
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Security And Cloud Computing

Heikki Santeri Sipilä

Scalability Assessment in
Blockchain-enabled IoT Applications

Master’s Thesis (30 ECTS)

Supervisors: Mubashar Iqbal, PhD

Abasi-amefon Obot Affia, Msc

Russell W. F. Lai, PhD

Tartu 2023

Scalability Assessment in Blockchain-enabled IoT Applications

Abstract: The use of blockchain in the Internet of Things (IoT) has pawed the way for cre-
ating decentralized IoT applications. However, integrating blockchain with the IoT is not
straightforward and proposes various challenges. We performed a Systematic Literature
Review (SLR) to explore these potential challenges. The SLR resulted in two conclusions.
The first conclusion was that potential scalability challenges with blockchain-enabled
IoT applications include storage, networking, processing, and throughput challenges.
The second conclusion was that the current literature lacks tools and methods to assess
these scalability challenges. We address this research gap by first providing a method
for creating a scalability assessment tool for blockchain-enabled IoT applications. This
method is then showcased in this thesis by designing, implementing, and validating a
tool that can be used for scalability assessments of these applications. Our proposed tool
uses existing virtualization software to generate simulated IoT devices, which allows for
testing the scalability of these applications without the need to use physical devices. We
validated the tool by scalability testing a proof-of-concept blockchain-enabled Internet
of Vehicles application developed as a part of this thesis. The results of these tests were
then analyzed, and the feasibility of the tool was evaluated to be suitable for testing the
scalability with a maximum of 24 devices.

Keywords: Blockchain, Internet of Things (IoT), Blockchain-enabled IoT, Scalability

CERCS: T120, Systems engineering, computer technology

2

Skaleeritavuse hindamine plokiahelaga IoT-rakendustes
Lühikokkuvõte: Plokiahela kasutamine Asjade Internetis (IoT) on loonud tee detsentra-
liseeritud IoT-rakenduste loomisele. Plokiahela integreerimine IoT-ga ei ole aga lihtne
ja pakub erinevaid väljakutseid. Tegime nende võimalike väljakutsete uurimiseks läbi
süstemaatilise kirjanduse ülevaate (SLR). SLR tulemuseks oli kaks järeldust. Esimene
järeldus oli, et plokiahela toega IoT-rakenduste võimalikud mastaapsuse probleemid
hõlmavad salvestus-, võrgu-, töötlemis- ja läbilaskevõimega seotud väljakutseid. Teine
järeldus oli, et praeguses kirjanduses puuduvad vahendid ja meetodid nende mastaapsuse
väljakutsete hindamiseks. Me tegeleme selle uurimislüngaga, pakkudes esmalt meeto-
di mastaapsuse hindamise tööriista loomiseks plokiahela toega IoT-rakenduste jaoks.
Seejärel tutvustatakse seda meetodit selles lõputöös, kavandades, juurutades ja valideeri-
des tööriista, mida saab kasutada nende rakenduste skaleeritavuse hindamiseks. Meie
pakutud tööriist kasutab olemasolevat virtualiseerimistarkvara, et luua simuleeritud IoT-
seadmeid, mis võimaldab testida nende rakenduste mastaapsust ilma füüsilisi seadmeid
kasutamata. Valideerisime tööriista skaleeritavuse testimisega selle lõputöö osana välja
töötatud kontseptsiooni tõestusega plokiahela toega IoV-rakendusega. Seejärel analüüsiti
nende testide tulemusi ja hinnati tööriista teostatavust sobivaks skaleeritavuse testimiseks
maksimaalselt 24 seadmega.

Võtmesõnad:
Plokiahel, asjade internet (IoT), plokiahela toega asjade internet, skaleeritavus

CERCS: T120, Systems engineering, computer technology

3

Preface
I want to thank my supervisors for all the help that they have provided. Additionally,
I want to thank all the people that have helped me with my life while working on this
thesis. Nokia has also offered paid time to work on this thesis, so I want to thank Nokia
as well.

Heikki Santeri Sipilä

4

Contents
1 Introduction 7

1.1 Scope . 7
1.2 Problem Statement . 8
1.3 Research Questions . 8
1.4 Contributions . 9
1.5 Practical Significance . 9
1.6 Thesis Structure . 9

2 Background 10
2.1 Internet of Things (IoT) . 10
2.2 Blockchain . 11

2.2.1 Ethereum Protocol . 11
2.2.2 Blockchain-enabled IoT Applications 12

2.3 Scalability in Blockchain-enabled IoT Applications 12
2.4 Scalability Testing in Blockchain-enabled IoT 13

2.4.1 Geth Client . 14
2.4.2 Virtualbox and Vagrant . 14

2.5 Research Gaps and Objectives . 15

3 Literature Review 16
3.1 Review Method . 16

3.1.1 Data Sources . 16
3.1.2 Search Strategy . 16
3.1.3 Selection Criteria . 17

3.2 Review Results . 19
3.2.1 Results for RQ1: Scalability 19
3.2.2 Results for RQ2: Scalability Testing Tools 22

3.3 Discussion of Results . 25
3.4 Summary . 26

4 Research Method and Design 27
4.1 Research Method . 27
4.2 Identifying Possible Stakeholders and Modelling goals 28
4.3 Specification of the Tool . 29
4.4 Tool Requirements . 30
4.5 Summary . 31

5

5 Implementation of Scalability Assessment Tool 32
5.1 Virtualization Software . 32
5.2 Tool Content . 34
5.3 Limitations of the Tool . 41
5.4 Summary . 41

6 Validation and Results 42
6.1 Common Variables for the Tests . 42
6.2 Validation Test 1: Basic Functionality 43

6.2.1 Testing scenario . 44
6.2.2 Environment Setup . 44
6.2.3 Blockchain Setup . 49
6.2.4 Testing Method . 50
6.2.5 Results . 51

6.3 Validation Test 2: Using the Tool to Assess Scalability 52
6.3.1 Tested Application . 52
6.3.2 Environment and Application Setup 57
6.3.3 Testing Methods . 58
6.3.4 Results . 60

6.4 Summary . 62

7 Discussion 62
7.1 Evaluating the feasibility of the tool 62
7.2 Threats to Validity and Possible Solutions 63

8 Conclusion 64
8.1 Research Question Answers . 64
8.2 Future Works . 65

8.2.1 Upgrading the device count of the tool 65
8.2.2 Using Different Blockchain 66
8.2.3 Tool usage in other Research Areas 66

References 72

Acknowledgements about the use of AI tools 73

Appendix A: Issues of Blockchain-enabled IoT Applications 74

Appendix B: User Guide for the Tool 75

Appendix C: Licence 78

6

1 Introduction
Blockchain connects data blocks by appending new transactions on top of previous
transactions[1]. This creates a “chain” of immutable blocks. Blockchain accomplishes
immutability by using a consensus method where nodes connected to the blockchain
network vote on the validity of new transactions [1]. Blockchains saw their first use in
cryptocurrencies, such as Bitcoin [2].

IoT applications have been observed to expand to many new areas. For example,
IoT devices in in-vehicle applications have been researched [3]. The integration of IoT
devices in vehicle infrastructure has allowed large amounts of devices to be connected
to the internet and provides different types of data to be processed. However, with the
increased amounts of devices and data, the security of systems may become an issue
since IoT devices can be vulnerable [4]. Here comes the motivation to use blockchain
since it provides various security controls by design, such as decentralized and distributed
infrastructure, consensus mechanism, cryptography, and immutable ledger are a few in
the list (discussed in detail in Chapter 3).

However, integrating blockchain into IoT applications can introduce scalability
challenges because IoT devices have hardware limitations [5, 6, 4]. Following this,
blockchain-enabled IoT applications have been noted to have varying scalability issues,
such as storage issues [7, 4, 8], consensus issues [5, 6, 9] and processing limitations
[10, 8, 11]. Therefore, these scalability issues can lead to increased power usage, waiting
times, expensive implementation costs, and distrust in the deployed application.

Additionally, blockchain-enabled IoT applications face the same testing problems
as many cloud computing applications, such as creating a physical testing network to
evaluate the scalability. A physical testing network can be expensive to implement
and difficult to share between many developers if they need to test application changes
simultaneously. One previous work utilized virtualization to combat this issue and to test
their blockchain-enabled IoT application, PlatiBart [12]. However, the tool presented in
their paper was not used to evaluate the scalability of the tested application. Additionally,
their tool had some flaws, which are further discussed in this thesis.

1.1 Scope
Blockchain-enabled IoT Applications: The thesis focuses on the scalability assessment
of IoT applications that leverage the advantages of blockchain to augment the capabilities
of IoT devices, sensors, or systems connected to the internet and sharing data. Thus, his
thesis will not assess applications solely utilizing IoT or blockchain.

Scalability Assessment: The definition and characteristics of the term “scalability”
is often specific to the domain or system, referring to its adaptability to changes or
increases in factors that affect its operation [13, 14]. Therefore, in this thesis, scalability
is interpreted as the ability of a blockchain-enabled IoT application to maintain or

7

improve its functionality when exposed to changes or increases in factors that affect its
operation.

Scalability-related Parameters: Scalability is often used interchangeably with
performance [14]. However, in this thesis, the primary emphasis will be on scalability.
Other topics, such as privacy, security, or legal/social issues, will not be the central focus
of the study but will be considered mainly for their influence on scalability.

Testing Tool Development and Validation: The thesis will also explore designing a
tool for testing the scalability of blockchain-enabled IoT applications. This will include
an examination of the technical requirements for the tool, the challenges faced during its
development, and methods for validating its effectiveness.

1.2 Problem Statement
In the literature review of this thesis, it was discovered that multiple scalability challenges
regarding the scalability of blockchain-enabled IoT applications exist, such as the limited
storage and processing power of IoT devices[5, 6, 4], throughput limitations [6, 15, 11]
and the inefficiency of the PoW consensus method [16, 6, 17]. In the literature review,
we also discovered that there is a lack of studies that assess the scalability of blockchain-
enabled IoT applications. Additionally, the current literature lacks tools and methods to
assess these applications’ scalability. Previous works showed that tests on blockchain-
enabled IoT applications were conducted mostly by physical testbeds [18, 19, 20].

The lack of existing methods creates a need for a method for assessing the scalability
of blockchain-enabled IoT applications. Additionally, the lack of using virtualization to
accomplish scalability assessments creates an opportunity for us to research the use of
virtualization in the scalability assessment.

1.3 Research Questions
The main research question for this thesis is the following question. How to conduct
scalability assessment for blockchain-enabled IoT applications? This research question
is divided into the following sub-research questions:

RQ1. What are the primary challenges and limitations in testing the scalability of
blockchain-enabled IoT applications?

RQ2. How to develop a scalability testing tool for blockchain-enabled IoT applications?

RQ3. How to evaluate the feasibility of the scalability testing tool?

RQ1 helps to scope out the issues that blockchain-enabled IoT applications cur-
rently face. These issues are necessary to understand before moving to RQ2. RQ2

8

aims to research how a tool can be implemented that helps research the scalability of
blockchain-enabled IoT applications. RQ2 is used to understand the problems that the
tool development generates. RQ3 aims to explore the ways that a created scalability
testing tool can be validated for the use case. This research question aims to find possible
problems that the created tool faces.

1.4 Contributions
In this thesis, a general-purpose tool is designed, implemented, and evaluated for as-
sessing the scalability of blockchain-enabled IoT applications. The tool allows users to
generate a virtual network of simulated IoT devices. It allows the user to configure the
device properties, device amount, and the virtual network structure.

This thesis has three main key contributions. Firstly, this thesis provides a design
and implementation of a scalability testing tool that can be used to create virtual testing
environments to evaluate the performance and scalability of blockchain-enabled IoT
applications. This contribution addresses RQ2. The second key contribution is the tests
conducted on the implemented tool. The first test conducted is a functional test that
validates the use of the tool. The second test is a larger-scale test conducted to assess
a simulated application’s scalability. This contribution addresses RQ3. The final key
contribution of this thesis is the evaluation of using the tool in real scenarios. This
evaluation is done by analyzing the results of both tests conducted using the tool. This
contribution further addresses RQ3.

1.5 Practical Significance
Our tool was observed to have some practical significance. Previous works which have
tested blockchain-enabled IoT devices have mostly utilized physical IoT devices to test
their applications[18, 19, 20]. This can be expensive to implement, especially with testing
scalability, since the number of devices in scalability tests is greater than in functional
tests. Additionally, configuring the physical devices for application testing takes time
since the application must be manually deployed to each device and may require further
configuration. Our tool allows the automation of IP addresses and application deployment,
which speeds up the setup of the testing environment.

1.6 Thesis Structure
Chapter 2 explains the background of the thesis and the required key concepts used
throughout the thesis. Chapter 3 reviews existing research and studies concerning
scalability issues in blockchain-enabled IoT applications and addresses the first research
question, RQ1. It presents a synthesized summary of the current understanding in the
field, identifying gaps and areas where this research can contribute and establishing

9

the theoretical foundation for the thesis. Chapter 4 focuses on addressing the second
research question, RQ2. The Chapter details developing a scalability testing tool tailored
for blockchain-enabled IoT applications. The Chapter includes a detailed explanation of
how scalability assessment is approached through the tool and outlines design principles.
Chapter 5 continues addressing the second research question, RQ2, by describing the
process of developing the scalability assessment tool, its features, and its application in a
real-world context. It also describes the potential challenges faced during implementation.
Appendix B provides a user guide for the developed tool. Chapter 6 addresses the third
research question, RQ3, by describing the process and results of validating the scalability
assessment framework developed in Chapter 5. It discusses the methods, strategies,
and metrics used to determine the effectiveness and efficiency of the developed tool. It
outlines the methodology of validation, the results, and their interpretation, presenting
the tool’s effectiveness and potential limitations. The results from the previous Chapter
are discussed in a wider context in Chapter 7, providing an analysis of the findings from
the research questions. It provides insights into the scalability issues, the utility of the
developed tool, and the validation process results. It also includes a comparison with
findings from the literature review within its interpretation of the results and a discussion
of the potential implications of the research. Finally, Chapter 8 summarises the research
findings and recommendations for future research.

2 Background
This Chapter provides comprehensive background information on the key components
of the thesis and explains the main technological tools mentioned throughout the thesis.
We begin with the basics of IoT discussed in Section 2.1, and blockchain discussed in
Section 2.2, establishing their role in the study. We delve into scalability in blockchain-
enabled IoT applications in Section 2.3 and technologies for scalability testing in Sec-
tion 2.4. Lastly, the Chapter identifies research gaps and outlines the objectives of this
thesis in Section 2.5, setting the course for the following chapters.

2.1 Internet of Things (IoT)
IoT has many definitions across research on the subject [21]. However, the consensus
about IoT seems to be similar between all the definitions; IoT consists of IoT devices
connected to the internet. These IoT devices are physical devices or “things” that can
share data [21]. Additionally, IoT devices may be able to process data based on their
underlying implementation. These devices often consume small amounts of power since
they have limited computational power, connection speeds, memory, and storage. IoT is
used to form end-to-end systems, which often share common architectural components
with each other[22]. Taivalsaari and Mikkonen [23] proposed the generic model of IoT

10

end-to-end systems. The generic model has four main components: Devices, Gateways,
The Cloud, and Applications. Devices are used to collect and share data and to perform
actions in the real world, such as actuate switches. The gateways then connect the cloud
to these devices. The cloud is then used to store, manage, and process data. Finally,
the cloud provides application data to the final component, the application, which then
presents this data to the user as a web or a mobile application.

These systems can be used for multiple applications, such as smart homes and
healthcare. In recent years, the integration of blockchain technology with IoT has
allowed IoT applications to expand into diverse areas, showcasing its potential in various
domains, such as the Internet of Vehicles (IoV) [3], drones [24], industrial control systems
[25], and smart grids [26].

One recent prominent use case for IoT is the Internet of Vehicles (IoV), which will
be utilized in the validation Chapter of this thesis. IoV originated from Vehicle Adhoc
Networks (VANETs), which are communication networks where each vehicle acts as a
router and thus creates a mobile network [27]. However, these networks were deemed as
unstable and random since the connections between vehicles are challenging to maintain
[3]. To solve this challenge, IoV networks are formed from a combination of mobile
network connections (such as LTE), VANETs, and vehicle intelligence[3]. The vehicle
intelligence of IoV networks aims to intelligently integrate humans and vehicles by
utilizing network technologies, such as machine learning, artificial intelligence, and
swarm computing [3].

2.2 Blockchain
We use the term blockchain widely in this thesis. This section explains what blockchain is
and showcases the Ethereum protocol [28]. After, we discuss the concept of a blockchain-
enabled IoT application.

Blockchain consists of chained blocks of data containing previous transactions’ data.
New transactions append data on top of the chain, thus creating an append-only data
structure [1]. These transactions contain a hash, timestamp, and nonce to validate each
block on the chain. The nodes in a blockchain check the validity of new transactions
by using a consensus mechanism. Once a transaction is sent, the transaction is checked
by the peers in the network by using the consensus mechanism. If most nodes agree
that the transaction is valid, then the transaction is appended to the block, which ensures
immutability [1].

2.2.1 Ethereum Protocol

One example of a blockchain protocol is the Ethereum protocol. The Ethereum protocol
is designed to be used in decentralized applications [28]. The state of Ethereum chains is
made from transactions sent by Ethereum accounts. There have two types of accounts

11

with Ethereum: externally owned accounts controlled by private keys and contract
accounts controlled by contract code. These accounts can then send transactions to the
network, where the transaction contains the following data fields:

• Public address of the recipient

• Signature of the sender

• Ether transfer amount

• STARTGAS value, which represents the maximum amount of computational steps
that the transaction execution can take

• GASPRICE value, which represents the value per computational step required for
the transaction

• External data (optional)

Transactions are then validated by the peers that are connected to the network. For this
validation, they receive a small fee deducted from the transaction. The Ethereum protocol
is used in this thesis to validate the implemented tool. The usage of Ethereum is further
discussed in Chapter 6.

2.2.2 Blockchain-enabled IoT Applications

In this thesis, the concept of blockchain-enabled IoT applications is used to describe an
application that runs on IoT devices and utilizes blockchain in the application. These
applications share some aspects of the previously mentioned common end-to-end archi-
tectural model [23]. However, blockchain-enabled IoT applications use blockchain to
replace or in combination with the Cloud component of the previously mentioned generic
architectural model [23].

2.3 Scalability in Blockchain-enabled IoT Applications
Scalability is highly dependent on the application domain and should be explored in the
context of high-level business goals [13, 29]. Scalability, in the context of blockchain-
enabled IoT applications, refers to the system’s ability to handle an increase in workload
or demand without compromising expected functionality or operations. It involves
understanding how changes in various aspects of the system’s environment and design can
impact its overall quality as these aspects vary over expected operational ranges [13, 14].

Learning from [14], primary factors affecting the scalability of blockchain-enabled
IoT applications reflect characteristics of the application domain and the machine that
will affect the system behavior. These factors include scaling factors, non-scaling factors,

12

and nuisance variables. Scaling factors are the characteristics of the application domain
or the system that can be changed to affect the system’s behavior significantly [14]. In
the case of blockchain-enabled IoT applications, the number of devices, the volume
of transactions, and the complexity of the transactions [30]. Non-scaling factors are
characteristics of the application domain or the system that are either set to fixed levels or
varied in a nominal scale to enable the system to deal with the scaling dimensions [14].
These should support the scaling dimensions. These include the consensus mechanism
used, the type of IoT devices used, or the operating system used [31]. Nuisance variables
impact system behavior but aren’t controllable within a scalability experiment if the
infrastructure is predetermined and unalterable [14]. These include processor speed or
other machine configurations of this nature.

These factors can be manipulated over operational ranges for the scalability anal-
ysis as independent variables causing system behavior that can be measured to derive
dependent variables [14]. The dependent variables represent aspects of the system’s
behavior that can be measured to show how the system is affected by changes in the
independent variables [14]. They typically correspond to software metrics related to
performance, cost, maintenance, reliability, security, and operational constraints. For
blockchain-enabled IoT applications, the dependent variables might include latency and
throughput. One can plot these variables to show the scalability relationship [14].

Scalability takes on a complex dimension, requiring consideration of factors specific
to blockchain and IoT. Blockchain scalability emphasizes transaction throughput, network
latency, and data consistency [32]. In contrast, IoT scalability focuses on managing
numerous connected devices, real-time data processing, and the overall reliability of
the system [33]. In the combined environment of blockchain-enabled IoT applications,
scalability testing should address both these sets of concerns ensuring that the system
can handle an increasing number of scaling parameters without any degradation in its
operation. We discuss scalability testing considerations in Section 2.4.

2.4 Scalability Testing in Blockchain-enabled IoT
Scalability testing in blockchain-enabled IoT represents a multifaceted challenge that
requires an integrated approach [34]. By recognizing and addressing the distinct and
interconnected aspects of blockchain [35] and IoT scalability [36], practitioners can
develop robust and scalable systems that leverage both technologies’ strengths. The
convergence of testing practices offers comprehensive means to tackle complex scalability
challenges inherent in this exciting intersection of blockchain and IoT.

Testing in blockchain requires simulating various network conditions, transaction
loads, and consensus algorithms [32]. On the other hand, IoT testing necessitates
emulating different device types, communication protocols, and data volumes [33].
Both physical and virtual testbeds might be employed when considering the combined
environment. These testbeds must focus on simulating complex real-world scenarios

13

encompassing diverse devices and fluctuating transaction loads, providing flexibility,
cost-efficiency, and overcoming physical limitations [12]. The choice between physical
and virtual testbeds for scalability testing can have significant implications. For physical
testbeds, testing on physical hardware like Raspberry Pi and servers provides a real-world
understanding of how the system will perform. However, it can be costly, less flexible,
and limited by the hardware itself [20]. On the other hand, virtual environments offer
flexibility, cost-efficiency, repeatability, and the ability to simulate complex scenarios.
Virtual testbeds allow for more nuanced scalability testing without physical constraints,
making them a preferable option for many researchers [12]. Thus, moving towards
virtual testbeds provides a path for more flexible, cost-effective, and comprehensive
testing solutions and will focus on such testing strategies [37]. To build a suitable virtual
testing platform, we discuss the decentralized interaction facilitated by the Geth client,
the virtualized environments offered by VirtualBox, and the automation provided by
Vagrant, each contributing to creating a scalable, flexible, and cost-effective testing
landscape. These tools allow for intricate simulations and promote repeatability and
extensibility, factors essential for rigorous and accurate scalability testing. Including
these elements within the thesis underscores the intricate network of technologies that
combine to explore and assess the scalability of blockchain-enabled IoT applications,
marking a significant contribution to the field.

2.4.1 Geth Client

Since Ethereum is a protocol, it does not have a centralized client that is used to interact
with the chain. Instead, many open-source clients exist that can be used to interact with
the Ethereum chain. One example of these clients is the Geth client [38], which is written
with the Go programming language. The Geth client is an Ethereum client that allows
the user to create Ethereum accounts, create Ethereum transactions, mine the Ethereum
chain, configure the network to which the client is connected, and query the chain. The
Geth client is used in this thesis as a part of the validation tests of the implemented tool.
Further explanations of using the Geth client are presented in Chapter 6.

2.4.2 Virtualbox and Vagrant

We implement and validate the built tool utilizing VirtualBox to generate virtual IoT
devices. VirtualBox is an open-source virtualization product that allows the virtualization
of multiple different systems [39]. VirtualBox allows to run multiple Virtual Machines
(VMs) parallelly at the same time. Additionally, VirtualBox can simulate network
connectivity, processors, storage, and memory on a Virtual Machine. VirtualBox’s usage
and limitations are further discussed in Chapter 5.

Configuring VMs manually in VirtualBox is time-consuming and does not have
built-in automation tools. To combat this, Vagrant provides a tool that can be used to

14

automate the building and management of virtual machines in VirtualBox[40]. Vagrant
provides virtual machines with a "Vagrantfile". Within this file, many aspects of the
virtual machines can be modified. The first aspect that can be specified is the virtual
machine’s OS. Vagrant can download an operating system (OS) hosted in the cloud or
utilize a locally built OS. Vagrant can also be used to build a custom image of an OS,
which can be later used in other instances. Vagrant also allows the user to choose a
virtual machine provider, which can differ from the used Virtualbox. Officially, vagrant
supports VirtualBox and VMware as VM providers. In this thesis, Vagrant is used to
automate the generation of virtual IoT devices in VirtualBox. The use of Vagrant in this
thesis is further described in Chapter 5.

2.5 Research Gaps and Objectives
While research has been into blockchain-enabled IoT applications, the scalability chal-
lenges remain under-explored [41, 42]. Studies have highlighted the potential benefits of
using blockchain in IoT scenarios. Still, few explore comprehensive scalability testing,
which forms a crucial gap in the existing research. Moreover, there are limited testing
environments [12] for assessing the scalability of blockchain-enabled IoT applications.
Thus, this can hinder a thorough understanding and testing of scalability within this
scope and has restricted the advancement of efficient solutions. Following this, in this
work, we aim to deepen the understanding of scalability issues in blockchain-enabled
IoT applications and contribute to the existing body of knowledge by the following
objectives:

• Conducting a systematic literature review (SLR) of the current state of research on
the scalability of blockchain-enabled IoT applications, contributing to answer RQ1.
This review will explore the various scalability issues that have been identified, as
well as the strategies that have been proposed to address them. This review also
provides information on existing testing environments designed for blockchain-
enabled IoT applications, contributing to answer RQ2. This investigation will help
identify the strengths and weaknesses of existing approaches, providing essential
insights for developing a more effective scalability testing tool.

• Designing and implementing a scalability testing tool tailored for blockchain-
enabled IoT applications, contributing to answer RQ2. The tool’s design will
consider the insights gained from the literature review and examine existing testing
environments.

• Validating the performance of the proposed tool. This involves implementing
tests within IoV use cases to confirm its efficacy in testing the scalability of
blockchain-enabled IoT applications, answering RQ3.

15

3 Literature Review
This Chapter delves into the SLR conducted as part of this thesis. The methodological
approach used for the review is detailed in section 3.1. Subsequently, the findings
from the review are discussed in section 3.2. The results are discussed in Section 3.3,
followed by a summary in Section 3.4. Although previous research has addressed
blockchain-enabled IoT applications [41, 42], two significant gaps persist. Firstly, the
focus on scalability issues within blockchain-enabled IoT applications is notably scant in
current literature. Secondly, there is a paucity of tests exploring the scalability of such
applications. This literature review investigates scalability issues inherent in blockchain-
enabled IoT applications and their suggested solutions and examines existing testing
environments proposed for these applications. Testing is a crucial phase in deploying
scalable blockchain-enabled IoT applications. Traditionally, this would involve physically
setting up a network of IoT devices. Nevertheless, advancements in modern hardware
allow for the possibility of simulating the entire environment. Hence, the literature review
also examines contemporary methods for testing blockchain-enabled IoT applications.
Given the thesis’s relevance to software engineering, the systematic literature review will
adhere to the guidelines proposed by the University of Keele for software engineering
[43]. These guidelines provide a well-structured approach to conducting a systematic
and thorough review of the existing literature in the field.

3.1 Review Method
The literature review aims to comprehensively understand scalability issues in blockchain-
enabled IoT applications, their proposed solutions, and existing testing methods and
frameworks. This knowledge lays the foundation for designing and implementing a
virtual testing tool for blockchain-enabled IoT applications.

3.1.1 Data Sources

Our main sources of information for this literature review are IEEE Xplore, ACM, and
Scopus databases. These databases were chosen for this SLR because they are widely
recognized for their comprehensive, high-quality content in technology and engineering
fields, including areas relevant to this research, such as blockchain and IoT.

3.1.2 Search Strategy

Finding relevant literature for RQ1 differs from finding literature for RQ2. It requires
separate keyword searches due to its distinct nature. Consequently, two separate literature
searches were conducted.

16

For RQ1, we needed to identify studies that focus on scalability issues of blockchain-
enabled IoT applications. Each database allows for an advanced search, enabling us to
include or exclude certain keywords from specific parts of the literature. To pinpoint
studies addressing scalability challenges in IoT-based blockchain applications, it was nec-
essary to search for papers on general challenges in this area and filter out those that do
not address scalability. Targeting these studies is complex, as IoT and blockchain are pop-
ular keywords in recent literature. For this search, we focused only on titles, allowing us
to effectively exclude studies not directly related to the challenges of blockchain-enabled
IoT applications. The keywords included different forms of "IoT" (such as “Internet Of
Things” and “Internet-Of-Things”), “Blockchain”, and synonyms for challenges (e.g.,
“Challenge”, “Problem”, “Issue”). Due to the vast amount of literature in this area, we
limited our selection to papers cited by ten or more studies, ensuring that the identified
issues are acknowledged in the field.

RQ2 focuses on the testing of blockchain-enabled IoT applications. Although it
shares some keywords with the first question, this search specifically targets literature
related to testing. In addition to the first two keyword groups, we added “test” (including
variations like “testing”) to our search. The detailed research strategy is illustrated in
Figure 2.

Figure 2. Summary of the research strategies for each research question

This strategy is then applied to each database. The resulting search query for each
database and the number of results they produce are shown in Table 1 for RQ1 and in
Table 2 for RQ2.

3.1.3 Selection Criteria

The results of the SLR may contain duplicates since databases may have shared entries.
To combat this, all results were checked for duplicate studies. After filtering duplicate
results, a total of 28 studies for RQ1 and six studies for RQ2 were left. The search results

17

Database Query method Results (cited
≥ 10 times)

IEEE
Xplore

("Document Title": IoT OR "Document Title":Internet
Of Things OR "Document Title":Internet-Of-Things AND
("Document Title":Blockchain) AND ("Document Ti-
tle":Issue*, "Document Title":Challenge* OR "Document Ti-
tle":Problem*)

7

ACM [[Title: iot] OR [Title:internet of things] OR [Title:internet-
of-things]] AND [Title:blockchain AND [[Title: issue*] OR
[Title:challenge*] OR [Title:problem*]]

8

Scopus (TITLE: (IoT OR internet AND of AND things OR internet-
of-things) AND blockchain AND (issue* OR challenge* OR
problem*))

21

Table 1. Query methods for RQ1 and count of results

Database Query method Results
IEEE
Xplore

("Document Title": IoT OR "Internet Of Things" OR "Internet-
Of-Things") AND ("Document Title": Blockchain) AND
("Document Title": Test*)

2

ACM [[Title: iot] OR [Title: internet of things] OR [Title: internet-
of-things]] AND [Title: blockchain] AND [Title: test*]

2

Scopus (TITLE (IoT OR internet AND of AND things OR internet-
of-things) AND TITLE (blockchain) AND TITLE (test*))

2

Table 2. Query methods for RQ2 and count of results

can contain studies that do not have research regarding the research questions. To combat
this, the results are further refined by filtering the studies using the following exclusion
criteria:

• Based on the title and abstract, a study will be excluded if the study does not
discuss research on issues/solutions to IoT-based blockchain

• Based on the title and abstract, a study will be excluded if the study does not
discuss research on testbeds for blockchain-enabled IoT applications.

This filtering resulted in the exclusion of two studies. The studies [44, 45] were
excluded since both of them discuss the issues of IoT but do not discuss blockchain-
enabled IoT applications. The rest of the studies were included since they did not meet
the exclusion criteria. This resulted in a total of 32 studies for both research questions.

The goal of this literature review is to have an overview of the scalability issues that
blockchain-enabled IoT applications have and to find out previous research on blockchain-

18

enabled IoT application testbeds. Thus the following data aspects are extracted from the
included studies:

• Issues in blockchain-enabled IoT applications

• Possible solutions to these issues

• Architecture, virtualization software, and OS on nodes used in a testing environ-
ment.

3.2 Review Results
The literature review for RQ1 shows that issues with blockchain-enabled IoT applications
have a wide range of existing works resulting in 26 studies after review execution and
extensive application of our selection criteria. The literature review for RQ2 resulted
in only six studies. The included databases do not include much literature regarding
testing blockchain-enabled IoT applications. This can be a result of 2 different reasons.
Firstly, the search keywords may be too strict and thus filter out studies regarding IoT-
based blockchain testing. The second possible reason is that IoT-based blockchain
testing research is not widely researched. This section presents the results of this review
contributing to our research objectives.

3.2.1 Results for RQ1: Scalability

Our review for RQ1 focused on scalability issues of blockchain-enabled IoT applications
and solutions to these issues. The literature examined scalability issues emerging as
a key concern when addressing the growth and operation of blockchain-enabled IoT
applications. While scalability issues are the main focus, security and privacy issues
cannot be disregarded as they become significant when designing and implementing a
blockchain-enabled IoT application for a growing user base. As the scale of the system
expands, the complexity of maintaining security and privacy grows, making these issues
crucial to address. In addition, social and legal issues also emerge as the system scales
up. Although these are not intrinsically linked to scalability concerns, they become
increasingly important as the user base grows.

Scalability issues and solutions: From our review, we find that scalability issues
primarily stem from the limited storage and processing power of IoT devices [5, 6, 4],
throughput limitations [6, 15, 11], and PoW inefficiency in blockchain-enabled IoT
[16, 6, 17], and the network limitations of IoT devices [46, 47, 4]. We delve into these
problems and their proposed solutions, summarizing the issues in Table 3 and their
corresponding solutions in Table 4.

19

Study Scalability issues
Limited storage Limited processing power Throughput PoW inefficiency Network limitations

[7] x
[4] x x x
[8] x x x
[5] x x
[48] x x
[6] x x
[15] x x
[47] x x
[9] x
[49] x x
[50] x
[16] x
[51] x x
[11] x x
[10] x x
[17] x x
[52] x
[53] x x
[54] x
[55] x

Table 3. Scalability issues of blockchain-enabled IoT applications

Study Computation Offloading Data Offloading Optimized Consensus Method Data Compression
[52] x
[5] x x x

[46] x
[7] x

[11] x
[56] x
[50] x

Table 4. Solutions to combat scalability issues of blockchain-enabled IoT applications

A primary scalability issue in blockchain-enabled IoT applications is the limited
storage capacity of IoT devices [5, 6, 4]. As more devices interact with the application,
the blockchain’s size increases, making it difficult for devices with limited storage to
store the entire blockchain. A solution involves offloading data to machines with greater
storage capacity [5, 46, 7]. This means that application data is not stored on the chain
itself but may be hosted by a cloud. The blockchain itself is then used to verify data
transactions. Another way of implementing data offloading would be to shard data.

Another scalability issue is the limited processing power of IoT devices. Crypto-
graphic operations in IoT devices can be computationally intensive, affecting transaction
latency and risking transaction overflow if throughput is outpaced by incoming requests
[16, 6, 17]. Throughput limitations also pose scalability issues [16, 6, 17]. This is
because the limited processing power of IoT devices can also create bottlenecks in

20

transaction processing and overflow of transactions, potentially leading to application
failure. Offloading computations to a more powerful server is one solution [52, 5], al-
though this is more suited to applications where latency is not critical due to transmission
delay. Alternately, switching to a less computationally intense consensus method like
proof-of-stake could reduce latency and improve throughput [46, 5, 11].

The inefficiency of proof-of-work (PoW) consensus in blockchain-enabled IoT ap-
plications is another scalability concern. The computational intensity of PoW could be
mitigated by implementing proof-of-stake, which focuses only on transaction verification
and hence requires fewer computations[46, 5, 11].

Finally, the network limitations of IoT devices present scalability issues [46, 47, 4].
Often connected via wireless interfaces with limited performance, the data transfer vol-
ume on the blockchain could bottleneck the application’s throughput. This limitation
underscores the need for network infrastructure improvements or efficient data handling
protocols to ensure scalability. One solution to this issue mentioned in the literature was
to use data compression on the blockchain [55]. Data compression could mitigate the
effects of limited networking interfaces.

Security and privacy related issues and solutions: Security and privacy are paramount
concerns for blockchain-enabled IoT applications. One frequently mentioned issue
pertains to the security of individual devices [55, 6, 9]. With limited processing power
and memory, these devices often overlook security in favor of functionality. Weaknesses
such as susceptibility to buffer overflow attacks and exploits in their operating systems can
compromise security. Additionally, the use of default passwords and keys further elevates
the risk. When scaling a blockchain-enabled IoT application, these vulnerabilities could
allow an attacker to forge transactions by gaining access to a node’s private keys or
even hijack many devices and seize the entire blockchain. The risk of combined attacks
against blockchain-enabled IoT applications is another critical concern [54, 6]. In such a
scenario, an attacker could exploit compromised devices to take over the entire chain,
potentially disrupting the entire application’s reliability and scalability. Using smart
contracts in blockchain-enabled IoT applications can introduce additional vulnerabilities
[7, 53]. If these contracts are exploited, an attacker could alter the chain’s state, impacting
application reliability and, thus, scalability.

User privacy is another crucial issue frequently highlighted in the literature [57, 58,
55] [53, 59, 46]. The immutability of blockchain data can potentially compromise privacy
if sensitive user data is stored on the chain. Another privacy issue is that the writers of the
chain are pseudonymous. If the applications write data to the chain containing personally
identifiable information, it could link pseudonymous addresses to individual users and
compromise user anonymity. Such privacy concerns could limit application scalability
as users hesitate to use an application that compromises sensitive information. Lastly,
transaction privacy within blockchain-enabled IoT applications poses another potential

21

problem [60, 53]. Transactions on the chain could inadvertently leak application data,
which can then be used to link actions to public wallet addresses. The transparency
of blockchain transactions might then lead to privacy breaches, which can also affect
scalability.

Social issues and solutions: As a relatively new field, blockchain-enabled IoT applica-
tions face several challenges regarding legal and technical standards [48, 59, 49, 4, 11].
The decentralized nature of blockchain makes data ownership determination and deletion
problematic, and the dearth of legal norms could lead to applications being shuttered
due to non-compliance or developers shying away from blockchain due to potential
legal ramifications. Technical standardization is also lacking in blockchain-enabled IoT
applications [11, 50, 48]. While not a scalability issue per se, the absence of standards
could hinder performance optimization and inflate the costs of implementing blockchain
applications. The absence of these norms contributes to high implementation and main-
tenance costs for blockchain-enabled IoT applications [51, 16, 11]. For instance, in
blockchain applications utilizing Ethereum [28], nodes need to pay for each transaction
or “gas”. While not directly affecting scalability, these costs could limit application
development, delaying research and solutions to blockchain-related issues.

3.2.2 Results for RQ2: Scalability Testing Tools

The literature search for blockchain-enabled IoT application testbeds resulted in six
studies. Three studies [18, 19, 20], showcase testing on a physical testing environment,
one study [12], showcases a virtual testbed, and others did not present any testbed
experiments [61, 62]. Mitra et al.[18] presented a way of using Raspberry Pi combined
with light servers to test and run a blockchain-enabled security framework. Their
framework transfers wildlife monitoring data from drones equipped with IoT devices to
a monitoring station. The architecture of their experiment is presented in Figure 3. The
blockchain that was run on the experiment was custom-built. Their experimental test
setup used a single Raspberry Pi connected to a single light server to test their framework
as a proof of concept.

22

Figure 3. System model of a IoT-enabled application for monitoring wildlife [20]

Wang et al. [19] presented a blockchain-enabled IoT application that was tested on a
physical testbed[19]. The tested application was an Ethereum-based IoT application that
stores sensor data in the chain. The testbed that was implemented was more complex
than the previous experiment. It consisted of 4 light server nodes that were run on two
laptops (running MacOS) and two desktop PCs (Running Ubuntu 16.04). In addition to
this, each light server was connected to a Raspberry Pi 3, running raspbian OS.

Figure 4. Physical test [20]

Sun et al. [20] implemented an IoT-based blockchain solution for validating Electric
Vehicle (EV) battery swapping [20]. Their solution used Ethereum as the blockchain
for the system. The system was designed to equip each EV with an IoT device. The
service stations that swap batteries would have a desktop PC to handle the confirmations
of battery swaps. Tests for this system were completed using a PC and a raspberry pi.
Tests were run in 3 different software configurations.

23

Figure 5. System flowchart of Sun et al. [20]

One study that did design a virtual testbed for blockchain-enabled IoT applications
was conducted by Walker et al. [12]. Their proposed platform used a previously created
Resilient Information Architecture Platform for Decentralized Smart Systems (RIAPS)
[63] combined with a custom domain-specific language to create a Platform for Trans-
active IoT Blockchain Applications with Repeatable Testing (PlaTIBART) [12]. The
platform was created for regression testing for blockchain-enabled IoT applications. The
study also mentioned extending the platform to support other blockchain technologies.

Based on our review, most of the tests conducted in the review were small-scale
tests completed with physical hardware that was done to prove the feasibility of those
applications [18, 19, 20]. The exception was the PlaTIBART [12], which was used to
simulate many IoT clients using Ethereum. This platform also demonstrated that it scales
successfully as clients are added. However, the platform had some limitations:

• PlaTIBART only supports Ethereum-based IoT applications. Ethereum is a com-
monly used solution for many blockchain-enabled IoT applications since it allows
the flexible use of smart contracts. However, other blockchain technologies, such
as Hyperledger fabric (HLF) [64] may be more suitable for blockchain-enabled
IoT applications. This leaves a gap in the literature for creating a testing framework
that supports IoT applications that do not use Ethereum.

• IoT clients are simulated without an operating system; instead, they are run as
plain Geth clients. This makes it possible to test the application logic. However, it
neglects the possibility that an IoT client may not have the processing capabilities
to complete that implemented logic. The authors even remark that their solution
is a testbed for regression testing. This leaves the opportunity to create a virtual
testbed that could be used for scalability testing.

24

• Network connections are handled as ssh connections between each machine. This
allows all of the simulated machines to be connected, but it does not allow the
testers to modify network delays between machines. Additionally, since the
network connections are encrypted, it would not allow security testing, for example,
in cases where an attacker modifies the application packets sent from the IoT node.

• PlaTIBART requires a lot of manual configuring for networking settings due to
their custom DSL implementation for network management. This can make testing
with many nodes tedious; for example, in cases where 1000 or more devices need
to be tested, writing that custom DSL for the network configuration would take a
long time. This allows for automating IoT node creation that could be used in a
testbed. This would allow for testing with various amounts of nodes.

3.3 Discussion of Results
The literature review’s results show sufficient studies regarding the issues of blockchain-
enabled IoT applications. These studies made it possible to determine scalability issues,
from which the different factors affecting blockchain-enabled IoT applications were
analyzed. The literature review proved that some experiments have been conducted
regarding testing blockchain-enabled IoT applications. However, there seems to be a
gap in the literature assessing the scalability of blockchain-enabled IoT applications. To
address this gap, we propose the following 4-step method to assess the scalability of
blockchain-enabled IoT applications:

1. Choosing a scalability property to test.
In this step, the scalability property to test is chosen. One way of measuring
the scalability of blockchain-enabled IoT applications can be measured from the
relation of the number of requests to the application’s response time. The limita-
tions in processing power [5, 6, 4], throughput limitations [6, 15, 11], consensus
inefficiencies [16, 6, 17], and the network limitations of IoT devices [46, 47, 4] all
are affected by the number of requests that are received by the application. Thus,
the relationship between the number of concurrent requests and the application’s
response time can be used to determine scalability.

Another way scalability can be measured is from the relation of the size of the chain
to the application response time. The limited storage and processing power of IoT
devices [5, 6, 4], throughput limitations [6, 15, 11], and the network limitations of
IoT devices [46, 47, 4] are all affected by the increased size of the chain. Thus, the
relationship between the size of the chain and the time for a successful request can
be used to assess the application’s scalability.

2. Building a testing environment.
In this step, a testing environment should be built where devices running the appli-

25

cation can be configured. There are two options for building a testing environment.
The first option would be to utilize physical devices for the testing environment, as
shown by previous experiments in the domain [18, 19, 20]. The second option is
to utilize virtualization to simulate these devices, as shown by PlaTIBART [12].

3. Running the test on the testing environment.
In this step, the chosen property should be tested on the environment. For example,
if the effect of the number of clients on the application was chosen, then it should
be tested how the increase in clients affects the response time of the application.
Similarly, if the effect of the increased size of the blockchain on the application
was chosen, then the increase should be compared to the application’s response
time.

4. Analyzing the results of the test.
Once the results of the tests are acquired, the results should be analyzed. The
first property that should be analyzed is that are the test results valid. Especially
with virtualized testing environments, they may not represent actual application
behavior if the virtualized environment is not setup correctly or if the host machine
does not have enough processing capability to complete the test. Then once the
results have been deemed feasible, the correlation between the number of requests
and the application’s response time should be analyzed. This correlation provides
information about the scalability of the application.

The second step requires the creation of a testing environment. However, creating this
environment may be costly if the devices need to be set up physically. One way of
solving this would be to simulate the devices as shown by PlaTIBART [12]. However, as
discussed before, PlaTIBART had some flaws. Thus, there exists a need for a tool that can
be used to create testing varying environments for scalability tests of blockchain-enabled
IoT applications. Based on this need, we chose to develop an environment-creation tool
that could be used to assess the scalability of blockchain-enabled IoT applications.

3.4 Summary
This Chapter presented the SLR that was conducted for this thesis. The literature
review provided answers to the RQ1 by reviewing current literature. We identified that
blockchain-enabled IoT applications suffer from the following four main issues:

1. Limited storage and processing power of IoT devices [5, 6, 4]

2. Throughput limitations [6, 15, 11]

3. PoW inefficiency in blockchain-enabled IoT [16, 6, 17]

26

4. Network limitations of IoT devices [46, 47, 4]

The SLR also answered RQ2 by finding studies where tests for existing blockchain-
enabled applications were conducted. Only six conducted tests were found, of which
only one utilized virtualization.

We then used these results to propose a framework that can be used to assess the scal-
ability of blockchain-enabled IoT applications. The framework uses a 4-step method to
assess the scalability of a blockchain-enabled IoT application. The proposed framework
includes a step that requires the creation of a testing environment. Since there is a lack
of tools regarding this area, we decided to research the creation of this type of tool.

4 Research Method and Design
This Chapter explains the research method and design process of creating the scalability
assessment tool. In the previous chapter, it was specified that there exists a need for
an environment creation tool for assessing the scalability of blockchain-enabled IoT
applications. Section 4.1 discusses our research method for this tool. Section 4.2 explores
the possible stakeholders of the tool and discusses stakeholders’ goals that guide tool
design. Specification of the tool is presented in Section 4.3, and lastly, Section 4.4
overviews the design requirements of our tool.

4.1 Research Method
This thesis uses a 3-step process for creating a scalability assessment tool for blockchain-
enabled IoT applications. The 3-step process is described below:

Step 1: Tool design

– Identification of tool stakeholders and Goal modeling

– Creating specifications for the tool

– Creating requirements for the tool

Step 2: Implementation

– Choosing the technological components

– Implementing the tool

Step 3: Verification and feasibility

– Verification test 1

– Verification test 2

27

– Analyzing the feasibility

The first step is the tool design. The first part of this step is to identify the possible
stakeholders of the tool. Then, based on the possible stakeholders, the goals of these
stakeholders are modeled. Based on these goals, design specifications, and requirements
are created for the tool’s implementation. The second step in the process is to implement
the tool. First, the underlying technological components, such as already available
virtualization software, are chosen. Then, the implementation of the tool is completed.
The third step of creating the tool is to verify that the tool functions and estimate
the feasibility of using the tool for testing the scalability of blockchain-enabled IoT
applications. The first verification test is used to set up and run a blockchain on the tool
to verify that the basic functionality exists in the tool. The second test is used to complete
a larger scale test, where the proposed scalability analysis can be conducted on whether
the tool accomplishes the stakeholders’ goals. Finally, the tool’s feasibility is estimated
based on the results of the two tests.

4.2 Identifying Possible Stakeholders and Modelling goals
This section presents the possible stakeholders of a blockchain-enabled IoT scalability
testing tool. From these stakeholders, the goals of each stakeholder are modeled.

The first possible stakeholder for a blockchain-enabled IoT application testing tool
is an application developer. An application developer is a potential stakeholder in a
scalability testing tool since application developers may want to assess the scalability
of their application. The second possible stakeholder for a blockchain-enabled IoT
application scalability testing tool is an application tester. An application tester is a
potential stakeholder of the tool since application testers may need to do scalability
testing of a developed blockchain-enabled IoT application.

Based on the previously mentioned potential stakeholders, goals for the tool are
modeled. These goals are then transformed into specifications and requirements for the
proposed tool. Since this thesis aims to implement a tool that helps assess the scalability
of blockchain-enabled IoT applications, only aspects revolving around assessing scalabil-
ity are focused on.

Application developer goals: The application developer has a main goal, which can
be divided into sub-goals. The main goal of the application developer is to develop
scalable blockchain-enabled IoT applications efficiently. To do this, we identified that the
application developer has the following sub-goals; efficiently develop, test, and deploy
the application. From these sub-goals, testing the application is the most relevant since
the proposed tool is used to assess the scalability of these applications. The sub-goal
of testing the application contains many further sub-goals. However, concerning this
thesis, the tester’s most important aspect is testing the application’s scalability. To test the

28

scalability, an application developer should be able to deploy the developed application
and configure the number of users using a tool.

Application tester goals: The main goal of an application tester is to test and validate the
application. The sub-goals to achieve this are as follows; develop tests for the application,
run the tests on the application, and Evaluate the results. From these subgoals, the goals
of running the tests and evaluating the results of those tests are the most important goals
for the tool. Similar to the application developer goals, these subgoals can be further
broken down into many sub-goals. The application tester must have a testing environment
to develop tests for the application. To run the tests on the application, the tester should
have the application and the environment. To evaluate the tests, the environment and
tests should be repeatable and allow for measuring different properties of the applications
during the tests.

4.3 Specification of the Tool
Testing the scalability of blockchain-enabled IoT applications is a complex process.
Blockchain-enabled IoT applications combine many elements of system and network
hardware and software. This can make it difficult to test and troubleshoot these ap-
plications. A common way to speed up and save costs while testing interconnected
applications is to virtualize these systems using machines or software like Vagrant, Ku-
bernetes, or Docker. A virtual testbed offers some benefits when compared to a physical
testbed.Firstly, it can reduce the cost of setting up the environment since the hardware
does not have to be purchased. The second benefit of virtual testing environments is
that tests are easier to recreate. Since virtual environments can be automated, miscon-
figurations are less likely when configuring tests. The final reason for virtualizing the
test environment is that it can speed up development and fixing the application. The
tool’s specification is to create a virtual testing environment where the scalability of
blockchain-enabled IoT applications can be assessed (Fig. 6).

29

Figure 6. Specification of the testing tool

4.4 Tool Requirements
Blockchain-enabled IoT applications have many different areas which affect their scala-
bility. The first area affecting blockchain-enabled IoT applications’ scalability is their
network capacity. If a device does not connect to other devices, it cannot function as
a part of the chain. Additionally, the amount of devices that are a part of the chain
affects the performance of the chain. From a testing environment perspective, this means
that at least two aspects of networking should be able to be configured. Firstly, the
network connections of devices. This means that in the environment, both connectivity
and connection speeds should be able to be configured. Secondly, the number of devices
that are connected to the chain. This means that the number of devices that are deployed
should be able to be configured when setting up the environment.

Blockchain transactions often require many computationally expensive operations.
This can be an issue with IoT devices since they are often restricted by computational
power, memory, and networking equipment. Because of this, the testing environment
should contain the possibility to simulate hardware used in IoT devices. Addition-
ally, different kinds of hardware should be able to be tested. This could help integrate
blockchain-enabled IoT applications since running tests with different hardware configu-
rations could determine a minimum requirement for the application.

Because of the computational limitations of IoT devices, they may require a cus-
tomized OS to be used. This can lead to security issues if the OS is not configured

30

correctly. Additionally, the IoT devices deployed in a network may not run the same
OS. This results in two different requirements for the testbed. Firstly, the testbed must
support custom operating systems. This allows the development of the operating system
on the IoT devices as a blockchain-enabled IoT application is being developed. Secondly,
the testbed must support using various operating systems on IoT devices.

Blockchain-enabled IoT applications can require setup on the IoT devices to run the
application. From a testing perspective, the setup of the applications should be automated,
allowing the tester to quickly set up a varying amount of connected nodes in the test.
Additionally, the software that is on nodes should be able to be configured. This would
allow the possibility to test out different applications and their scalability.

Blockchain-enabled IoT applications can utilize many different optimizations. One
example of this is to use a server for offloading computations [52, 5]. Another example is
offloading off-chain data to a storage server [5, 46, 7]. While testing these applications,
there should exist a possibility to configure these types of servers into the network. This
would allow the tester to see the impact of adding optimizations to the application. These
aspects lead to some requirements for the tool, summarized in Table 5.

Category Requirement Reasoning

Network Configurable amount of devices
Allows to see the effect of
scaling up

Possibility to add support
servers Allows to test optimisations

Configurable network
connections

Allows simulation of different
network configurations

Hardware IoT hardware simulation
Can help to design and
choose the correct
hardware for the application

OS Simulation of custom OSs
Can help to design and
choose the correct
OS for the application

Application
deployment Automated deployment Allows scaling up tests

Table 5. Design requirements of the testing tool

4.5 Summary
This Chapter provided an overview of the process of creating the proposed tool. First,
the Chapter presented the research method we used in this thesis, which consists of 3
steps: Tool design, Implementation, and Verification and Feasibility. After, we presented

31

the tool design process of this thesis. First, the key stakeholders were identified to be
application developers and application testers. The goals of these stakeholders were
then identified, and specification for the tool was created from these goals. These
specifications resulted in some requirements for the tool. This Chapter focused on
addressing RQ2 and RQ3 by proposing a way to develop and evaluate a scalability
testing tool for blockchain-enabled IoT applications.

5 Implementation of Scalability Assessment Tool
This Chapter describes the implementation process of the scalability assessment tool.
Section 5.1 explains why certain virtualization technologies were chosen for the tool. Sec-
tion 5.2 then describes the implementation by providing the source code and discussing
the source code. This chapter is then summarised in Section 5.4.

5.1 Virtualization Software
Blockchain-enabled IoT applications that require testing can be tested in 3 main ways.
Firstly, they can be deployed on multiple hardware instances [18, 19, 20]. This is one
of the more common solutions to testing these applications. However, this can be
expensive to implement since these devices may have a high cost1 and may require
time to configure all of the devices as well as the network of the devices. The second
way of deploying applications is to deploy them on virtual machines [65]. This allows
testing the application entirely on simulated hardware and software. However, deploying
entire VMs is expensive from a computational perspective. The third way of testing
blockchain-enabled IoT applications is to use containerization [12]. These containers are
isolated environments that share the underlying operating system with each-other [65].
These containers can be run on a shared VM or the physical machine’s OS. Application
containerization allows more efficient use of resources on the physical computer since
each application instance does not have to have its operating system [65]. The difference
between deploying applications on VMs and Containerized VMs is presented in figure 7.

1A single raspberry Pi’s price was close to 45C https://www.electrokit.com/produkt/
raspberry-pi-3-1gb-model-b/

32

https://www.electrokit.com/produkt/raspberry-pi-3-1gb-model-b/
https://www.electrokit.com/produkt/raspberry-pi-3-1gb-model-b/

Figure 7. Differences of applications hosted on separate VMs and containerized applica-
tions [65].

However, containerization for blockchain-enabled IoT applications is impossible in
this testing environment. This is due to the requirements of the testing environment.
Since blockchain-enabled IoT applications may face resource constraints, they must
be tested with limited hardware. If the applications are containerized, they must share
resources on the VM they are running on. This results in the applications potentially
having access to more computing resources since the shared VM would need to have
more resources. Containerization will work if the main testing purpose is to test the
application logic.

Due to these reasons, the virtualization software that is used should allow the creation
of virtual machines that use their OS. One prominent tool for this use case is Vagrant [40].
Vagrant is an open-source tool that allows the automated creation of virtual machines.
Additionally, it allows the user to choose which VM provider it uses. For example,
VirtualBox, Hyper-V, and Docker are officially supported VM providers. Vagrant utilizes
many common Command Line Interface (CLI) tools in software development. It can
be used to create reproducible virtual testing environments without sharing OS disk
images since Vagrant can download the needed OS from the Vagrant cloud, after which
modifications can be made locally to that OS. This makes using vagrant ideal, for
example, in blockchain-enabled IoT applications’ continuous integration pipelines, where
environments must be reproducible in cloud environments with repeatable results.

For this environment, the VM provider VirtualBox was chosen. This is due to 2
main reasons. Firstly, VirtualBox is free and open source. This means that if there are

33

issues with the virtualization software, they can be examined through the source code of
VirtualBox. The second reason for using VirtualBox is that it allows the user to specify
what type of hardware is used. For example, network adapters, CPU cores, memory, and
hard disk size are all configurable parameters of VirtualBox VMs. Since IoT devices are
limited by hardware, it is necessary to simulate the lack of resources on these devices to
examine the application’s behavior as resources are constrained.

Simulated Network: Virtualbox allows the user to specify network connections
manually. Additionally, it allows the user to create private networks, where NAT is used
to connect the private network to the public internet. Vagrant allows the user to specify
these network settings when provisioning new VMs. In the proposed tool, a private
network model was chosen. In this private network, each node has a direct connection
to each other, with the addition of a connection to a gateway that leads to the public
internet.

5.2 Tool Content
The development of the tool was started by using the virtual network environment for
student projects as a baseline provided by the GitHub page of Professor Tuomas Aura2.

The virtual tool we implemented uses a combination of Linux shell scripts, python
scripts, and vagrant commands. A walkthrough of the code of our tool was presented in
a video. The tool has the following file structure:

IoTEnvTool/
iotBox/

buildIotBox.sh
setup.sh
Vagrantfile

templates/
device.template
Vagrantfile.template

genVagrantFile.py
startup.sh

The files in the folder iotBox/ were copied with minimal changes from the folder
base/ in the testbed implemented by Aura 3. The files inside the folder iotBox/ are used
to build a custom image of an OS that the user specifies. The custom image is then written
to a file which can then be utilized to set up other VMs. The shell script buildIotBox.sh
initiates these actions. The source code of buildIotBox.sh was modified from the file

2https://github.com/tuomaura/cs-e4300_testbed
3https://github.com/tuomaura/cs-e4300_testbed/tree/master/base

34

https://www.youtube.com/watch?v=e0-c09mKA8I
https://github.com/tuomaura/cs-e4300_testbed
https://github.com/tuomaura/cs-e4300_testbed/tree/master/base

base/base.sh4. The filename was changed to represent functionality, the names of the
outputs were modified, and comments were added to describe what the shell script does.
The script does the following:

• Remove previous instances of the packaged OS (if they exist). This is done since
this command is only run manually in two situations. The first situation is when
the file "iot.box" does not exist in the root folder. The second situation is when the
user wants to rebuild the box manually.

• Provision the VM using Vagrant that is specified by the Vagrantfile in the folder.
This is done to prepare for the next step.

• Package the OS into a file and add it to a variable in Vagrant. This is done to speed
up the creation of the environment.

• Destroy the running VM and clear the local cache of Vagrant in the current folder.
This is done since these are not needed anymore.

This allows the user to specify hardware aspects of a common device and install
common software to the device, which will then be copied into multiple instances in the
final environment. Additionally, it can be used as a debugging environment for a singular
device. The modified source code of buildIotBox.sh is included in Listing 1.

1 # Remove previous build
2 vagrant destroy -f iotBox
3 vagrant box remove iotBox
4 # Provision iotBox
5 vagrant up iotBox --provision
6 # Package the provisioned VM
7 vagrant package --output ../iot.box
8 # Add box to vagrant
9 vagrant box add iotBox ../iot.box -f

10 # Destroy running VM
11 vagrant destroy -f iotBox
12 # Remove vagrant cache
13 rm -rf .vagrant/

Listing 1. buildIotBox.sh source code

The shell script startup.sh handles the user input and starts the tool. The processing
logic of the script has been modeled as a flowchart in Figure 8.

4https://github.com/tuomaura/cs-e4300_testbed/blob/master/base/base.sh

35

https://github.com/tuomaura/cs-e4300_testbed/blob/master/base/base.sh

Figure 8. Processing logic of startup.sh

The script starts by analyzing the input parameter n. This parameter represents the
number of IoT devices the user wants to create. The script will default to 3 nodes if this
parameter is not provided. After this, the script checks if "iot.box" file exists. If not, it will
run the previously mentioned buildIotBox.sh shell script and build the base box. After
the box has been built, the script checks if a previous Vagrantfile exists and will remove
it. This makes it possible to quickly run different environments with different amounts of
IoT devices, to test the impact of additional nodes. After removing the old Vagrantfile, the
script runs the Python script genVagrantFile.py with the number of devices specified
by the input parameter n. This Python file generates the resulting Vagrantfile for the

36

environment. After the file has been generated, the script runs the command Vagrant
up, which builds the testing environment. The source code of startup.sh is presented
in Listing 2.

1 # Get arg 'n', set default to 3 if not provided
2 num=3
3 while getopts n: flag
4 do
5 case "${flag}" in
6 n) num=${OPTARG };;
7 esac
8 done
9 # Check if prebuilt box exists

10 BOX=iot.box
11 if test -f "$BOX"; then
12 echo "$BOX exists."
13 else
14 # Create prebuilt box
15 cd iotBox
16 ./ buildIotBox.sh
17 cd ..
18 fi
19 # Check if previous environment exists and destroy if it exists
20 FILE=Vagrantfile
21 if test -f "$FILE"; then
22 echo "$FILE exists , removing and destroying previous env"
23 vagrant destroy -f
24 rm Vagrantfile
25 fi
26 # Generate new vagrantfile
27 python3 genVagrantFile.py $num
28 # Run vagrant
29 vagrant up

Listing 2. startup.sh source code

Creating the Vagrantfile with the genvagrantfile.py-script is generated by combin-
ing two templates. The first template is the Vagrantfile template. This template contains
the necessary configurations for Vagrant and the string "#Start", which indicates the
starting position for the Python script. Within the Vagrantfile template, the user can also
specify other custom virtual machines that can be used in the environment. This allows
users to test optimizations, such as a computation offloading server. An example of this
template is presented in Listing 3.

1 Vagrant.configure("2") do |config|
2 config.vm.define "bootNode" do |bootNode|
3 bootNode.vm.box = "iotBox"
4 bootNode.vm.network "private_network",
5 ip: "10.1.0.2",

37

6 netmask: "255.255.255.0",
7 virtualbox__intnet: "private_net"
8 bootNode.vm.hostname = "bootNode"
9 bootNode.vm.provision :shell , path: "scripts/setupBootNode.sh",

env: {"IPADDRESS" => "10.1.0.2"}
10 bootNode.vm.provider "virtualbox" do |vb|
11 vb.name = "bootNode"
12 vb.cpus = 1
13 vb.memory = 1024
14 end
15 end
16 #Start
17

18 end

Listing 3. Vagrantfile.template example

The second template file is the device template file. This template allows the user to
specify what OS the IoT devices will use (by default, the "base.box" will be used) and
to specify commands to be run by the devices. An example of this device template is
presented in Listing 4.

1 config.vm.define "deviceX" do |deviceX|
2 deviceX.vm.box = "iotBox"
3 deviceX.vm.network "private_network",
4 ip: "10.1.0.1 SUBADDR",
5 netmask: "255.255.255.0",
6 virtualbox__intnet: "private_net"
7 deviceX.vm.hostname = "deviceX"
8 deviceX.vm.provision :shell , path: "scripts/startup.sh" , env: {"

IPADDRESS" => "10.1.0.1 SUBADDR", "NAME" => "deviceX"}
9 deviceX.vm.provider "virtualbox" do |vb|

10 vb.name = "deviceX"
11 vb.cpus = 1
12 vb.memory = 1024
13 vb.customize ["modifyvm", :id, "--cpuexecutioncap", "50"]
14 end
15 end

Listing 4. device.template example

These templates are used by the genVagrantFile.py script. The genVagrantFile.py
Python script inserts the string contained in the device template n amount of times into the
Vagrantfile template. While doing it, the script makes two modifications to the template.
The first modification that is done is replacing the device names. The template has the
device name "deviceX", which is replaced in the Vagrantfile with "device" + the index
of the device. For example, the first device will be named "device1", and the second
device will then be named "device2". This allows the creation of multiple similar devices

38

with different names in Vagrant. The second modification made to the device template is
the device’s IP address. The script searches for the string "SUBADDR" and replaces it
with the index. This results in a unique private IP address for each device. For example,
if the IP address in the device template is defined as "192.168.58.SUBADDR" the result
for the first device would be "192.168.58.1". This is because it allows the user to avoid
manual network configuration and can instead automatically set the IP addresses of the
devices. The processing logic of the script has been modeled as a flowchart in Figure 9,
and the file’s source code is presented in listing 5.

39

Figure 9. Processing logic of genVagrantFile.py

1 #!/usr/bin/env python3
2 import sys
3 # Number of iot devices
4 deviceAmount = int(sys.argv [1])
5 # Get device template string
6 deviceTemplateFile = open('templates/device.template ', 'r')
7 lines = deviceTemplateFile.readlines ()
8 deviceTemplateFile.close()

40

9 deviceTemplate = ''.join(lines)
10 # Get vagrantfile template
11 vagrantfileTemplateFile = open('templates/Vagrantfile.template ', 'r')
12 lines = vagrantfileTemplateFile.readlines ()
13 vagrantfileTemplateFile.close()
14 vagrantfileTemplate = ''.join(lines)
15 # Generate vagrantfile
16 vagrantfile = vagrantfileTemplate
17 i = vagrantfile.find("#Start") + 7
18 for deviceNum in range(1, deviceAmount + 1):
19 addedDevice = deviceTemplate.replace("deviceX", "device" + str(

deviceNum)).replace("SUBADDR", str(deviceNum))
20 vagrantfile = vagrantfile [:i] + addedDevice+ vagrantfile[i:]
21 i+= len(addedDevice)
22 # Write to file
23 vagrantfileOut = open('Vagrantfile ', 'w')
24 vagrantfileOut.write(vagrantfile)
25 vagrantfileOut.close()

Listing 5. genvagrantfile.py source code

5.3 Limitations of the Tool
Due to the chosen underlying frameworks, the tool has some limitations. The first
limitation is the number of devices that can be created with the tool. The amount of
memory that the host of the testing environment requires must be greater than the amount
of memory assigned to all the virtual machines. This creates a hard limit for the number
of devices that can be deployed. Another possible limiting factor is the disk space of the
host. If the VMs are deployed in a way that allocates disk space directly from the hard
drive (and not using dynamic storage allocation), it can limit the number of devices that
can be deployed.

Another limiting factor is the number of CPU cores on the host. VirtualBox assigns
physical CPU cores to each VM. This limits the number of VMs that can be running at
one time. This limits the number of simulated devices to the number of cores the host has
if each of the VMs is running on a single core. VirtualBox allows setting an execution
cap to assigned cores. This execution cap limits the time the physical CPU processes the
virtual CPU. This can be utilized to limit the processing power that the VMs have. Thus,
setting an execution cap results in the VM having a lower clock speed.

5.4 Summary
This Chapter presented the implementation of the proposed tool. First, we explained
the choice of underlying technologies used in the tool. These included using Vagrant,
VirtualBox, and Python. Then we presented how the tool was implemented. The tool

41

combined these previous technologies and shell scripting to implement the proposed tool.
Then we discussed the potential limitations of using the tool based on the limitations
of the underlying technology. This Chapter continued addressing RQ2 by providing an
implementation for the provided tool.

6 Validation and Results
This Chapter describes the validation process we used to estimate the feasibility of
our tool. These tests aim to validate the use of the tool in assessing the scalability of
blockchain-enabled IoT applications. Our validation method is the following. First, we
establish common variables for testing. This means that the non-scaling factors and
nuisance variables are set to be static. Discussion about these variables is presented in
Section 6.1. Then, after establishing common variables for the tests, the basic function-
ality is validated by running a blockchain network on simulated IoT devices using the
tool. This is done to verify that the tool can be used for running custom blockchain
networks and to validate that the tool’s basic functionality works as expected. This test is
described in Section 6.2. The second validation test is then conducted to validate the use
of the tool in assessing the scalability of blockchain-enabled IoT applications. This test
is conducted to estimate the feasibility of using our tool in assessing the scalability of
blockchain-enabled IoT applications. Section 6.3 discusses this test and its results.

6.1 Common Variables for the Tests
As mentioned in the background, the scalability of blockchain-enabled IoT applications
consists of 3 main factors: scaling factors, non-scaling factors, and nuisance variables.
In this Section, we establish common variables for the following non-scaling factors: the
consensus mechanism of the underlying blockchain, the type of (simulated) IoT device,
and the OS used on nodes. Processor speed as a nuisance variable is also discussed.

The device.template file contains the hardware properties set by VirtualBox for
each device with the proposed tool. Previous works have utilized different versions of the
Raspberry Pi [18, 19, 20]. For example, Wang et al. [19] used a Raspberry Pi 3 Model B
to conduct their experiment. The Raspberry Pi 3 Model B has a Quad-core CPU with a
clock speed of 1.2GHz and 1 GB of ram 5. For these tests, the IoT devices were chosen
to have a single CPU core, which was limited to running only 10% of the time of the
host machines clock speed. The reason for choosing only 1 CPU core is that it allows
the creation of more IoT devices with a small number of physical cores. For example,
the AMD Ryzen 7 7300X only contains eight cores, thus limiting 2 IoT devices if the
core count for each node is 4. The simulated CPU speeds were set to 10 % to amplify

5https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

42

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

the impact of requests since less processing power should lead to increased impacts in
request times.

The IoT devices need an OS to set up and run the blockchain-enabled IoT applications.
Previous works have used both Raspbian OS and Ubuntu on IoT devices as the operating
system [18, 19, 20]. For this testing environment, the Ubuntu Core operating system was
first chosen to be tested. This is because the OS is tailored to run on IoT devices with
limited hardware, such as the Raspberry Pi. However, importing the operating system
for this testing type was unsuitable for two reasons. Firstly, the OS does not support
inserting private SSH keys into the system. The OS uses an email address to fetch a public
SSH key, which is then used for SSH authentication. This makes vagrant configuration
complex. The second issue with the OS running on VirtualBox was that it defined the
disk space as read-only. This means that no additional software could be installed on
the device itself. After Ubuntu core was deemed unsuitable for the test, Ubuntu 18.04.6
server was chosen as the OS. There were four main reasons for choosing Ubuntu 18.04.6
as the OS for the nodes. Firstly, the OS was used by previous works [18, 19, 20]. This
does not guarantee that the OS is the most suitable for the IoT devices, but it allows
to compare differences between the experiments. The second reason for choosing the
OS is that it is easy to deploy. Vagrant can download OS disk images directly from the
cloud without the user configuring anything manually. This allows setting up the OS
without distributing the modified disk image. The third reason for choosing the OS is that
Ubuntu 18.04.6 is well-documented, and configuration errors are well-documented with
virtual machines running the OS. This speeds up the configuration time and debugging
of the environment. In addition, the OS includes a package manager and many basic
tools used in software development, such as OpenSSL and Python. Finally, the OS meets
the recommended requirements of the simulated device hardware. The recommended
hardware for an Ubuntu server is a CPU with a clock speed of 1 GHz or better and 1 GB
of RAM 6, which these simulated devices match. The OS is downloaded, modified, and
packaged before setting up the environment. This is done to speed up the creation of
the environment. If the OS were downloaded and modified for each device separately,
it would increase the creation time, especially in cases where many devices are created.
The modifications to the OS and the packaging process can be seen in both tests in the
iotBox folder.

6.2 Validation Test 1: Basic Functionality
This section presents the validation test conducted to validate the basic functionality of
the implemented tool. During this test, some additional tools were developed to assist
with configuring the tested custom Ethereum network. These additional tools are in a
separate branch of the tool’s repository. The source code that was used in the tests with

6https://ubuntu.com/server/docs/installation

43

https://ubuntu.com/server/docs/installation

the tools can be found on the validationTest1 branch of the GitHub repository

6.2.1 Testing scenario

In this testing scenario, the tool was tested to validate the tool’s basic functionality by
using the tool to deploy and run Geth clients on simulated IoT devices. Previous works
in testing blockchain-enabled IoT applications have utilized the Geth-client [19, 20, 12].
Of these, only PlaTIBART [12] utilized virtualization for testing. The Geth client was
chosen as the tested application for three main reasons. Firstly, it has been used widely
in previous works. The second reason for choosing the Geth client is that it is a versatile
application. It allows the user to interact with a private Ethereum chain in multiple ways
through the host’s CLI. The third reason for testing the Geth client is that it is a widely
documented and deployed application7. This can help to speed up the configuration of
the client since resources are widely available.

The clients generated in this test use a private Ethereum chain that uses the Ethash
consensus method. This consensus method is a PoW consensus method, which is not
optimal for IoT devices. Ethereum uses a PoS consensus method since the blockchain
was split into two chains. However, using the PoS consensus method requires additional
software for the nodes. The current Ethereum PoS consensus requires a consensus and an
execution client, such as the Geth client. These consensus clients require much memory
and processing power to function properly. For example, the recommended hardware
requirement for the Lighthouse consensus client is a quad-core CPU with 32GB of RAM.
In addition, previous works in testing blockchain-enabled IoT applications have used the
pre-merge Ethereum chain with the Ethash consensus method. This allows a comparison
of these previous works to this application.

6.2.2 Environment Setup

The implemented tool does not provide configuration for device wallet addresses, private
keys, or the genesis block of the custom Ethereum chain. Thus helper tools were
developed to help configure these parameters for the validation test.

To deploy the Geth client, the VMs need to install the client, unlock their wallet and
run the client. To do this, the commands needed to install the Geth client were placed in
the previously mentioned ioTBox/setup.sh-file as follows:

1 sudo apt -get update -y
2 sudo apt upgrade -y
3 wget https :// gethstore.blob.core.windows.net/builds/geth -linux -amd64

-1.11.6 - ea9e62ca.tar.gz
4 tar xvzf geth -linux -amd64 -1.11.6 - ea9e62ca.tar.gz

7Geth is the most deployed execution client on the Ethereum main net as of May 8th, 2023 https:
//clientdiversity.org/

44

https://github.com/SanttuSi/IoTSimulation/tree/validationTest1
https://clientdiversity.org/
https://clientdiversity.org/

5 cd geth -linux -amd64 -1.11.6 - ea9e62ca/
6 sudo chmod +x geth
7 sudo cp geth /usr/local/bin/

Listing 6. The modified ioTBox/setup.sh

Installing the client in the packaging phase will speed up the environment creation since
all the devices participating in the test will utilize the client. However, from this file, it is
impossible to launch the application since that requires individual parameters related to
the VMs, such as the wallet address of the VM.

To help set up and run the application, the scripts/setupDevice.sh was created.
The contents of the script are presented below:

1 geth init --datadir node /vagrant/secrets/genesis.json
2 geth account import --datadir node/ --password /vagrant/secrets/pw.

txt /vagrant/secrets/keys/$HOSTNAME
3

4 tmux new -session -d -s my_session 'ENODE=`cat /vagrant/secrets/
bootnodeconf/enodeaddr ` && WALLET=`printf "0x%s" "$(cat /vagrant/
secrets/addresses/$HOSTNAME)"`&& sudo geth --datadir node --port
30306 --bootnodes $ENODE --networkid 12345 --authrpc.port 8551 --
unlock $WALLET --password /vagrant/secrets/pw.txt'

Listing 7. The scripts/setupDevice.sh script

The script does the following:

• Initialize a private Ethereum chain into the folder node, from a genesis configura-
tion file /vagrant/secrets/genesis.json

• Import a private key into the client from the text file /vagrant/secrets/keys/$NAME
and use the password provided in the textfile /vagrant/secrets/pw.txt to pro-
tect it. In this case, the reason for using a password is that the Geth client does not
allow importing accounts without authentication.

• Start a detached shell session, where the Geth client connects to the Ethereum
network with the id:12345 and uses the data directory that was previously initialized
for the chain. Additionally, the command adds a boot node address to connect the
peers. Additionally, the command unlocks the wallet of that specific device, which
allows it to send transactions from that wallet.

The scripts/setupDevice.sh script requires some configuration files to be created
before it can be used with the VMs. These files can be manually configured, but a helper
script was created genSecrets.sh, which automatically generates these files. This script
generates three different configuration files. The script is listed below:

45

1 num=3
2 # Get the input variable n, if it exists
3 while getopts n: flag
4 do
5 case "${flag}" in
6 n) num=${OPTARG };;
7 esac
8 done
9 # Copy the template for the genesis template

10 cp ../ templates/genesis.json.template genesis.json
11

12 for i in $(seq 1 $num)
13 do
14 # Generate a private key
15 openssl ecparam -name secp256k1 -genkey -noout | openssl ec -text

-noout > key
16 # Extract the private key , remove the leading zero byte and pipe

it into a file
17 cat key | grep priv -A 3 | tail -n +2 | tr -d '\n[:space :]:' |

sed 's/^00// ' > priv
18 # Generate a wallet address based on the private key , and write

it into a file
19 python3 genPubAddr.py
20 # Move the generated private key to correct location
21 mv priv keys/device$i
22 # Add balance to the generated address
23 printf " \"%s\" : { \"balance\": \"5000000000000000\"},\n"

"$(cat addr)" >> genesis.json
24 # Move wallet address to correct location
25 mv addr addresses/device$i
26 done
27 # remove the temporary key
28 rm key

Listing 8. The secrets/genSecrets.sh script

The script does the following actions

• Firstly, it generates n amount of Ethereum private keys using OpenSSL, where n
is an input parameter with a default value of 3. These keys are then piped to files
which are named after the devices that are generated.

• After, the script generates wallet addresses for each device’s private keys. This is
done using the python3 script secrets/genPubAddr.py.

• Finally, the script generates the genesis.json file, which is used to initialize the
private Ethereum chain, mentioned previously. The script assigns 5000000000000000
Wei by default to each of the generated accounts. The genesis.json is generated

46

by appending account balances to the templates/genesis.json.template file.
This means that the genesis block of the chain can be re-configured by either
modifying the genesis.json file or by modifying the template file and then running
the genSecrets.sh script.

The python script secrets/genPubAddr.py mentioned takes an Ethereum private key
file and uses the eth-keys python module to generate a wallet address for that key. This
address is then piped into a file, which holds the address for the corresponding private
key. The source code of the script is listed below:

1 from eth_keys import keys
2 from eth_utils import decode_hex
3 # Open the private key file
4 pkFile = open('priv', 'r')
5 # Read contents , strip line endings and close the file
6 pkString = pkFile.readlines ()[0]. strip()
7 pkFile.close()
8 # Create byte array from the string
9 pkBytes = bytearray.fromhex(pkString)

10 # Use eth_keys to generate the public key
11 pk = keys.PrivateKey(pkBytes)
12 # Write public key to file
13 addrFile = open('addr', 'w')
14 addrFile.write(pk.public_key.to_checksum_address ()[2:])
15 addrFile.close()
16

Listing 9. The secrets/genPubAddr.py script

After these configuration files were complete, the templates provided by the tool
needed to be configured. For this test, the templates/Vagrantfile.template was
modified to contain a single static node. This node is the boot node for the private
Ethereum peers. This means the node does not interact with the chain but instead
connects peers. The boot node is required since the deployed blockchain is private. The
boot node is assigned a private IP address 10.1.0.2, from which it hosts the bootstrapping
server. The node is running the same simulated OS and hardware as the other devices in
the network. Vagrantfile.template used for this test is provided below:

1 Vagrant.configure("2") do |config|
2 config.vm.define "bootNode" do |bootNode|
3 bootNode.vm.box = "iotBox"
4 bootNode.vm.network "private_network",
5 ip: "10.1.0.2",
6 netmask: "255.255.255.0",
7 virtualbox__intnet: "private_net"
8 bootNode.vm.hostname = "bootNode"
9 bootNode.vm.provision :shell , path: "scripts/setupBootNode.sh",

env: {"IPADDRESS" => "10.1.0.2"}

47

10 bootNode.vm.provider "virtualbox" do |vb|
11 vb.name = "bootNode"
12 vb.cpus = 1
13 vb.memory = 1024
14 end
15 end
16 #Start
17 end
18

Listing 10. The used Vagrantfile.template template

The boot node is configured to run the scripts/setupBootNode.sh script once
Vagrant starts the device. This script handles the application setup for the bootstrapping.
The script is listed below:

1 # Download and install the bootstrapping application
2 wget https :// gethstore.blob.core.windows.net/builds/geth -alltools -

linux -amd64 -1.11.6 - ea9e62ca.tar.gz
3 tar xvzf geth -alltools -linux -amd64 -1.11.6 - ea9e62ca.tar.gz
4 cd geth -alltools -linux -amd64 -1.11.6 - ea9e62ca/
5 sudo chmod +x bootnode
6 sudo cp bootnode /usr/local/bin/
7 # Start bootstrapping application
8 tmux new -session -d -s my_session 'bootnode -nodekey /vagrant/secrets

/bootnodeconf/boot.key -addr "10.1.0.2:30305" '
9

Listing 11. The scripts/setupBootNode.sh-script

The configuration file /vagrant/secrets/bootnodeconf/boot.key was manually
generated and included in the repository. This parameter was manually generated since
the node is static in all the tests.

The final modifications used in these tests were made to the templates/device.template,
which contains the Vagrant configuration for each device. The previous section 6.1 ex-
plains both the simulated hardware and the OS used in the devices. The contents of this
template are listed below:

1 config.vm.define "deviceX" do |deviceX|
2 deviceX.vm.box = "iotBox"
3 deviceX.vm.network "private_network",
4 ip: "10.1.0.1 SUBADDR",
5 netmask: "255.255.255.0",
6 virtualbox__intnet: "private_net"
7 deviceX.vm.hostname = "deviceX"
8 deviceX.vm.provision :shell , path: "scripts/startup.sh" , env: {"

IPADDRESS" => "10.1.0.1 SUBADDR", "NAME" => "deviceX"}
9 deviceX.vm.provider "virtualbox" do |vb|

10 vb.name = "deviceX"

48

11 vb.cpus = 1
12 vb.memory = 1024
13 vb.customize ["modifyvm", :id, "--cpuexecutioncap", "10"]
14 end
15 end
16

Listing 12. The templates/device.template template

Each device is added to a private network. The IP address of each device in the private
network is 10.1.0.1SUBADDR, where the device number replaces the string SUBADDR.
For example, device one would have the address 10.1.0.11 in the final Vagrantfile. This
private network is used to run the custom Ethereum chain. The template also defines a
startup script for the devices run after Vagrant has started each device. This script handles
the application’s setup on the devices and starts the application. The script specifies each
node’s IP address and device name as an environment variable.

6.2.3 Blockchain Setup

The Geth client requires a bootstrapping node to function. This is because Ethereum peers
often are behind a NAT network and a firewall, which does not allow exposing ports to the
public internet. The bootstrapping nodes are pre-defined in the Geth client for the main
and common testing networks. However, these do not work with custom testing networks,
such as the one used in this environment. The boot node in the network is set up by the
command bootnode -nodekey /vagrant/secrets/bootnodeconf/boot.key -addr
"10.1.0.2:30305" . This starts the boot node with the specified key on port 30305.
However, since this command starts a server, the process does not exit, which hangs the
setup in Vagrant. For this reason, the command line program tmux is used to create the
process and leave it running, while Vagrant sets up the rest of the environment. The full
command that is ran on startup is tmux new-session -d -s nodeSession ’bootnode
-nodekey /vagrant/secrets/bootnodeconf/boot.key -addr "10.1.0.2:30305"’

The devices that run the Geth client require some more setup. Firstly, the Geth
client needs to initialize the custom Ethereum chain. This is done by the command
geth init –datadir node /vagrant/secrets/genesis.json. After this, the IoT
device can import an Ethereum account into the Geth client. The command used for this
is geth account import –datadir node/ –password /vagrant/secrets/pw.txt
/vagrant/secrets/keys/$NAME. The script imports an account from the key file
/vagrant/secrets/keys/$NAME (these keys were generated with the
genSecrets.sh script) into the Geth client and sets a password to the account, which
is equal to the contents in /vagrant/secrets/pw.txt. The variable $NAME is the
environment variable passed by Vagrant to the script. For example, for device 1, the
environment variable $NAME would be device1. After importing the account into the
client, the startup script sets two environment variables: ENODE and WALLET. The

49

ENODE variable is the file’s contents in /vagrant/secrets/bootnodeconf/enodeaddr. This
contains the full address of the boot node, which is hard-coded into the configuration.
The WALLET variable is set by concatenating the string "0x" with the contents in the file
/vagrant/secrets/addresses/$NAME, which contains the wallet address for each device
(these addresses were generated with the genSecrets.sh script). Once these variables
are set, the command tmux new-session -d -s nodeSession ’ sudo geth –datadir
node –port 30306 –bootnodes $ENODE –networkid 12345 –authrpc.port 8551
–unlock $WALLET –password /vagrant/secrets/pw.txt’ can be run. This com-
mand utilizes the tmux command line program to create a detached session for the Geth
client. The Geth client is started with the custom chain initialized in the node directory.
The command sets the discovery port to 30306 and manually adds the boot node’s address
by utilizing the environment variable $ENODE. The command defines the network id as
12345 and enables the authrpc server to be run on the localhost with port 8551. Finally,
the command unlocks the wallet belonging to the device, allowing transactions to be sent
from that wallet.

6.2.4 Testing Method

To validate the basic functionality of the tool, the tool should be able to set up environ-
ments where a blockchain network functions without errors. Additionally, using the tool
should be stable and repeatable.

To test these properties, we used the previously mentioned configuration to set up an
environment with 2,4,6,8, and 10 nodes. From these setup runs, the following properties
were measured:

• The time to create the environment

• The number of peers connected to the private chain

• Amount of times that an example transaction was successfully sent from the
Geth-client

The tests were run on Ubuntu 20.04.6 with 32GB of RAM and the AMD Ryzen 3700X
CPU running at the base clock of 3.2Ghz and boost clocks enabled. These measurements
were repeated five times.

The tests were conducted using another shell script named testTool.sh. The shell
script is listed below:

1 # Copy tool contents to a temporary testing folder
2 cp -R IoTSimulation/ tempFolder/
3 cd tempFolder/secrets/
4 # Generate configuration files
5 time ./ genSecrets.sh -n 2 > ../../ genTime
6 cd ..

50

7 # Run the tool , measure the time to complete and save the time in a
file

8 time ./ startup.sh -n 2 > ../ setupTime
9 # Query the peers connected to the first device

10 vagrant ssh device1 -c "sudo geth attach --exec admin.peers node/
geth.ipc"

11 # Send a transaction from the first device
12 vagrant ssh device1 -c "sudo geth attach --exec \"eth.sendTransaction

({to: '0x6c4fe784Cb79502C784521020CD283Cc86E43D42 ', from: eth.
accounts [0], value: 25000})\" node/geth.ipc"

13 # Cleanup
14 vagrant destroy -f
15 cd ..
16 rm -rf tempFolder/

Listing 13. The secrets/genPubAddr.py script

The script does the following actions:

• Copy the directory containing the tool where the iot.box file has been built. The
reason for excluding the time to build the OS is that the OS can be copied and
remain unchanged while developing an application.

• Generate the required configuration files using the secrets/genSecrets.sh
script.

• Use the time command to capture the execution time of startup.sh, which brings
up the environment and starts the Geth client on the devices. Once the startup.sh

• Query the first device to see what clients are connected to the device. This
command queries the Geth client for connected peers. This command will return a
JSON object and print it to the current shell. The output of this command was used
to confirm that all created devices were successfully connected to the p2p network.

• Send an example transaction to a static address from the first device. This command
uses the Geth client to create a transaction, which transfers funds from device 1 to
a hard-coded address. The output will be printed to the shell, where the transaction
creation can be verified.

6.2.5 Results

The tests were conducted to verify that the tool’s basic functionality works as expected,
such as generating devices correctly and automatically starting these devices to attach to
the blockchain network. We verified three different properties. The first property is to
verify that Vagrant can generate all nodes successfully. This was verified by checking
if the script produced any errors. The second property is to check if all peers have

51

connected to the network. This can be verified via the returned JSON string in the shell.
The final property that is checked is that transactions can be sent. The transaction can be
verified by examining the returned string from the transaction command.

Device count
Amount of times
environment was
created succesfully

Amount of
times all
peers were connected

Amount of times
example transaction
was sent successfully

Mean time for
environment
startup (s)

2 5/5 5/5 5/5 161.0
4 5/5 5/5 5/5 272.2
6 5/5 5/5 5/5 369.0
8 5/5 5/5 5/5 510.9

10 5/5 5/5 5/5 629.6

Table 6. Testing results of the environment on a Ryzen 7 3700X CPU with 32GB of
RAM

The test results of the environment are presented in Table 6. All of the tests were
completed successfully in this scenario. However, while developing the environment,
sometimes the script genSecrets.sh would fail. Its failure was because sometimes the
OpenSSL command used to generate private keys would sometimes generate a private
key, where the leading bytes are set to 0. This would lead to the hex value being shorter
than 32 characters, which would cause the address generation to fail. This bug in the
helpers could be fixed to make the environment setup more stable in these tests.

These tests showcased that the basic functionality of setting up a private blockchain
with a variable number of simulated IoT devices is possible with the provided tool. Since
these tests were successful, we decided to move on to the second validation test, where
the tool is used for scalability testing.

6.3 Validation Test 2: Using the Tool to Assess Scalability
This section presents the validation test conducted to evaluate whether the provided tool
can be used to assess the scalability of blockchain-enabled IoT applications. The source
code that was used in the tests can be found on the validationTest2 branch of the GitHub
repository (https://github.com/SanttuSi/IoTSimulation/tree/validationTest2).

6.3.1 Tested Application

One recent use case for blockchain is to use it in the IoV applications [3]. IoV applications
must communicate with the infrastructure and other vehicles surrounding them to allow
functional operation. However, this can be challenging since vehicle manufacturers
create different vehicle types, resulting in the need for a communication standard. In this
case, blockchain could be utilized to verify interactions in the physical world between

52

https://github.com/SanttuSi/IoTSimulation/tree/validationTest2

the IoV and verify communication between the vehicles. IoV may contain computers
that have enough computing power to complete blockchain operations. However, these
IoV networks may contain some limited IoT devices. For example, a traffic light may
contain a simple IoT device that communicates with the vehicles near it. This can create
a situation where the scale of these applications needs to be assessed.

A proof-of-concept (POC) application is developed, which is then used to assess its
scalability and used to evaluate the feasibility of the provided tool. The goal of the POC
application is to store vehicle location data on the Ethereum chain. Other vehicles could
then use this location data for other applications, such as autonomous vehicles, parking
detection, and road toll detection. The application consists of 3 main components: The
first component is a vehicle client. The vehicle client does not mine the chain but instead
sends transactions to be processed to the chain based on its location. Additionally, the
vehicle can confirm the positions of other vehicles it detects. The vehicle client requires
specific properties to function with the application:

• A general-purpose computer that can run the application.

• Internet connectivity, e.g., an LTE connection, is used to communicate with the
Ethereum chain.

• WiFi connectivity is used to communicate with other vehicles/sensors.

The vehicle client application uses WiFi to find sensors around it. Once the client finds a
sensor, it sends the Ethereum address of itself to the peer, to which the peer responds
with the address of itself. Then, the client creates a transaction to the Ethereum chain,
where the transaction’s extra info contains the vehicle’s position. The actions done by
the vehicle client are modeled in Figure 9. 10.

53

Figure 10. Vehicle client processing logic

The second component is a client for IoT devices. This can be, for example, a traffic
light or a sensor on a traffic sign. These devices are the most limited in computing power.
The IoT device client requires specific properties to function with the application:

• A general-purpose computer that can run the application.

• Internet connectivity that is used to communicate with the Ethereum chain.

• WiFi connectivity that is used to communicate with vehicles.

• Geopositional location of the client.

The IoT device client hosts a server on the WiFi network that it is connected to. Once
it receives an application request via WiFi, it reads the message and creates a transaction
to the ETH address contained in the message. It then responds to the request with its
own ETH address. The processing logic of the IoT-device client is presented in figure 11.

54

Figure 11. Sensor client processing logic

The third component of the application is a miner. These miners are static servers
that mine the chain to confirm blockchain transactions. The entities that mine the chain
are motivated by the rewards that mining produces and do not require any additional
software but only require software used to mine the Ethereum chain.

The application is presented as a BPMN in figure 12. In this figure, the vehicle is the
activator of the process. It detects a sensor via WiFi and then sends the wallet address to
the sensor via WiFi. The sensor then checks if the address is valid and responds to the
vehicle with its wallet address. Then, both The sensor and the vehicle create a transaction
where they transfer funds to each other. The miners in the network then validate these
transactions.

55

Figure 12. IoV POC application BPMN

Since the application is a POC application, all components are not tested. Instead,
only the scalability of the sensor application is tested. The source code of the application
is presented below.

1 from http.server import BaseHTTPRequestHandler , HTTPServer
2 import time
3 import json
4 import os
5 hostName = "0.0.0.0"
6 serverPort = 8080
7 class IoTClient(BaseHTTPRequestHandler):
8 def do_POST(self):
9 try:

10 content_length = int(self.headers['Content -Length '])
11 body = self.rfile.read(content_length)
12 json_object = json.loads(body)
13 vehicle_address = json_object["address"]
14 command = "sudo geth attach --exec \"eth.sendTransaction

({to: \'" + vehicle_address +"\', from: eth.accounts [0], value:
2500}) \" /home/vagrant/node/geth.ipc"

15 os.system(command)
16 self.send_response (200)

56

17 self.end_headers ()
18 self.wfile.write(bytes("0

x634473DCE0d0e6e6EDD1c32e34f51f45fe4D2c42", 'utf -8'))
19 except:
20 self.send_response (404)
21 self.end_headers ()
22 webServer = HTTPServer ((hostName , serverPort), IoTClient)
23 print("Server started http ://%s:%s" % (hostName , serverPort))
24 try:
25 webServer.serve_forever ()
26 except KeyboardInterrupt:
27 pass
28 webServer.server_close ()
29 print("Server stopped.")

Listing 14. The sensor client

6.3.2 Environment and Application Setup

Since the application needs to be assessed for scalability, using the tool locally is not
viable due to the core count limitations of VirtualBox that were mentioned previously.
To address this, the environment for this test was moved to a VM in the Google Cloud
Project. The Google Cloud Project compute engine was used to create a VM that runs
Ubuntu 20.04.6, has 24 cores and 64 gigabytes of memory, and 200 GB of storage. This
allows us to scale the number of devices in the environment up to 24.

The configuration files needed to be modified from the previous test to set up the
environment for this test. Firstly, the templates/Vagrantfile.template was modified
as follows:

1 Vagrant.configure("2") do |config|
2 config.vm.define "bootNode" do |bootNode|
3 bootNode.vm.box = "iotBox"
4 bootNode.vm.network "private_network",
5 ip: "10.1.0.2",
6 netmask: "255.255.255.0",
7 virtualbox__intnet: "private_net"
8 bootNode.vm.hostname = "bootNode"
9 bootNode.vm.provision :shell , path: "scripts/setupBootNode.sh",

env: {"IPADDRESS" => "10.1.0.2"}
10 bootNode.vm.provider "virtualbox" do |vb|
11 vb.name = "bootNode"
12 vb.cpus = 1
13 vb.memory = 1024
14 end
15 end
16 config.vm.define "sensor" do |sensor|
17 sensor.vm.box = "iotBox"

57

18 sensor.vm.network "private_network",
19 ip: "10.1.0.3",
20 netmask: "255.255.255.0",
21 virtualbox__intnet: "private_net"
22 sensor.vm.hostname = "sensor"
23 sensor.vm.provision :shell , path: "scripts/setupDevice.sh", env: {

"IPADDRESS" => "10.1.0.3"}
24 sensor.vm.provider "virtualbox" do |vb|
25 vb.name = "sensor"
26 vb.cpus = 1
27 vb.memory = 1024
28 vb.customize ["modifyvm", :id, "--cpuexecutioncap", "20"]
29 end
30 end
31 #Start
32 end

Listing 15. The modified templates/Vagrantfile.template

This template adds the sensor, which will host the assessed application. The added sensor
has the same parameters as the base devices added to the environment and runs the same
setup script as mentioned previously, which sets up the private Ethereum chain used in
this test.

Configuration files regarding the sensor were manually created. The wallet address
and key were manually created and stored in the files secrets/addresses/sensor and
secrets/keys/sensor. This was done since the sensor is static in these tests and does
not require changes. Then, the rest of the configurations regarding keys and addresses
were set up using the helper script secrets/genSecrets.sh provided in section 6.2.

6.3.3 Testing Methods

The application scenario to be tested is a situation where the sensor has to serve many
vehicles. This could be, for example, a traffic jam. In this scenario, a single IoT sensor is
responsible for replying to the requests of many vehicles trying to create a request for
the sensor. To simplify the testing scenario, the WiFi communication between the sensor
and vehicles is simulated as a stable connection, which means that issues with WiFi in
this scenario do not exist.

The vehicles in this testing scenario are simulated. The vehicles run the following
simulated testing client:

1 import requests
2 import sys
3 import time
4

5 walletAddr = sys.argv [1]
6 hostname = sys.argv [2]

58

7 print (walletAddr)
8 print(hostname)
9 url = 'http ://10.1.0.3:8080 '

10 data = {'address ': walletAddr}
11 started = 0
12 def post():
13 x = requests.post(url , json = data)
14 print(x.text)
15 while started == 0:
16 try:
17 post()
18 started = 1
19 except:
20 continue
21 times =[]
22 for i in range (10):
23 start = time.time()
24 post()
25 end = time.time()
26 times.append(end -start)
27 path = "/vagrant/apps/" + hostname
28 print(path)
29 outputFile = open(path ,'w')
30 outputFile.write(str(times))
31 outputFile.close()

Listing 16. The simulated vehicle client

The time it takes for a vehicle to complete a request is measured to assess how the
application in the sensor scales. This is done by measuring the time to complete the
request inside the simulated vehicle clients. Then this request is repeated ten times by
each simulated vehicle client. These requests are made simultaneously to the sensor to
estimate the impact of increased requests on the request times. The simulated vehicle
client application creates requests to the sensor until it receives a valid response. At this
point, the countdown of timed requests begins. This test is then run with the following
amount of simulated vehicles: 3, 9, 6, and 12.

To assist in running the vehicle clients, a helper shell script runVehicles.py was
created. The contents of the script are listed below:

1 num=1
2 for i in $(seq 1 $num)
3 do
4 wallet=`printf "0x%s" "$(cat secrets/addresses/device$i)"`
5 vagrant ssh device$i -c "tmux new -session -d -s test_session \"

python3 /vagrant/apps/SimulatedVehicleClient.py $wallet device$i\"
"

6 done

59

Listing 17. The helper script runVehicles.py

The variable num is used to specify how many vehicle clients are tested. The command
that runs the simulated vehicle client utilizes tmux, to run the applications in the back-
ground. Once this shell script has finished, the sensor application can be started, and thus
the test is started.

The expectation in this testing case is that the average response time should increase
as the number of clients increases since the sensor should get overloaded with requests,
thus extending the response time or failing the response.

6.3.4 Results

The results of the test are presented in Table 7. These results are not as expected. The
average time to complete a request should increase, or requests should be dropped as the
sensor gets increased amounts of requests. However, these results show that something
is causing the time of completed requests to decline after a certain point. The tests were
rerun, and while the tests were ongoing, the command sudo top was run on the host
VM inside the Google Cloud. This revealed that the conducted tests used 100% of the
available CPU power inside the VM. This, in turn, resulted in VirtualBox freezing the
execution of some devices, which in turn resulted in them not properly measuring the
time it took to get the answer for the request.

Vehicle device count Amount of failed requests Average time to complete a request(s)
3 0/30 2.896209081
6 0/60 6.102432267
9 0/90 6.008555471
12 0/120 4.815656743

Table 7. Results of validation test 2

Since these results can not be used to assess the application’s scalability, we modified
the simulated vehicle client to address the issue of resource usage by adding a 1-second
delay after each request using the time.sleep(1) in the simulated vehicle client. After
the initial test, it was noticed that not adding a delay between each request would be
unreasonable since, in the real-world scenario, the vehicles would not create requests
immediately after receiving a response from the sensor. Instead, they would have a delay
consisting of the rediscovery of the sensor. Additionally, the number of generated vehicle
clients did not utilize all 24 cores of the VM since only 12 were generated. To fix these
issues, the tests were rerun with the modified vehicle application and with more devices:
1,5,10,15, and 20. The results for rerunning the tests are presented in Table 8: The results
of rerunning the tests presented values closer to our expectations. To visualize these

60

Vehicle device count Amount of failed requests Average time to complete a request(s)
1 0/10 1.001340389
5 0/50 5.135305734
10 0/100 10.07572883
15 2/150 10.79422091
20 3/200 14.82393002

Table 8. Results of retesting validation test 2

results, we plotted the rerun results, which is presented in Figure 13. In this plot, the
x-axis contains the number of vehicle clients that send requests to the sensor. The y-axis
presents the meantime of a successful request. The data points are plotted as red dots.
A linear dashed line connects these data points and thus estimates the average creation
times of other devices.

Figure 13. Plot of retesting validation test 2.

The results of the retest seem to match the expectations: As the amount of requests
created by the vehicles increases, the mean time of requests increases, and when the
request time is too long, requests start to fail. However, the request time should first
increase linearly until requests start to fail, at which point the meantime of a request
should start to settle since failed requests are not counted. The plot shows an anomaly in
the data between 10 and 15 devices, where the request time is nearly identical for 10 and
15 devices.

The tested application’s scalability seems limited based on the results of the tests. At
15 devices, the application cannot respond to all requests, which could be considered

61

a failure, meaning that the application is not scalable. Additionally, at the start, the
response time seems to increase linearly with the number of requests the application
receives, which means the application is not scalable. This could be fixed by assigning
more threads to the sensor to run the application since it serves requests using only one
thread.

6.4 Summary
This chapter presented the methods that were used to validate the proposed tool. The
validation tests that were conducted were presented. This included two tests: the first
test targeted validating the basic functionality of using the tool by running a custom
Ethereum blockchain using the provided tool. The second test then tested the scalability
of a blockchain-enabled IoT application in the IoV domain. These tests had common
variables which were discussed. The results of the first test were as expected. However,
the second test failed the first time, which resulted in retesting. The retest matched
expectations and concluded that the tested application was not scalable.

7 Discussion
This chapter addresses RQ3 by discussing our validation methods. Section 7.1 discusses
the feasibility of our scalability testing tool. Section 7.2 discusses the possible threats
to the validity of our tool, such as environment creation times, and presents possible
solutions to these threats.

7.1 Evaluating the feasibility of the tool
We provided a method of evaluating the feasibility of a scalability testing tool for
blockchain-enabled IoT applications. This method used two validation tests; The first
validation test was used to verify that the tool’s basic functionality exists. Then, a scala-
bility test was conducted, where the scalability of a blockchain-enabled IoT application
was tested by measuring the mean time of application requests in contrast to increased
clients.

The results of the first test matched expectations. The proposed tool was proven to
generate virtual testing environments where blockchain-enabled IoT applications can be
run. The tool functioned as expected in these tests. However, The second test revealed
a major flaw in the environment where the test was run. The problem with the second
test was that the processor capacity was maxed, which means that the test results were
unreliable. To address this issue, the vehicle client application was modified to have
a small delay between requests. Retesting with the modified vehicle client resulted in
expected results. However, from the results, it is visible that the tool should be tested

62

with more devices. The tool was limited to 24 virtual devices since a 24-core VM
was used, which limits the maximum device count in this scenario to 24 devices (of
which a maximum of 20 + 2 were used). The Google Cloud computing engine offers
more powerful VMs, which could be used to run the tests. However, these VMs are
unavailable for users unless the users specifically request a VM with more processing
power. Additionally, the retest of the application resulted in data that had an anomaly.
This anomaly raises the question of whether the data from the tests be trusted since the
first run also had false data. Due to these reasons, we conclude that the proposed tool
is feasible to assess the scalability of blockchain-enabled IoT devices, but only up to a
maximum of 24 devices. However, the tool could be feasible to use with more devices if
more data is collected by upgrading the host server and rerunning the tests with more
devices.

7.2 Threats to Validity and Possible Solutions
The main threat to the tool’s validity is the limited number of devices it can create. Even
with high core counts, such as 124-core CPUs, it still limits the scalability tests to 124
devices. This could be fixed by changing the VM provider from VirtualBox to another
VM provider, which supports assigning a single core to many VMs.

The limited amount of devices is not the only threat. Currently, the environment’s
startup time linearly increases as the number of devices increases. This is due to the
way that Vagrant provisions machines consecutively. This can be an issue if this tool
is deployed to a CI pipeline for testing or if the tests are conducted on a large scale
since the tool creation time scales linearly with the number of devices created. One
possible solution to improve the startup time would be to run vagrant with the option
–parallel. However, VirtualBox does not support this command, and thus, it was not
used in the environment. To solve this issue, another Vagrant provider, such as the
previously mentioned Amazon EC2 cloud provider, could create these devices parallelly
directly to the cloud.

One of the gaps mentioned in the previously implemented testbeds was that many
utilized a physical testing environment to test their proposed blockchain-enabled IoT
applications. The cost of these physical testing environments was one of the factors
mentioned in this thesis as a motivator to virtualize the tool. However, running these tests
in the cloud is not free since Google and other cloud providers charge for their services.
The total cost for the second validation test was around 34C (including debugging and
development). This is noticeably cheaper than purchasing 20 separate devices and setting
them up manually. However, running the tests in the cloud could be more expensive than
building a physical testing network if these tests are repeated. For example, if the tool is
used inside a CI pipeline, it could be run multiple times, which may be more expensive
than investing in the hardware that runs the tests. Thus the tool should be utilized for
scalability assesments.

63

8 Conclusion
This work explored the current scalability issues that blockchain-enabled IoT applications
face. First, we conducted a SLR to assess what scalability issues exist and what tools the
current literature provides to assess scalability. Based on the literature review results, we
proposed a method to assess the scalability of blockchain-enabled IoT applications. From
this method, it was noticed that there exists a need for a scalability testing tool. We then
proposed a method for designing, implementing, and validating a tool that could be used
in assessing the scalability of blockchain-enabled IoT applications. We then developed
the tool for assessing the scalability of blockchain-enabled IoT applications. The tool was
built using various technologies, such as Vagrant, VirtualBox, Python, and shell scripts.
The tool was then tested for validity by running two separate tests. The first test assessed
the validity of the tool’s basic functionality. In the first test, the tool created a simulated
blockchain network running on IoT devices multiple times. The second test examined
the validity of using the tool for assessing the scalability of blockchain-enabled IoT
applications. This was done by creating a POC application, which was then scalability
tested using the provided tool. Then we examined the results of both tests and estimated
the feasibility of using the tool to assess scalability. We concluded that the proposed
tool is feasible to assess the scalability of blockchain-enabled IoT devices, but only in
situations where the device count is a maximum of 24. This is due to the limitations in
the tool and the conducted tests.

8.1 Research Question Answers
In this section, we reintroduce our research questions and present the answers to these
research questions. The main research question of this thesis was How to conduct a
scalability assessment for blockchain-enabled IoT applications. This research question
is important since blockchain-enabled IoT applications have seen use in many different
areas, and the area is not widely researched. Our main research question resulted in three
sub-research questions, which were:

1. RQ1 What are the primary challenges and limitations in testing the scalability of
blockchain-enabled IoT applications?

2. RQ2 How to develop a scalability testing tool for blockchain-enabled IoT applica-
tions?

3. RQ3 How to evaluate the feasibility of the scalability testing tool?

We addressed RQ1 by conducting a SLR. Chapter 3 provided an answer to this
research question. We answered this question by first looking at the scalability issues
of blockchain-enabled IoT applications. The main scalability issues were hardware,

64

consensus, and throughput limitations. We then examined the current status of testing
methods and, from them, examined the primary challenges and limitations in testing the
scalability of blockchain-enabled IoT applications.

We observed that the primary challenges and limitations are the following. Firstly,
there is little literature regarding the matter. Secondly, no current tools exist for generating
testing environments for assessing the scalability of blockchain-enabled IoT applications.

RQ2 was addressed by Chapters 2, 4 and 5. This question was first addressed in 3 by
researching previous implementations in the literature. However, none were found, and
thus we answered this question by designing and implementing a scalability testing tool.

Our proposal for this question is as follows. First, the tool must be designed. This
includes the identification of stakeholders, modeling the goals of those stakeholders, and
then creating specifications and requirements for the tool. Secondly, the tool needs to be
implemented. This includes the selection of underlying technologies and implementation
of the tool.

Finally RQ3 was addressed by by Chapters 6 and 7. These chapters provided tests
to evaluate the feasibility of using the tool to assess scalability. Then the results were
evaluated for the tests.

We proposed the following method for validating scalability assessment tools for
this question. Firstly, validation tests need to be conducted on the test. We chose to run
two validation tests, one for validating the basic functionality and one for testing a POC
application’s scalability. Secondly, the results of the tests need to be evaluated. With our
tool, we evaluated that it is unsuitable for scalability testing over 24 devices due to the
tool’s limitations and the tests’ results.

8.2 Future Works
This section discusses the possible future works of this thesis Due to the time limitations
of the thesis, many optimizations to the tool were not implemented. These optimizations
are a possible direction for future works. Additionally, only one type of blockchain
technology was used with the tool, which creates an opportunity to research the use of
other blockchain technologies on the tool. The tool could also be utilized in other areas
regarding blockchain-enabled IoT applications, such as security and privacy, which were
not in the scope of this thesis. This is further discussed as a potential future work.

8.2.1 Upgrading the device count of the tool

The validation tests only created 22 devices (20 vehicles, one sensor, and one bootstrap-
ping node). To address this issue, one possible future research direction would be to rerun
the test with more devices. One option would be to use a host that provides additional
CPU cores. Then, the tests could be conducted for more devices, allowing more accurate
feasibility estimation for the provided tool.

65

Another possibility to address this issue would be to switch the VM provider of
Vagrant, which is currently VirtualBox. VirtualBox has many limitations, which could
be mitigated by changing the provider. One possible solution would be using a Cloud
provider to create the IoT devices. For example, the Amazon EC2 platform is supported
as a provider via a Vagrant plugin 8. This would allow the creation of IoT devices in the
cloud and, as a result, would allow larger-scale tests to be completed and provide faster
environment creation times since devices could be created in parallel.

8.2.2 Using Different Blockchain

This thesis used only a private Ethereum chain in the tests of the tool. However, other
blockchains exist, which could be a possible future work direction from this thesis.
Additionally, these tests could be repeated by using another client for Ethereum, which
could be a possible research direction. Another possibility would be to conduct the tests
on another blockchain-enabled IoT application.

8.2.3 Tool usage in other Research Areas

The proposed tool was designed to test the scalability of blockchain-enabled IoT applica-
tions. However, the tool could be used for testing other applications as well. Security
research revolving around blockchain-enabled IoT applications could utilize the tool.
One possible research direction would be to deploy a malicious node in the network
using the tool and then research what malicious activities the adversary could accomplish.
Another research direction would be to use the tool for privacy analysis in blockchain-
enabled IoT. An application could be deployed using the tool, and then the privacy of
that application could be analyzed.

8https://github.com/mitchellh/vagrant-aws

66

https://github.com/mitchellh/vagrant-aws

References
[1] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business & Infor-

mation Systems Engineering, vol. 59, pp. 183–187, Jun 2017.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized
business review, p. 21260, 2008.

[3] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, “An overview of internet of vehicles,”
China Communications, vol. 11, no. 10, pp. 1–15, 2014.

[4] H. Atlam, A. Alenezi, M. Alassafi, and G. Wills, “Blockchain with internet of things:
Benefits, challenges, and future directions,” International Journal of Intelligent
Systems and Applications, vol. 10, no. 6, pp. 40–48, 2018.

[5] L. Tseng, X. Yao, S. Otoum, M. Aloqaily, and Y. Jararweh, “Blockchain-based
database in an iot environment: Challenges, opportunities, and analysis,” vol. 23,
p. 2151–2165, sep 2020.

[6] S. Singh, A. S. M. S. Hosen, and B. Yoon, “Blockchain security attacks, challenges,
and solutions for the future distributed iot network,” IEEE Access, vol. 9, pp. 13938–
13959, 2021.

[7] S. Latif, Z. Idrees, Z. e Huma, and J. Ahmad, “Blockchain technology for the
industrial internet of things: A comprehensive survey on security challenges, archi-
tectures, applications, and future research directions,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 11, 2021.

[8] M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, “Security and privacy
for green iot-based agriculture: Review, blockchain solutions, and challenges,”
IEEE Access, vol. 8, pp. 32031–32053, 2020.

[9] P. Ratta, A. Kaur, S. Sharma, M. Shabaz, and G. Dhiman, “Application of
blockchain and internet of things in healthcare and medical sector: Applications,
challenges, and future perspectives,” Journal of Food Quality, vol. 2021, 2021.

[10] J. Sengupta, S. Ruj, and S. Das Bit, “A comprehensive survey on attacks, security
issues and blockchain solutions for iot and iiot,” J. Netw. Comput. Appl., vol. 149,
jan 2020.

[11] P. K. Sharma, N. Kumar, and J. H. Park, “Blockchain technology toward green iot:
Opportunities and challenges,” IEEE Network, vol. 34, no. 4, pp. 263–269, 2020.

67

[12] M. A. Walker, A. Dubey, A. Laszka, and D. C. Schmidt, “Platibart: A platform for
transactive iot blockchain applications with repeatable testing,” in Proceedings of
the 4th Workshop on Middleware and Applications for the Internet of Things, M4IoT
’17, (New York, NY, USA), p. 17–22, Association for Computing Machinery, 2017.

[13] M. D. Hill, “What is scalability?,” ACM SIGARCH Computer Architecture News,
vol. 18, no. 4, pp. 18–21, 1990.

[14] L. Duboc, D. Rosenblum, and T. Wicks, “A framework for characterization and anal-
ysis of software system scalability,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pp. 375–384, 2007.

[15] G. Bigini, V. Freschi, and E. Lattanzi, “A review on blockchain for the internet of
medical things: Definitions, challenges, applications, and vision,” Future Internet,
vol. 12, no. 12, pp. 1–16, 2020.

[16] B. Cao, Y. Li, L. Zhang, L. Zhang, S. Mumtaz, Z. Zhou, and M. Peng, “When
internet of things meets blockchain: Challenges in distributed consensus,” vol. 33,
p. 133–139, nov 2019.

[17] W. Viriyasitavat, T. Anuphaptrirong, and D. Hoonsopon, “When blockchain meets
internet of things: Characteristics, challenges, and business opportunities,” Journal
of Industrial Information Integration, vol. 15, pp. 21–28, 2019.

[18] A. Mitra, B. Bera, and A. K. Das, “Design and testbed experiments of public
blockchain-based security framework for iot-enabled drone-assisted wildlife moni-
toring,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 1–6, 2021.

[19] X. Wang, G. Yu, X. Zha, W. Ni, R. Liu, Y. Guo, K. Zheng, and X. Niu, “Capacity
of blockchain based internet-of-things: Testbed and analysis,” Internet of Things
(Netherlands), vol. 8, 2019. cited By 21.

[20] H. Sun, S. Hua, E. Zhou, B. Pi, J. Sun, and K. Yamashita, “Using ethereum
blockchain in internet of things: A solution for electric vehicle battery refueling,”
(Berlin, Heidelberg), p. 3–17, Springer-Verlag, 2018.

[21] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information Systems
Frontiers, vol. 17, pp. 243–259, Apr 2015.

[22] A. Taivalsaari and T. Mikkonen, “On the development of iot systems,” in 2018 Third
International Conference on Fog and Mobile Edge Computing (FMEC), pp. 13–19,
2018.

68

[23] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world: Software
challenges in the iot era,” IEEE Software, vol. 34, pp. 72–80, 01 2017.

[24] B. Bera, S. Saha, A. K. Das, N. Kumar, P. Lorenz, and M. Alazab, “Blockchain-
envisioned secure data delivery and collection scheme for 5g-based iot-enabled
internet of drones environment,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 8, pp. 9097–9111, 2020.

[25] I. Mistry, S. Tanwar, S. Tyagi, and N. Kumar, “Blockchain for 5g-enabled iot for
industrial automation: A systematic review, solutions, and challenges,” Mechanical
Systems and Signal Processing, vol. 135, p. 106382, 2020.

[26] B. Bera, S. Saha, A. K. Das, and A. V. Vasilakos, “Designing blockchain-based
access control protocol in iot-enabled smart-grid system,” IEEE Internet of Things
Journal, vol. 8, no. 7, pp. 5744–5761, 2021.

[27] A. Dua, N. Kumar, and S. Bawa, “A systematic review on routing protocols for
vehicular ad hoc networks,” Veh. Commun., vol. 1, pp. 33–52, 2014.

[28] V. Buterin, “Ethereum white paper: A next generation smart contract & decentral-
ized application platform,” 2013.

[29] L. Duboc, E. Letier, and D. S. Rosenblum, “Systematic elaboration of scalability
requirements through goal-obstacle analysis,” IEEE Transactions on Software
Engineering, vol. 39, no. 1, pp. 119–140, 2012.

[30] L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A survey of iot applica-
tions in blockchain systems: Architecture, consensus, and traffic modeling,” ACM
Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–32, 2020.

[31] A. Alrehaili, A. Namoun, and A. Tufail, “A comparative analysis of scalability
issues within blockchain-based solutions in the internet of things,” International
Journal of Advanced Computer Science and Applications, vol. 12, no. 9, 2021.

[32] B. Koteska, E. Karafiloski, and A. Mishev, “Blockchain implementation quality
challenges: a literature,” in SQAMIA 2017: 6th workshop of software quality,
analysis, monitoring, improvement, and applications, vol. 1938, pp. 8–8, 2017.

[33] S. Zhu, S. Yang, X. Gou, Y. Xu, T. Zhang, and Y. Wan, “Survey of testing meth-
ods and testbed development concerning internet of things,” Wireless Personal
Communications, pp. 1–30, 2022.

[34] Z. Rahman, X. Yi, I. Khalil, and A. Kelarev, “Blockchain for iot: A critical
analysis concerning performance and scalability,” in Quality, Reliability, Security

69

and Robustness in Heterogeneous Systems: 17th EAI International Conference,
QShine 2021, Virtual Event, November 29–30, 2021, Proceedings 17, pp. 57–74,
Springer, 2021.

[35] A. I. Sanka and R. C. Cheung, “A systematic review of blockchain scalability:
Issues, solutions, analysis and future research,” Journal of Network and Computer
Applications, vol. 195, p. 103232, 2021.

[36] A. Luntovskyy and L. Globa, “Performance, reliability and scalability for iot,” in
2019 International Conference on Information and Digital Technologies (IDT),
pp. 316–321, IEEE, 2019.

[37] W. T. Pereira, L. C. De Biase, G. Fedrecheski, and M. K. Zuffo, “A virtualized
testbed for iot: Scalability for swarm application,” in 2023 IEEE 20th Consumer
Communications & Networking Conference (CCNC), pp. 1074–1079, IEEE, 2023.

[38] T. go-ethereum Authors, Go-ethereum documentation.

[39] Oracle, VirtualBox documentation.

[40] “Introduction: Vagrant: Hashicorp developer.”

[41] M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, “A survey on the
adoption of blockchain in iot: challenges and solutions,” Blockchain: Research and
Applications, vol. 2, no. 2, p. 100006, 2021.

[42] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of blockchain:
A survey,” IEEE Access, vol. 8, pp. 16440–16455, 2020.

[43] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature
reviews in software engineering,” vol. 2, 01 2007.

[44] P. Urien, “Blockchain iot (biot): A new direction for solving internet of things
security and trust issues,” 2019.

[45] B. K. Mohanta, D. Jena, S. Ramasubbareddy, M. Daneshmand, and A. H. Gandomi,
“Addressing security and privacy issues of iot using blockchain technology,” IEEE
Internet of Things Journal, vol. 8, no. 2, pp. 881–888, 2021.

[46] A. Dhar Dwivedi, R. Singh, K. Kaushik, R. Rao Mukkamala, and W. Alnumay,
“Blockchain and artificial intelligence for 5g-enabled internet of things: Challenges,
opportunities, and solutions,” Transactions on Emerging Telecommunications Tech-
nologies, 2021.

70

[47] M. Torky and A. Hassanein, “Integrating blockchain and the internet of things in
precision agriculture: Analysis, opportunities, and challenges,” Computers and
Electronics in Agriculture, vol. 178, 2020.

[48] C. Ye, W. Cao, and S. Chen, “Security challenges of blockchain in internet of things:
Systematic literature review,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 32, no. 8, 2021.

[49] M. Jan, J. Cai, X.-C. Gao, F. Khan, S. Mastorakis, M. Usman, M. Alazab, and
P. Watters, “Security and blockchain convergence with internet of multimedia things:
Current trends, research challenges and future directions,” Journal of Network and
Computer Applications, vol. 175, 2021.

[50] R. Huo, S. Zeng, Z. Wang, J. Shang, W. Chen, T. Huang, S. Wang, F. Yu, and Y. Liu,
“A comprehensive survey on blockchain in industrial internet of things: Motivations,
research progresses, and future challenges,” IEEE Communications Surveys and
Tutorials, vol. 24, no. 1, pp. 88–122, 2022.

[51] J. Li, A. Maiti, M. Springer, and T. Gray, “Blockchain for supply chain qual-
ity management: challenges and opportunities in context of open manufacturing
and industrial internet of things,” International Journal of Computer Integrated
Manufacturing, vol. 33, no. 12, pp. 1321–1355, 2020.

[52] R. Memon, J. Li, M. Nazeer, A. Khan, and J. Ahmed, “Dualfog-iot: Additional
fog layer for solving blockchain integration problem in internet of things,” IEEE
Access, vol. 7, pp. 169073–169093, 2019.

[53] F. Chen, Z. Xiao, L. Cui, Q. Lin, J. Li, and S. Yu, “Blockchain for internet of
things applications: A review and open issues,” Journal of Network and Computer
Applications, vol. 172, 2020.

[54] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke,
“Blockchain technologies for the internet of things: Research issues and challenges,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2188–2204, 2019.

[55] B. Bhushan, C. Sahoo, P. Sinha, and A. Khamparia, “Unification of blockchain
and internet of things (biot): Requirements, working model, challenges and future
directions,” Wirel. Netw., vol. 27, p. 55–90, jan 2021.

[56] C. Peng, C. Wu, L. Gao, J. Zhang, K.-L. Yau, and Y. Ji, “Blockchain for vehicular
internet of things: Recent advances and open issues,” Sensors (Switzerland), vol. 20,
no. 18, pp. 1–37, 2020.

71

[57] A. Sultan, M. A. Mushtaq, and M. Abubakar, “Iot security issues via blockchain: A
review paper,” in Proceedings of the 2019 International Conference on Blockchain
Technology, ICBCT 2019, (New York, NY, USA), p. 60–65, Association for Com-
puting Machinery, 2019.

[58] M. U. Hassan, M. H. Rehmani, and J. Chen, “Privacy preservation in blockchain
based iot systems: Integration issues, prospects, challenges, and future research
directions,” Future Gener. Comput. Syst., vol. 97, p. 512–529, aug 2019.

[59] N. Fabiano, “Internet of things and blockchain: legal issues and privacy. the chal-
lenge for a privacy standard,” vol. 2018-January, pp. 727–734, 2018.

[60] M. Ali, H. Karimipour, and M. Tariq, “Integration of blockchain and federated
learning for internet of things: Recent advances and future challenges,” Computers
and Security, vol. 108, 2021.

[61] B. Dinesh, B. Kavya, D. Sivakumar, and M. R. Ahmed, “Conforming test of
blockchain for 5g enabled iot,” in 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI), pp. 1153–1157, 2019.

[62] J. Fat and H. Candra, “Blockchain application in internet of things for securing
transaction in ethereum testnet,” vol. 1007, 2020. cited By 2.

[63] S. Eisele, I. Mardari, A. Dubey, and G. Karsai, “Riaps: Resilient information archi-
tecture platform for decentralized smart systems,” in 2017 IEEE 20th International
Symposium on Real-Time Distributed Computing (ISORC), pp. 125–132, 2017.

[64] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger fabric: A distributed
operating system for permissioned blockchains,” in Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, (New York, NY, USA), Association for Comput-
ing Machinery, 2018.

[65] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support
paas,” in 2014 IEEE International Conference on Cloud Engineering, pp. 610–614,
2014.

72

Acknowledgements about the use of AI tools
This thesis utilized two different AI tools in the writing process. Most notably, the
Grammarly Chrome plugin 9 developed by Grammarly Inc. (2023) was used. The Gram-
marly Chrome plugin is an AI tool that can check grammar, spelling, and punctuation.
Grammarly was utilized in this thesis to fix grammatical errors and rephrase sentences.
The Chrome plugin of the tool was used with version 14.1119.0.

The second AI tool utilized in this thesis was ChatGPT 3.510 (OpenAI, personal
communication, 2023). ChatGPT was utilized to overcome writer’s block and as a
brainstorming tool. ChatGPT is a language model chatbot developed by OpenAI (2023).

9https://app.grammarly.com/
10https://openai.com/blog/chatgpt

73

https://app.grammarly.com/
https://openai.com/blog/chatgpt

Appendix A: Issues of Blockchain-enabled IoT Applica-
tions

St
ud

y
Is

su
e

ca
te

go
ry

D
ir

ec
ts

ca
la

bi
lit

y
is

su
es

Pr
iv

ac
y

&
se

cu
ri

ty
is

su
es

So
ci

al
&

le
ga

li
ss

ue
s

L
im

ite
d

st
or

ag
e

L
im

i-
te

d
pr

oc
es

-
si

ng
po

w
er

T
hr

o-
ug

hp
ut

Po
W

in
ef

fic
i-

en
cy

N
et

-
w

or
k

lim
it-

at
io

ns

D
ev

ic
e

se
cu

ri
ty

U
se

r
pr

iv
ac

y

Sm
ar

t
C

on
t-

ra
ct

se
cu

ri
ty

C
om

-
bi

ne
d

at
ta

ck
s

Tr
an

s-
ac

tio
n

pr
iv

ac
y

Im
pl

em
-

en
ta

tio
n

co
st

s

L
ac

k
of te

ch
-

ni
ca

l
st

an
d-

ar
ds

L
ac

k
of L

eg
al

st
an

d-
ar

ds

L
ac

k
of ex

p-
er

tis
e

[7
]

x
x

[4
]

x
x

x
x

x
[8

]
x

x
x

[5
]

x
x

[4
8]

x
x

x
x

x
[6

]
x

x
x

x
[1

5]
x

x
[4

7]
x

x
[9

]
x

x
[4

9]
x

x
x

x
x

[5
0]

x
x

x
[1

6]
x

x
[5

1]
x

x
x

x
[1

1]
x

x
x

x
x

[1
0]

x
x

[1
7]

x
x

[5
2]

x
[5

3]
x

x
x

x
x

[5
4]

x
x

[5
5]

x
x

x
[5

6]
x

[6
0]

x
x

[5
7]

x
[5

8]
x

[5
9]

x
x

[4
6]

x
x

74

Appendix B: User Guide for the Tool
This Appendix describes how the virtual testing environment tool can be installed,
deployed, and modified to be used with other IoT-based applications. A quick setup
guide is demonstrated in a demo video.

Github Repository
The GitHub repository of the tool is located at https://github.com/SanttuSi/IoTSimulation.
The tool contains three branches. The first branch, the main branch, contains the base ver-
sion of the tool. The second branch is called the validationTest1 branch and contains the
source code used in the first validation test. The third branch is called the validationTest2
branch and contains the source code used in the second validation test.

Installing dependencies and downloading the tool
The tool uses multiple different CLI tools that are included with Ubuntu 20.04.6. How-
ever, using Ubuntu 20.04.6 is not required to use the tool but may require installing some
additional CLI tools. In addition to these tools, the environment uses some programs
not included in Ubuntu 20.04.6. The programs that are not included in Ubuntu 20.04.6
and are a prerequisite for the environment are VirtualBox, Vagrant, and the eth-keys and
eth-hash[pycryptodome] Python module. These programs can be installed by using the
following commands in a Linux bash terminal:

• sudo apt-get install virtualbox

• wget https://releases.hashicorp.com/vagrant/2.3.2/vagrant_2.3.2-1_amd64.deb
sudo apt install ./vagrant_2.3.2-1_amd64.deb
vagrant plugin install vagrant-vbguest

• sudo apt install pip

• pip install eth-keys

After installing the dependent programs, the environment repository can be downloaded
by utilizing the git program:

• git clone -b validationTest2 git@github.com:SanttuSi/IoTSimulation.git

75

https://www.youtube.com/watch?v=gT7brY6Abfc
https://github.com/SanttuSi/IoTSimulation

Setting up and deploying the environment
Once the installation is complete, the user can now generate the private keys, wallet
addresses, and the genesis.json file. The user can either manually do this or the user can
navigate to the folder secrets/ and run the script:
./generateSecrets.sh
This script automatically generates three private Ethereum keys and 3 Ethereum wallet
addresses. The keys are stored in the folder secrets/keys/, and the addresses are stored in
the folder secrets/addresses/. The genesis.json file is stored in the secrets/ folder.

It is also possible to generate different amounts of keys and addresses for the environ-
ment. For example, if the ./generateSecrets.sh script is executed with the following
format ./generateSecrets.sh -n 10, the script will generate ten keys and ten wallet
addresses and add funds to those wallets in the generated genesis.json file.

Once the setup is complete, the user can generate the environment. From the project’s
root folder, the user can run the ./startup.sh script, which deploys the entire environ-
ment and starts up the application on the nodes. By default, the script brings up 3 IoT
devices. The number of nodes can be modified by providing the flag -n paired with the
number of nodes, similar to the ./generateSecrets.sh script.

Reconfiguring parameters for the environment
This environment can be used to test out other blockchain-enabled IoT applications.
However, it requires modifications to some of the configuration files in the project. Many
files in the environment can be configured. However, from a user’s perspective, the most
important configuration files allow to change the properties of nodes or the application
deployed on the nodes. These configuration files are listed in Table 7. The table presents
the use case of the file in the environment and what possible modifications the user can
make to these files.

76

File name Description Possible modifications

iotBox/Vagrantfile
Used to create the base
OS to be used in all devices Using a different operating system

iotBox/setup.sh
Used to provision
the base OS in iotBox/Vagrantfile Installing a different application

scripts/setupBootNode.sh
Used to setup
and run the boot node application

Setup a different boot node,
setup a miner for the network

scripts/startup.sh
Used to setup
and run the Geth application for the
IoT devices

Setup and run a different application

templates/Vagrantfile.template

Used to configure the
final Vagrantfile and
used to define static nodes,
such as bootnodes

Defining a miner for the network

templates/device.template
Used to define the hardware
and networking properties of each node

Using other hardware configurations,
reconfiguring the network

templates/genesis.json.template
Used to define the genesis block of
the private Ethereum chain on the network

Using different consensus method,
starting from a different block

Table 9. Configuration files, their purpose, and possible modifications in them

77

Appendix C: Licence

Non-exclusive license to reproduce thesis and make thesis public
I, Heikki Santeri Sipilä,

(author’s name)

1. Herewith grant the University of Tartu a free permit (non-exclusive license) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Scalability Assessment in Blockchain-enabled IoT Applications,
(title of thesis)

supervised by Mubashar Iqbal, Abasi-amefon Obot Affia and Russell W. F. Lai.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons license CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe on other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Heikki Santeri Sipilä
11/08/2023

78

	Introduction
	Scope
	Problem Statement
	Research Questions
	Contributions
	Practical Significance
	Thesis Structure

	Background
	Internet of Things (IoT)
	Blockchain
	Ethereum Protocol
	Blockchain-enabled IoT Applications

	Scalability in Blockchain-enabled IoT Applications
	Scalability Testing in Blockchain-enabled IoT
	Geth Client
	Virtualbox and Vagrant

	Research Gaps and Objectives

	Literature Review
	Review Method
	Data Sources
	Search Strategy
	Selection Criteria

	Review Results
	Results for [RQ1]RQ1: Scalability
	Results for [RQ2]RQ2: Scalability Testing Tools

	Discussion of Results
	Summary

	Research Method and Design
	Research Method
	Identifying Possible Stakeholders and Modelling goals
	Specification of the Tool
	Tool Requirements
	Summary

	Implementation of Scalability Assessment Tool
	Virtualization Software
	Tool Content
	Limitations of the Tool
	Summary

	 Validation and Results
	Common Variables for the Tests
	Validation Test 1: Basic Functionality
	Testing scenario
	Environment Setup
	Blockchain Setup
	Testing Method
	Results

	Validation Test 2: Using the Tool to Assess Scalability
	Tested Application
	Environment and Application Setup
	Testing Methods
	Results

	Summary

	Discussion
	Evaluating the feasibility of the tool
	Threats to Validity and Possible Solutions

	Conclusion
	 Research Question Answers
	Future Works
	Upgrading the device count of the tool
	Using Different Blockchain
	Tool usage in other Research Areas

	References
	Acknowledgements about the use of AI tools
	Appendix A: Issues of Blockchain-enabled IoT Applications
	Appendix B: User Guide for the Tool
	Appendix C: Licence

