types, executable
names, IP addresses, ports accessed [BBCV21] .

2.8 Recurrent Neural Network
Description Recurrent neural network is a class of neural networks that are designed
for processing sequential data [IBMb] [Pra23]. The RNN architecture includes loops
that allow information to persist, simulating a form of memory by allowing outputs to
be impacted by previous calculations (Figure 4). Their internal state (memory), which
captures information about previously analyzed data points, makes them applicable for
tasks that require consideration of individual data points within the context of a sequence,
such as language translation, music generation, or speech recognition.

Figure 4. The Structure of Recurrent Neural Network [Gee23]

Algorithm Input RNN is designed for sequential input data [IBMb] [Pra23]. RNN do
not train independently but utilize the backpropagation through time (BPTT) technique
for training. BPTT adjusts the network’s weights by propagating errors back through
each timestep, optimizing the model for sequential data. The use of shared weights across
recurrent connections helps to minimize error throughout the sequences and reduces the
model’s complexity and its computational requirements.

Algorithm Output The output of RNN depends on the specific task but generally in-
cludes predictions or classifications based on learned sequences in the data [IBMb] [Pra23].
From real-word applications RNN could be applied in tasks that require the analysis of
sequential data, such as sentiment analysis, machine translation, and speech recognition,
and for generating predictions in time-series analysis.
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Examples RNNs could be used in IDS. For instance, the study "Design and Develop-
ment of RNN Anomaly Detection Model for IoT Networks" [UM22] developed a deep
learning model based on RNNs for anomaly detection within the Internet of Things (IoT)
networks. Another study, "RNNSecureNet: Recurrent neural networks for Cybersecurity
use-cases" [RVS18], explores RNN application in scenarios including incident detection,
fraud detection, and android malware classification.

2.9 Convolutional Neural Network
Description CNN is a class of deep, supervised learning algorithms utilized for pro-
cessing grid-like data [IBMa] [YND+18]. The model contains three types of layers
(Figure 5): convolutional, pooling, and fully connected layers. The convolutional lay-
ers apply filters to the input data to generate feature maps, which highlight important
attributes in the data. Pooling layers decrease the dimensionality of the feature maps by
retaining only the most significant features. The fully connected layer then integrates
these features to make predictions or classifications.

Figure 5. The Structure of Convolutional Neural Network [Tay23]

Algorithm Input The input data for an convolutional neural network is grid pattern
type data [YND+18]. The training of a CNN involves optimizing the kernels in the
convolutional layers and the weights in the fully connected layers to minimize differences
between the predicted outputs and the actual labels. This optimization is achieved
through a backpropagation combined with a gradient descent algorithm, which modifies
the parameters iteratively by calculating the loss function and updating parameters in the
direction that reduces the loss.

Algorithm Output The output of a CNN depends on the given task, such as prediction
or classification, performed by a fully connected layer based on features extracted from
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previous layers [Tay23] [IBMa]. CNN are applied for tasks such as image classification,
object detection, tracking, pose estimation, text detection, visual saliency detection,
action recognition, scene labeling, speech, and natural language processing.

Examples CNNs are applied in IDS. They could be used for classifying malicious
images potentially used in attacks as proofed by "The Application of Convolutional
Neural Network in Malware Images Classification" [WLZ22]. Another application
provided by the study "Phishing Email Detection Using Improved RCNN Model With
Multilevel Vectors and Attention Mechanism" [FZH+19] is phishing email detection,
where CNNs analyze various components of emails. The proposed in this study Themis
model, which utilizes a recurrent convolutional neural network (RCNN), has achieved an
accuracy exceeding 99%, demonstrating the method’s robustness in identifying phishing
attempts [FZH+19].

2.10 Stacked Autoencoder
Description Stacked autoencoder is an unsupervised deep learning method designed
to minimize reconstruction errors and enhance feature extraction capabilities without su-
pervision [BCR+23] [KAH21]. Constructed as a deep neural network, the SAE consists
of multiple layers of autoencoders (AEs) arranged vertically, where each layer is trained
independently (Figure 7). Each autoencoder compresses the input data into a smaller
representation in the encoding phase and expands it back to its original size in the decod-
ing phase. This configuration allows the SAE to reduce data dimensionality effectively
than a single-layer autoencoder, enabling it to retain information with enhanced feature
compression.

Algorithm Input The input to a single autoencoder is a vector of n dimensions [KAH21].
The training of an AE involves two principal stages: encoding and decoding (Figure 6).
During the encoding stage, the AE compresses the input data into a new, smaller set of
features. In the decoding stage, it attempts to reconstruct the input data accurately using
these learned features. SAE enhances this process by training multiple AEs in a layered
sequence, where each layer’s output serves as the input for the next. This methodical
training progresses through all hidden layers to minimize the reproduction error to restore
the original input data as closely as possible [BCR+23].

Algorithm Output The output of a stacked autoencoder is the reconstructed version
of the input data, aimed at preserving essential features while minimizing the recon-
struction error [KAH21]. This capability makes SAEs suitable for solving nonlinear
problems across various applications. For example, they are used in image classification,
image reconstruction, object detection, and various natural language processing tasks
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Figure 6. The Single Layer Autoencoder
Structure Example [SK19]

Figure 7. The Structure of Stacked Autoen-
coder [KAH21]

such as sentiment analysis, text classification, speech recognition, and recommendation
systems [AK19] [LPL23].

Examples Stacked autoencoders are used in the network intrusion detection field
[YQW+20] [TMG23]. As an example, the method used to detect anomalies and unknown
types of attacks is presented in the study "Practical autoencoder based anomaly detection
by using vector reconstruction error" [TMG23].

2.11 Generative Adversarial Network
Description Generative adversarial network is a deep learning model that learns the
distribution of data classes [GZ19] [YXXZ20]. This model is structured around a two-
person zero-sum game from game theory, where the loss of the other offsets the gain of
one player. It consists of two components, the generator and the discriminator, which
compete against each other. The generator aims to produce fake samples that imitate
real data, attempting to fool the discriminator. Conversely, the discriminator acts as a
binary classifier to differentiate between genuine data from the real dataset and fake data
produced by the generator.

Algorithm Input GAN framework begins by taking real data samples as input [YXXZ20] [RRM20].
The generator uses a probabilistic latent space to produce data samples that resemble
the target dataset. During training, the discriminator evaluates both real and synthetic
samples from the generator and classifies them using a binary classification method.
Throughout this process, both sub-networks—the generator and the discriminator—are
optimized; the generator aims to produce increasingly realistic samples, while the dis-
criminator enhances its ability to distinguish between real and generated data accurately
(Figure 8).
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Figure 8. The Structure of the Generative Adversarial Network [BBC23] [AMB21]

Algorithm Output GAN model produces as an output synthetic samples that imitate
the distribution of the original input dataset [YXXZ20]. Generative adversarial net-
works are applied for synthetic data generation, image reconstruction, video generation,
segmentation, classification, and penetration testing tasks [GZ19].

Examples GAN model is applied in IT security, such as in IDS and Red Team activi-
ties [GZ19]. For example, GAN utilized for the detection of DDoS, insider, phishing, and
adversarial attacks, as well as deep fakes, by generating synthetic adversarial examples
that enrich training datasets [TGRD23]. In Red Teaming, GANs facilitate the creation of
data for disinformation campaigns.

2.12 Discussion
Based on the observed methods, they can be grouped into 4 criteria useful for threat
analysis and detection (Table 2): classification, pattern recognition, anomaly detection,
and penetration testing.

Classification is a process of assigning previously unknown data to categories [Bat23].
This process is suitable for all supervised machine learning methods analyzed in the
study, such as random forest, support vector machines, logistic regression, and k-nearest
neighbor [LW12]. Supervised deep learning methods, including RNN and CNN, are also
useful in classification. Although SAE are unsupervised methods, they can be adapted
for classification tasks [AK19] [LPL23].

Pattern recognition is a process that analyzes data to identify patterns and regulari-
ties [Bah22]. The method is capable of detecting patterns, even if they are partially hidden
or unfamiliar. Of the methods discussed in this chapter, the unsupervised machine learn-
ing techniques of clustering and association rules are applicable to this criterion [Ed20].
Additionally, deep learning methods like RNN and CNN can also be useful for this
purpose [Imr23]. Although SAE and GAN have utility here, they are more suitable for
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Table 2. Methods’ Suitability for Criteria

ML/DL methods Classification Patterns
Recognition

Anomaly De-
tection

Penetration
Testing

Random Forest X
Support Vector
Machines

X

Logistic Regres-
sion

X

K-Nearest Neigh-
bor

X

Clustering Algo-
rithms

X

Association Rules X
Recurrent Neural
Network

X X X

Convolutional
Neural Network

X X X

Stacked Autoen-
coder

X X

Generative Adver-
sarial Network

X

other criteria [GZ19] [KAH21].
Anomaly detection is a process of identifying observations, events, or data points

that differ from the norm [IBM23b]. From the methods observed, SAEs are suitable for
this criterion due to their ability to detect reconstruction errors that deviate from normal
behavior patterns [KAH21]. Additionally, RNN and CNN are also applicable here, due
to neutral networks’ multi-functionality depending on specific tasks [UM22] [AC20].
GAN, although neural networks are suited for different criteria, however, this method
more applicable for other criteria [GZ19].

Penetration testing is a process of security assessment involving simulated attacks
to identify vulnerabilities in a computer system [IBMe]. Among the observed methods,
GANs are should be applied for this task [GZ19].
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3 Security Threats Detection
Threat detection is defined as the process of "identifying and responding to security
incidents to prevent or mitigate attacks and security breaches" [McC23]. The thesis
describes 3 specific threat detection cases: UEBA, vulnerability detection, and phishing
detection. For threat detection, 3 methodologies can be highlighted: signature-based
detection, behavior-based detection, and ML-based detection [Hol22]. These methods
form the basis of modern threat identification and response frameworks. In the described
scenarios, threats were detected and categorized as suspicious by detection systems,
including QRadar User Behavior Analytics (QRadar UBA), Trend Micro Vision One
system, and Microsoft Defender XDR. These cases were further analyzed using ML and
DL techniques to classify and estimate their severity. The next chapters of this thesis
provide examples of these detected cases, including the ML and DL applicability analysis
and output examples of the applicable methods.

3.1 Security Threats Detection Without Machine Learning
Without machine learning, the primary methods for threat detection could be signature-
based threat detection and behavior-based threat detection [Hol22]. The signature-based
detection method identifies security threats by looking for specific indicators, such as file
hashes, file names, or registry keys already known and associated with malicious activity.
This method is applicable for identifying known attacks, but it has limitations with new
attack techniques, making it easier to manage with automation and additional context.
The behavior-based detection method identifies security threats by comparing a user’s
behavior to their established baseline patterns. This method is applicable for identifying
anomalous activities in the user’s behavior. Despite its usability in identifying anomalies,
the baseline of behavior-based detection methods must be regularly updated to reflect the
changing nature of user behavior.

3.2 Security Threats Detection With Machine Learning
In today’s information technology security landscape, threat detection methodologies,
including signature-based and behavior-based detection, face challenges and limita-
tions [Hol22] [Sab23]. The signature-based method struggles to identify unknown attack
techniques due to their dependence on pre-existing knowledge bases. This limitation
makes them less adaptable to new threats that still need to establish signatures. The
behavior-based method, while dynamic, depends on holding behavioral baselines to
detect anomalies. The need for regular updates and the generation of false positives
from un-updated baselines make this method resource-intensive and less trustworthy in
environments where user behavior frequently changes. Additionally, the volume of data
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from network traffic, logs, and alerts disturbs both these detection methods to identify
threats.

ML and DL methods address these challenges by implementing the automation,
adaptability, and analytical depth of threat detection systems [Sab23]. ML and DL are
adaptable for analyzing datasets of varying sizes, making them applicable to reduce the
workload and improve the detection accuracy of traditional detection models. ML and DL
learn from historical and real-time data, allowing them to identify patterns and anomalies
that might detect known and new threats. Based on this, the integration of ML and DL
can develop signature and behavior-based systems capabilities. The hybrid approach
provides more accurate detections, where ML can add context to the data flagged by
traditional methods with more robust solutions.
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4 User and Entity Behavior Analytics
User and entity behavior analytics is a security process that analyzes user and entity
behaviors to monitor and detect unusual activities [YJ21]. Its benefits include faster
response times, automated threat detection, and reduced false positives through machine
learning, statistical models, and rule-based systems. However, the human element is still
need for investigating and verifying these anomalies.

Use Case The SOC team receives an alert from the QRadar User Behavior Analytics
(QRadar UBA) due to suspicious non-privileged user behavior based on information
from the log source, which is responsible for Office365. The user 7 times attempted
to log in to Azure Active Directory from unusual for user geolocation - Kenya. The
user’s usual geolocation is Estonia. The first 6 attempts failed due to the wrong password
(InvalidUserNameOrPassword, error code: AADSTS50126 ), but the last attempt was
successful; the user successfully logged in and attempted access to confidential infor-
mation documents, but the attempt was unsuccessful due to restricted permissions for
the user. This is the first user activity in 1.5 months. The responsible log source collects
this information and provides UBA QRadar model logs with the following information:
time (23:59), username, source IP, destination IP (Azure Active Directory legitimate
IP), action, error code, and error description. Based on detected events in QRadar UBA
Moodle, the user risk score was decreased, and the alert was generated. After alert
analysis by already trained AI, the SOC team received an alert with the tag - suspicious
login from unusual geolocation following an attempt to access sensitive information.
This categorization made by Artificial Intelligence help the SOC team prioritize the alert
as high priority and immediately take response actions, which will help avoid data loss
for the company.

4.1 Application of Supervised Machine Learning Methods
Supervised machine learning algorithms are applicable for tasks with labeled data,
such as detecting suspicious user behavior based on historical habits. From supervised
machine learning methods, one of the applicable methods is random forest. The random
forest, compared to the decision tree, contains several single decision trees, which makes
the random forest more quick and robust to overfitting and can handle complex high-
dimensional datasets [IBMf]. Based on the advantages of random forest, this method
can provide a robust solution for classification and prediction in this case. For instance,
random forest can classify login attempts as suspicious by utilizing multiple decision
trees to analyze various features such as time, IP addresses, geolocation, and records of
successful and failed logins. Also, the detection accuracy for user and entity behavior
anomaly by Random Forest provided in thesis "User and Entity Behavior Anomaly
Detection using Network Traffic" [CN17]. Based on the same thesis, SVM also show the
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detection accuracy in user and entity behavior data. The advantage of the SVM method
is the ability to handle unstructured or limited nonlinear and high-dimensional data (such
as login attempts, geolocations, and error codes) [CN17] [IBM23a]. In this case, SVM
can classify logs based on binary classification task as suspicious and non-suspicious
user behaviour. Logistic regression is used for classification tasks, which could help
to classify user behavior as an anomaly or normal [IBMd]. The advantage of logistic
regression is its low variance, indicating less variability in the data and resulting in more
accurate classification [A9]. In this security case, the logistic regression algorithm can
be applied to predict the probability of suspicious behavior from factors such as user
multiple login attempts or source IP geolocation. The KNN has accuracy for data user
and entity behavior anomaly detection, as provided in thesis "User and Entity Behavior
Anomaly Detection using Network Traffic" [CN17]. The advantage is the ability to easily
implement and adapt the KNN for different tasks [IBMg]. As example for particular
security case, the algorithm can be applied for predictions based on known activities, or
classification of user activity as suspicious or non-suspicious.

Based on the investigation, the recommended supervised machine learning algorithms
for this case are random forest, SVM, logistic regression, and KNN. Random forest appli-
cable for its accuracy and resistance to overfitting [IBMf] [CN17]. SVM applicable for
accurately classifying anomalies in user and entity behavior [CN17] [IBM23a]. Logistic
regression applicable for its low data variability and following accuracy [A9] [IBMd]
and KNN applicable due to its accuracy in user and entity behavior anomaly detec-
tion [CN17]. The recommended methods’ output examples for this case are presented
after this analysis.

Figure 9. Single Decision Tree Example
Figure 10. Random Forest
Example

Random Forest Random forest is applied for classification tasks involving high-
dimensional datasets [IBMf]. The random forest input data consists of current events data
extracted from the Office365 log source, which includes time, login attempts, geolocation,
IP addresses, and the success or failure of these attempts with corresponding error codes.
Subsequently, various subsets of these features are utilized to predict outcomes using
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multiple single decision trees within a random forest framework. Figure 9 illustrates
an example of one such decision tree. The root node categorizes the dataset into two
groups based on the event time: working hours (08:00-18:00) and non-working hours
(18:01-07:59). The second layer of nodes further divides the data based on the source IP’s
geolocation - if the geolocation is Estonia, the process moves to the next layer; otherwise,
the event is immediately categorized as suspicious. The final level divides the data based
on the success or failure of login attempts. If the number of failures exceeds 3 during
non-working hours or 5 during working hours, the event is categorized as suspicious;
otherwise, it is deemed legitimate. Using this decision tree, all 7 current login attempts
are predicted as suspicious user behavior, indicated by red circles in Figure 9. Figure 10
shows an example of a random forest with an unspecified number of decision trees,
where each tree’s prediction path is marked with purple circles from the beginning to
the final node. The final prediction of the random forest will be presented as the most
commonly predicted class by the decision trees — suspicious user behavior.

Figure 11. Support Vector Machines Binary Classification Example

Support Vector Machines SVM is applied for classification tasks by finding the
optimal hyperplane that maximizes the margin between two classes [IBM23a]. For this
unauthorized access case, the example can be a binary classification task, as shown in
Figure 11; the output classifies user behavior into two classes: ’Non-suspicious user
behavior’ and ’Suspicious user behavior.’ The input data includes the following features
from logs: non-working hours, username, source IP, destination IP, action, error code, and
error description. This data is divided by the optimal hyperplane into two classes. The
’Non-suspicious user behavior’ class, marked in Figure 11 with blue color, includes data
from previous login attempts and user behavior: working hours, source IP addresses from
Estonia, legitimate action performed by the user after successful login, and previous error
codes followed by successful login from Estonia. The ’Suspicious user behavior’ class,
marked in Figure 11 with purple color, also includes current case data: non-working
hours login time (23:59), source IP addresses from unusual geolocation - Kenya, multiple
failed login attempts, error code, and error description.
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Figure 12. Logistic Regression Classification Example

Logistic Regression Logistic regression is suitable for classification tasks, such as
predicting whether user behavior is suspicious or legitimate, by estimating probabilities
using a logistic function [IBMd]. Based on current and historical data and the event’s
characteristics, the output is presented as a probability estimate, varying between 0 and 1,
representing the likelihood of the monitored user behavior as suspicious or non-suspicious.
Figure 12 illustrates an example of splitting data into suspicious and non-suspicious user
behavior. The ’Suspicious behavior’ class is shown in Figure 12 as a class with value 1
and includes current anomaly user behavior data: non-working hours activity, multiple
failed login attempts followed by a successful login, failed attempts to log in from an
unusual geolocation - Kenya, successful login from an unusual geolocation - Kenya, and
attempts to access confidential documents. The ’Non-suspicious behavior’ class includes
normal user activity based on historical logs: working hours activity, successful login
attempts from the usual geolocation - Estonia, with several (a maximum of 3) or no login
failures, and no attempts to access confidential documents.

Figure 13. K-Nearest Neighbor Classification Example

K-Nearest Neighbor KNN is applicable for classifying or estimating the probability
of a user’s behavior being suspicious or legitimate [IBMg]. For instance, the output
of KNN classifies user activity as suspicious or non-suspicious based on the events’
similarity to known suspicious and normal activities for the user. Figure 13 provides an
example of classifying one unknown event as ’Known Suspicious Behavior’ or ’Known
Non-Suspicious Behavior’. The unknown event is a successful login from an unusual
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geolocation—Kenya—with an attempt to access confidential information. For this event,
features include time (23:59), source IP (identifying the user geolocation as Kenya),
action, and error code, which, in this case, is empty. This event is categorized as
’Suspicious User Behavior’ based on already known historical user geolocation, error
code, and normal activity time.

4.2 Application of Unsupervised Machine Learning Methods
The following section contains an analysis of the applicability of the unsupervised
machine learning algorithms discussed in the thesis. The clustering algorithms are
suitable for dividing data into groups based on the similarity of data objects, such as
by dividing current and historical events based on geolocation, in this case [YLL23].
The applicability of clustering algorithms is presented in the article "A comprehensive
investigation of clustering algorithms for User and Entity Behavior Analytics" [AMM24],
showing a analysis of 15 clustering methods for UEBA. Conversely, the association rules
are useful for investigating relationships between different sets of items or events [Mat22].
The algorithm is useful in data mining for analyzing and predicting data, such as future
user behavior. In this case, the association rules can be applied to detect patterns
such as multiple failed login attempts followed by a successful login and attempts to
access confidential documents. Despite that, the disadvantage of association rules is
that the algorithm could produce complex and misunderstood rules, which perform
poorly [Mat22].

Given these insights, both clustering algorithms and association rules have their
approaches to analyzing and handling data for detecting hidden patterns in user behavior,
each with its own set of advantages and limitations. However, both can uncover depen-
dencies in user behavior data through their approaches, indicating different patterns. This
analysis provides examples of outputs from the applicable methods for this case.

Clustering Algorithms Clustering algorithms are applicable for organizing data into
groups based on similarity, which helps uncover hidden patterns in the data [OIO+19].
Due to the wide range of clustering methods for output examples, 2 were selected. For
partitional clustering, the output can be presented as several disjoint clusters, where
each element belongs to only one cluster. As an example (Figure 14), the current and
historical data are divided into two groups: ’Suspicious Login Attempts’ and ’Normal
Login Attempts’. The ’Suspicious Login Attempts’ cluster includes IP addresses with
previously unseen Kenyan geolocation, multiple login attempts with error codes and
descriptions (if the login attempt result was failed), and non-working hours activity
(midnight). The ’Normal Login Attempts’ cluster includes data from the user’s previous
login activity: usual IP addresses with Estonian geolocation, login attempts with error
codes and descriptions (if the login attempt result was failed), and activity during working
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Figure 14. Disjoint Clusters Figure 15. Dendrogram

hours.
For hierarchical clustering, the output can also be presented as a hierarchical tree

structure - a dendrogram (Figure 15). This dendrogram illustrates the relationships
between different clusters or subgroups of divided input data. For instance, the result
shows data divided into groups: suspicious and normal login attempts, based on previous
login attempts data. The first layers are divided based on anomaly (Kenya) and usual
(Estonia) user geolocation. At the second dendrogram level, the data is divided into
successful and unsuccessful login attempts. The third layer presents data divided into
error codes and error descriptions.

Table 3. Association Rules Examples

Rule Number Rule Example
Rule 1 If a user attempts to log in from an unusual geolocation, there

is a high probability of subsequent failed login attempts.
Rule 2 If a user’s login attempts fail multiple times due to incorrect

passwords, then there is a high probability of subsequent
successful login attempts using password reset.

Rule 3 If a user successfully logs in from an unusual geolocation,
there is an increased risk that the user will attempt to access
confidential data.

Association Rules Association rules are applicable to discover uncovered relationships
and common patterns among variables in datasets [YMA+23]. The output can be
presented as a set of association rules that identify correlations between attribute values
based on analyzing relationships between different sets of items. Table 5 provides
examples of three rules. The first rule indicates that when a user tries to log in from
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an unusual location, there’s a likelihood of subsequent login failures. The second rule
indicates that repeated failed login attempts due to incorrect passwords may result in a
successful login via password reset. The third rule highlights that successful login from
an unusual location increases the risk of the user attempting to access confidential data.

4.3 Application of Supervised Deep Learning Methods
The following section observes the supervised deep learning algorithms for the UEBA
case. RNN is designed for sequential data analysis, such as logs of user activities over
time [Pra23]. For example, RNN can be applied to analyze login attempts over time and
predict future actions in user behavior. The study "A Review Paper on Different Deep
Learning Methodologies for User and Entity Behavior Analytics (UEBA)" [DDG+23]
provides an example of RNN applicability for monitoring user behavior over time. Con-
volutional Neural Networks (CNNs) are also used for analyzing sequential data [IBMa]
[YND+18]. However, CNNs require input data with a grid pattern type, which is more
applicable to image data and natural language processing and may not directly apply to
sequential event log data.

In summary, CNN could potentially be used for UEBA case analysis as provided
in study "A Review Paper on Different Deep Learning Methodologies for User and
Entity Behavior Analytics (UEBA)" [DDG+23]. However, they are mainly applied for
grid-like topology data analysis, such as image classification, object detection, phishing
detection, and natural language processing [Pra23] [YND+18]. Based on this, RNNs
are considered more aplicable due to their ability to capture patterns, anomalies in the
user’s behavior logs, and temporal dependencies in this case [DDG+23]. Based on this,
the example applicable to this case method output is provided below.

Recurrent Neural Network RNN is applicable for classifying user behavior patterns
over time, detecting anomalies, partterns recognition, and predicting future events based
on previous data [Pra23] [UM22] [Imr23]. The RNN output can provide a classification
of user behavior into different categories: normal user behavior, anomaly user behavior
(such as unauthorized login attempts from suspicious geolocations, or successful logins
after multiple login failures in a short time). For example, based on algorithm training on
historical logs (successful logins from Estonia during working hours with subsequent
normal user activity), the algorithm output provides a classification of future user behavior
as suspicious or non-suspicious. In this case, the future event is a successful login from a
previously unseen IP. The event input data include time - midnight, a source IP address
with a Kenya geolocation, and action - success. Based on information received from
training, the algorithm already knows that the user’s usual geolocation is Estonia, and
normal user login time is morning. Due to this, the algorithm detects the event as
suspicious user behavior.
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4.4 Application of Unsupervised Deep Learning methods
This section assesses the application of unsupervised deep learning algorithms for UEBA
case. In detecting unauthorized access attempts, SAEs can utilize their reconstruction
capability to highlight anomalies in user behavior [KAH21]. The example of using the
AE model for UEBA to detect and report anomalies is provided by article "An Artificial
Neural Network Autoencoder for Insider Cyber Security Threat Detection" [SMD+23].
Also, the pros of SAE are their capability to learn complex, non-linear data representa-
tions, which makes them applicable for identifying patterns and deviations from those
patterns, such as anomaly login geolocation - Kenya [BCR+23] [KAH21]. GAN is used
to generate synthetic samples that imitate the distribution of the original input dataset,
which is applicable for tasks requiring fake data usage but not unauthorized access
detection [YXXZ20] [HSS+20].

In this case, SAE is more recommended for application than the GAN model. The
GAN is more useful for penetration testing tasks to make the detection system more
robust to detections than for the unauthorized access case [GZ19] [YXXZ20]. This
analysis presents an output example from the recommended SAE method for this case.

Stacked Autoencoder Stacked Autoencoder is applicable for classifying and detecting
anomalies, based on reconstruction errors [BCR+23] [KAH21]. The SAE output could
be anomaly detection based on reconstructed input data. After the output generation,
the reconstructed input log data is compared with the original input to detect user
behavior as anomalous or normal. The model is first trained on typical historical user
behavior, focusing on parameters like login times, username, source IPs, user actions,
and error codes from security protocols. Each user action during training is monitored
for reconstruction errors to establish anomaly scores. In this particular case of repeated
login attempts from atypical geolocation with subsequent unauthorized access attempts
to sensitive data, the difference between the original behavior data (which includes
the timing of login attempts (non-working hours), geolocation deviations represented
by source IPs (Kenya), attempted actions, and corresponding error codes) and the
autoencoder’s output (the reconstructed scenario) detects a high anomaly score for the
user. This high anomaly score signals a significant divergence from the learned training
representation of normal user behavior and detects anomalies in user behavior.

4.5 Summary
This chapter analyzed 10 machine learning and deep learning methods across 4 categories:
supervised machine learning, unsupervised machine learning, supervised deep learning,
and unsupervised deep learning. For each category, specific methods were recommended
for this scenario based on their strengths, weaknesses, and applicability. Based on the
analysis, it is recommended to apply 8 methods for criteria of classification, pattern
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recognition, and anomaly detection. Penetration testing criteria are excluded from these
recommendations since the QRadar UEBA model detected unauthorized access attempts
successfully. Table 4 provides examples of methods output results for criteria they are
applicable for in this case.

Table 4. Methods’ Output for Criteria

ML/DL meth-
ods

Classification Patterns Recognition Anomaly Detection

Random Forest Dormant Account,
Unauthorized Access

Support Vector
Machines

Suspicious Geoloca-
tion, Possible Account
Compromise

Logistic Regres-
sion

Successful User Lo-
gin, Suspicious Geolo-
cation

K-Nearest
Neighbor

Suspicious Geoloca-
tion, Sensitive Data
Access Attempt

Clustering Algo-
rithms

Unusual User Activ-
ity Cluster, Geoloca-
tion Anomaly Cluster

Association
Rules

Successful Login and
Unusual Location As-
sociation

Recurrent Neu-
ral Network

Possible Account Com-
promise, Unauthorized
Access

Login Failure Patterns,
Unusual User Activity

Geolocation Discrep-
ancy, Anomalous Lo-
gin Behavior

Stacked Autoen-
coder

Anomaly User Behav-
ior, Anomaly Geoloca-
tion, Anomaly Time

Anomaly Activity
Time, Geolocation
Discrepancy

To classify events in this case, the recommended supervised machine learning meth-
ods include random forest, SVM, logistic regression, and KNN [LW12]. Also, from
supervised deep learning, is recommended to use RNN. For uncovering hidden patterns
in user behavior, clustering algorithms and association rules from unsupervised machine
learning methods are recommended due to their capacity to identify relationships and
dependencies in data [Ed20]. Also for investigating hidden relations in this case RNN
is useful [Imr23]. For detecting anomalies, RNN and SAE are suggested due to their
adaptability in identifying deviations from normal user behavior [KAH21] [UM22].
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5 Vulnerability Detection
Vulnerability detection is a security process aimed at identifying weaknesses in software,
networks, and systems through software fault templates [MC11]. These vulnerabilities,
if exploited by threat actors, can result in security violations. To mitigate these risks,
findings from vulnerability detections are used to apply patches, thereby improving the
system’s security posture.

Use Case The SOC team was alerted by the Trend Micro Vision One monitoring
system of a potential exploit attempt targeting CVE-2017-11771 [NAT19]. This alert
was triggered by a solitary network connection attempt from a registered internal host
towards port 445 on the internal domain controller, classified as a potential exploit based
on predefined security protocols. Trend Micro Vision One, which aggregates data from
various sources, including endpoints, servers, and cloud infrastructures, provided detailed
incident data encompassing the time of the event (17:30), source hostname, the internal
IP address of the host within the accounting department’s network, MAC address, source
port, destination hostname, IP address of the destination, destination port, MAC address
of the destination, operating system version of the destination host (Windows 2016),
the action taken (block), the rule that flagged the potential exploit, and the specific
vulnerability detected. Additional AI-driven analysis results provided a "high-risk" tag
for this detection in the security information and event management (SIEM) system.
This allowed the SOC team to prioritize the security alert quickly. Therefore, the team
coordinated with the teams responsible for the source and destination devices, mitigating
the risk of data leaks and maintaining the organization’s security posture.

5.1 Application of Supervised Machine Learning Methods
The supervised machine learning methods could be useful for analyzing possible vul-
nerability exploits based on current logs, historical data, and classification. One of the
applicable methods for this case is random forest. The method’s pros are accuracy due to
its ability to handle both regression and classification tasks, increased speed compared
to a single decision tree, and ability to handle high-dimensional datasets, which would
be suitable for analyzing the historical events between the internal host and domain
controller [IBMf]. For example, random forests can analyze historical log data to identify
patterns in past exploitation attempts and classify events as usual or malicious based
on learned patterns. The instance of applying the random forest is shown in the study
"Prediction of Software Vulnerabilities Using Random Forest Regressor" [KR23], where
for the prediction of software vulnerabilities, the random forest regressor performed the
detection result with a root mean square error of 0.01945. SVM can handle both linear
and non-linear data, making it adaptable for analyzing different current and historical
data patterns [IBM23a]. Also, compared to logistic regression, SVM is better at handling
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high-dimensional data and is less prone to overfitting. The research "Construction of a
SVM Learning Model in the Categorization Framework for CVE" [PH13] provides an
example of the application of SVM for building a categorization framework for common
vulnerabilities and exposures (CVEs). For this case, the SVM could analyze known
exploit attempts and identify similar patterns in current log data. Logistic regression
could be applied to classify and predict the likelihood of an exploit attempt occurring
based on historical log data [IBMd]. Due to less variability in the data for the method, the
result classification provides a high accuracy [A9]. In this case, logistic regression can
analyze the historical correlations between hosts and previously detected exploit attempts,
leveraging the learned information to provide probability calculations for new log data.
KNN could be applied for classification tasks [IBMg]. For this case, the algorithm could
classify log data based on similarity to previously observed data. However, KNN is prone
to overfitting, where it may closely match the training data and perform poorly on new
data [IBMg]. This makes the method unsuitable for cases with high-dimensional data
such as historical and current network traffic logs. Additionally, it requires significant
memory and data storage resources.

Based on the discussed methods, the recommended supervised machine learning
algorithms for this vulnerability detection case include random forest, SVM, and logistic
regression. Random forest accurately handles complex data [IBMf] [KR23]. SVM adapts
to various data patterns, making it applicable for classifying network traffic [IBM23a].
Logistic regression is applicable in predicting event risk probabilities, making it suitable
for vulnerability detection [A9]. However, KNN is not recommended due to its suscepti-
bility to overfitting, which could impact its performance on new data [IBMg]. The output
examples from the recommended methods for this case are following this analysis.

Figure 16. Decision Tree Example

Random Forest Random forest is applicable for data classification to identify
anomalies and suspicious events, such as potential security threats, by analyzing various
characteristics and behaviors in network traffic data [IBMf]. In this case, the output
can be provided as predictions regarding the nature of network traffic, where the final
prediction is determined by the majority vote among all the decision trees in the random
forest. Figure 16 provides an example of a single decision tree. This decision tree
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analyzes current events from the internal accounting department network. The decision
tree processes a dataset that includes time, destination IP, MAC addresses, host versions,
and detected vulnerabilities. The first layer categorizes data based on working hours
(08:00-18:00) and non-working hours (18:01-07:59) when the likelihood of an attack
is higher than during working hours. The second layer separates the data based on the
version of the destination host’s operating system, differentiating between versions up
to Windows 2016 and more recent versions of the Windows operating system. This
differentiation aids in identifying hosts that are operating on vulnerable operation system
versions. The final layer accurately identifies the specific vulnerabilities detected; it
differentiates between CVE-2017-11771 (indicated in the diagram by a red circle), other
known vulnerabilities (indicated in the diagram by a red circle), or the absence of
vulnerabilities. According to this decision tree, the current detection case is predicted
as suspicious network activity. Figure 10 provides an example of a random forest
comprising n number of decision trees, where each tree’s prediction result is marked as a
purple circle path from the start to the final node. The final random forest prediction is
presented as the most commonly predicted class across the decision trees, which in this
case is ’Suspicious Network Activity’.

Figure 17. Support Vector Machines Classification Example

Support Vector Machines SVM is applied for classifying data into categories,
such as ’Normal Network Activity’ and ’Exploit Attempt,’ by creating a hyperplane that
maximizes the margin between these categories [?]. In the context of potential exploit
detection, the output can be a binary classification: normal network activity or exploit
attempt, as shown in Figure 17. The input data is divided by the optimal hyperplane into
two classes, combining various parameters such as time, source hostname, source IP
(local IPs from the internal client network for the accounting department), source host
MAC address, source port, destination hostname, destination host IP address, destination
port, destination host MAC address, destination host version, action taken, rule used for
detection, and detected vulnerability (e.g., CVE-2017-11771). The ’Normal Network
Activity’ class (flagged in Figure 17 as purple) contains historical network activities
characterized by regular communication patterns between internal hosts. The ’Exploit
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Attempt’ class (flagged in Figure 17 as blue triangles) contains unusual or unexpected
communications to sensitive ports, with anomalies in communication patterns, such as
rare interactions between a host and this specific domain controller on port 445, and
detected vulnerabilities. Also, the ’Exploit Attempt’ class includes current case data
points with detected vulnerabilities - CVE-2017-11771, rare destination port 445, action
taken as a block, and the corresponding triggered rule. Based on this classification, the
current case event is counted as an exploit.

Figure 18. Logistic Regression Classification Example

Logistic Regression Logistic regression is suitable for predicting categorical out-
comes based on estimated probabilities using a logistic function [IBMd]. For example,
the model produces a probability estimate between 0 and 1, delineating the likelihood
of a network event being classified as normal activity or an exploit attempt. Figure 18
interprets the logistic regression probability predictions for classification. The sigmoid
function defined in Figure 18 separates events into two categories: ’Exploit Attempt’ and
’Normal Network Activity.’ The ’Exploit Attempt’ class equals a value of 1, containing
historical and current activities suspected of being exploit attempts. Characteristics in-
dicative of this class include connections to vulnerable destination versions with unusual
destination ports and related security rules. The detected event connected to a domain
controller with a vulnerable version of Windows 2016 on port 445, associated with the
detection of CVE-2017-11771 and the subsequent connection blocking by the set rules,
also belongs to the Exploit Attempt class. The ’Normal Network Activity’ class equals a
value of 0. This class includes usual and expected historical network behavior events that
align with known patterns of legitimate activity. Examples include DNS queries, such
as a connection to port 53 directed at the website "err[.]ee" or successful authentication
attempts during typical business hours.

5.2 Application of Unsupervised Machine Learning Methods
This section evaluates the applicability of unsupervised machine learning algorithms
for analyzing the potential exploit of vulnerability CVE-2017-11771. Clustering algo-
rithms could be applied for classifying data based on data similarity, making them useful
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for categorizing network traffic to identify suspicious activities linked to CVE-2017-
11771 [YLL23]. This method’s benefit is its ability to identify unknown patterns in logs
and datasets, as shown in article "Overview of clustering analysis algorithms in unknown
protocol recognition" [LRC20]. Also, clustering could be applied in vulnerability clus-
tering, as demonstrated in a study "Categorizing vulnerabilities using data clustering
techniques" [VE04]. The study shows how these algorithms can be applied to classify
vulnerabilities within the CVE repository and recommend a standardized categorization
method using data clustering [VE04]. Association rules are applicable for finding rela-
tionships between variables in large datasets and can be applied to discover correlations
between different types of network traffic activities or log data [Mat22] [YMA+23]. The
advantages of this method are its versatility across various data types and the ability to
uncover hidden patterns between data features. In this case, Association rules could be
used to discover correlations between historical network events and known vulnerability
CVE-2017-11771 exploits.

For this vulnerability detection case, it is recommended that unsupervised machine
learning methods, clustering algorithms, and association rules be applied. Clustering
algorithms could be applicable for dividing network traffic and log data into similar pat-
terns [YLL23] [VE04]. At the same time, association rules could uncover relationships
between data that correlate with known exploits and vulnerabilities [Mat22] [YMA+23].
After this analysis, examples of output for the recommended methods are provided.

Clustering Algorithms Clustering algorithms are suitable for segmenting incident
data into clusters based on their similarity, which is useful in uncovering hidden patterns
such as recurring exploit attempts from a specific host [OIO+19]. For the presented
examples from various clustering algorithms, partitional clustering and hierarchical
clustering are selected. The output of partitional clustering can be presented as several
disjoint clusters, where each element belongs to only one cluster. For example, in
Figure 19, the network traffic logs from the accounting department’s network to the
domain controller are divided into two clusters: ’Abnormal Behavior’ and ’Normal
Behavior’. The ’Abnormal Behavior’ cluster groups incidents involving connections
flagged as potential exploits. The current case with the CVE-2017-11771 exploit attempt
to port 445 and the action taken - block - belongs to this cluster. The clustering criteria
include source and destination IPs and MAC addresses, source port, destination port
(port 445), actions taken (e.g., block), and the specific vulnerability detected (CVE-2017-
11771). The ’Normal Behavior’ cluster represents usual and expected network traffic
from the accounting department’s network to the domain controller, characterized by
historical network activity patterns. It includes data on source and destination IPs and
ports, MAC addresses, and usual actions taken. The output of hierarchical clustering can
be presented as a hierarchical tree structure, a dendrogram. This dendrogram illustrates
the relationships between different clusters or subgroups of divided input data. Figure 20
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Figure 19. Disjoint Clusters Figure 20. Dendrogram

illustrates the example of dividing historical and current logs data. In the example, the
results are presented as data divided into groups: Traffic to the domain controller (internal
requests, authentication attempts, or potential exploits to the domain controller) and
Traffic from the Domain Controller (responses to legitimate requests or indicators of the
Domain Controller being compromised). The second layer of both clusters is divided
based on the action taken: block, allow, or reset. At the third level of the dendrogram, the
data is divided by detected vulnerabilities, grouping data with CVEs or without detected
vulnerabilities.

Table 5. Association Rules Examples

Rule Number Rule Example
Rule 1 If an incident is detected at 17:30, then it could be related to

end-of-day activities, possibly exploiting reduced vigilance
or specific operational routines.

Rule 2 If the CVE-2017-11771 vulnerability is detected, then the
action is to block the connection.

Rule 3 If a destination host is running Windows 2016, then there is a
higher likelihood of CVE-2017-11771 exploitation attempts.

Association Rules Association rules are suitable for discovering relationships
and correlations between data points, such as the correlation between specific network
behavior events [YMA+23]. The output can represented as a collection of association
rules that pinpoint correlations between attribute values. This is achieved by analyzing
the relationships between various sets of items. The example is illustrated in Table 5.
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The first rule illustrates a behavioral pattern based on timing, indicating that attackers
may choose a time when vigilance is lower and initiate an exploit. The second rule shows
an automated security response, where the detection of CVE-2017-11771 triggers the
blocking of the connection, demonstrating the system’s proactive actions against known
vulnerabilities. The third rule provides an understanding of how the detected CVE-
2017-11771 correlates with the destination host operating system version (hosts running
Windows 2016 are more susceptible to exploitation attempts of CVE-2017-11771).

5.3 Application of Supervised Deep Learning Methods
The section analyzes supervised deep learning methods, including CNN and RNN. RNN
is a category of neural networks that can be applied for various tasks with sequential data,
making them applicable for tasks involving time-dependent log data analysis [Pra23].
The applicability of RNN in this case is proven by the study "Recurrent Neural Network
Based Binary Code Vulnerability Detection" [ZPZ+20], which demonstrates detecting
various vulnerabilities with RNN usage. In this detection case, RNN can learn standard
network traffic behavior patterns over time and flag deviations. The following method,
CNN, is also useful for analyzing sequential data and can handle large volumes of
data [IBMa] [YND+18]. Despite this, CNN is primarily used in tasks processing grid-
like topology data, such as image classification, pose estimation, text detection, and
action recognition.

In conclusion, CNNs can be an applicable method for analyzing log data in this
vulnerability detection case due to their focus on grid-like topology data and their capa-
bility to detect suspicious known patterns in logs. However, for CNNs, it is challenging
to detect the temporal dependencies crucial for classifying in this scenario [IBMa].
Therefore, RNN is considered the optimal choice among the supervised deep learning
methods in the thesis. Their ability to handle sequential data makes them applicable for
detecting security vulnerabilities [ZPZ+20]. The output examples from the RNN for this
case are detailed following this analysis.

Recurrent Neural Network RNN is applied for predicting and classifying sequen-
tial data, making them suitable for identifying patterns based on historical and current
data from logs [Pra23] [IBMb]. Also, RNNs are useful for uncovering hidden patterns
and anomaly detection [UM22] [Imr23]. The output example can be presented as a
prediction of future network activities based on learned Trend Micro log source historical
data. In this example, the RNN is trained to determine the likelihood of future net-
work activities being either exploit attempts or normal network activities. This training
leverages historical data containing regular network operations and documented exploit
attempts. Based on the data learned during training, the RNN analyzes a new event: a
connection attempt to the domain controller targeting port 445, which is associated with
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CVE-2017-11771. The characteristics of this event, including the timing (at the end of
the workday), source and destination details, and the CVE-2017-11771 vulnerability,
help the trained model to predict its probability of being an exploit attempt with high
accuracy.

5.4 Application of Unsupervised Deep Learning methods
In this section, the applicability of unsupervised deep learning algorithms was analyzed.
SAE is designed to reconstruct input data while minimizing the reconstruction error,
enabling them to identify deviations as deviations from regular traffic based on historical
data for this case [BCR+23] [KAH21] [LTJY21]. Also, this model is applicable for
determining complex data features and predicting non-linear relationships in logs. For
example, SAE can be used to identify network traffic anomalies that divide from normal
behaviors, as figured from historical data. On the other hand, GAN is applied for creating
synthetic samples that closely mimic real datasets, making them applicable for intrusion
tasks such as penetration testing [YXXZ20] [HSS+20]. The GAN is not directly applied
for detection but is applicable to improving detection systems.

Based on this analysis, it is recommended to use SAE to analyze CVE-2017-11771
due to its suitability for feature learning and anomaly detection in the high-dimensional
data typical of network traffic and logs [BCR+23] [KAH21] [LTJY21]. However, GAN
is not directly applicable to this case since there is no need to improve the detection
system for this threat recognition [YXXZ20] [HSS+20]. Trend Micro successfully
detected and blocked the potential exploit attempt. This analysis includes example of
recommended method output specific to this case.

Stacked Autoencoder Stacked autoencoder is suitable for classifying and detecting
data as anomalous or normal by learning to reconstruct baseline behavior and later
identifying deviations from this norm based on reconstruction errors [BCR+23] [KAH21].
The output can be presented as anomaly detection based on reconstructed input data.
As an example of this case, the output detects anomalies in the current event based
on reconstruction errors and anomaly scores. Firstly, the model is trained on a dataset
containing historical normal network behavior to the domain controller, which includes
parameters like IP addresses, ports, and actions taken by the network’s security protocols.
Each event during this process is evaluated through reconstruction error (difference
between the input and the output), assigning anomaly scores. In the case of a detected
CVE-2017-11771 vulnerability exploit attempt, a difference between the input data
(unusual time, source and destination IP addresses, MAC addresses, ports, action taken,
and detected CVE-2017-11771 vulnerability) and the model’s output (the reconstructed
event) detects a high anomaly score. This high score indicates the event’s significant
deviation from learned patterns of historical normal network behavior, flagging it as a
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potential exploit attempt.

5.5 Summary
This section analyzed 10 different ML and DL algorithms across four categories: super-
vised machine learning, unsupervised machine learning, supervised deep learning, and
unsupervised deep learning. The methods that should be applied for each category were
identified based on their characteristics, advantages, and disadvantages to detect potential
exploit attempts of CVE-2017-11771. In total, it is recommended to apply 7 methods
for the criteria of classification, pattern recognition, and anomaly detection. Penetration
testing criteria are excluded from recommendations since the Trend Micro Vision One
solution successfully detected and blocked potential exploit attempts. Table 6 presents
sample outputs of methods based on the criteria applicable to this scenario.

Table 6. Methods’ Output for Criteria

ML/DL meth-
ods

Classification Patterns Recognition Anomaly Detection

Random Forest Internal Exploit At-
tempt, Blocked Con-
nection

Support Vector
Machines

Critical Port Access At-
tempt, Vulnerable Des-
tination

Logistic Regres-
sion

Internal Threat, Vulner-
able Destination

Clustering Algo-
rithms

Exploit Attempt Clus-
ter, Anomaly Cluster,
Internal Activity Clus-
ter

Association
Rules

Port 445 Exploit, Inter-
nal IP Block

Recurrent Neu-
ral Network

Internal Exploit At-
tempt

Unusual Internal Traf-
fic Pattern

Anomalous Traffic to
Domain Controller

Stacked Autoen-
coder

Abnormal Port Access
Attempt, Internal Host
Compromise

Anomaly Port 445
Traffic, Anomalous
Internal Host Behavior

To classify events in this case, it is suggested to employ supervised machine learning
methods such as random forest, SVM, and logistic regression [LW12]. RNN is recom-
mended from the supervised deep learning category due to its applicability in handling
sequential data. For classifying events in this scenario, the application of SAE is also
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recommended [AK19] [LPL23]. To identify hidden patterns in data, applying clustering
algorithms and association rules from the unsupervised machine learning category is
recommended [Ed20]. Unsupervised methods’ are adept at uncovering relationships and
dependencies in the data, which is crucial for understanding exploit attempts behaviors.
Additionally, RNN from the supervised deep learning category applies to hidden pat-
terns uncovering [Imr23]. RNN and SAE are suggested to apply for anomaly detection,
as both methods can identify deviations from normal user behavior that indicate an
anomaly [UM22] [KAH21].
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6 Phishing Detection
Phishing detection is a security process that helps to detect the phishing attacks [ZMC23].
The phishing attack is a social engineering attack that exploits psychological and social
engineering techniques to deceive the target [ZMC23] [KIJ13]. This attack aims to force
a person to submit sensitive information or credentials to threat actors [ZMC23]. The
impact of this attack could be compromised user accounts, stolen credit card information,
and sensitive data leakage. For big organizations, the impact can include brand abuse,
bid data leaks, financial losses, and reputation damages.

Use Case The SOC was alerted by Microsoft Defender XDR when the head of the
security department reported an email that was phishing from their inbox. This email
mimicked an official Microsoft support notification and asked the recipient to verify a
new policy via a link. The details provided by Microsoft Defender XDR included the time
of receipt, email header, sender’s email (support@microsafttt[.]com), sender’s IP address
(noted for its Bhutanese geolocation and association with phishing activities), email title
("!!!URGENT!!! LOGIN AND AGREE WITH NEW POLICY!!!"), recipient’s address,
the Microsoft logo image, the initial location of the email in the inbox, and its final
location in the quarantine folder. Additionally, the email included a fake Microsoft login
page designed to gather user credentials via the URL (microsafttt[.]com) mentioned in
the message. Following its report, the email was promptly moved from the inbox to the
quarantined mailbox. The AI system analyzed and identified the alert as phishing, which
helped the SOC prioritize the alert, block the sender, and further investigate any related
sender data in the logs to uncover potentially undetected phishing activities.

6.1 Application of Supervised Machine Learning Methods
Supervised machine learning models can classify email for the described case. For in-
stance, the random forest method can classify emails into phishing and non-phishing cat-
egories based on features extracted from email content and metadata. Despite requiring
more storage resources and slower training due to many decision trees, random forest
is still a beneficial method [IBMf]. It has strength against overfitting and can deal with
the unbalanced and high-dimensional data commonly found in phishing detection tasks.
The article "Classification of Phishing Email Using Random Forest Machine Learning
Technique" [AA14] demonstrates the accuracy of phishing email classification using
a random forest model, achieving a rate of 99.7%. The SVM is applicable for linear
and non-linear classification tasks [IBM23a]. For instance, it can be applied in phishing
email detection by identifying the hyperplane that separates phishing emails from legiti-
mate ones based on features extracted from email content and metadata. The method’s
advantages include its ability to work with high-dimensional data and its robustness
against overfitting. The application of SVM in phishing detection is demonstrated in
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article "Phishing Attacks Detection by Using Support Vector Machine" [NG23], which
showed that the SVM-based model achieved an accuracy of 98.8% in detecting phish-
ing emails. Logistic regression is applicable for classification tasks and could be used
for determining between categories like phishing and legitimate emails by assigning
probabilities between 0 and 1 [IBMd]. The advantage of logistic regression is its low
variance, which contributes to less variability in model predictions and provides classi-
fication accuracy [A9]. For instance, logistic regression can predict the likelihood of
an email being phishing or legitimate by analyzing email features like the email header,
sender information, and embedded URL. KNN is valued for its easy implementation and
adaptability to new data [IBMg]. However, it is prone to high-dimensional data due to
increased memory and storage requirements and sensitivity to data scale. Based on these
limitations, KNN is less suitable for analyzing complex and high-dimensional email data.

Based on the discussed methods, the suggested supervised machine learning algo-
rithms to use are random forest, SVM, and logistic regression [IBMf] [IBM23a] [IBMd].
These algorithms are adaptable to complex and high-dimensional datasets and are resis-
tant to overfitting, which applies to the high-dimensional nature of email data. However,
KNN is less suitable in this scenario because it struggles with the high dimensionality
typical of email data [IBMg].

Figure 21. Decision Tree Example

Random Forest Random forest is suitable for data classification, such as classifying
email as phishing or legitimate [IBMf]. The majority of predictions among the decision
trees determine the random forest output. Figure 21 provides an example of a single
decision tree created for this phishing case. The first layer assesses the sender’s email
domain: it checks whether the domain matches ’microsoft.com’ or closely resembles it
without belonging to Microsoft. If the domain does not belong to Microsoft, the email
is immediately classified as phishing. Otherwise, the analysis progresses to the second
layer, which evaluates the sender’s IP geolocation. The email is marked as phishing if
the IP’s geolocation is not associated with legitimate Microsoft IP geolocations; if the
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IP’s geolocation is associated with legitimate Microsoft IP geolocations, the process
moves to the third layer. This final layer analyzes the URL in the email to determine
its legitimacy. If a URL is identified as a legitimate Microsoft web page, the email is
categorized as legitimate; conversely, a suspicious URL leads to a classification of the
email as phishing. For the current phishing case, the decision tree classifies the email as
phishing. The Random Forest generates multiple such trees with variations in conditions
and thresholds to cover a wide range of phishing characteristics. Figure 10 illustrates
the Random Forest model consisting of n decision trees, with the final results marked by
purple circles along the path. In this case, the final prediction of the email is phishing.

Figure 22. Support Vector Machines Classification Example

Support Vector Machines SVM are suitable for data classification tasks, such as
determining emails as phishing or legitimate, by finding a hyperplane that maximizes
the margin between these categories [IBM23a]. The output can be an email classifica-
tion based on an optimal hyperplane that maximizes the margin between phishing and
legitimate emails. Figure 22 illustrates this binary classification for current and historical
emails. The model uses historical data to train and recognize future emails based on
patterns learned during training. The input data includes the following email information:
received time, email header, sender’s email, sender’s IP, email title, recipient (user’s
email), the initial email location, the final email location, embedded images, and URLs.
The ’Phishing Emails’ class, defined as purple in Figure 22, includes both previous
phishing attempts and the current email due to its red flags (such as sender’s email
- support@microsafttt[.]com, sender geolocation - Bhutan, keywords associated with
phishing in the title, and malicious URL - microsafttt[.]com). The ’Legitimate Emails’
class, defined as blue in Figure 22, includes local emails, legitimate Microsoft emails,
and emails from trusted sources (such as ut[.]ee) with expected geolocation.
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Figure 23. Logistic Regression Classification Example

Logistic Regression Logistic regression is suitable for predictive classification tasks,
such as classifying an email as phishing or legitimate, based on estimated probabilities
using a logistic function [IBMd]. The output can be presented as a probability estimate
ranging from 0 to 1, reflecting the likelihood of an email being a phishing attempt. The
model uses a sigmoid function to transform the email data into a probability between
0 and 1. Values approaching 1 indicate an increased likelihood of phishing, whereas
values closer to 0 indicate a legitimate email. Figure 23 demonstrates the method’s
binary output in the context of both historical and current email data. In this instance,
emails identified as ’Phishing Emails’ include historical examples and a present case
determined by factors such as the suspicious sender’s email address, the sender’s unusual
IP geolocation (such as Bhutan), the urgent tone in the email’s title, and the deceptive
URL prompting for login credentials. Conversely, ’Legitimate Emails’ include historical
emails from verified and reliable senders, such as official Microsoft, IBM, and Trend
Micro support addresses, and internal company communications from recognized and
trustworthy IP addresses.

6.2 Application of Unsupervised Machine Learning Methods
The following section analyzes the applicability of the unsupervised machine learning
methods. Clustering algorithms are applicable for organizing similar data and identifying
common characteristics in phishing emails [YLL23] [OIO+19]. These algorithms are
adaptable to large volumes of data, which helps analyze email datasets. For example,
they can categorize phishing attempts by analyzing features such as email headers,
sender’s email addresses, sender’s IP addresses, email titles, and URLs contained in the
emails. The applicability of clustering methods for detecting and classifying phishing
was demonstrated in the study "Using Clustering Algorithms to Automatically Identify
Phishing Campaigns" [AWAV23], where clustering was integrated into the IT workflow
to identify phishing campaigns. Association rules can uncover relationships between
variables in extensive datasets, making it applicable for analyzing various datasets in
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phishing email data [YMA+23]. One of the benefits of employing association rules
is their applicability to various data types [Mat22] [YMA+23]. However, by creating
complex rules, the method may produce false positives or overfitting when the rule set
becomes large.

Based on the analysis, both methods for phishing detection are advised. Clustering
algorithms can identify phishing attempts by grouping similar emails, while association
rules can provide specific criteria for detecting phishing attempts based on associations
discovered in the data [OIO+19] [Mat22] [YMA+23]. As a result, these methods can
produce complementary results that can uncover hidden patterns in the data. Examples
of output from the advised methods for this scenario are presented after this analysis.

Figure 24. Disjoint Cluster

Clustering Algorithms Clustering algorithms are suited for organizing data into groups
based on similarity, which helps uncover hidden patterns in the data, such as grouping
emails into similar clusters to detect patterns and anomalies in email data [OIO+19]. For
the examples, partitional and hierarchical clustering are selected. The output of partitional
clustering can be presented as multiple disjoint clusters, each containing elements that
are only associated with that cluster. Figure 24 illustrates an example of disjoint clusters.
The data is divided into two clusters: ’Phishing Emails’ and ’Legitimate Emails.’ The
’Phishing Emails’ cluster includes current and historical emails showing typical phishing
characteristics such as fake URLs, suspicious sender IPs, misleading sender email
domains, and deceptive email content. The current reported email is classified under the
’Phishing Emails’ category due to several red flags: sender IP (Bhutanese IP address
with phishing categorization by VirusTotal), sender email (support@microsafttt[.]com),
email title ("!!!URGENT!!! LOGIN AND AGREE WITH NEW POLICY!!!"), the
URL (microsafttt[.]com), and deceptive email content. The ’Legitimate Emails’ cluster
includes historical emails with legitimate sender information, the absence of suspicious
URLs, and legitimate content.
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Table 7. Dendrogram

Layer
Number

Example

Layer 1 Layer categorizes the data based on sender information: the
sender’s IP address and email address.

Layer 2 Layer categorizes the data based on content analysis: email
title, Microsoft logo image, text, and URL in the Email.

Layer 3 Layer categorizes the data based on target email and email
processing: Recipient (user email), Initial Email Location
(Inbox, Quarantine), and Final Email Location (Inbox, Quar-
antine).

The output of hierarchical clustering can be presented as a hierarchical tree structure
or a dendrogram. This dendrogram represents the relationships between different clusters
or subgroups of divided input data. For instance, Table 7 provides an example of how
data is divided into three layers of the dendrogram. Due to data division by layers into
more than 2 or 3 nodes, the example is presented as a table with a description of the
categorizations of each layer. The first layer categorizes the data based on the origin of
the email, focusing on the sender’s IP address and email address. These attributes are
crucial for identifying the sender’s geographical (Bhutanese IP address with phishing
categorization) and digital footprint. The second layer splits the data based on content
analysis, including the Microsoft logo image, email title, text, and the malicious URL
in the email. This layer aims to evaluate the content’s intent to deceive by exploring
the trusted and fake logos, analyzing the title ("!!!URGENT!!! LOGIN AND AGREE
WITH NEW POLICY!!!"), email text, and embedded URLs (microsafttt[.]com). The
final layer focuses on the target of the phishing attack and how the email is handled upon
detection. It includes the recipient’s email address, which is the target, and tracks the
email’s journey from the inbox to quarantine. Based on all this, the current email can be
categorized as phishing.

Association Rules Association rules are suitable for uncovering relationships between
various data points, such as the characteristics of emails, which helps identify and predict
phishing attempts [YMA+23]. The output is presented as a set of association rules, which
provide the dependencies between different data attributes. For example, three rules
are provided in Table 8. The first rule shows the correlation between the sender’s email
domain attributes and phishing likelihood. Specifically, if the sender’s email domain is
not listed in trusted and whitelisted domains and contains keywords like "support" or
"admin," the email is likely to be phishing. The second rule shows that emails originating
from high-risk geolocations, such as emails with senders’ IPs from countries known for
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Table 8. Association Rules Examples

Rule Number Rule Example
Rule 1 If the sender’s email domain is not listed in trusted and

whitelisted domains and contains keywords like "support"
or "admin", then the email is hight likely to be phishing.

Rule 2 If the sender’s IP address originates from a high-risk country,
then the email is hight likely to be phishing.

Rule 3 If the email title contains words like "urgent" or "immedi-
ately" with "login", combined with a suspicious URL, then
the email is hight likely phishing.

hosting phishing servers, can be associated with phishing. The last rule shows that the
usage of urgent-sounding words in the email title, such as "urgent" or "immediately,"
combined with "login" with a suspicious URL, is highly related to email phishing. This
rule highlights the manipulative language often used by attackers to provoke immediate
action from the recipients.

6.3 Application of Supervised Deep Learning Methods
This section analyzes the applicability of supervised deep learning models to identify
suitable methods for detecting phishing email. RNN is designed for tasks with sequential
data, which could be applied to analyze temporal dependencies for understanding the
context of phishing email [IBMb] [Pra23] [HAN20]. For instance, RNN can analyze the
sequence of words in an email to understand its context and detect phishing attempts.
The applicability of this method is proven in the conference paper "Catching the Phish:
Detecting Phishing Attacks Using Recurrent Neural Networks (RNNs)" [HAN20] that
proposes a novel automated system for mitigating phishing emails using RNNs. The
study demonstrates that the flexibility of RNNs allows for continuous adaptation to new
phishing trends, making RNNs an adaptable method for this case [HAN20]. CNN is
designed for tasks involving grid-like topology data, such as image classification and
text detection in emails [IBMa] [YND+18]. For phishing detection, CNN can identify
phishing patterns in the email, such as specific phrases, word combinations, or how the
URL is presented. Also, CNN can analyze Microsoft logo image for inconsistencies in
phishing email. The application of this method for phishing email detection presented
in the conference paper "Convolutional Neural Network Optimization for Phishing
Email Classification" [MM21], which investigated CNN models for identifying phishing
attacks through text analysis alone, achieving accuracy rates of over 98%.

In conclusion, employing both RNN and CNN to detect phishing email is suggested,
as each method is suited to analyzing different aspects of email content. RNN is
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applicable for analyzing sequential and contextual data, which helps examine the content
and intent of email [IBMb] [Pra23]. CNN is applicable for classification and pattern
recognition tasks, enabling them to analyze images and textual phishing patterns within
emails [IBMa] [YND+18]. This analysis is followed by presenting output examples
from the suggested methods for this case.

Recurrent Neural Network RNN is applied for classification and prediction tasks that
involve analyzing sequential data, such as determining whether a current email is phish-
ing or legitimate based on historical data [Pra23] [IBMb]. Also, RNN, depending on the
given task, can be used for anomaly detection and pattern recognition [UM22] [Imr23].
The output could classify the email as phishing or legitimate based on historical and
current data features. For this case, the RNN is trained on datasets containing both
legitimate and phishing email cases to predict the likelihood of incoming emails being
phishing or legitimate. Based on the patterns learned during training, the RNN clas-
sifies the current email by analyzing various indicators: a suspicious sender domain
(microsafttt[.]com), an unusual sender IP location previously associated with phishing
(Bhutan), a title that includes alarming symbols atypical for historical emails, and a
suspicious URL. Therefore, the RNN classifies the current email as phishing.

Convolutional Neural Network CNN is suitable for classification tasks, such as email
classification as phishing or normal, based on image and text data [YND+18] [IBMa].
Also, CNN is applied for pattern recognition and anomaly detection [AC20] [Imr23]. In
this case, the CNN output can be presented as a classification of the email as phishing
or normal based on image data. In this case, the input data is a Microsoft logo image
from the email. CNN uses its convolutional layers to analyze the pixel arrays of the logo
image to detect visual discrepancies from the authentic Microsoft logo. These layers
utilize filters designed to identify anomalies in colors and shapes by comparing them
against a verified database of official logos. The result of this analysis is a feature map
highlighting areas of the image that deviate from the expected norms. Subsequently, the
pooling layers reduce the complexity of the data by focusing on these discrepancies and
summarizing the detected anomalies while keeping critical spatial hierarchies. After
that, the fully connected layers use the filtered image features to classify the email as
phishing or legitimate. This final classification tags the current email as phishing based
on the deviations in the Microsoft logo image, which align with characteristics typically
associated with phishing emails (e.g., unusual colors for the Microsoft logo).

6.4 Application of Unsupervised Deep Learning methods
This section surveys unsupervised deep learning algorithms’ applicability for phish-
ing detection cases. SAE is applicable for anomaly detection in emails as they re-
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construct input data to capture essential features and identify deviations from normal
patterns [BCR+23] [KAH21] [LTJY21]. Although SAEs require significant resources
for training, their ability to manage the high-dimensional nature of email data is an
advantage, enabling the identification of complex features and non-linear relationships
within the data. Conference paper "Apply Stacked Auto-Encoder to Spam Detection"
[MGT15] has demonstrated the suitability of SAEs in filtering spam, highlighting their
classification accuracy and strength compared to traditional machine learning methods.
GANs focus on generating synthetic samples, such as creating synthetic phishing emails
to train detection models [YXXZ20] [HSS+20]. Research "Mitigation of Phishing At-
tacks using Generative Adversarial Networks (GAN)" [Uzo23] has proved that GANs,
by generating synthetic phishing emails, can test the robustness of existing detection
tools and mitigate real-time phishing attacks. In this case, Defender XDR was unable to
detect a phishing email, which was then received in a user’s inbox. This underscores the
necessity of training systems to detect similar cases in the future, which also involves the
generation of synthetic samples to recognize similar cases.

Overall, the suggested methods contain both SAE and GAN for phishing detection.
SAEs are directly applicable for anomaly detection in incoming emails because they can
reconstruct input data and identify deviations from normal patterns [BCR+23] [KAH21].
On the other hand, GANs provide strategic long-term advantages by enhancing the
robustness of detection models by generating synthetic phishing emails for adversar-
ial training, thus improving the detection of emails, similar to these synthetic exam-
ples [YXXZ20] [HSS+20]. This analysis is followed by presenting output examples
from the suggested methods for this case.

Stacked Autoencoder Stacked Autoencoder is suitable for tasks that require anomaly
detection and classification, such as classifying emails as phishing or legitimate based
on deviations from reconstructed inputs that capture normative data behavior [BCR+23]
[KAH21]. The output can be presented as a classification of email as phishing or
legitimate, based on reconstruction error and anomaly score. In this scenario, a Stacked
Autoencoder model is trained on historical datasets of legitimate and phishing emails.
During the training phase, the model analyzes emails based on various features such as
the time received, email header, sender’s email address, sender IP address, email title,
body text, embedded images, and URLs. The model then reconstructs the emails. Each
email is subsequently assigned a specific reconstruction error and anomaly score. For
this case, the differences between the input data (which includes an anomalous email
address, an IP address associated with a high-risk location, an urgent email title and body
text, misleading images, and a suspicious URL) and the reconstructed inputs result in a
high anomaly score. This high anomaly score, indicating a significant deviation from
the learned patterns of historically legitimate emails, categorizes the current email as
phishing.
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Generative Adversarial Network GAN is suitable for penetration testing, enhancing
the detection system’s robustness against new attacks, including identifying previously
unknown phishing email models [YXXZ20] [GZ19]. For this case, GAN is utilized for
penetration testing and enhancing phishing email detection capabilities because Defender
XDR cannot detect this phishing email and isolate it. The Generator component of the
GAN method creates synthetic phishing emails with sender email, sender IP address from
Bhutan, email titles with alarming symbols, fake Microsoft logos, and embedded URLs
from actual detection cases. These fake phishing emails allow the system to analyze and
learn to identify new and developing phishing tactics without the risk of compromising
real sensitive data. The final result of this method is an improved detection model that is
more robust and adaptive to new phishing attacks.

6.5 Summary
This section analyzes 10 machine learning and deep learning methods across four cate-
gories: supervised machine learning, unsupervised machine learning, supervised deep
learning, and unsupervised deep learning. Specific methods from each category were
considered for their applicability to a phishing detection scenario by assessing their
strengths and weaknesses. Based on the analysis, 9 methods are recommended to be
applied to four criteria: classification, pattern recognition, anomaly detection, and pene-
tration testing. The example outputs for the methods applicable to the criteria provided
are shown in Table 9.

For classification, the recommended methods from the supervised machine learning
category include random forest, SVM, and logistic regression [LW12]. In supervised
deep learning, RNN and CNN are applicable methods. SAE, though typically used
in unsupervised contexts, can also be adapted for classification tasks [AK19] [LPL23].
For pattern recognition, clustering algorithms and association rules from unsupervised
machine learning are advised [Ed20]. Additionally, RNN and CNN from supervised deep
learning are also suggested, as the specific application of these neural networks depends
on the tasks they are designed for [Imr23]. In anomaly detection, RNN and CNN from
supervised deep learning are recommended [UM22] [AC20]. From unsupervised deep
learning, SAE is advised for its ability to reconstruct data and identify deviations from
normal patterns [KAH21]. For penetration testing, GAN is recommended to apply for
adversarial training, which helps the system learn to detect and prevent new phishing
techniques [GZ19].
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Table 9. Methods’ Output for Criteria

ML/DL meth-
ods

Classification Patterns Recog-
nition

Anomaly De-
tection

Penetration
Testing

Random Forest Phishing
Attempt, Sus-
picious Sender
Domain

Support Vector
Machines

Microsoft Im-
personation,
Credential Theft
Attempt

Logistic Regres-
sion

Microsoft Im-
personation,
Suspicious
Sender

Clustering Algo-
rithms

Phishing Key-
word Content
Cluster,

Association
Rules

Quarantine
Movement
Pattern, Urgent
Phishing Key-
word Usage

Recurrent Neu-
ral Network

Fake Policy Up-
date, Phishing
Email Content,
Malicious URL

Phishing Email
Pattern, Fake
Microsoft Email

Anomalous
Email Content,
Atypical Email
Address

Convolutional
Neural Network

Fake Logo Im-
age, Fake Policy
Update

Email Header
Irregularities,
Logo Image
Misuse

Deviation from
Normal Email,
Abnormal Email
Source

Stacked Autoen-
coder

Suspicious
Sender Domain,
Suspicious URL

Anomalous
Email Header,
Abnormal Login
Page

Generative
Adversarial
Network

Fake Emails
Creation, Sys-
tem Testing
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7 Concluding Remarks
The thesis analyzes the applicability of machine learning and deep learning methods in
addressing IT security threats across three cases: UEBA, vulnerability detection, and
phishing detection. The ML and DL methods were observed and assessed based on their
applicability in classifying, recognizing patterns, detecting anomalies, and penetration
testing. By assessing each method’s strengths and limitations for the three threat detection
cases, the thesis answers the research question and identifies recommended ML and DL
techniques to be applied for each analyzed security threat.

7.1 Limitations
Limitations observed in the thesis include the analysis of a limited set of machine
learning and deep learning methods. While this thesis analyzed 10 ML and DL methods,
new methods continue to develop. The thesis focused on analyzing the applicability
of individual methods for 3 specific threat detection cases. However, AI employs
a combination of methods across threat detection. Additionally, although the thesis
assessed the applicability of methods based on their characteristics, strengths, and
weaknesses, not all methods’ adaptability for 3 threat detection cases was supported by
practical application proof provided by researchers and studies.

7.2 Answer to Research Question
Based on the thesis analysis, the research question — "What machine learning and Deep
Learning methods are applicable for detecting different security threats?"—is addressed
by identifying specific ML and DL methods’ applicability to security threats. The number
of security threats in the real world is large, and each case contains unique elements; the
thesis analyzes ML and DL methods’ applicability for the 3 security scenarios. These
scenarios include User and Entity Behavior Analytics, Vulnerability Detection, and
Phishing Detection, each presenting unique characteristics requiring individual method
recommendations.

For the UEBA scenario, it is recommended that random forest, SVM, logistic regres-
sion, and KNN be applied to classify events. It also highlights the use of RNN and SAE
from the deep learning categories for classification. Clustering algorithms, association
rules, and RNN are applicable to uncover hidden patterns in user behavior. Anomaly
detection in this scenario could be performed by recommended RNN and SAE to identify
anomalies by deviations from normal behavior.

In the vulnerability detection scenario, methods such as random forest, SVM, logistic
regression, RNN, and SAE are recommended for classifying potential vulnerabilities.
Clustering algorithms, association rules, and RNN are suggested for pattern recognition.
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SAE and RNN are suggested for identifying deviations that may indicate anomalies and
following security breaches.

For phishing detection case, the thesis recommends employing random forest, SVM,
logistic regression, RNN and CNN for classification. Also, RNN and CNN, along
with clustering algorithms and association rules, are suggested for pattern recognition.
For anomaly detection suggested the application of RNN, CNN, and SAE, which can
identify unusual patterns indicative of phishing attempts. In this case, GAN is proposed
for penetration testing to enhance the system’s resilience against new and developing
phishing techniques.

7.3 Future Work
Future research will focus on developing a mixed-methods approach, combining the most
applicable ML and DL techniques for threat detection. This will involve integrating new
ML and DL methods, ensuring that the mixed-methods approach stays up-to-date with
the latest advancements in AI. Furthermore, practical implementation involves creating
a framework based on the mixed-methods approach that not only detects threats but
prioritizes them based on their potential impact and criticality. This capability of creating
a framework will enable security professionals to react to critical threats first, enhancing
the overall security posture.
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Appendix

I. Glossary
• ML - Machine learning

• DL - Deep learning

• AI - Artificial intelligence

• IT - Information technology

• UEBA - User and Entity Behavior Analytics

• IDS - Intrusion detection systems

• SVM - Support vector machines

• KNN - K-nearest neighbor

• GAN - Generative adversarial network

• CNN - Convolutional neural network

• RNN - Recurrent neural network

• SAE - Stacked autoencoder

• AE - Autoencoder

• PGF - Please provide the full form for PGF

• SOC - Security Operations Center

• MAC address - Media Access Control address

• URL - Uniform Resource Locator

• CVE - Common Vulnerabilities and Exposures

• IP - Internet Protocol
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