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Patient Treatment Trajectories Using Vector Embeddings 

Abstract 

In this thesis, data from Estonian Health Insurance Fund (Haigekassa) in 2010–2019 was used 

to construct vector representations of patient treatment trajectories with BERT, and for 

comparison, with word2vec. The goal was to see how well such natural language processing 

(NLP) models perform when sequences of medical services are used as input instead of 

sentences, and if BERT performs better than word2vec. So far, research on how well NLP 

models work with non-natural language sequences is limited, and this thesis contributes to 

filling this gap. In this thesis, treatment trajectories were built as sequences of service codes 

appearing on 41 million medical invoices. Models in this thesis were constructed in two stages. 

First, service code embeddings were trained with BERT and word2vec. Then, classification 

models were built by fine-tuning BERT and training KNN and SVM classifiers on top of 

word2vec embeddings. Results showed that despite poor performance of BERT in pre-training 

stage, it outperformed models built on top of word2vec embeddings in all seven classification 

tasks. The highest accuracy (0.9918) was achieved in classifying treatment types (5 classes) 

and the lowest (0.4121) in classifying diagnosis (174 classes). It was concluded that BERT 

indeed proved useful with this type of non-natural language input data, and that the contextual 

embeddings of BERT worked better than non-contextual ones of word2vec. From among the 

four BERT models built in this thesis, the second largest was the overall best, showing that if 

the ‘language’ used is simpler than natural language, then BERT models with reduced 

dimensions might work better.  

Keywords: machine learning, treatment trajectory, medical bill, word2vec, BERT 

CERCS: P176 – Artificial intelligence, B110 – Bioinformatics, medical informatics, 

biomathematics, biometrics 
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Ravitrajektooride koostamine sõnavektorite abil 

Lühikokkuvõte 

Magistritöös konstrueeritakse Haigekassa andmete (2010–2019) põhjal patsientide 

ravitrajektooride vektoresitused, kasutades selleks BERTi ja võrdluseks word2vec’i. Töö 

eesmärk on näha, kui hästi need loomuliku keele töötluse (NLP) mudelid töötavad, kui lausete 

asemel on sisendiks raviteenuste aegread, ning kas BERT on tulemuslikum kui word2vec. 

Seda, kui tulemuslikud on NLP mudelid mittekeeleliste andmete peal, on siiani vähe uuritud, 

ja käesolev töö annab panuse selle lünga täitmisse. Siin magistritöös koostati ravitrajektoorid 

41 miljonil raviarvel olnud teenuskoodidest. Seejärel treeniti mudelid kahes etapis. Kõigepealt 

treeniti BERTi ja word2vec’iga teenuskoodide vektoresitused. Seejärel treeniti 

klassifitseerimismudelid, ühelt poolt peenhäälestades selleks BERTi ja teiselt poolt treenides 

word2vec’i vektoresituste peal KNN ja SVM klassifitseerimismudelid. Tulemused näitasid, et 

vaatamata BERTi kehvale sooritusele eeltreenimise etapis olid peenhäälestatud BERTi 

mudelid kõigis seitsmes klassifitseerimisülesannetes word2vec vektoritel treenitutest 

tulemuslikumad. Suurima täpsuse (0.9918) saavutas BERT raviliikide (5 klassi) ja vähima 

(0.4121) diagnooside (174 klassi) klassifitseerimisel. Töös järeldati, et BERT osutus 

ravitrajektooride klassifitseerimisel kasulikuks, vaatamata sellele, et tegu ei olnud loomuliku 

keele andmetega. Samuti järeldati, et BERTi konteksti arvestavad vektoresitused töötavad 

ravitrajektooridel word2vec’i konteksti mitte arvestavatest paremini. Neljast BERTi mudelist 

osutus kokkuvõttes parimaks suuruselt teine, mis näitab, et kui kasutatav ‘keel’ on loomulikust 

keelest lihtsam, siis võivad paremini töötada vähendatud mõõtmetega BERTi mudelid. 

Võtmesõnad: masinõpe, ravitrajektoor, raviarve, word2vec, BERT 

CERCS: P176 – Tehisintellekt, B110 – Bioinformaatika, meditsiiniinformaatika, 

biomatemaatika, biomeetrika 

Visuaalne kokkuvõte 
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1. Introduction 

In the last decade, the field of natural language processing (NLP) has been developing fast and 

has seen astonishing achievements. It has been shown that the advances in NLP can in some 

cases be transferred also to other fields, where the structure of the data shares some properties 

with natural language. For example, BERT (Bidirectional Encoder Representations from 

Transformers) [1], a state-of-the-art language model also used in this thesis, or its derivations 

have been successfully applied in modelling the ‘language’ of DNA as a sequence of 

nucleotides [2] and proteins as a sequence of amino acids [3]. In the field of electronic health 

records, its derivation BEHRT [4] was used for predicting future diagnosis based on sequences 

of previous visits, each of which could contain multiple diagnoses. In the same field, G-BERT 

[5] combined BERT with graph neural networks for modelling the hierarchical structure of the 

ontology of medical codes and for recommending medication, based on sequences of previous 

medications and previous and current diagnosis. In all those examples, the input data shared 

some similarity to natural language, since much like words in a sentence, the input sequences 

consisted of temporally ordered discrete events, with some inner logic governing how items in 

a sequence were ordered. This thesis contributes to the above research by looking at how well 

BERT performs on patient treatment trajectories, consisting of sequences of services provided 

by medical institutions to a patient, and by comparing its performance to word2vec [6], which 

is a simpler NLP model. 

More specifically, the aim of this thesis is to evaluate the suitability of applying BERT to 

patient treatment trajectories, by measuring its performance in various tasks related to both its 

pre-training and fine-tuning stage, and also comparing its performance with word2vec and 

classifiers built on top of it. The task in pre-training stage, where BERT learns general language 

representation through masked language modelling (MLM) approach, was to predict service 

codes that were masked out in the trajectory. Its performance in this task is compared to the 

performance of word2vec in predicting the target ‘word’ (service code) in the middle of its 

context window. In the fine-tuning stage, performance of BERT is measured in seven 

classification tasks (incl. predicting diagnosis, treatment type, discharge status, type of service 

provider, and if the invoice was for emergency services). Its performance in this task is 

compared to k-nearest neighbours (KNN) and support vector machine (SVM) classifiers built 

on top of vector representations of treatment trajectories obtained from word2vec.  

The reason for comparing BERT with word2vec is that both learn vector representations of 

words (also called ‘word embeddings’) during training. The difference is that embeddings 

learnt by BERT are contextual (the same word has different embedding depending on the 

context where it occurs), while the embeddings learnt by word2vec are static (for each word in 

its vocabulary, the model learns a fixed embedding) [7]. Therefore, comparing BERT and 

word2vec allowed to see if contextual embeddings work better with treatment trajectories or 

not.  

Since the ‘language’ of medical services is likely to be less complex than natural language, 

four BERT models of different dimensions were built in this thesis in order to see if models 

smaller than the one proposed by the authors of BERT [1] work better with treatment 

trajectories.  

Data used in this thesis were invoices submitted by medical institutions for reimbursement to 

the Estonian Health Insurance Fund (Haigekassa) in 2010-2019, from which 41 million 

treatment trajectories were constructed. The features predicted in the classification models 

were obtained from an accompanying dataset containing further details on a small subset 

(62,000) of those invoices.  
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The results of the models are further analysed from a number of aspects. The results of pre-

trained BERT and word2vec models are first further analysed by breaking accuracies down by 

trajectory length. Secondly, principal component analysis (PCA) is performed on embeddings 

of 10 selected services of one of the pre-trained BERT models in order to better understanding 

its results. Thirdly, the possible effect of masking strategy on performance is discussed. The 

results of fine-tuning BERT are further analysed by discussing prediction errors of the best 

BERT model based on confusion matrices. Also, a small case study is performed on two fine-

tuned BERT models to see if having more training data could have helped improve 

performance of the classification models.  

The models were implemented in Python programming language, using Hugging Face 

Transformers library1 (vers. 4.7.0) for BERT models and scikit-learn library2 (vers. 0.24.2) for 

other models. Link to the GitLab repository of this thesis is given in Appendix I. 

The rest of this thesis is organized as follows. In Chapter 2, the background is explained, 

including the description of BERT and word2vec models, as well as related works where BERT 

has previously been applied to non-natural language data. In Chapter 3, the datasets used, as 

well as pre-processing and descriptive statistics of both treatment trajectories and predicted 

features are described. Chapter 4 contains methodology, explaining how the models were built 

and which performance metrics were used. The results are set out in Chapter 5 and conclusions 

in Chapter 6.  

  

 
1 https://huggingface.co/docs/transformers/index  
2 Scikit-learn User Guide: https://scikit-learn.org/stable/user_guide.html   

https://huggingface.co/docs/transformers/index
https://scikit-learn.org/stable/user_guide.html
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2. Background 

In this Chapter, the two main models used in this thesis – BERT and word2vec – are described 

(see Sections 2.1 and 2.2), followed by description of some related works where BERT has 

previously been applied to non-natural language data.  

As regards the main models, BERT is a state-of-the-art language model developed by Devlin 

et al. [1] in 2019. In that article, the authors demonstrated that BERT can achieve excellent 

performance in a wide range of NLP tasks, like question answering, named entity recognition 

and language inference. Word2vec is an older and less complex model, developed by Mikolov 

et al. [6] in 2013. Both models have been extensively used by the natural language research 

community3. 

Both BERT and word2vec learn word embeddings during training. An embedding is a real 

valued vector, usually of length 50-1000, which represents the meaning of a word [7]. The idea 

that word meanings can be represented with real valued vectors relies on distributional 

hypothesis, which states that words occurring in similar contexts tend to have similar meanings 

[Ibid.]. Therefore, a language model can learn word embeddings by going through the text and 

looking at which words tend to occur nearby each other, iteratively adapting embeddings along 

the way, so that embeddings of words that appear near each other become more similar and 

those that do not become less similar. In this process, BERT looks at the whole sentence at a 

time and also takes word order into account [8], while word2vec looks only at words in a fixed 

sized context window and treats them as a bag-of-words, i.e. without considering word order. 

An important difference between word2vec and BERT is that embeddings learnt by BERT are 

contextual (the same word may have different embedding depending on the context where it 

occurs), while the embeddings learnt by word2vec are static (for each word in its vocabulary, 

the model learns a fixed embedding) [7]. In both models, vocabulary is a dictionary that maps 

tokens (i.e. words, and in case of BERT, also some special tokens) to their indices. Both 

word2vec and BERT use a fixed sized vocabulary. For example, the BERT model developed 

in [1] had vocabulary size 30,000. Less frequent words that do not fit in the vocabulary are 

treated as out-of-vocabulary or unknown (UNK). In this thesis, the vocabulary contained 

service codes instead of words, while patient treatment trajectory (i.e. sequence of medical 

service codes on an invoice) was treated as a sentence.  

 
2.1 Word2vec 

In word2vec, the inputs are gathered by moving a fixed sized window through the text, for each 

sample storing the word in the middle of the window as the target word and the words around 

it as context words. Word2vec has two architectures: CBOW (continuous bag-of-words) and 

skipgram (see Figure 1), both of which are log-linear models [6]. In the figure, w(t) is the target 

word and w(i-2), w(i-1), w(i+1) and w(i+2) are the context words. In CBOW, the goal is to 

predict the target word based on the context words, and in skipgram, to predict context words 

based on the target word [6]. In this thesis, both architectures were considered, but finally only 

CBOW was used, because it showed slightly better performance in initial experiments.  

 
3 In Google Scholar, there are 15,400 papers mentioning “Bidirectional Encoder Representations from 

Transformers” and 87,200 papers mentioning “word2vec” in their text.  
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Figure 1. CBOW and skipgram architectures of word2vec [6] 

Word2vec stores two weights matrices, one containing embeddings for words when used in 

context, and the other one containing words when used as target word [7]. This means that in 

fact two embeddings are learnt for each word. There are two alternative ways for obtaining the 

final embeddings – one is to add up the two embeddings for each word, and the other one is to 

simply disregard the context word embeddings and only use the target word embeddings [Ibid]. 

In case of CBOW, the model selects the vectors of context words from the context words 

matrix, then either averages or concatenates [9] or sums [7], [10] them, and sends the resulting 

aggregated vector to the classifier (see Figure 1). In case of skipgram, the model selects the 

vector of the target word from the target words matrix and sends it to the classifier (see 

Figure 1). 

The classifier in word2vec is logistic regression [7]. There are two alternative optimization 

objectives that can be used: negative sampling or hierarchical softmax [10]. The models in this 

thesis used negative sampling. As explained in [Ibid.], the idea of negative sampling is that for 

each positive sample (actual word-context pair), the classifier also needs k negative samples 

(target word that does not appear together with the given context words in case of CBOW, or 

vice versa in skipgram), which are randomly sampled from the input text. The classifier is then 

trained to distinguish the positive samples from the negative ones.  

As explained in [7], the model starts learning with randomly initialized weights matrices. 

During training, as it walks through the data, it adapts the weights using stochastic gradient 

descent to maximize the similarity of positive samples and minimize the similarity of the 

negative samples. In general, the similarity of two words can be calculated as cosine of the 

angle between their word vectors u and v:  

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝒖, 𝒗) =  
𝒗∙𝒖

|𝒗||𝒖|
=   

𝑢1𝑣1 + ...  + 𝑢𝑛𝑣𝑛

√𝑢1
2 + … + 𝑢𝑛

2    √𝑣1
2 + … + 𝑣𝑛

2
                (1) 

However, the similarity calculated when training word2vec is simply dot product between the 

word vectors (i.e. numerator in the formula above), without normalizing the vectors to unit 
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vectors (of length 1) by dividing them by vector lengths [7]. As explained in [Ibid.], dot product 

still reflects similarity between vectors (similar vectors have higher dot product, since they tend 

to have high values in the same dimensions). At the same time, it has the disadvantage of 

favouring long vectors (dot product is higher for longer vectors, which tend to correspond to 

more frequent words, since those words co-occur more frequently with any other words). 

 

2.2 BERT 

The description of BERT in this section is based on the paper by Devlin et al. [1]. As regards 

model architecture, BERT is a multi-layer bidirectional transformer encoder model. According 

to the authors of BERT [Ibid.], the Transformer is implemented almost identically to the one 

proposed by Vaswani et al. [11]. In this thesis, BERT was used as a black-box model, and 

therefore its underlying Transformer architecture is not here described.  

As explained in [1], BERT is trained in two stages: pre-training and fine-tuning. In the pre-

training stage, general language representation is learnt by training the model on large amount 

of unlabelled data in a self-supervised manner. This is done though masked language modelling 

(MLM) approach, where 15% of input tokens are masked (replaced by MASK token), and the 

task is to predict vocabulary ids of those masked tokens. The MLM approach makes BERT a 

bidirectional model (i.e. it learns from both left and right hand context), as opposed to some 

earlier models like ELMo [12] and OpenAI GPT [13], which are unidirectional (i.e. trained to 

predict next token based on preceding ones). Inputs to BERT can be either single sentences or 

sentence pairs. The possibility to use sentence pairs as input is essential for some NLP tasks 

(e.g. question answering), while not that relevant for others (e.g. sentence classification or 

tagging). If sentence pairs are used as input, an additional objective besides minimizing MLM 

loss is also to minimize next sentence prediction (NSP) loss [1]. In this thesis, inputs were 

single sentences (treatment trajectories), since due to lack of patient ids in data, consecutive 

trajectories (i.e. invoices of the same patient) could not be identified.  

As further explained in [Ibid.], in the fine-tuning stage, a classification layer is added to the 

model, and then the same model is trained further on a relatively small amount of labelled data 

to perform classification tasks. These can either be sentence level tasks, where a label is 

predicted for the whole sentence (e.g. sentiment analysis), or token level tasks, where a label 

is predicted for each token in the sentence (e.g. part-of-speech tagging). The classification tasks 

in this thesis were all at sentence level.  

The two stages of training BERT are shown in Figure 2. This figure is from the original paper 

of BERT [Ibid.] and depicts the case where a sentence pair is used as input. In Figure 2, the 

input sequence (where Toki represents i-th token) is marked in pink, the input embeddings Ei 

in yellow and embeddings in the final hidden state Ti in green. Special token CLS is added to 

the start of each input sequence, and SEP token to the end of each sentence. The final hidden 

state corresponding to the CLS token is used for sentence level classification tasks (for NSP in 

pre-training and for different downstream classification tasks in fine-tuning). As shown in 

Figure 2, the outputs of pre-training are predictions for the masked tokens (Mask LM in the 

figure) and prediction of the second sentence following the first one or not (NSP). The same 

pre-trained model can be fine-tuned for different tasks (resulting in several fine-tuned models) 

[Ibid.]. Examples of tasks shown in Figure 2 are language inference (MNLI), named entity 

recognition (NER) and question answering (SQuAD). For example, in SQuAD the input 

sentence pair consists of a question (first sentence) and a paragraph (second sentence), and the 

task is to predict where the answer to the question can be found in that paragraph (i.e. the start 

and end of its span).  
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Figure 2. Pre-training and fine-tuning of BERT [1] 

For each input sequence, the input embeddings (Ei in Figure 2) are constructed as shown in 

Figure 3 by summing up token embeddings, segment embeddings and position embeddings 

[1]. Token embeddings are simply the embeddings of each input token. Segment embeddings 

indicate which of the two sentences the token belongs to. Position embeddings encode absolute 

position of the token from 1 to maximum sequence length and show how a token in a given 

position attends to tokens in other positions [8]. A limitation of BERT with the type of inputs 

used in this thesis is that it does not allow encoding sets of input tokens as having the same 

position in the sequence. It can be seen as a limitation because it was not clear if services 

provided to the patient on the same date appeared on the invoice exactly in the same order as 

they were provided or not. It is also possible that in case of some services, the precise order is 

not important (e.g. if several lab tests are done on the same day, their order does not matter 

much).  

 

Figure 3. Representation of the input of BERT [1] 

The tokenized inputs to BERT have a fixed maximum length [1]. As the authors note, a 

limitation in choosing the length is that time complexity of the attention mechanism in BERT 

is quadratic to the length of the input sequence, which makes using longer sentences 

disproportionately expensive. Their approach was to first pre-train BERT with sentence length 

128 for 90% of the time and then continue training with sentence length 512. In this thesis, 

sentence (treatment trajectory) length used was 128. If a sentence is shorter than the maximum 

length, PAD tokens are added to the end, to ensure that all input sequences have the same 

length. This token, along with special tokens CLS and SEP, are ignored by the model during 

training [Ibid.]. Another special token used in BERT is UNK, which stands for out-of-

vocabulary words. 
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In the BERT model developed in [1], words in the input sequence are split into subwords before 

feeding them to the model, using WordPiece tokenizer [14]. For example, in Figure 3, ‘playing’ 

has been split into ‘play’ and ‘##ing’. The advantage of using subwords in NLP is that it 

improves handling of rare words [Ibid.], but also helps the model to recognize that words 

having same roots or same endings are similar. However, in this thesis subword segmentation 

was not used. Splitting service codes into ‘subwords’ would not have made sense, because the 

codes, despite being treated as strings, were mostly numeric (a few also contained some letter) 

and unlike subwords in NLP, their subsequences did not infer similarity between the services. 

 
2.3 Related works 

Since data used in this thesis were patient treatment trajectories extracted from medical 

invoices, it is interesting to point out some examples of previous research where BERT (or its 

derivations) have been used on other than natural language data. 

The most relevant example is BEHRT [4] – a BERT model for electronic health records (EHR), 

developed by Li et al. using data of 1.6 million patients. As opposed to this thesis, the inputs 

to BEHRT are sequences of diagnosis codes (301 in total) and corresponding sequences of ages 

of the patient, instead of codes of medical services. In BEHRT, diagnosis codes are acting as 

words and visits as sentences. Ages were added since they are a key risk factor in most diseases, 

and were also meant to give an indication of time intervals between visits. A difference from 

BERT is that instead of using just one sentence pair (i.e. two visits) as input, all visits of a 

patient, separated by SEP token, are concatenated into a single input sequence. The input 

representation was also modified compared to BERT (see Figure 3), by adding age 

embeddings, having segment embeddings (EA and EB in Figure 3) alternate between visits, and 

position embeddings being relative instead of absolute (same for the same visit, and increasing 

with successive visits). Similar to BERT, the final input representation was obtained by 

summing all the token (i.e. diagnosis), position, segment and age embeddings. The model was 

then fine-tuned to predict diseases in the next visit, and in the next 6 and 12 months.  

Another derivation of BERT applied to EHR is G-BERT [5], developed by Shang et al., which 

combines BERT with graph neural networks (GNNs). G-BERT can be used for representing 

the hierarchical structure of medical codes ontology and for recommending medication. 

Contrary to BEHRT [4], where inputs are diagnosis codes of successive visits, inputs to pre-

training G-BERT are diagnosis and medications codes of a single visit, while successive visits 

are only accounted for in fine-tuning. Also, G-BERT does not have position embeddings (the 

authors justify their removal with medical codes within a visit not having any specific order). 

The first step in training G-BERT is learning two ontology embeddings – for diagnosis codes 

and for medication codes – using GNNs. Both are then used as input to BERT to obtain visit 

embeddings. The pre-training tasks in G-BERT are self-prediction (where similarly to MLM 

in BERT, masked codes are predicted based on other codes within a visit) and dual-prediction 

(predicting medications of the visit based on diagnosis of the visit and vice versa). G-BERT is 

then fine-tuned for medication recommendation. For fine-tuning, the means of diagnosis 

embeddings and medications embeddings of all previous visits, as well the diagnosis 

embedding of the current visit are concatenated. The result of this concatenation is then used 

as input to a classification layer to predict medications of the current visit – that is, to 

recommend medications, given the previous history and the current diagnosis.  

Two other interesting examples of applying BERT to non-natural language inputs can be found 

from the field of bioinformatics. The first is DNABERT, developed by Ji et al. [2] for 

modelling the ‘language’ of human DNA. The inputs to DNABERT are k-mers (nucleotide 

sequences of length k). The authors trained a separate model for each value of k in range 3–6. 
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The architecture of the models was the same as BERTBASE proposed in the original BERT 

article [1]. However, similar to this thesis, the inputs were single sentences (not sentence pairs), 

and sequences longer than the maximum length (512) were split into pieces. During pre-

training, the model learnt general understanding of the DNA ‘language’ through self-

supervision. Then it was fine-tuned for three genomics tasks (predicting promoters, splice sites 

and transcription factor binding sites), where its performance surpassed previous models.  

Another example is a paper by Min et al. [3], where Transformers and RNN were used for 

modelling proteins, with sequences of amino acids acting as ‘sentences’. The pre-training of 

their models was otherwise similar to BERT (MLM with masking 15% of the amino acids), 

except that the NSP task was replaced by the task of predicting if the input protein pair belongs 

to the same protein family. However, besides fine-tuning the same Transformers model further, 

they also used the pre-trained embeddings as input to BiRNN (bidirectional recurrent neural 

network) and found that the latter performed better in 6 out of 7 downstream classification and 

regression tasks. The authors argued that an advantage of using RNN (Recurrent Neural 

Networks) instead of Transformers for modelling proteins was that while Transformers are 

good at learning long-distance relationships, RNN is better at learning local contexts, which 

are especially important in the structure of proteins. Also, they argued that Transformers cannot 

handle well inputs exceeding 512 tokens, while protein sequences are often longer.  
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3. Data 

The datasets used for this thesis contained details of invoices submitted by medical institutions 

for reimbursement to the Estonian Health Insurance Fund (Haigekassa) in 2010-2019. The data 

was held in a PostgreSQL database, from where mainly two data tables were used. The first 

one (Dataset 1) contained billing data on all 72.6 million invoices, and the second one (Dataset 

2) contained further details on 108,961 invoices randomly selected from Dataset 1. Dataset 1, 

except data on invoices also included in Dataset 2, was used for building patient treatment 

trajectories which were then used as input for training word2vec models and pre-training BERT 

models. Dataset 2 was used for building classification models on top of word2vec embeddings, 

and for fine-tuning BERT models for classification. The data was analysed in a secure and 

monitored environment according to the rules and restrictions posed by the data owner. In 

particular, all identifiers were pseudonymised (the data did not include patient ids). 

3.1 Pre-processing  

3.1.1 Treatment trajectories (Dataset 1) 

Dataset 1 contained 293.8 million rows. Each row represented a service provided by a medical 

institution, with bill_id field indicating to which invoice the service in that row pertained. 

For extracting the treatment trajectories, first bill_id field was used to identify rows 

pertaining to the same invoice, which were then sorted by service_date and row_number 

fields. Finally, the values in service_code column for each invoice were extracted to form 

a temporally ordered sequence of service codes to be used as patient treatment trajectory 

represented by that invoice. As a result, each row (data point) in Dataset 1 contained a treatment 

trajectory formatted as a sentence, for example, ‘3004 7004 66612.’ (corresponding to 

‘Repeated visit to specialist doctor’ → ‘Taking a biopsy (except during surgery)’ → 

’Determination of pathogen type or group with PCR method’).  

Trajectories consisting of only one service code (31.3 million trajectories, or 43.1% of the data) 

were dropped, since they would not have been useful for training the models. For example, in 

the mask prediction task in BERT it would have resulted in this single code being masked, 

leaving no other codes for the model to base its prediction upon. Leaving out only invoices 

with a single service code was actually a conservative choice, which helped to limit selection 

bias (which arises from data not meeting some predefined criteria being left out from training 

a model [5]). For example, the authors of BEHRT [4] left out all patients whose trajectories 

contained less than five visits, where each visit could contain multiple diagnosis codes. It must 

be noted that while each invoice in this thesis included services provided to the same patient, 

patient ids were not given. Therefore, unlike BEHRT [4], different visits of the same patient 

(i.e. services provided to the same patient but included in different invoices) could not be 

concatenated in this thesis for making short trajectories longer.  

The data was then shuffled and split into train, test and evaluation set and a set of long 

sentences. The latter were later split into shorter sentences and divided between train, 

evaluation and test set in python. This was done in a way that ensured that parts of the same 

sentence were either only in train, evaluation or test set. The reason for splitting long sentences 

was that the maximum sentence length used in BERT models in this thesis was 128 (125 service 

codes, plus special tokens CLS and SEP, and ‘.’). Long treatment trajectories of more than 125 

service codes (30,556 trajectories) were therefore split into trajectories of maximum length 125 

(resulting in 73,340 trajectories). Initially, using maximum sentence length 256 was also 
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considered, but was disregarded, because some initial trials of pre-training showed that this 

considerably increased training time.  

Before splitting into train, test and evaluation set (and the set of long sentences), invoices also 

included in Dataset 2 were excluded, since the aim was to only use them in training 

classification models. Table 1 illustrates how the pre-processed Dataset 1 looked like before 

performing the train/test/eval split. In Table 1, bill_id column has been anonymised. The 

number of services (rows) on invoice in rows column was used for statistical purposes. The 

last column shows which split the row was assigned to.  

Table 1. Example rows in pre-processed Dataset 1 

 

The pre-processing described above (except splitting long trajectories) was done with SQL 

queries directly in the server holding the database. Performing them locally would not have 

been feasible, considering the size of the dataset. Also, avoiding downloading all data was 

preferrable for data security purposes.  

The sizes of train, test and evaluation sets are given in Table 2. In addition to the training set 

of 39 million samples, a reduced version of it was prepared by randomly sampling 1 million 

trajectories from it. This reduced version was used  

Table 2. Sizes of train, test and evaluation sets 

  Train Test Evaluation Total 

Dataset 1 39,294,731 1,000,000 1,000,000 41,294,731  

Dataset 2 45,000 10,000 6,991 61,991 

While obviously the whole training set of 39 million samples was used for training, also a 

reduced version of it was prepared by randomly sampling 1 million trajectories from it. This 

reduced training set was used for measuring performance of an already trained model also on 

training set (to compare it with test set). The reduced version was assumed to represent the 

large training set well enough for this purpose. Its purpose was to speed up testing the models 

(which was essential, given that testing the largest pre-trained BERT model even on the 1 

million dataset took 23 hours).  

After downloading the trajectories from the database, they were saved as .txt file with one 

trajectory on each line. For word2vec, no further pre-processing was needed. For BERT, the 

input trajectories were tokenized using WordLevel tokenizer from Hugging Face Tokenizers 

library4, which (as opposed to the default WordPiece tokenizer) does not use subword 

segmentation. The tokenizer added CLS and SEP tokens to the start and the end of each 

trajectory (for example, ['[CLS]', '3002', '3004', '7907', '7941', '.', 

'[SEP]']). Also, it replaced service codes appearing less than five times (207 codes) with 

UNK tokens. Then it encoded all tokens with their vocabulary ids (for example, the same 

trajectory was encoded as [1, 2767, 1689, 1450, 2253, 2179, 2]). The vocabulary 

 
4 https://github.com/huggingface/tokenizers  

https://github.com/huggingface/tokenizers
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size (incl. service codes that appeared at least five times, special tokens CLS, SEP, PAD, 

MASK and UNK, and a token for ‘.’) was 3,440. All trajectories were padded to length 128 by 

adding PAD tokens to the end, and then converted into Pytorch tensors.  

Based on the input ids, also other inputs needed for BERT – token type ids, attention mask and 

special tokens mask – were generated. All these were also tensors of length 128. Token type 

ids indicate whether each token belongs to the first or second sentence in case sentence pairs 

are used as input. Since in this thesis the inputs were single sentences, token type ids were all 

zeros. The values in attention mask and special tokens mask indicate which tokens are paddings 

or special tokens, respectively, that should be ignored by the model during training (with ‘0’ 

standing for padding in attention mask and ‘1’ for special tokens in special tokens mask). For 

example, the final tokenized input of the same treatment trajectory as above was:  

{'input_ids':        [1, 2767, 1689, 1450, 2253, 2179, 2, 0, ... 0],  

 'token_type_ids':   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0], 

 'attention_mask':   [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ... 0],   

 'special_tokens_mask': [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, ... 1]} 

The masking in pre-training was done using the internal implementation of BERT, by using 

the default option of masking 15% of the tokens. For mask prediction on test set, the masks 

were instead added before feeding inputs to the model, by masking one random token in each 

trajectory. This was needed for two reasons. Firstly, it was needed to save the locations of the 

masks so that exactly the same masked tokens could be predicted both with BERT and 

word2vec to ensure comparability of their performance. Secondly, the internal implementation 

of masking 15% of tokens resulted in longer trajectories having more than one mask and some 

short trajectories not having any masks at all. However, it seemed not make sense to have 

trajectories with no masks in the test set. Despite different approaches to masking, the 

proportion of service codes masked in test set (14%) was actually quite similar to the one in 

training set (15%).  

3.1.2 Predicted features (Dataset 2) 

Dataset 2 contained further details on 108,961 invoices randomly selected from Dataset 1, 

which were used for constructing features to be predicted in the classification models. Each 

row in this dataset represented an invoice and could be linked to the rows in Dataset 1 through 

the bill_id field. When pre-processing Dataset 2, invoices that were dropped from Dataset 

1 due to having only one service code (43.2% of the invoices) were also dropped from Dataset 

2. The rows corresponding to long invoices which were split into multiple parts (due to having 

more than 125 service codes) were duplicated in Dataset 2 so that there was a row 

corresponding to each of the parts. After those operations, the final number of rows in Dataset 

2 was 61,991.  

When choosing the columns to be used as features in classification models, the ones where 

classes were extremely unbalanced or numeric were disregarded. Among the features used, the 

binary feature emergency_bill, indicating whether the invoice was for emergency services 

or not, was the only one used as is. In other features, some related classes were merged as 

described below to have the classes a bit less unbalanced.  

The column treatment_type contained eight categories which were merged into five by 

removing the breakdown into overtime work and normal working hours. The column 

discharge_status contained 16 statuses of releasing the patient from a medical institution. 

Some related categories in this column were merged as shown in Appendix II in order to have 

fewer very small categories.  
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The column main_icd10_diagnosis contained 37,928 unique diagnosis codes. Since it 

would have been unfeasible to build classification models with that many classes in a dataset 

of size 61,991, diagnoses codes were instead aggregated in two ways into broader categories. 

Aggregation was based on the hierarchical levels present in ICD10 classification available in 

the database and resulted in two features, diag (18 classes, see Appendix III) and diag2 (174 

classes, see Appendix IV). In the higher level of aggregation (diag), codes were aggregated 

based on their starting letters, with related categories A–B, C–D, S–T and V–Y combined, as 

is also done in ICD10 [15] chapters. For example, category A–B corresponded to Chapter I 

(’Certain infectious and parasitic diseases’) of the ICD10 classification. Categories that did 

not appear in data5 were left out. The lower level of aggregation (diag2) was based on ranges 

provided in the classification (for example, A00–A09, ’Intestinal infectious diseases’). In case 

of overlapping ranges, i.e. when a wider range was further broken down into narrower ranges, 

only the narrower range was kept. Categories not appearing in data (44 categories) were left 

out and categories with less than 16 samples (47 categories) were combined into category 

’Other’. 

Finally, the column tto_registry_code, containing registry code of the medical institution 

submitting the invoice, was used to construct two features: tto_type and largest4. For 

tto_type, a mapping available in the database was used to map 784 registry codes into five 

types of service providers (see Appendix V). For largest4, four largest service providers 

(Tartu University Hospital, East Tallinn Central Hospital, North Estonia Medical Centre and 

West Tallinn Central Hospital) were determined by their number of invoices in Dataset 2, and 

the remaining ones were assigned to the category ‘Other’. The purpose of this feature was to 

see if trajectories in the largest hospitals and other service providers are distinguishable (i.e. if 

it is able to predict where the invoice originated from), which would have meant that also 

medical practices between the four largest and other service providers must differ. 

An overview of all features from Dataset 2 after pre-processing that were predicted in the 

classification models is given in Table 3. Class distributions of the final features are shown on 

the histograms in Section 3.2.2. 

Table 3. Features predicted in the classification models 

Predicted feature 
No. of 

classes 
Description 

diag 18 Main diagnosis of the patient (higher level of 

aggregation of ICD10 codes) 
diag2 174 Main diagnosis of the patient (lower level of 

aggregation of ICD10 codes) 
emergency_bill 2 Binary feature indicating whether or not the invoice 

was for emergency services 
discharge_status 7 Statuses of releasing the patient from the medical 

institution  
treatment_type 5 Treatment types  
tto_type 5 Types of service providers  
largest4 5 Largest four and other service providers  

Finally, the data was split into train, test and evaluation sets of sizes given in Table 2.  

 
5 U (’Codes for special purposes’), V–Y (’External causes of morbidity and mortality’) and ’?’ (’Missing or 

erroneous diagnosis code’). 
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3.2. Descriptive statistics 

3.2.1. Descriptive statistics of treatment trajectories  

Services. Total number of service codes appearing in the treatment trajectories was 3,641, 

which is considerably smaller than the number of words in a language. The most frequent 

services (see Appendix VI) were initial or repeated visit to family doctor (5.12% and 6.57% of 

the services) or to specialist doctor (5.96% and 4.61% of the services), followed by some 

common lab tests. In that sense, treatment trajectories were indeed similar to natural language, 

where also some words (e.g. articles and prepositions) are highly frequent. At the same time, 

as many as 86 services only appeared once.  

Service subtypes. Since some of the performance metrics in this thesis were based on subtypes 

(see Section 4.3), it might also be relevant to look at the distribution of service subtypes (see 

Appendix VII). Overall, the 3,641 services were divided between 45 subtypes. The distribution 

was far from uniform, though, with the largest subtype (‘Surgeries’) containing 1,011 services 

and the two smallest subtypes containing only one service. Appendix VII also shows the 

proportion of service codes in data belonging to each subtype. We can see that ‘Lab tests’ made 

up as much as 42.5% of all services provided, with ‘Treatment by family doctor’ (24.0%) being 

next. However, the services in great majority of subtypes (35) made up less than 1% of all 

services provided.  

Lengths of treatment trajectories. As mentioned in Section 3.1.1, as much as 43.1% of the 

invoices only included a single service. On the other hand, the longest invoice contained 5,304 

services. In that regard, the trajectories clearly differed from natural language sentences, which 

are never that long and only rarely consist of a single word. The distribution of treatment 

trajectories of length 2-125 in pre-processed data, where invoices with a single row were left 

out and invoices with more than 125 rows were split into parts, is shown in Figure 46. We can 

see that very short trajectories were dominating in the data. The mean length of trajectories in 

pre-processed data was 6.18. 

 
Figure 4. Distribution of treatment trajectory lengths 

 
6 Trajectory lengths reported in Figure 4 do not include full stop, which was added to the end of each trajectory to 

make it similar to a natural language sentence. 
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Repetitions. Another aspect in which patient treatment trajectories differed from natural 

language sentences was that they repeated a lot (see Table 4). While there were 41.3 million 

invoices, the number of unique trajectories was only 11.6 million. From Table 4, we can see 

that although 90.4% of the unique trajectories were non-repeating (i.e. appeared just once), 

they only made up 25.40% of the data. On the other hand, the repeating trajectories sometimes 

repeated a very high number of times. For example, while only 0.0002% of unique trajectories 

repeated more than 100,000 times, they made up as much as 12.3% of all trajectories (invoices). 

Although there are also certain short sentences (like greetings etc.) that repeat in natural 

language, they are by far less numerous and their repetitions are not that frequent.  

Table 4. Repetitions of treatment trajectories  

Times appeared 
% of all 

trajectories 
% of unique 

trajectories 

1 25.40% 90.3631% 

2-10 7.7% 8.3243% 

11-100 8.7% 1.1314% 

101-500 7.9% 0.1356% 

501-5000 15.4% 0.0401% 

5001-25,000 12.5% 0.0045% 

25,001-100,000 10.3% 0.0008% 

over 100,000 12.3% 0.0002% 

Ten treatment trajectories that repeated the most are given in Appendix VIII. All ten featured 

visiting or consulting a family or a specialist doctor or a nurse as one of the services, with some 

also including another service (e.g. examination of eyes or prenatal ultrasound examination). 

The most frequent trajectory (1,342,397 repetitions) was ‘9001 9002’ (‘Initial visit to family 

doctor’ → ‘Repeated visit to family doctor’). Examining longer trajectories revealed that some 

of them featured another type of repetition – the same service (e.g. a lab test) repeating 

numerous times. For example, the most frequent trajectories of length 8 and 9 (with frequencies 

of 7,708 and 7,830, respectively) consisted of ’Home nursing service’ repeating respectively 8 

and 9 times. Still, usually the repeating code only formed a small subsequence in the trajectory. 

Services provided on the same date. Initially, instead of predicting a single service, predicting 

the set of services provided on the same date was considered, since it would have allowed to 

ignore the order in which services offered on the same date appeared on an invoice, which 

seemed likely to be arbitrary in some cases. However, this idea was disregarded for the 

following reasons. First, 75.1% of all invoices included services provided on a single date, 

resulting in trajectory of length 1. Similarly to leaving out invoices with a single service from 

the final analysis, such invoices would have needed to be removed, which would have meant 

leaving out too large proportion of the data. Secondly, the number of unique sets of services 

provided in a single date was 6.6 million (or 4.9 million, if sets containing same services offered 

different number of times were considered as the same set). This would have meant vocabulary 

size of 6.6 million (or 4.9 million) in BERT models, while typically vocabulary size of at most 

50,000 is used. Using that much larger vocabulary did not seem feasible, since it would have 

considerably increased the already very long training time. A possibility could have been to 

use vocabulary size of 50,000 to encode only the 50,000 most frequent service sets as distinct 

tokens and treat all others as UNKs. However, as seen from Figure 5, this would have led to 

13% of the data consisting of UNKs.  
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Figure 5. Percentage of UNKs in case of different sizes of vocabulary of service sets  

The descriptive statistics given above showed that the properties of treatment trajectories 

differed from natural language sentences in a number of aspects. Therefore, before building the 

models, it was not at all certain how well BERT would perform on this type of data.  

3.2.2 Descriptive statistics of predicted features  

In this section, the histograms of the predicted features (see Table 3) are given, except for the 

binary feature emergency_bill. In this feature, 12.4% of the values were TRUE, indicating 

that the invoice was for emergency services.  

The distribution of diag (diagnoses with 18 classes) is shown in Figure 6. In the figure, starting 

letters of ICD10 codes are given in brackets. The largest class contained 16.7%, and the 

smallest one 0.1% of the trajectories.  

 

Figure 6. Distribution of diagnoses (18 categories)  
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Ten most frequent categories in diag2 (diagnoses with 174 classes) are shown in Figure 7. 

Similar to diag, its distribution was highly uneven, with the largest class containing 9.4% and 

the smallest classes only 0.03% of the samples. 

 

Figure 7. Distribution of diagnoses (10 most frequent out of 174 categories)  

Distribution of the feature discharge_status (see Figure 8) showed that as a result of the 

services covered by the invoice, 41.4% of the patients recovered and 0.2% deceased. In case 

of most of the others, treatment was set to continue. 

 

Figure 8. Distribution of discharge statuses 

The two largest classes in treatment_type (see Figure 9), ‘Outpatient treatment’ and 

‘Family doctor’, contained respectively 45.6% and 46.5% of the samples, leaving in total only 

7.9% of the samples to the three other classes combined.  

 

Figure 9. Distribution of treatment types  
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The largest and smallest classes in tto_type (types of service providers) were ‘Chosen 

partner’ (54.7% of data), and ‘Local hospital’ (0.3% of data), as shown in Figure 10. 

 

Figure 10. Distribution of types of service providers  

Distribution of largest4 is shown in Figure 11. Each of the four largest hospitals had 

submitted from 5.1% to 8.5% of all the invoices, while 72.1% had been submitted by other 

medical service providers.  

 

Figure 11. Distribution of four largest vs. other service providers  

As seen from the figures in this section, even after somewhat improving the distributions by 

merging some related classes (as described in Section 3.1.2), the classes of all predicted 

features were still unbalanced.  
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4. Methodology 

Models in this thesis were trained in two stages (see Figure 12) – training of the service code 

embeddings (stage 1) and classification (stage 2). In stage 1 (see Section 4.1), four BERT 

models of different dimensions were pre-trained on patient treatment trajectories. For 

comparison, word2vec models with different vector length and context window size were 

trained on the same inputs. In Figure 12, only the three best performing word2vec models are 

shown. In the names of word2vec models, ‘w’ indicates window size and ‘v’ vector length. 

For example, W2V_w5_v400 was a word2vec model with window size 5 and vector length 400. 

The specifications of the pre-trained BERT models are described in Section 4.1.1 and the ones 

of word2vec in Section 4.1.2.  

The performance of both types of models was tested on mask prediction task. In case of BERT 

this meant predicting the token that was masked out, given the rest of the trajectory. In case of 

word2vec, it meant predicting the token in the middle of a pre-defined context window, given 

the rest of the service codes in that window. Although ‘mask’ is a term specific to BERT, for 

terminological consistency purposes the term ‘mask prediction’ is also used for predicting the 

target word in word2vec in this thesis. The task itself in both cases was the same – predicting 

the unknown token. Measuring mask prediction performance of both models allowed to see if 

contextual embeddings of BERT are more effective in this task than the non-contextual ones 

of word2vec.  

 

Figure 12. General set-up of building the models 

In stage 2 (see Section 4.2), classification models were built for predicting the labels of each 

of the features listed in Table 3. This allowed to compare the usefulness of contextual and non-

contextual embeddings trained in stage 1 in different downstream classification tasks. More 

specifically, in stage 2 all four pre-trained BERT models were fine-tuned for classification. For 

comparison, two common classifiers, KNN and SVM, were trained on top of the embeddings 

of three best performing word2vec models. Since a separate model was trained for each of the 

seven features (see Table 3), this meant fine-tuning in total 28 BERT models and training 21 

KNN and 21 SVM classifiers. In Figure 12, classifiers built by fine-tuning only one of the pre-
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trained BERT models and training KNN and SVM models on top of only one word2vec model 

are shown as an example.  

In the names of the models built in stage 2, the last part (e.g. largest4) indicates the name of 

the predicted feature, as listed in Table 3. In the names of fine-tuned BERT models, the number 

indicates which pre-trained model was fine-tuned. For constructing the names of KNN and 

SVM models, W2V was replaced with KNN or SVM in the name of the word2vec model which 

embeddings they used. So, BERT_FINE1_diag denotes BERT model obtained by fine-tuning 

BERT_PRE1, and KNN_w5_v400_diag denotes KNN model built on top of W2V_w5_v400, 

where the task of both was classifying diagnosis. In the sections below, for referring to all 

models of certain type, the predicted feature is omitted. E.g. BERT_FINE1 refers to all BERT 

models obtained by fine-tuning BERT_PRE1, and KNN_w5_v400 to all KNN models built on 

top of W2V_w5_v400.  

The performance metrics used in both stages are described in Section 4.3. Since the 

performance of several classification models in stage 2 was rather similar, McNemar statistical 

test7 was used for checking the performance of which models did not statistically differ. 

McNemar test is a non-parametric test, which means that it does not make any assumptions 

about the underlying data distribution. More specifically, it is a two-sided approximated test 

which tells if the proportion of classification errors made by two models tested on the same test 

set are statistically significantly different or not, based on comparison of the predicted labels. 

Here, null hypothesis is that the performance of the models does not differ, and alternative 

hypothesis is that it differs. Since this test allows comparing only two models at a time, it was 

done for each pair of models for each classification task. If the test showed that accuracy of the 

model that performed best in a given classification task was not statistically different from 

some other models, all such models were regarded as the set of best models for that task. 

Although in general it is useful to also fix minimal effect size before doing a statistical test, in 

this case it was not done. Effect size is especially important in case of larger datasets (since in 

a large dataset, even very small differences tend to be statistically significant). In this thesis, 

however, the statistical test was only used in classification stage where test set was not very 

large (10,000 samples). 

All models were trained in the computing cluster of University of Tartu’s HPC Centre8. 

4.1. Embeddings for service codes 

4.1.1 Pre-trained BERT models 

In this thesis, four BERT models of different sizes were pre-trained: BERT_PRE1, 

BERT_PRE2, BERT_PRE3 and BERT_PRE4, from largest to smallest. The models only 

differed in the number of layers and attention heads (see Appendix IX). The parameters whose 

values differed (see Appendix IX) were the same ones that were fine-tuned in the BEHRT 

model [4], where also a model with smaller dimensions than proposed in the original BERT 

paper [1] was found to be the best. The reason for pre-training models with different sizes was 

that it was thought that perhaps treatment trajectories are less complex than natural language, 

and therefore easier for the models to learn. Initially, just the two larger models (BERT_PRE1 

and BERT_PRE2) were pre-trained, but since the performance of the smaller one was somewhat 

better, two even smaller models were pre-trained as well.  

 
7 https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html  
8 https://hpc.ut.ee/   

https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html
https://hpc.ut.ee/
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As regards training parameters, mostly the default ones were applied, since due to pre-training 

a BERT model being a lengthy process, no parameter tuning was planned. The parameters that 

differed from the default ones (except the ones related to saving checkpoints, logging and 

evaluation) are set out in Appendix IX. As for the learning rate, the one also applied by the 

authors of BERT model (1e-4) [1] was used instead of the default one (5e-5).  

As regards implementation, the models were pre-trained using Hugging Face Transformers 

library1. The type of pre-trained models was BERTForMaskedLM9. A custom Pytorch dataset 

was used for loading the inputs (39.3 million tokenized treatment trajectories), which were then 

collated into batches with DataCollatorForLanguageModeling10. The input parameters 

were specified in TrainingArguments11 and BERTConfig12 objects. Finally, a Trainer13 

object was used for training the models.  

All models were trained for 4 epochs using 7 GPUs. Pre-training the largest BERT model took 

4 days and 12 hours. The evolution of losses in pre-training (see Figure 13) showed that in all 

models, evaluation loss remained smaller than train loss, which was unexpected. At the same 

time, the decrease in both train and evaluation loss showed that the models were still learning 

something. It appeared that most of the training happened during the first 0.5 epochs. Since 

losses were still very slowly decreasing at the end of epoch 4, the two larger models 

(BERT_PRE1 and BERT_PRE2) were further pre-trained for 2 more epochs from the last 

checkpoint to see if their losses would go further down. However, the differences were 

negligible, and thus those versions were disregarded.  

Figure 13. Training and evaluation loss of pre-training BERT models 

The models were tested on 1 million treatment trajectories in the test set (and for comparison, 

on the reduced version of training set containing also 1 million samples), with one randomly 

chosen token in each trajectory being masked out. The mask prediction task then consisted in 

predicting the masked token. It must be noted that in case of BERT, it is rather the performance 

on downstream tasks (classification, in this thesis) than on mask prediction what is usually 

 
9  https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertformaskedlm  
10 https://huggingface.co/transformers/v4.7.0/main_classes/data_collator.html#datacollatorforlanguagemodeling  
11 https://huggingface.co/transformers/v4.7.0/main_classes/trainer.html#trainingarguments  
12 https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertconfig  
13 https://huggingface.co/transformers/v4.7.0/main_classes/trainer.html  

https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertformaskedlm
https://huggingface.co/transformers/v4.7.0/main_classes/data_collator.html#datacollatorforlanguagemodeling
https://huggingface.co/transformers/v4.7.0/main_classes/trainer.html#trainingarguments
https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertconfig
https://huggingface.co/transformers/v4.7.0/main_classes/trainer.html
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considered to matter. For example, neither in the article where BERT [1] nor word2vec [6] was 

proposed, the performance on mask (target word) prediction was not even reported (the authors 

only reported performance on downstream tasks). However, measuring it in this thesis was 

essential, since it allowed to compare the pre-trained contextual embeddings of BERT with the 

non-contextual ones of word2vec prior to moving on to the next stage of building classification 

models. 

As regards mask prediction, it must also be noted that in language modelling, if the aim is 

predicting labels for single tokens, e.g. for part-of-speech tagging, normally BERT is fine-

tuned for token prediction task (e.g. using BERTForTokenClassification
14 in 

Transformers library) instead of using pre-trained BERT directly for predicting tokens. At the 

same time, the task of predicting labels for known tokens differs from mask prediction, since 

the masked token itself is unknown. 

The results of pre-trained BERT models are provided in Section 5.1.1 and are, together with 

results of word2vec models, further analysed in Section 5.1.3. The further analysis includes a 

small case study performed on one of the BERT models (BERT_PRE2), where Principal 

Component Analysis (PCA) was applied on the pre-trained embeddings of 10 selected medical 

services. PCA is a dimensionality reduction technique where a chosen number of new features 

(principal components) are constructed as a linear combination of existing features in such way 

that each principal component maximizes the variance in the direction orthogonal to other 

principal components [16].  

The aim of applying PCA was to better understand whether the pre-trained models, given their 

poor performance, had at least learnt something useful. By running PCA with two principal 

components, the data was transformed into 2D space, which allowed it to be plotted. The plot 

was expected to show, on the one hand, if the service embeddings were indeed contextual, i.e. 

if the model gave the same service a different embedding depending on its context. On the 

other hand, it was expected to show if embeddings of same services cluster together and what 

the clusters look like. The PCA was performed with PCA library15 of scikit-learn.  

4.1.2. Word2vec models  

Initial experiments with smaller datasets showed that parameters that influenced word2vec 

performance the most were window size (window), vector length (vector_size) and whether 

the model was a skipgram or CBOW model (sg). Since skipgram models in general performed 

worse in the initial experiments, these were not used. Also, min_count 5 was used to avoid 

training embeddings for service codes that appeared in training set less than 5 times. For 

determining the best input parameters, models were then trained using the whole 39 million 

training set with all possible combinations of window sizes 3, 5, 7, 10 and 20 and vector lengths 

150, 250, 400 and 600 (i.e. 20 models). All models were trained for 20 epochs with batch size 

5,000 using 3 CPUs. In order to choose the best model, the models and training progress were 

saved after each epoch during training by using a callback. Training time of each model was 

between 1.5 to 3 hours, but they were trained in parallel in order to save time.  

Performance of the 20 word2vec models was first tested on evaluation set. Based on results, 

three models were selected to go forward with in the classification stage. The performance of 

those three models was also reported on test set, and for comparison, on the reduced version of 

training set containing 1 million samples.  

 
14 https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertformaskedlm  
15 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html  

https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertformaskedlm
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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When comparing word2vec to pre-trained BERT, we can on the one hand say that the 

vocabulary size of both types of models was the same (3,440). Also, although the embeddings 

learnt by word2vec were static (a fixed embedding for each medical service) and the ones learnt 

by BERT were contextual (embedding for each medical service depended also on other medical 

services appearing in the same trajectory), the lengths of the embeddings were actually in a 

similar range. Namely, the lengths of different word2vec embeddings were 150, 250, 400 and 

600, and the lengths of embeddings that could be extracted from the four BERT models were 

96, 192, 384 and 768. For BERT, embeddings can be extracted from the last hidden layer of 

the prediction output, and their length corresponds to the hidden size (see Appendix IX).  

4.2. Classification models 

4.2.1 Fine-tuned BERT models 

Each of the four pre-trained BERT models was fine-tuned for each of the seven classification 

tasks. Since fine-tuning essentially builds upon the pre-trained model, the training arguments 

used in fine-tuning were the same as in pre-training (see Appendix IX), except the number of 

epochs. For all models, BERTForSequenceClassification16 was used as model type. 

Similar to pre-training, a custom Pytorch dataset object was used for loading the tokenized 

input trajectories as well as labels, which were then collated into batches with 

DataCollatorWithPadding17. The data collator was different than in pre-training, because 

masking did not need to be applied. Also similar to pre-training, a Trainer13 object was used 

for training the models.  

All BERT models were fine-tuned for 5 epochs, using early stopping. The number of epochs 

was chosen based on initial experiments run with the largest pre-trained model (BERT_PRE1) 

on the classification task with the largest number of classes (diag2). The way early stopping 

was applied was that when training each of the 28 models, the current state of the model and 

its performance on training and evaluation set were saved as checkpoints four times per epoch. 

Then the version of the model that performed best on evaluation set was selected as the final 

version of the model from among the checkpoints. Finally, performance of the best model was 

measured on test set (and for comparison, on training set).  

The number of epochs used for training the best-performing final version of each of fine-tuned 

model is given in Appendix X. As shown in Appendix X, the number of epochs ranged between 

2 and 5, with training time being the shortest for the classification task with the smallest number 

of classes (emergency_bill, 2 classes) and in general longest for the one with the largest 

number of classes (diag2, 174 classes). Training time of the largest model 

(BERT_FINE1_diag2) was 8 hours on the main node of HPC.  

4.2.2. KNN and SVM models  

On top of the three best performing word2vec models, two types of classification models, KNN 

and SVM, were built for each of the seven classification tasks. KNN is a classifier that predicts 

the class of a test instance by taking a vote between its k≥1 neighbours (i.e. training instances 

that are closest to it) and predicting the majority class [16]. SVM is a classifier that finds a 

decision boundary between the classes in a way that maximizes its distance (‘margin’) from 

the two nearest training data points (‘support vectors’) of each class [Ibid.].  

 
16 https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertforsequenceclassification  
17 https://huggingface.co/transformers/v4.7.0/main_classes/data_collator.html#datacollatorwithpadding  

https://huggingface.co/transformers/v4.7.0/model_doc/bert.html#bertforsequenceclassification
https://huggingface.co/transformers/v4.7.0/main_classes/data_collator.html#datacollatorwithpadding
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Those two models were chosen because this allowed to also compare how a simple non-linear 

model (KNN) behaves compared to a linear model (SVM) on classifying patient treatment 

trajectories. For comparison, the classification layer that is added to BERT for fine-tuning is 

also linear, and is followed by softmax function. For implementation, 

KneighborsClassifier
18 and SGDCkassifier19 from scikit-learn library were used. 

According to the API, SGDCkassifier by default gives a linear SVM. Another classifier from 

the same library that was considered was SVC (Support Vector Classifier)20, but it could not be 

used because it can handle only small datasets.  

In order to build classifiers on top of word2vec, treatment trajectories were converted into 

feature vectors by averaging the word2vec vectors corresponding to all tokens in the trajectory. 

For example, for classifiers built on top of W2V_w5_v400, the trajectory ‘9001 9002 .’ was 

converted into a feature vector of length 400 by averaging the vectors of the tokens ‘9001’, 

‘9002’ and ‘.’ (each also of length 400) extracted from that model. Initially, using summing 

instead of averaging was also considered, but was disregarded since it tended to give slightly 

worse results. The vectors of treatment trajectories were normalized using StandardScaler21 

from scikit-learn library, which consisted in standardizing the features by subtracting the mean 

and dividing by standard deviation. It must be noted, though, that at least for KNN, 

standardizing gave only a minimal gain in performance (evaluation accuracy improved on 

average by 0.13%).  

Since the training time of the classifiers was much shorter than fine-tuning BERT, some 

parameter tuning was applied on evaluation set. The fine-tuned parameter values of KNN and 

SVM models are given in Appendix XI for replicability. For KNN, the number of neighbours 

(n_neighbours) was tuned. For SVM, the parameters tuned related to learning rate 

scheduling22 and regularization23. In addition, in all SVM models the type of learning rate 

scheduling was inverse scaling (invscaling), which reduces the learning rate over time, and 

the number of CPUs (n_jobs) was 10. Also, to avoid overfitting, early stopping was used in 

all SVM models by setting early_stopping to True, limiting the maximum number of 

epochs (max_iter) to 200, and forcing the training to stop after 10 epochs with no 

improvement on validation set (n_iter_no_change). Other parameters in KNN and SVM 

models were left to default values.  

Then, the best KNN and SVM model in each classification task were chosen by comparing 

performance of models that were best in parameter-tuning on test set. Their results were then 

also compared with the results of fine-tuned BERT models.  

4.3. Performance metrics 

Performance of the classification models (incl. fine-tuned BERT models) was measured with 

accuracy, precision, recall and F-score. Accuracy meant the proportion of correctly predicted 

service codes. The other metrics were calculated with the following formulas [17]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

(TP+FP)
 ,                                              (2) 

 
18 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html  
19 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html   
20 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html  
21 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html  
22 Initial learning rate (eta0) and exponent in the learning rate schedule (power_t). 
23 Type of regularization, i.e. either L1 or L2 (penalty) and regularization strength (alpha). 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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𝑟𝑒𝑐𝑎𝑙𝑙 =  
TP

(TP+FN)
   and                               (3) 

F-score  =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 ,         (4) 

where TP, FP and FN stand for true positives, false positives and false negatives. 

Since predicting the mask was essentially multi-class classification, those metrics were first 

calculated for each class (service code) separately, with precision showing the proportion of 

predictions of this code that were correct, and recall the proportion of the actual codes that were 

classified correctly. F-score combined precision and recall by taking their harmonic mean. The 

metrics for individual service codes were then aggregated by taking their weighted average, 

using the number of true instances (actual masked service codes) for each class as weights24.  

For measuring performance of word2vec models and pre-trained BERT models, a wider set of 

metrics, given in Table 5, was used.  

Table 5. Performance metrics used for word2vec and pre-trained BERT models 

Performance metric Meaning 

Top1 accuracy  Proportion of correctly predicted service codes 

Top3 and top5 

accuracy 

Proportion of predictions where actual service code was among 

respectively 3 or 5 service codes with highest probability (for 

BERT) or similarity (for word2vec) attributed by the model 

Precision, recall and 

F-score 
See equations (2), (3) and (4) 

Top1 subtype 

accuracy  
Proportion of predictions where the subtype of the predicted service 

code was correct (i.e. same as subtype of the actual service code) 

Top3 and top5 

subtype accuracy 

Proportion of predictions where subtype of the actual service code 

was among the subtypes of 3 or 5 service codes with highest 

probability (for BERT) or similarity (for word2vec) attributed by 

the model 

Subtype precision, 

recall and F-score  
Precision, recall and F-score of the predicted service code belonging 

to the subtype of the actual service code 

Average rank of 

actual service code 
Average rank of actual service code in the probabilities (for BERT) 

or similarities (for word2vec) output of predictions of the model 

Avg. probability/ 

similarity of actual 

service code 

Average probability (for BERT) or similarity (for word2vec) of the 

actual service code in the probabilities or similarities output of 

predictions of the model 

The reason for using a wider range of metrics (incl. top3 and top5 accuracies, average rank and 

probability/similarity and metrics related to subtypes) was that the mask prediction task was a 

rather difficult classification task with 3,434 highly unbalanced classes, and was therefore not 

expected to give excellent results. Measuring also if the actual service code, even if it was not 

correctly predicted, was at least among the 3 or 5 service codes that the model considered most 

likely, or if it at least belonged to the correct subtype (or 3 or 5 most likely subtypes), and what 

was the rank and probability/similarity of the correct token was expected to help to better 

understand how the models behaved.  

 
24 In practical implementation, the precision_score(), recall_score() and f1_score() methods in 

sklearn.metrics library (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics) were 

applied for this with the parameter average='weighted'. 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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For calculating average rank and average probability/similarity of actual service code, as well 

as top3 and top5 metrics, a vector of probabilities or similarities was obtained from the 

prediction output. In case of BERT, the vector of probabilities was obtained by applying 

softmax on the prediction logits (i.e. unnormalized scores assigned by the model to each token 

in the vocabulary). Softmax is a function that maps the values of a numeric vector z into a 

probability distribution: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑖) =   
exp(𝒛𝑖)

exp(𝒛1)+ ….+ exp(𝒛𝐾)
 ,1 ≤ 𝑖 ≤ 𝐾,       (5) 

where K is the length of the vector [7]. In case of word2vec, a vector of similarity values was 

obtained by applying word2vec’s most_similar() method to the service codes in the context 

window. This gave cosine similarities (defined by equation (1)) between the embedding of the 

context window, calculated as arithmetic mean of all service codes within it, and the embedding 

of each service code in the vocabulary of the model. The possible values of rank ranged from 

1 to 3,435 (i.e. size of vocabulary without special tokens), with smaller values of rank being 

better. 

Since the performance of pre-trained BERT models was far from encouraging, the above 

metrics were for comparison also calculated for a random guess approach where predictions 

were made by randomly choosing a service code.  
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5. Results  

In this Chapter, the results of pre-trained BERT models and word2vec models are presented in 

Section 5.1 and the results of fine-tuned BERT models and classifiers built on top of word2vec 

embeddings in Section 5.2.  

5.1. Embeddings for service codes 

5.1.1 Pre-trained BERT models 

The performance of pre-trained BERT models in mask prediction task is given in Table 6, with 

the best test and train result marked in bold for each row. We can see that the performance was 

really poor, with the best model (BERT_PRE2) achieving top1 accuracy of 0.0055, top3 

accuracy of 0.0119 and top5 accuracy of 0.0165, and the other metrics being equally poor. 

However, when looking at the results, it must be borne in mind that the mask prediction task 

was essentially a difficult classification task with 3,434 unbalanced classes, and was therefore 

not expected to give excellent results. It should be stressed that top1, top3 and top5 accuracies 

were still around 10 times higher than random guess for all models, except for BERT_PRE4 

where the difference was smaller. Also, both average rank and probability of the actual service 

code were better for all BERT models than for random guess. Despite precision being higher 

for random guess, F-score, which combines precision and recall, was clearly better for all 

BERT models. Overall, it can be concluded that despite the results looking discouraging, the 

pre-trained models were still better than random guess, at least at token level.  

Table 6. Mask prediction performance of pre-trained BERT models and random guess*  

 TRAIN (1M) TEST (1M) 

BERT_ 

PRE1 

BERT_ 

PRE2 

BERT_ 

PRE3 

BERT_ 

PRE4 
Ran-

dom 

BERT_ 

PRE1 

BERT_ 

PRE2 

BERT_ 

PRE3 

BERT_ 

PRE4 
Ran-

dom 

T
O

K
E

N
 L

E
V

E
L

 

M
E

T
R

IC
S

 

Top1 acc. 0.0052 0.0055 0.0049 0.0018 0.0003 0.0051 0.0055 0.0049 0.0018 0.0003 

Top3 acc. 0.0103 0.0120 0.0090 0.0036 0.0009 0.0103 0.0119 0.0090 0.0037 0.0009 

Top5 acc. 0.0147 0.0165 0.0133 0.0057 0.0015 0.0148 0.0165 0.0135 0.0059 0.0014 

Precision 0.0138 0.0106 0.0162 0.0098 0.0605 0.0126 0.0087 0.0165 0.0109 0.0622 

Recall 0.0017 0.0018 0.0028 0.0010 0.0003 0.0016 0.0018 0.0028 0.0010 0.0003 

F-score 0.0022 0.0023 0.0039 0.0016 0.0005 0.0021 0.0023 0.0039 0.0017 0.0005 

S
U

B
T

Y
P

E
 L

V
L

. 

M
E

T
R

IC
S

 

Top1 acc. 0.0849 0.0653 0.0623 0.0371 0.0837 0.0847 0.0654 0.0625 0.0372 0.0838 

Top3 acc. 0.2196 0.2004 0.1924 0.1525 0.2772 0.2187 0.2001 0.1926 0.1524 0.2773 

Top5 acc. 0.2868 0.2715 0.2506 0.2195 0.3834 0.2862 0.2716 0.2508 0.2195 0.3836 

Precision 0.1284 0.1384 0.1429 0.1135 0.1989 0.1265 0.1384 0.1431 0.1125 0.1982 

Recall 0.0849 0.0653 0.0623 0.0371 0.0601 0.0847 0.0654 0.0625 0.0372 0.0602 

F-score 0.0795 0.0685 0.0661 0.0432 0.0720 0.0790 0.0686 0.0663 0.0432 0.0722 

O
T

H
E

R
 

Avg. rank 1688 1612 1535 1535 1719 1688 1614 1536 1535 1720 

Avg. proba-

bility 
0.0032 0.0038 0.0031 0.0010 0.0003 0.0032 0.0038 0.0032 0.0010 0.0003 

* In Table 6, colour scaling has been applied separately for token and subtype level metrics, and each 

of the ‘Other’ metrics, with reference to ‘Random’ column. Best result in each row for train and test set 

is marked in bold. 

At the same time, subtype performance of pre-trained BERT models was surprisingly bad, with 

some metrics (top3 and top5 subtype accuracy and subtype precision) being worse than random 

guess even for the best pre-trained BERT model (BERT_PRE1). We can indeed say that at 
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subtype level, pre-trained BERT models failed. A possible explanation for this is that subtypes 

might have contained medical services that differed a lot from each other, in terms of appearing 

in very different contexts.  

Also, we can see that both at subtype and token level, precision was considerably worse in 

BERT models compared to random guess, while recall was clearly better than random at token 

level and for most BERT models also somewhat better than random at subtype level. This 

seems to suggest that the models predicted too many service codes as belonging to some very 

frequent classes. This could have been the reason because precision, recall and F-score were 

first calculated for each individual service code, followed by taking weighted average of the 

results using counts of actual service codes (or subtypes) as weights (see Section 4.3). 

Therefore, if the model had poor precision for some frequent service code(s) or subtype(s), this 

would have torn down also its overall precision (and consequently also F-score). 

When comparing the four pre-trained BERT models (see Table 6), the performance of the two 

larger ones (BERT_PRE1 and BERT_PRE2) was quite similar, with top1, top3 and top5 

accuracies, F-score and average rank and probability of the actual service code being somewhat 

better for BERT_PRE2, and subtype accuracies and subtype F-score somewhat better for 

BERT_PRE1. As mentioned in Section 4.1.1, the two larger models having similar performance 

was also the reason for additionally training the two smaller ones, since it was thought that 

perhaps smaller models might perform better. Indeed, as shown in Table 6, average rank was 

best with the two smaller models, and the second smallest (BERT_PRE3) also had better 

precision, recall, F-score and subtype precision. Otherwise, though, the larger models had 

better performance metrics.  

When comparing results on training and test set, (see Table 6), the models seemed to underfit. 

Underfitting means that a model is too simplistic to adequately represent the underlying 

relationships between the input features and the target feature [17]. Often this is due to either 

the model not being complex enough or not having enough training data available [18]. The 

first reason was not likely to apply, given that 12,170,096 parameters in the best fine-tuned 

model (BERT_PRE2) surely made it complex enough. As regards the size of training set, 

although 39 million instances seems a lot, the great majority of the trajectories were very short 

(see Figure 4), and the trajectories also repeated a lot (see Table 4). Indeed, it could have been 

possible to augment training data by reordering services offered on the same date in different 

ways. This might have helped to cancel out the possible effect of such services being logged to 

the system not exactly in the same order as they were offered on that date, making it easier for 

the models to learn that the order of services on the same date is not that important. However, 

such data augmentation was considered out of scope for this thesis.  

It is also possible that using the modified position embeddings similar to BEHRT [4] (where 

diagnosis codes within the same visit were assigned the same position embedding) would have 

improved results. The MLM precision of 0.6597 reported for BEHRT [4] was indeed clearly 

better than precision of the best model in this thesis (0.0165). However, it must be kept in mind 

that the results of BEHRT are not directly comparable with results in this thesis for at least two 

reasons. Firstly, the vocabulary size of BEHRT – and therefore the number of classes in mask 

prediction task – was much smaller (301 diagnosis codes, compared to 3,435 service codes in 

this thesis). Secondly, the trajectories in BEHRT were longer (trajectories containing less than 

five visits were not used, while each visit could contain multiple diagnosis codes), while the 

shortest trajectories in this thesis contained only two service codes. As the analysis of 

performance per trajectory length (see section 5.1.3.1) shows, very short trajectories are in 

general much harder to predict.  
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Still, the poor performance of pre-trained BERT models raised the question what MLM 

accuracy (i.e. accuracy of predicting the mask) could expected to be in natural language 

models. As already mentioned in Section 4.1.1, the focus in training BERT models is often 

only on downstream tasks, and MLM performance is usually not reported. However, in the 

extensive BERT literature, some indications can still be found. For example, in [19], where a 

BERT model for analysing COVID-19 content on Twitter was proposed, MLM accuracy was 

close to 0.7. In [20], where LV-BERT was proposed as a further development of BERT, it was 

around 0.57. Therefore, MLM accuracy of the best pre-trained BERT model in this thesis 

(0.0055) was clearly far behind of what could be expected with natural language data.  

Although one might think that perhaps it is simply not possible for any model to learn to predict 

the masked token from this type of input data, the results of word2vec (see Section 5.1.2) show 

that some models can perform remarkably better. Since BERT is inherently more powerful, 

with many more parameters, the most likely reason for its bad performance was that the 

parameters in the models were not efficiently learnt. Therefore, the problem was most likely in 

the choice of input parameters used in pre-training (see Section 4.1.1 and Appendix IX). 

Although the input parameters were mostly the default ones and thus likely to work reasonably 

well with natural language data, apparently they were not appropriate with patient treatment 

trajectories. However, since pre-training BERT is a lengthy process, the only parameter tuning 

applied in this thesis was pre-training four models with different dimensions. 

The results of the models are further analysed in Section 5.1.3.  

5.1.2. Word2vec models 

Results of all 20 word2vec models on evaluation set are shown in Figure 14.  

 

Figure 14. Performance of word2vec models on evaluation set  
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For easier comparison, results of each performance metric in Figure 14 are reported by window 

size and vector length that were used as input parameters in the model. Best result for each 

metric is marked in bold. Based on performance on evaluation set (see Figure 14) three models 

were selected to go forward with in the classification stage: 

• W2V_w5_v400  

• W2V_w7_v600  

• W2V_w7_v150  

The first two (W2V_w5_v400 and W2V_w7_v600) had the highest top1 accuracies, and the 

third one (W2V_w7_v150) had the highest top1 subtype accuracy. The first one also had the 

highest F-score and third best average rank. The second one also had second highest top1 

subtype accuracy, F-score and subtype F-score. The third one also had the highest subtype F-

score.  

Performance of the three best word2vec models on test set (and for comparison, on the reduced 

version of training set) is given in Table 7. Performance on training and test set was very 

similar, so the models did not overfit. 

Table 7. Mask prediction performance of best word2vec models*  

 TRAIN (1 million) TEST (1 million) 

Ran-

dom  
W2V_ 

w5_ 

v400 

W2V_ 

w7_ 

v600 

W2V_ 

w7_ 

v150 

W2V_ 

w5_ 

v400 

W2V_ 

w7_ 

v600 

W2V_ 

w7_ 

v150 

T
O

K
E

N
 L

V
L

. 

M
E

T
R

IC
S

 Top1 acc. 0.0873 0.0870 0.0741 0.0871 0.0869 0.0740 0.0003 

Top3 acc. 0.1926 0.1917 0.1965 0.1924 0.1914 0.1964 0.0009 

Top5 acc. 0.2596 0.2561 0.2586 0.2593 0.2556 0.2581 0.0014 

Precision 0.0542 0.0516 0.0525 0.0544 0.0525 0.0517 0.0622 

Recall 0.0873 0.0870 0.0741 0.0871 0.0869 0.0740 0.0003 

F-score 0.0544 0.0522 0.0513 0.0544 0.0544 0.0512 0.0005 

S
U

B
T

Y
P

E
 

L
E

V
E

L
 

M
E

T
R

IC
S

 Top1 acc. 0.3536 0.3855 0.3885 0.3532 0.3857 0.3885 0.0838 

Top3 acc. 0.4483 0.4545 0.4499 0.4484 0.4549 0.4502 0.2773 

Top5 acc. 0.4968 0.4937 0.4850 0.4970 0.4938 0.4852 0.3836 

Precision 0.3018 0.3080 0.3068 0.3017 0.3079 0.3070 0.1982 

Recall 0.3536 0.3855 0.3885 0.3532 0.3857 0.3885 0.0602 

F-score 0.3171 0.3348 0.3353 0.3168 0.3351 0.3354 0.0722 

O
T

H
E

R
 

Avg. rank  264 275 303 264 275 304 1720 

Avg. simi- 

larity  
1.5814 1.5212 1.5667 1.5805 1.5203 1.5656 0.0003 

* In Table 7, colour scaling has been applied separately for each row, except for the ‘Random’ column, 

where the colour depicts how much values in that column differed from the minimum values in other 

columns. Best result in each row for train and test set is marked in bold. 

Performance of word2vec models (see Table 7) on test set was remarkably better compared to 

pre-trained BERT models (see Table 6), with best top1 accuracy and F-score being respectively 

0.0871 and 0.0544 (compared to 0.0055 and 0.0039 in BERT) and top1 subtype accuracy and 

subtype F-score respectively 0.3885 and 0.3354 (compared to 0.0847 and 0.0790 in BERT). 

Also, the best average rank of actual service code in word2vec models was 264 (compared to 

1535 in BERT).  

Therefore, it can be concluded that the non-contextual embeddings of word2vec performed 

better in the mask prediction task than the contextual embeddings of pre-trained BERT. Apart 

from the possibility that the input parameters of BERT models were simply not appropriate, it 
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is also possible that word2vec performed better because ‘word order’ in the ‘language’ of 

treatment trajectories is more flexible than in natural language, and thus non-contextual 

embeddings (which do not try to learn which service codes should follow one another) might 

indeed work better. The ‘word order’ being more flexible could have been caused by services 

provided on the same date not being recorded in the system exactly in the same order as they 

were provided, or by cases where the precise order of services provided around the same time 

is not strictly fixed.  

5.1.3 Further analysis of results 

In this section, the performance of both word2vec and pre-trained BERT models is further 

analysed by looking at how predictions depended on trajectory length (see Section 5.1.3.1). In 

addition, results of PCA performed on the embeddings of 10 selected services from one of the 

pre-trained BERT models (BERT_PRE2) is presented as a small case study in Section 5.1.3.2, 

as a way to explain why the predictions of this type of models were not so good. Finally, Section 

5.1.3.3 includes some remarks on how the chosen masking strategy might have influenced 

performance.  

5.1.3.1 Accuracies per trajectory length  

Since treatment trajectories varied a lot in length (see Figure 4), it seemed relevant to see 

whether and to what extent performance of the models depended on trajectory length. For this 

purpose, top1 accuracies were calculated separately for different ranges of trajectory lengths. 

The results are shown in Table 8. For comparison, accuracies on all test data without 

breakdown into trajectory lengths is shown in column ’All’. Since the proportion of trajectories 

of different lengths differed considerably, with the majority of trajectories being very short, 

also the distribution of trajectories by length is given (on row ’% of data’). The shortest 

trajectory length 3 corresponds to a trajectory of two service codes and full stop. In Table 8, 

the largest value in each column is marked in bold. 

Table 8. Top1 accuracies by trajectory length on test set  

  

Trajectory length 

3-5 6-10  11-15  16-25  26-50  51-80  81-126  All 

% of data 59.3% 22.8% 9.3% 6.3% 1.8% 0.3% 0.2% 100.0% 

M
o

d
el

s 

BERT_PRE1 0.004 0.005 0.009 0.010 0.012 0.015 0.015 0.005 

BERT_PRE2 0.004 0.005 0.009 0.010 0.013 0.019 0.022 0.006 

BERT_PRE3 0.003 0.006 0.010 0.011 0.016 0.029 0.031 0.005 

BERT_PRE4 0.001 0.002 0.003 0.004 0.006 0.009 0.010 0.002 

W2V_w5_v400 0.061 0.101 0.132 0.160 0.210 0.252 0.333 0.087 

W2V_w7_v600 0.064 0.103 0.123 0.143 0.190 0.220 0.308 0.087 

W2V_w7_v150 0.043 0.101 0.122 0.150 0.196 0.233 0.307 0.074 

Results in Table 8 show that all models made better predictions when longer trajectories were 

used as input. Top1 accuracies increased with trajectory length in case of all models, achieving 

accuracy of 0.333 for the best word2vec model (W2V_w5_v400) and 0.031 for the best pre-

trained BERT model (BERT_PRE3) with the longest trajectories. For comparison, top1 

accuracies of the same models on all test data were only 0.087 and 0.005, i.e. respectively 3.8 

and 6.2 times lower. However, since very short trajectories made up the majority of data, the 
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poor results on those trajectories outweighed the much better results on longer ones. Still, even 

with the shortest trajectory length, top1 accuracies of even the worst models were still much 

better than accuracy random guess (0.0003).  

It can be concluded that one of the weaknesses of all models was that they were unable to make 

good predictions if the input trajectory was very short, which however made up the majority 

of the data. An explanation to the poor results on short trajectories is that the models simply 

did not have enough input data to make an informed decision. For example, in case of the 

shortest trajectories of length 3, which actually made up as much as 30% of the data (see Figure 

4)25, the models had to make a prediction based on either only one code and the full stop token, 

or two codes (if full stop was masked).  

5.1.3.2 Case study: PCA of selected BERT service embeddings  

The PCA performed on BERT_PRE2 embeddings of 10 selected services (see Figure 15) 

showed that the pre-trained embeddings of the model were indeed contextual, with the same 

service having different embedding depending on the trajectory where it appeared. If this had 

not been the case, Figure 15 would have featured exactly one point in each colour. We can also 

see that the service embeddings formed clusters. However, we can see that the clusters in 2D 

were very wide and diffuse and heavily overlapped with each other, which very likely was also 

the reason why mask prediction performance of the pre-trained model was so poor.  

 

Figure 15. PCA on BERT word embeddings of selected services 

In Figure 15, ‘Repeated visit to family doctor’ being among the most diffuse clusters seems 

logical, since this service can surely appear in a wide range of treatment trajectories. The 

diffuseness of ‘Nurse’s shift in ER’ could perhaps be attributed to the same reason. ‘24h 

monitoring of blood pressure’ is also very diffuse, but more concentrated in the area also 

occupied by ‘Cardiology’, which also seems a logical result. On the other hand, the reasons for 

‘DNA analysis with PCR method’ and ‘Placing plaster cast’ being so diffuse are not clear. The 

services with most concentrated clusters were ‘Giving birth, without complications’ (which 

also overlapped the least with other clusters) and ‘Diphtheria I vaccination’. However, the 

overlappings of the clusters, which were very extensive, often did not seem easily explainable. 

 
25 In Figure 4, the lengths do not include full stop and are therefore smaller by 1.  
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In order to quantify the clustering, the mean in-cluster distance (average distance between 

cluster centre and each vector in the cluster, averaged over all clusters) was compared to the 

mean inter-cluster distance (average distance from cluster centre to all other cluster centres, 

averaged over all clusters). In general, clustering can be considered good if clusters are compact 

(in-cluster distance is small) and cluster centres are far from each other (inter-cluster distance 

is large). In this case, however, mean in-cluster distance was 12.33±2.36 in the original space 

(and 5.17±2.10 in 2D space), while mean inter-cluster distance was 12.18±2.15 in the original 

space (and 7.26±2.36 in 2D space). In-cluster distance being similar to inter-cluster distance 

in the original space confirms that the clusters were wide and heavily overlapping.  

Nevertheless, from the qualitative assessment above it can be concluded that service 

embeddings learnt in pre-training still somewhat made sense, which showed that even if the 

model was not good at predicting the masked service code, it still had at least learnt something.  

5.1.3.3 Impact of masking strategy on performance  

The masking strategy applied in this thesis when testing performance was to mask one service 

code in each trajectory, which meant one prediction per trajectory. As explained in Section 

3.1.1, this strategy was chosen instead of the built-in one used in pre-training (where 15% of 

tokens were masked), because the latter resulted in longer trajectories having more than one 

mask and some short trajectories not having any masks at all. However, it would not have made 

sense to have trajectories with no masks in the test set, and predicting several masks in the 

same trajectory at a time was not possible (although actually such trajectories could have been 

duplicated). This masking strategy was chosen, because it seemed clear and straightforward. 

However, later analysis of what was actually masked showed that this simple strategy might 

not have been best.  

Namely, this masking strategy had two important implications. First, service codes appearing 

in long trajectories had smaller chance of being masked, and secondly, more frequent service 

codes were also masked more frequently. A closer look at what was actually masked revealed 

that out of 3,435 service codes (and full stop) in the vocabulary of the models, 1,307 were never 

masked. Therefore, the ability of the models to predict them was not measured on test set. The 

analysis also showed that the most frequently masked token was full stop, which made up as 

much as 21% of all masked tokens. This can be explained by full stop appearing at the end of 

all trajectories, which made it the most frequent token. Its probability of getting masked was 

especially high in short trajectories, which made up large proportion of the data (see Figure 4). 

The effect that so many full stops being masked had on performance was evident when looking 

at predictions. For example, W2V_w5_v400 predicted it in 499 different ways (i.e. in more 

ways than any other token), but never correctly. The most frequent prediction for it (25% of 

predictions) was ‘Repeated visit to family doctor’. Such result could be explained by the context 

window of full stop containing a wide range of different tokens during training, which likely 

resulted in the model learning that it was ‘similar to everything’, and being very much 

unconfident when it had to predict it.  

For comparison, BERT_PRE2 indeed did better in this task, by predicting full stop correctly in 

0.34% of the cases, which was still lower than the overall accuracy of this model. Interestingly, 

the most frequent token it predicted instead of full stop was ‘Chromosome analysis from the 

skin’ (42% of predictions), followed by some other specific medical procedures. The reasons 

for such outcome do not seem entirely clear.  

Considering the implications above, it must be concluded that the chosen masking strategy 

might not have been the best. A more elaborate strategy, for example duplicating longer 
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sentences to predict more tokens in them, or simply never masking full stop, or not adding it to 

the end of the trajectories in the first place, might have given better picture of performance of 

the models. In order to avoid not having any predictions for quite large number of less frequent 

tokens, a possible approach could have been to mask each token in each trajectory by 

duplicating the trajectories respective number of times, so that each test instance would have 

contained just one mask. However, the results of masking were only analysed after all models 

had already been trained and tested, and it was no longer possible to repeat this process.  

5.2. Classification models 

5.2.1 Results of parameter-tuning of KNN and SVM models 

The performance of all KNN and SVM models built on top of each of the three word2vec 

models on test set (and for comparison, on training set) is shown in Appendix XII and 

Appendix XIII, respectively. The models reported were the best in parameter-tuning on 

evaluation set. (For details on parameter-tuning, see Section 4.2.2.) In the appendices, the KNN 

and SVM models that were best in each classification task are marked in bold. If several models 

are marked in bold for the same task, this means that their performance was found not to be 

statistically significantly different based on McNemar test with significance level 0.05. From 

among the best models for each task, only one SVM and one KNN model (underlined in the 

appendices), i.e. the ones with highest accuracy, were chosen for comparison with BERT 

models. The results of those best models are discussed together with the results of BERT 

models in Section 5.2.2.  

As regards the results in Appendix XII and Appendix XIII, we can see that KNN models built 

on top of different word2vec models for the same classification task seemed to perform 

remarkably similarly, with their accuracies differing by less than 0.01. The performance among 

SVM models built for the same task differed slightly more. Also, both for KNN and SVM in 

most tasks there were several best models whose performance was not found to be statistically 

significantly different.  

The results in Appendix XII and Appendix XIII also show that all KNN models tended to 

overfit, while SVM models did not. It must be noted that in parameter-tuning, just the best 

models on evaluation set were picked, without considering overfitting. The fact that SVM 

models did not have this problem shows that the parameters specifically meant to counter 

overfitting in SVM (see Section 4.2.2) were indeed effective.  

5.2.2 Results of fine-tuned BERT and best KNN and SVM models 

The performance of all fine-tuned BERT models and the best KNN and SVM models in all 

classification tasks on test set is given in Table 9. For comparison, performance of fine-tuned 

BERT models on training set is given in Appendix XIV. Both in Table 9 and in Appendix XIV, 

the number of classes in each predicted feature is given in brackets in the ‘Task’ column. 

Models that were the best in each classification task are marked in bold. If several models are 

marked in bold for the same classification task in Table 9, this means that their performance 

was found not to be statistically significantly different based on McNemar test with 

significance level 0.05. Column ‘Best BERT vs best KNN/SVM’ in Table 9 shows difference between 

the best BERT and best KNN or SVM model. 
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Table 9. Performance of fine-tuned BERT and best KNN and SVM models on test set*  

Task Metric 
BERT_ 

FINE1 

BERT_ 

FINE2 

BERT_ 

FINE3 

BERT_ 

FINE4 

Best 

KNN 

Best 

SVM 

Best BERT 

vs best 

KNN/SVM 
d
i
a
g

 (
1

8
) Accuracy 0.5853 0.5820 0.5854 0.5476 0.5478 0.5475 0.0376 

Precision 0.5829 0.5816 0.5907 0.5736 0.5461 0.5417 0.0446 

Recall 0.5853 0.5820 0.5854 0.5476 0.5478 0.5475 0.0376 

F-score 0.5736 0.5693 0.5700 0.5159 0.5352 0.5311 0.0384 

d
i
a
g
2

 (
1

7
4

) 

Accuracy 0.4121 0.4067 0.3644 0.2452 0.3670 0.3445 0.0451 

Precision 0.4329 0.4441 0.5456 0.6574 0.3717 0.3720 0.2854 

Recall 0.4121 0.4067 0.3644 0.2452 0.3670 0.3445 0.0451 

F-score 0.3755 0.3629 0.2936 0.1482 0.3308 0.3241 0.0447 

e
m
e
r
g
e
n
c
y
_

b
i
l
l

 (
2

) Accuracy 0.9602 0.9601 0.9603 0.9589 0.9557 0.9529 0.0046 

Precision 0.9589 0.9590 0.9590 0.9575 0.9542 0.9510 0.0048 

Recall 0.9602 0.9601 0.9603 0.9589 0.9557 0.9529 0.0046 

F-score 0.9591 0.9593 0.9592 0.9573 0.9545 0.9508 0.0048 

d
i
s
c
h
a
r
g
e
_

s
t
a
t
u
s

 (
7

) Accuracy 0.6052 0.6177 0.6099 0.5927 0.5944 0.5652 0.0233 

Precision 0.5936 0.6049 0.5950 0.5933 0.5824 0.5373 0.0225 

Recall 0.6052 0.6177 0.6099 0.5927 0.5944 0.5652 0.0233 

F-score 0.5900 0.6051 0.5956 0.5773 0.5790 0.5389 0.0261 

t
r
e
a
t
m
e
n
t
_

t
y
p
e

 (
5
) Accuracy 0.9913 0.9918 0.9914 0.9885 0.9851 0.9876 0.0042 

Precision 0.9913 0.9918 0.9914 0.9885 0.9851 0.9876 0.0042 

Recall 0.9913 0.9918 0.9914 0.9885 0.9851 0.9876 0.0042 

F-score 0.9913 0.9918 0.9914 0.9885 0.9850 0.9876 0.0042 

t
t
o
_
t
y
p
e

 

(5
) 

Accuracy 0.7817 0.7900 0.7834 0.7454 0.7468 0.7183 0.0432 

Precision 0.7841 0.7913 0.7773 0.7584 0.7399 0.7120 0.0514 

Recall 0.7817 0.7900 0.7834 0.7454 0.7468 0.7183 0.0432 

F-score 0.7794 0.7873 0.7782 0.7459 0.7404 0.7027 0.0469 

l
a
r
g
e
s
t
4

 

(5
) 

Accuracy 0.8240 0.8288 0.8182 0.7741 0.7683 0.7369 0.0605 

Precision 0.8083 0.8150 0.7996 0.7339 0.7382 0.6650 0.0768 

Recall 0.8240 0.8288 0.8182 0.7741 0.7683 0.7369 0.0605 

F-score 0.8113 0.8188 0.8045 0.7412 0.7479 0.6813 0.0709 

* In Table 9, colour scaling has been applied separately for each classification task, and separately for 

the column ‘Best BERT vs best KNN/SVM’.  

In this section, performance of the models is compared based on accuracies. In Table 9, also 

F-score, and its calculation components precision and recall, are reported for each model for 

reference. They were calculated in the first place because F-score is a metric often used when 

the classes are imbalanced [21]. However, in this case, accuracies and F-scores did not differ 

that much, and the best models were the same based on both metrics. 

The results in Table 9 show that fine-tuned BERT models performed surprisingly well, 

especially considering the overall horrible performance of the pre-trained models (see Table 

6). Indeed, despite word2vec models being markedly better in predicting the mask (see Table 

7), the best fine-tuned BERT models outperformed the best classifiers built upon word2vec 
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vectors in all classification tasks. Therefore, it can be concluded that the contextual embeddings 

of BERT were better than the non-contextual ones of word2vec.  

Among fine-tuned BERT models, the second largest (BERT_FINE2) can be considered as the 

overall best, since it was among the set of best-performing models (marked in bold in Table 9) 

in all 7 classification tasks. The next best was BERT_FINE1, then BERT_FINE3, and finally 

the worst was BERT_FINE4 (among the best respectively in 5, 3 and 1 task). The fact that the 

largest model (BERT_FINE1) was not the best suggests that when the ‘language’ of treatment 

trajectories is less complicated than natural language, then using smaller BERT models than 

the original one proposed by the authors of BERT [1] might be beneficial. When comparing 

the results of BERT models on test set (see Table 9) with their results on training set (see 

Appendix XIV), we can notice that the models somewhat overfitted.  

Among classifiers built on top of word2vec vectors, KNN outperformed SVM – it was better 

in four tasks (diag2, discharge_status, tto_type and largest4), while SVM was 

better only in one (treatment_type). In the remaining two tasks, their performance was not 

statistically different. KNN outperforming SVM may indicate that the tasks were better 

solvable by a non-linear than a linear model.  

For better overview, the accuracies of the models are shown in Figure 16. In the figure, the 

number of classes is given in brackets for the predicted features. The best accuracy (0.9918) 

was achieved in classifying treatment_type (with BERT_FINE2), followed by 

emergency_bill (0.9603 with BERT_FINE3). This shows that treatment trajectories of 

services provided in inpatient, outpatient and day care and by family doctors and nurses on the 

one hand, and whether or not the invoice was for emergency services on the other hand, were 

easily distinguishable. At the same time, it was a bit surprising that classifying 

emergency_bill was harder, since it only had 2 classes compared to 5 in 

treatment_type, while in general the models performed worse with higher number of 

classes.  

 

Figure 16. Accuracies of fine-tuned BERT and best KNN and SVM models  

Performance in classifying largest4 and tto_type was rather good, with best accuracies 

of 0.8288 and 0.7900, respectively (both with BERT_FINE2). The fact that the performance of 

the latter was slightly weaker shows that it was somewhat harder for the models to decide the 
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specific type of service provider (local, regional, central or general hospital or chosen partner) 

than which one of the four largest or other service providers it was. Interestingly, the rather 

good performance in classifying largest4 indicated that treatment trajectories of the four 

largest hospitals must have been distinguishable. This seemed interesting, because from the 

trajectories being different it can be concluded that also the medical practices of those large 

hospitals at least to some extent differed.  

Lastly, Figure 16 shows that classification tasks with the highest number of classes were the 

most difficult for the models to solve, with the best accuracies of diag2 (174 classes), diag 

(18 classes) and discharge_status (7 classes) being the lowest – respectively 0.4121 (with 

BERT_FINE1), 0.5854 (with BERT_FINE3) and 0.6177 (with BERT_FINE2). The moderate 

performance of discharge_status also shows that what happened to the patient next after 

s/he was discharged (i.e. what type of treatment s/he was referred to, or whether s/he recovered 

or deceased) was harder to predict than what type of treatment s/he was currently undergoing 

(i.e. treatment_type).  

In general, it can be concluded that performance of fine-tuned BERT models in classifying 

patient treatment trajectories was quite good, and better than performance of classifiers built 

on top of word2vec models. Therefore, it can be concluded that the contextual embeddings 

were indeed more efficient with this type of input data than non-contextual ones.  

5.2.3. Further analysis of results 

5.2.3.1. Closer look at prediction errors of best fine-tuned BERT model 

In this section, a closer look is taken at prediction errors of BERT_FINE2 models, which were 

the overall best across all classification tasks (see Section 5.2.2). The errors are analysed by 

looking at confusion matrices of each of the classification tasks. The values in the matrices 

show which percentage of instances in each class were predicted to belong to each of the 

classes. The total number of instances in each class is given under each matrix for reference. 

For example, in the first confusion matrix (see Table 10), the value 1.0% in the first column 

shows that 1% out of 4,598 instances in class ‘Family doctor’ were predicted as belonging to 

class ‘Outpatient treatment’. The values on the main diagonal are class accuracies.  

Table 10. Confusion matrix of BERT_FINE2_treatment_type 

  

Actual 

Family 

doctor 
Outpatient 

treatment 
Inpatient 

treatment 
Day 

care 
Nursing 

P
re

d
ic

te
d

 Family doctor 99.0% 0.6% 0.0% 0.0% 0.0% 

Outpatient treatment 1.0% 99.4% 1.0% 1.1% 0.0% 

Inpatient treatment 0.0% 0.0% 99.0% 0.0% 0.0% 

Day care 0.0% 0.0% 0.0% 98.9% 0.0% 

Nursing 0.0% 0.0% 0.0% 0.0% 100.0% 

Total 4,598 4,645 524 177 56 

The model predicting treatment types rarely made any errors at all (see Table 10).  

The model predicting discharge status (see Table 11) was best at predicting recovery and worst 

at predicting if the patient deceased, with the respective class accuracies being 83.5% and 0.0%. 

The likely reason for this is that ‘Recovery’ was the largest and ‘Deceased’ the smallest class. 
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Also, it often predicted patients referred to outpatient or inpatient treatment or in class ‘Other’ 

as recovered, and patients referred to day care or inpatient treatment as referred to outpatient 

treatment. 

Table 11. Confusion matrix of BERT_FINE2_discharge_status* 

  

Actual 

Reco-

very 
>> family 

doctor 

>> out-

patient 

treatm. 

>> in-

patient 

treatm. 

>> day 

care 
Deceased Other 

P
re

d
ic

te
d

 

Recovery 83.5% 10.4% 26.0% 21.7% 6.8% 15.0% 25.6% 

>> family doctor 1.6% 47.2% 5.8% 8.7% 13.6% 30.0% 3.5% 
>> outpatient treatment 6.1% 17.4% 41.7% 26.1% 31.8% 10.0% 16.8% 
>> inpatient treatment 0.1% 0.6% 0.6% 16.1% 15.9% 25.0% 0.4% 
>> day care 0.0% 0.0% 0.0% 0.0% 4.5% 0.0% 0.0% 
Deceased 0.0% 0.4% 0.0% 0.6% 0.0% 0.0% 0.1% 
Other 8.7% 24.0% 25.9% 26.7% 27.3% 20.0% 53.6% 

Total 4,139 820 2,307 161 44 20 2,509 

 * ‘>>’ indicates which type of treatment the patient was referred to.  

The model predicting if the invoice was for emergency services or not (see Table 12) had much 

higher accuracy in detecting non-emergency bills (98.4%) than emergency bills (78.9%). Its 

main error was that it failed to identify 21.1% of the emergency bills. 

 Table 12. Confusion matrix of BERT_FINE2_emergency_bill 

  

Actual 

Emergency bill Other bill 

Predicted 
Emergency bill 78.9% 1.6% 

Other bill 21.1% 98.4% 

Total 1,211 7,224 

Table 13 shows that the weakness of the model classifying largest4 was that it often 

classified treatment trajectories of the four largest hospitals as belonging to the class ‘Other’. 

At the same time, errors in classifying trajectories of one of the four largest hospitals as 

belonging to another one were quite infrequent. This confirms the observation made at the end 

of Section 5.2.2 that treatment trajectories of the four largest hospitals were distinguishable 

among themselves, which suggests that also their medical practices must have somehow 

differed. 

Table 13. Confusion matrix of BERT_FINE2_largest4* 

  

Actual 

ITKH LTKH PERH TÜK Other 

P
re

d
ic

te
d

 ITKH 51.8% 8.5% 7.8% 4.6% 1.7% 

LTKH 5.3% 40.5% 4.1% 1.7% 1.0% 

PERH 5.0% 2.6% 58.0% 6.3% 0.8% 

TÜK 5.5% 2.4% 7.1% 53.9% 1.7% 

Other 32.4% 46.0% 23.1% 33.5% 94.9% 

The model classifying types of service providers (see Table 14) was not able to identify 

treatment trajectories of local hospitals (out of 26 invoices issued by them, it classified only 

one correctly). Again, this was the smallest class. Also, it attributed a large proportion of 

trajectories of general hospitals to central hospitals (38.1%) or regional hospitals (23.5%). It 
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was good at classifying chosen partners, though, with class accuracy of 91.3%, which again 

shows that the largest class was the easiest to classify. 

Table 14. Confusion matrix of BERT_FINE2_tto_type 

  

Actual 

General 

hospital 
Central 

hospital 
Regional 

hospital 
Local 

hospital 
Chosen 

partner 

P
re

d
ic

te
d

 General hospital 31.1% 6.9% 3.4% 15.4% 0.7% 

Central hospital 38.1% 70.8% 18.1% 34.6% 5.5% 

Regional hospital 23.5% 15.4% 72.7% 7.7% 2.4% 

Local hospital 0.1% 0.1% 0.0% 3.8% 0.1% 

Chosen partner 7.1% 6.9% 5.8% 38.5% 91.3% 

Total 816 1,985 1,671 26 5,502 

As regards diagnoses with 18 categories (see Table 15), the easiest trajectories to classify were 

those pertaining to categories ‘H’, ‘I’ and ‘J’ (eye diseases and diseases of the circulatory and 

respiratory system, respectively), with class accuracies of 81.8%, 71.0% and 77.6%. However, 

in terms of class frequency, those categories were from second to fourth largest. The largest 

category ‘Z’ (factors influencing health status and contact with health services) in this case 

ranked only as 5th in class accuracy (which was 64.7%), suggesting that in addition to the size 

of the class, also how specific its treatment trajectories were compared to other classes played 

an important role for the model. This is confirmed by the quite specific diagnoses of ‘O’ and 

‘P’ (conditions related to pregnancy and childbirth, and in perinatal period) achieving relatively 

good accuracies (65.4% and 40.0%, respectively), despite being among the smallest classes.  

Table 15. Confusion matrix of BERT_FINE2_diag* 

* Meanings of the categories can be found on Figure 6. 

From above we could see that an issue with several models was that they wrongly predicted 

many test instances as belonging to the largest classes, which was likely caused by the classes 

being imbalanced. A method that could be used to alleviate this issue is oversampling, which 

increases the number of data points in the minority class by duplicating them [21]. It is indeed 

  

Actual 

A-B C-D E F G H I J K L M N O P Q R S-T Z 

P
re

d
ic

te
d

 

A-B 19.0% 3.8% 0.7% 0.0% 0.4% 0.1% 0.0% 1.1% 3.0% 11.1% 0.3% 0.7% 0.0% 20.0% 0.0% 1.2% 0.4% 0.7% 

C-D 2.7% 47.1% 1.6% 1.0% 4.5% 0.3% 1.6% 1.3% 5.7% 8.3% 1.6% 4.9% 0.8% 20.0% 6.1% 3.4% 0.6% 2.8% 

E 1.4% 3.1% 49.1% 2.5% 4.5% 0.7% 5.8% 1.4% 2.7% 3.1% 1.8% 2.3% 0.8% 0.0% 12.1% 3.7% 0.4% 2.9% 

F 0.0% 0.2% 0.0% 53.5% 1.3% 0.0% 0.1% 0.0% 0.0% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 1.8% 0.0% 0.1% 

G 0.0% 0.6% 0.5% 4.5% 26.3% 0.7% 0.4% 0.2% 0.3% 0.0% 1.2% 0.0% 0.8% 0.0% 6.1% 2.5% 1.0% 0.4% 

H 0.5% 1.5% 4.2% 0.0% 1.8% 81.8% 0.1% 3.3% 0.6% 0.0% 0.1% 0.3% 0.0% 0.0% 3.0% 2.8% 2.1% 5.9% 

I 4.8% 5.4% 26.7% 16.3% 20.5% 2.1% 71.0% 5.1% 13.6% 7.6% 12.5% 4.1% 0.0% 0.0% 15.2% 16.9% 2.1% 7.8% 

J 45.8% 5.4% 3.3% 8.4% 17.0% 8.5% 8.0% 77.6% 14.2% 20.1% 11.2% 3.5% 1.6% 0.0% 6.1% 18.4% 10.1% 4.6% 

K 1.8% 2.7% 1.4% 1.0% 0.9% 0.1% 1.4% 0.8% 46.4% 0.7% 0.9% 1.8% 0.0% 10.0% 0.0% 6.7% 0.6% 0.7% 

L 2.5% 2.5% 0.9% 0.0% 0.4% 0.5% 1.3% 0.7% 0.6% 21.5% 1.3% 0.7% 0.8% 0.0% 3.0% 0.6% 1.2% 0.6% 

M 4.1% 4.4% 2.6% 3.0% 11.2% 1.5% 3.7% 2.1% 3.0% 9.7% 56.1% 2.6% 0.0% 0.0% 15.2% 9.2% 15.3% 3.2% 

N 4.1% 7.1% 2.3% 1.5% 0.9% 0.1% 1.7% 1.5% 2.1% 1.7% 2.5% 48.1% 3.9% 0.0% 15.2% 7.7% 1.2% 3.9% 

O 0.5% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.8% 65.4% 0.0% 0.0% 0.6% 0.2% 0.3% 

P 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 40.0% 0.0% 0.0% 0.0% 0.0% 

Q 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

R 2.3% 1.1% 0.7% 3.5% 4.5% 0.4% 1.6% 1.1% 3.6% 1.7% 1.1% 1.8% 1.6% 0.0% 12.1% 13.8% 0.6% 0.5% 

S-T 0.9% 1.7% 0.5% 2.0% 3.6% 1.8% 0.5% 1.2% 1.2% 2.4% 7.0% 0.5% 0.0% 0.0% 6.1% 2.1% 61.9% 0.9% 

Z 9.8% 13.2% 5.6% 3.0% 2.2% 1.3% 2.9% 2.5% 3.0% 11.5% 2.4% 27.8% 24.4% 10.0% 0.0% 8.6% 2.5% 64.7% 

Total 441 522 430 202 224 944 1,119 1,219 332 288 935 607 127 10 33 326 517 1,724 
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possible that oversampling trajectories belonging to small classes could have improved 

performance. The question of whether more data could have been beneficial in fine-tuning 

BERT models classifying diag2 has been analysed from another perspective also in Section 

5.2.3.2. 

5.2.3.2. Data-bound check for fine-tuned BERT models 

Some of the fine-tuned models overfitted (see Table 9). To check if the overfitting was data-

bound, i.e. caused by having too few data, a small case study was conducted with two models 

fine-tuned for classifying diagnosis (BERT_FINE1_diag2 and BERT_FINE4_diag2), which 

were among the ones that overfitted respectively the most and the least. This involved training 

those models with different amount of training data (25%, 50%, 70%, 80%, 90% and 100% of 

the original training set). Similar to models trained on the entire training set (containing 45,000 

samples), early stopping was applied here as well. The results are shown in Figure17.  

 

Figure 17. Training and evaluation accuracies of BERT_FINE1_diag2 and BERT_FINE4_diag2 

with different amounts of training data 

As we can see from Figure 17, while adding more data, evaluation accuracy had already 

stabilized for BERT_FINE4_diag2 when 90% of the data was used for training, and was close 

to stabilizing for BERT_FINE1_diag2 at the end of the experiment. Also training accuracies 

remained constant (starting from 70% of data for BERT_FINE1_diag2 and from 90% for 

BERT_FINE4_diag2), which also shows that the model was not able to learn with more data. 

We can conclude that adding more data would not have helped increase performance of the 

models. 
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6. Conclusions  

The aim of this thesis was to evaluate the suitability of applying BERT to patient treatment 

trajectories and to compare its performance with word2vec and classifiers built on top of it. 

After extracting treatment trajectories from medical invoices, the models in this thesis were 

built in two stages. In the first stage, four BERT models of different dimensions were pre-

trained on 39 million treatment trajectories, and their performance in mask prediction task was 

compared with word2vec models trained on the same inputs. In the second stage, the pre-

trained BERT models were fine-tuned on 45,000 trajectories for classifying seven features 

(diagnosis, treatment types, discharge status, type of service provider and which one of the 

largest four or other service providers it was, and if the invoice was for emergency services). 

Their performance in those tasks was compared with KNN and SVM models built on word2vec 

vectors. 

Results showed that the performance of BERT in the pre-training stage was remarkably poor 

compared to word2vec, with its best MLM accuracy being 0.0055, while for word2vec it was 

0.0869. Still, the accuracies of pre-trained BERT models were still around 10 times higher than 

accuracy of random guess (except for the smallest model for which the difference was smaller). 

Also, PCA performed on embeddings of 10 selected services showed that the services formed 

somewhat logical clusters, indicating that the model had at least learnt something. However, 

the clusters were very wide and diffuse and heavily overlapped with each other, which might 

explain the poor performance. Results also showed that BERT models underfitted, the most 

likely reason for it being that the default input parameters used were not appropriate for 

treatment trajectories. Another likely reason was that the order in which medical services 

appear on an invoice is not as strongly fixed as word order in natural language, which might 

explain why word2vec, which does not take word order into account, performed better. 

Breakdown of mask prediction accuracies per trajectory length showed that all models made 

better predictions for longer trajectories, with accuracy with the longest trajectories (81-126 

services) being 0.031 and 0.333 for the best BERT and word2vec model, respectively. 

Performance of all models was clearly affected by weak results on short trajectories, since they 

made up the majority of the data.  

Despite poor performance of BERT in the pre-training stage, fine-tuned BERT models 

outperformed classifiers built on top of word2vec in all classification tasks. Therefore, it was 

concluded that the contextual embeddings of BERT were better than the non-contextual ones 

of word2vec in classifying treatment trajectories. The highest accuracy (0.9918) was achieved 

in classifying treatment types (5 classes) and the lowest (0.4121) in classifying diagnosis (174 

classes). It was concluded that BERT indeed proved useful with this type of non-natural 

language input data. From among the four BERT models built in this thesis, the second largest 

was the overall best, showing that if the ‘language’ used is simpler than natural language, then 

BERT models with reduced dimensions might work better. The results were further analysed 

by looking at confusion matrices of the best fine-tuned BERT model, which showed that it was 

better at predicting larger classes and therefore could have benefitted from oversampling. Also, 

data-bound check of two fine-tuned BERT models, where performance was measured after 

using different amounts of training data, showed that having more training data would not have 

helped increase performance of BERT classification models.  
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Appendix 

I. GitLab repository 

https://gitlab.ut.ee/renata.siimon/patient-treatment-trajectories (private repository) 

  

https://gitlab.ut.ee/renata.siimon/patient-treatment-trajectories
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II. Discharge statuses before and after aggregation  

Discharge status (before aggregation) % 
Discharge status 

(aggregated) 
% 

Recovery 41.36% Recovery 41.36% 

Other causes 25.32% 
  
Other 
  

25.48% 
Leaving at own risk against recommendation 

by the doctor 0.12% 

Missing or erroneous invoice ending code 0.04% 
Called back to outpatient visit to the same 

specialist doctor in the same medical service 

provider 14.18% 
  
Referral to outpatient 

treatment 
  

22.82% Referred to outpatient visit to a specialist 

doctor in another medical service provider 5.74% 
Referred to outpatient visit of another specialist 

doctor in the same medical service provider 2.90% 
Referred to visiting and monitoring by family 

doctor 8.16% 
Referral to family 

doctor 
8.16% 

Referred to inpatient treatment in the same 

medical service provider 0.89% 

  
Referral to inpatient 

treatment  
  

1.51% 
  
  

Referred to inpatient treatment in another 

medical service provider (regional hospital) 0.20% 
Referred to inpatient treatment in another 

medical service provider (general hospital) 0.19% 
Referred to inpatient treatment in another 

medical service provider (central hospital) 0.15% 
Referred to inpatient treatment in another 

medical service provider (except general, 

central or regional hospital) 0.08% 
Referred to day care in the same medical 

service provider 0.39% 
Referral to day care 0.48% 

Referred to day care in another medical service 

provider 0.09% 

Deceased 0.20% Deceased 0.20% 
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III. Diagnosis categories (18) 

A-B Certain infectious and parasitic diseases 

C-D Neoplasms 

E Endocrine, nutritional and metabolic diseases 

F Mental and behavioural disorders 

G Diseases of the nervous system 

H Diseases of the eye and adnexa 

I Diseases of the circulatory system 

J Diseases of the respiratory system 

K Diseases of the digestive system 

L Diseases of the skin and subcutaneous tissue 

M Diseases of the musculoskeletal system and connective tissue 

N Diseases of the genitourinary system 

O Pregnancy, childbirth and the puerperium 

P Certain conditions originating in the perinatal period 

Q Congenital malformations, deformations and chromosomal abnormalities 

R Symptoms, signs and abnormal clinical and laboratory findings, NEC 

S-T Injury, poisoning and certain other consequences of external causes 

Z Factors influencing health status and contact with health services 
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IV. Diagnosis categories (174)* 

A00-A09 C76-C80 G20-G26 I26-I28 L60-L75 O00-O08 S10-S19 

A15-A19 C81-C96 G30-G32 I30-I52 L80-L99 O10-O16 S20-S29 

A30-A49 D00-D09 G35-G37 I60-I69 M00-M03 O20-O29 S30-S39 

A50-A64 D10-D36 G40-G47 I70-I79 M05-M14 O30-O48 S40-S49 

A65-A69 D37-D48 G50-G59 I80-I89 M15-M19 O60-O75 S50-S59 

B00-B09 D50-D53 G60-G64 J00-J06 M20-M25 O80-O84 S60-S69 

B15-B19 D60-D64 G80-G83 J09-J18 M30-M36 O95-O99 S70-S79 

B20-B24 D65-D69 G90-G99 J20-J22 M40-M43 P05-P08 S80-S89 

B25-B34 D70-D77 H00-H06 J30-J39 M45-M49 P50-P61 S90-S99 

B35-B49 D80-D89 H10-H13 J40-J47 M50-M54 Q10-Q18 T00-T07 

B65-B83 E00-E07 H15-H22 J95-J99 M60-M63 Q20-Q28 T15-T19 

B85-B89 E10-E14 H25-H28 K00-K14 M65-M68 Q60-Q64 T20-T25 

B90-B94 E20-E35 H30-H36 K20-K31 M70-M79 Q65-Q79 T36-T50 

B95-B97 E50-E64 H40-H42 K35-K38 M80-M85 Q80-Q89 T51-T65 

C00-C14 E65-E68 H43-H45 K40-K46 M91-M94 Q90-Q99 T66-T78 

C15-C26 E70-E90 H46-H48 K50-K52 N00-N08 R00-R09 T80-T88 

C30-C39 F00-F09 H49-H52 K55-K63 N10-N16 R10-R19 T90-T98 

C43-C44 F10-F19 H53-H54 K70-K77 N17-N19 R20-R23 Z00-Z13 

C45-C49 F20-F29 H60-H62 K80-K87 N20-N23 R25-R29 Z20-Z29 

C50-C50 F30-F39 H65-H75 K90-K93 N25-N29 R30-R39 Z30-Z39 

C51-C58 F40-F49 H80-H83 L00-L08 N30-N39 R40-R46 Z40-Z54 

C60-C63 F50-F59 H90-H95 L20-L30 N40-N51 R47-R49 Z70-Z76 

C64-C68 F70-F79 I05-I09 L40-L45 N60-N64 R50-R69 Z80-Z99 

C69-C72 F80-F89 I10-I15 L50-L54 N70-N77 R70-R79 Other 

C73-C75 F90-F98 I20-I25 L55-L59 N80-N98 S00-S09  

     * For the meanings of the diagnosis codes, see ICD10 [15]. 
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V. Breakdown of types of service providers 

 
1) Central hospitals: 

East Tallinn Central Hospital 

West Tallinn Central Hospital 

Ida-Viru Central Hospital 

Pärnu Hospital 

 

2) General hospitals: 

Hiiumaa Hospital 

Järvamaa Hospital 

Kuressaare Hospital 

Läänemaa Hospital 

South-Estonian Hospital 

Narva Hospital 

Põlva Hospital 

Rakvere Hospital 

Rapla County Hospital  

Raplamaa Hospital 

Valga Hospital 

Viljandi Hospital 

 

3) Regional hospitals: 

Tartu University Hospital 

North Estonia Medical Centre 

Tallinn Children's Hospital 

 

4) Local hospital: 

Jõgeva Hospital 

 

5) Chosen partner: 

1241 smaller medical service providers  
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VI. Most frequent services  

Service 

code 
Service 

% of 

services 
Subtype 

9002 Repeated visit to family doctor 6.57% 
Treatment by 

family doctor 

3002 Initial visit to specialist doctor 5.96% Outpatient visits 

9001 Initial visit to family doctor 5.12% 
Treatment by 

family doctor 

3004 Repeated visit to specialist doctor 4.61% Outpatient visits 

66102 Creatinine, urea, uric acid 3.66% Lab tests 

66106 
Enzymes: ALP, ASAT, ALAT, LDH, CK, GGT, 

CK-Mba, alpha-amylase 3.43% 
Lab tests 

66707 

Determination of anaemia, heart, tumour markers, 

studies of pathogens, determination of antibodies, 

vitamins and enzymes with immune method 3.21% 

Lab tests 

9018 

Patient consultancy by family doctor conducted 

over the phone and documented in patient's health 

record 2.88% 
Treatment by 

family doctor 

66706 
Screening, hormone and pathogen tests with 

immune method 2.64% 
Lab tests 

66112 C-reactive protein 2.58% Lab tests 
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VII. Service subtypes 

Id Subtype 
No of 

services  
% in 

data 
4000 Surgeries 1,011 0.479% 
7000 Tests and procedures 716 15.941% 
6000 Lab tests 275 42.467% 
2200 Accessory equipment during surgery 177 0.125% 
1700 Drugs 163 0.239% 
9000 Treatment by family doctor 135 24.014% 

8 Musculoskeletal and connective tissue diseases 96 0.099% 
5 Circulatory diseases 71 0.095% 

5000 Dental care 71 0.032% 
6 Diseases of the digestive organs 65 0.070% 

2000 Bed days 61 1.191% 
3 Ear, nose, mouth and throat diseases 60 0.070% 
1 Nervous diseases 56 0.063% 

1000 Outpatient visits 54 13.740% 
11 Diseases of the kidneys and urinary tract 51 0.030% 

1500 Blood and blood products 46 0.157% 
19 Mental diseases 41 0.037% 

2 Eye diseases 34 0.059% 
4 Respiratory diseases 34 0.044% 
9 Diseases of the skin, subcutaneous tissue and mammary gland 34 0.035% 
7 Diseases of the liver, biliary tract and pancreas 31 0.026% 

1200 School health care 30 0.068% 
13 Diseases of female reproductive organs 30 0.044% 
12 Diseases of the male reproductive organs 28 0.011% 
10 Endocrine, nutritional and metabolic diseases 27 0.015% 
21 Injuries, poisonings and toxic effects of drugs 27 0.007% 
14 Pregnancy, childbirth and the postpartum period 26 0.081% 
17 Myeloproliferative diseases, poorly differentiated tumours 25 0.030% 

3000 Complex prices 20 0.064% 
5400 Orthodontics 17 0.000% 
2400 Anaesthesia 16 0.516% 

18 Infectious and parasitic diseases 16 0.013% 
15 Neonatal DRGs 15 0.009% 
23 Factors affecting health and other contacts with health services 13 0.051% 

16 
Diseases of blood and hematopoietic organs and diseases 

related to immune mechanisms 12 0.008% 
30 Breast conditions 12 0.001% 
22 Burns 11 0.001% 

5300 Dentures 8 0.000% 
1400 Transport 7 0.053% 

24 Severe multiple trauma 7 0.001% 
99 Non-specific or incorrect information 5 0.003% 
20 Abuse or addiction to alcohol and psychoactive substances 3 0.001% 

0 Pre-MDC DRGs 2 0.000% 
8000  Rehabilitation 1 0.007% 

25 HIV infection 1 0.000% 
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VIII. Most frequent treatment trajectories 

Treatment 

trajectory 
Meaning of service codes in trajectory 

Times 

repeated 

9001 9002 Initial visit to family doctor → Repeated visit to family doctor  1,342,397 

3002 7263 

7267 

Initial visit to specialist doctor → Eye fundus examination with 

three-mirrored lens or Volke magnifying glass → Refraction 

examination of eyes with autorefractometer 

389,725 

3002 7267 

7263 

Initial visit to specialist doctor → Refraction examination of eyes 

with autorefractometer → Eye fundus examination with three-

mirrored lens or Volke magnifying glass 

287,014 

3002 3004 Initial visit to specialist doctor → Repeated visit to specialist 

doctor 

244,689 

3002 7954 Initial visit to specialist doctor → Vaginal ultrasound examination 240,247 

9001 9002 

9002 

Initial visit to family doctor → Repeated visit to family doctor → 

Repeated visit to family doctor 

234,376 

9061 9062 Consultancy visit to family nurse → Nursing procedure by family 

nurse (manual activity) 

222,047 

3002 7263 Initial visit to specialist doctor → Refraction examination of eyes 

with autorefractometer 

219,273 

9018 9064 Patient consultancy by family doctor conducted over the phone 

and documented in patient's health record → Patient consultancy 

by family nurse conducted over the phone and documented in 

patient's health record 

209,565 

9002 9061 Repeated visit to family doctor → Consultancy visit to family 

nurse 

172,955 
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IX. Parameters used for pre-training BERT models* 

Parameter Meaning 
BERT_ 

PRE1 

BERT_ 

PRE2 

BERT_ 

PRE3 

BERT_ 

PRE4 

vocab_size  Size of vocabulary mapping 

service codes to their token ids 

3,440 3,440 3,440 3,440 

type_vocab_ 

size  
Number of sentences in each 

input 

1 1 1 1 

max_ position_ 

embeddings  
Max length of input trajectory 128 128 128 128 

num_ 

attention_ 

heads 

Number of attention heads 12 6 4 3 

num_hidden_ 

layers  
Number of hidden layers 12 6 4 3 

hidden_size  Size of hidden layers (encoder 

layers and pooler layer) 

768 384 192 96 

intermediate 

_size 
Size of intermediate (i.e. feed-

forward) layer in the encoder 

3,072 1,536 768 384 

per_device_ 

train_ 

batch_size  

Batch size 32 32 32 32 

max_steps  Number of training steps 

 

700,320 

(4 epochs) 

700,320 

(4 epochs) 

700,320 

(4 epochs) 

700,320 

(4 epochs) 
learning_ rate Learning rate 1e-4 1e-4 1e-4 1e-4 
warmup_ratio  Ratio of training steps used for 

a linear warmup from 0 to 
learning_ rate 

0.01 0.01 0.01 0.01 

* Other parameter values used were the default ones specified in Transformers API (version 4.7.0) for 

BERTForMaskedLM9.  
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X. Number of epochs for fine-tuning BERT models 

Classification task 
Model 

BERT_FINE1 BERT_FINE2 BERT_FINE3 BERT_FINE4 

diag 4 4.25 4.5 4.5 
diag2 4.75 4.5 5 4.5 
emergency_bill 2 2 3 3.75 
discharge_status 3.5 5 4 5 
treatment_type 4 4.25 4.75 2.75 
tto_type 4 4 4.75 4.25 
largest4 4.5 4 4.5 5 
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XI. Parameter values in KNN and SVM models*  

Model Classification task 

Parameter values 

KNN SVM 

n_neigh-

bours 
eta0 power_t alpha penalty 

KNN_w5_v400 

and 

SVM_w5_v400  

diag 15 0.032 0.45 0.00014 l1 

diag2 17 0.033 0.50 0.00025 l1 

emergency_bill 3 0.035 0.40 0.00015 l1 

discharge_status 35 0.035 0.40 0.00020 l1 

treatment_type 3 0.035 0.20 0.00012 l1 

tto_type 7 0.033 0.30 0.00020 l2 

largest4 15 0.035 0.20 0.00015 l1 

KNN_w7_v150 

and 

SVM_w7_v150  

diag 11 0.035 0.55 0.00020 l1 

diag2 21 0.033 0.50 0.00025 l1 

emergency_bill 7 0.035 0.35 0.00020 l1 

discharge_status 15 0.033 0.35 0.00015 l1 

treatment_type 5 0.035 0.20 0.00012 l1 

tto_type 5 0.035 0.30 0.00010 l2 

largest4 15 0.035 0.50 0.00015 l1 

KNN_w7_v600 

and  

SVM_w7_v600 

diag 15 0.032 0.55 0.00015 l1 

diag2 21 0.033 0.40 0.00020 l1 

emergency_bill 3 0.031 0.50 0.00020 l1 

discharge_status 15 0.035 0.45 0.00022 l1 

treatment_type 3 0.031 0.25 0.00015 l1 

tto_type 5 0.031 0.50 0.00010 l2 

largest4 11 0.033 0.40 0.00015 l1 

* Other parameter values used were the default ones specified in Scikit-learn API2 (version 0.24.2). 
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XII. Performance of KNN models*  

Task Metric 

TRAIN TEST 

KNN_ 

w5_ 

v400 

KNN_ 

w7_ 

v600 

KNN_ 

w7_ 

v150 

KNN_ 

w5_ 

v400 

KNN_ 

w7_ 

600 

KNN_ 

w7_ 

v150 
d
i
a
g
 

(1
8

) Accuracy 0.5914 0.5911 0.5990 0.5471 0.5478 0.5436 

Precision 0.5927 0.5957 0.5996 0.5442 0.5461 0.5419 

Recall 0.5914 0.5911 0.5990 0.5471 0.5478 0.5436 

F-score 0.5810 0.5802 0.5884 0.5344 0.5352 0.5310 

d
i
a
g
2
 

(1
7

4
) 

Accuracy 0.4166 0.4069 0.4063 0.3645 0.3620 0.3670 

Precision 0.4260 0.4141 0.4137 0.3712 0.3644 0.3717 

Recall 0.4166 0.4069 0.4063 0.3645 0.3620 0.3670 

F-score 0.3877 0.3745 0.3739 0.3330 0.3259 0.3308 

e
m
e
r
g
e
n
c
y

_
b
i
l
l
 

(2
) Accuracy 0.9670 0.9670 0.9590 0.9521 0.9519 0.9557 

Precision 0.9663 0.9663 0.9578 0.9508 0.9507 0.9542 

Recall 0.9670 0.9670 0.9590 0.9521 0.9519 0.9557 

F-score 0.9665 0.9664 0.9581 0.9513 0.9511 0.9545 

d
i
s
c
h
a
r
g
e
 

_
s
t
a
t
u
s

(7
) Accuracy 0.6136 0.6340 0.6277 0.5944 0.5901 0.5893 

Precision 0.6014 0.6206 0.6133 0.5824 0.5731 0.5701 

Recall 0.6136 0.6340 0.6277 0.5944 0.5901 0.5893 

F-score 0.5986 0.6195 0.6122 0.5790 0.5745 0.5716 

t
r
e
a
t
m
e
n
t

_
t
y
p
e
 

(5
) Accuracy 0.9898 0.9896 0.9863 0.9842 0.9851 0.9836 

Precision 0.9898 0.9896 0.9863 0.9842 0.9851 0.9836 

Recall 0.9898 0.9896 0.9863 0.9842 0.9851 0.9836 

F-score 0.9897 0.9896 0.9863 0.9841 0.9850 0.9835 

t
t
o
_
t
y
p
e
 

(5
) 

Accuracy 0.8027 0.8150 0.8133 0.7468 0.7458 0.7458 

Precision 0.7962 0.8070 0.8067 0.7399 0.7318 0.7358 

Recall 0.8027 0.8150 0.8133 0.7468 0.7458 0.7458 

F-score 0.7972 0.8088 0.8082 0.7404 0.7377 0.7400 

l
a
r
g
e
s
t
4
 

(5
) 

Accuracy 0.7947 0.8017 0.7931 0.7633 0.7683 0.7661 

Precision 0.7709 0.7802 0.7680 0.7310 0.7382 0.7324 

Recall 0.7947 0.8017 0.7931 0.7633 0.7683 0.7661 

F-score 0.7760 0.7854 0.7733 0.7410 0.7479 0.7423 

* In the ‘Task’ column, the number of classes of the predicted feature is shown in brackets. Best models 

in each classification task are marked in bold. If several models are marked in bold for the same task, it 

means their performance was not statistically significantly different based on McNemar test with 

significance level 0.05. The model chosen for comparison with BERT models is underlined.  
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XIII. Performance of SVM models*  

Task Metric 

TRAIN TEST 
SVM_ 

w5_ 

v400 

SVM_ 

w7_ 

v600 

SVM_ 

w7_ 

v150 

SVM_ 

w5_ 

v400 

SVM_

w7_ 

v600 

SVM_

w7_ 

v150 

d
i
a
g
 

(1
8

) Accuracy 0.5498 0.5528 0.5258 0.5415 0.5475 0.5266 

Precision 0.5494 0.5488 0.5216 0.5386 0.5417 0.5175 

Recall 0.5498 0.5528 0.5258 0.5415 0.5475 0.5266 

F-score 0.5377 0.5382 0.5080 0.5272 0.5311 0.5046 

d
i
a
g
2
 

(1
7

4
) 

Accuracy 0.3473 0.3511 0.3321 0.3358 0.3445 0.3255 

Precision 0.3433 0.3738 0.3274 0.3365 0.3720 0.3233 

Recall 0.3473 0.3511 0.3321 0.3358 0.3445 0.3255 

F-score 0.3217 0.3331 0.3074 0.3086 0.3241 0.2964 

e
m
e
r
g
e
n
c
y
 

_
b
i
l
l
 

(2
) Accuracy 0.9477 0.9457 0.9458 0.9529 0.9504 0.9526 

Precision 0.9455 0.9432 0.9433 0.9510 0.9482 0.9506 

Recall 0.9477 0.9457 0.9458 0.9529 0.9504 0.9526 

F-score 0.9459 0.9436 0.9437 0.9508 0.9481 0.9505 

d
i
s
c
h
a
r
g
e

_
s
t
a
t
u
s

 
(7

) Accuracy 0.5541 0.5690 0.5548 0.5521 0.5652 0.5550 

Precision 0.5388 0.5488 0.5339 0.5385 0.5373 0.5338 

Recall 0.5541 0.5690 0.5548 0.5521 0.5652 0.5550 

F-score 0.5359 0.5435 0.5303 0.5326 0.5389 0.5297 

t
r
e
a
t
m
e
n
t
 

_
t
y
p
e
 

(5
) Accuracy 0.9892 0.9887 0.9863 0.9876 0.9869 0.9851 

Precision 0.9893 0.9888 0.9864 0.9876 0.9869 0.9851 

Recall 0.9892 0.9887 0.9863 0.9876 0.9869 0.9851 

F-score 0.9892 0.9887 0.9862 0.9876 0.9869 0.9851 

t
t
o
_
t
y
p
e
 

(5
) 

Accuracy 0.7182 0.7172 0.7096 0.7183 0.7160 0.7077 

Precision 0.7105 0.7129 0.7083 0.7120 0.7112 0.7063 

Recall 0.7182 0.7172 0.7096 0.7183 0.7160 0.7077 

F-score 0.7019 0.7028 0.7018 0.7027 0.7017 0.6998 

l
a
r
g
e
s
t
4
 

(5
) 

Accuracy 0.7382 0.7425 0.7306 0.7338 0.7369 0.7320 

Precision 0.6978 0.6804 0.6424 0.6900 0.6650 0.6468 

Recall 0.7382 0.7425 0.7306 0.7338 0.7369 0.7320 

F-score 0.7094 0.6894 0.6537 0.7032 0.6813 0.6535 

* In the ‘Task’ column, the number of classes of the predicted feature is shown in brackets. Best models 

in each classification task are marked in bold. If several models are marked in bold for the same task, it 

means their performance was not statistically significantly different based on McNemar test with 

significance level 0.05. The model chosen for comparison with BERT models is underlined.  
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XIV. Performance of fine-tuned BERT models on training set* 

Task Metric 
BERT_ 

FINE1 

BERT_ 

FINE2 

BERT_ 

FINE3 

BERT_ 

FINE4 

d
i
a
g

 (
1

8
) Accuracy 0.6551 0.6670 0.6190 0.5628 

Precision 0.6661 0.6783 0.6300 0.5900 

Recall 0.6551 0.6670 0.6190 0.5628 

F-score 0.6479 0.6584 0.6068 0.5320 

d
i
a
g
2

 (
1

7
4

) 

Accuracy 0.4920 0.4647 0.3851 0.2483 

Precision 0.5367 0.5201 0.5355 0.6325 

Recall 0.4920 0.4647 0.3851 0.2483 

F-score 0.4597 0.4216 0.3105 0.1475 

e
m
e
r
g
e
n
c
y
_

b
i
l
l

 (
2

) Accuracy 0.9645 0.9669 0.9649 0.9596 

Precision 0.9636 0.9661 0.9640 0.9583 

Recall 0.9645 0.9669 0.9649 0.9596 

F-score 0.9636 0.9663 0.9641 0.9584 

d
i
s
c
h
a
r
g
e
_

s
t
a
t
u
s

 (
7

) Accuracy 0.6368 0.7130 0.6492 0.6060 

Precision 0.6296 0.7102 0.6381 0.6067 

Recall 0.6368 0.7130 0.6492 0.6060 

F-score 0.6239 0.7056 0.6370 0.5909 

t
r
e
a
t
m
e
n
t
_

t
y
p
e

 (
5
) Accuracy 0.9944 0.9955 0.9948 0.9908 

Precision 0.9944 0.9955 0.9948 0.9909 

Recall 0.9944 0.9955 0.9948 0.9908 

F-score 0.9944 0.9955 0.9948 0.9908 

t
t
o
_
t
y
p
e

 

(5
) 

Accuracy 0.8478 0.8574 0.8220 0.7565 

Precision 0.8539 0.8609 0.8180 0.7702 

Recall 0.8478 0.8574 0.8220 0.7565 

F-score 0.8460 0.8555 0.8176 0.7569 

l
a
r
g
e
s
t
4

 

(5
) 

Accuracy 0.8910 0.8959 0.8528 0.7874 

Precision 0.8869 0.8919 0.8405 0.7502 

Recall 0.8910 0.8959 0.8528 0.7874 

F-score 0.8846 0.8908 0.8415 0.7552 

 * In the ‘Task’ column, the number of classes of the predicted feature is shown in brackets. Best result 

in each row is marked in bold. Colour scaling has been applied separately for each classification task. 
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