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Analysing Information Distribution in Complex Systems

Abstract:

Information theory is a popular tool that is often utilized to capture both linear
as well as non-linear relationships between different parts of dynamical complex
systems. Recently, an extension to classical information theory called partial in-
formation decomposition has been developed, which allows one to partition the
information that two subsystems have about a third one into unique, redundant
and synergetic information terms. To calculate these novel quantities in practice,
a numerical estimator has been developed at the University of Tartu.

This thesis provides the very first examples of applying partial information de-
composition in complex systems research. Three complex systems are empirically
analysed in terms of partial information decomposition using the numerical estima-
tor. First, the synergy in the Ising model was found to peak while the system was
still in the demagnetized, disorder regime. Second, a novel automatic and quanti-
tative characterization of elementary cellular automata based on the information
distribution in the automata was obtained. Last, feedforward neural networks
were discovered not to be amenable to analysis with the current tools. However, it
was argued that analysing recurrent neural networks could yield more interesting
results.

Keywords:

Information theory, partial information decomposition, dynamical complex sys-
tems, Ising model, elementary cellular automata, feedforward neural networks,
numerical simulation

CERCS:
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Informatsiooni distributisooni analüüsimine komplekssetes
süsteemides

Lühikokkuvõte:

Informatsiooniteooria on populaarne tööriist, mida kasutatakse tihti nii lineaarsete
kui ka mittelineaarsete seoste tuvastamiseks dünaamilistes komplekssetes süsteemides.
Hiljuti välja töötatud osaline informatsiooni dekompositsioon on täiendus harili-
kule informatsiooniteooriale, mis võimaldab partitsioneerida kahe sisendi ja ühe

2



väljundi vahelise informatsiooni kolmeks komponendiks: unikaalseks, liiaseks ning
sünergiliseks informatsiooniks. Nende suuruste praktiliseks arvutamiseks on Tartu
Ülikoolis välja töötatud numbriline lahendaja.

Käesolev bakalaureusetöö on esimene omalaadne, pakkudes kolme mudeli näol
esimesi näiteid osalise informatsiooni dekompositsiooni praktilisest rakendamisest
komplekssete süsteemide analüüsimisel. Esiteks leiti, et Isingu mudelis saavutab
sünergia maksimumi korratus demagnetiseerunud režiimis enne faasinihet. Tei-
seks pakuti välja kvantitatiivne, informatsiooni jaotusel põhinev elementaarsete
rakuautomaatide karakterisatsioon. Kolmandaks arutleti, et kuigi pärileviga te-
hisnärvivõrkue analüüsimine ei osutunud osalist informatsiooni dekompositsiooni
kasutades viljakaks, võib informatsiooni jaotuse analüüsimine rekurrentsetes te-
hisnärvivõrkudes pakkuda huvitavamaid tulemusi.

Võtmesõnad:

Informatsiooniteooria, osaline informatsiooni dekompositsioon, dünaamilised komp-
lekssed süteemid, Isingu mudel, elementaarsed rakuautomaadid, pärilevivõrgud,
numbriline simulatsioon

CERCS:

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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Introduction

The universe is full of systems that comprise a large number of interacting ele-
ments. Even if the immediate local interactions of these elements are rather sim-
ple, the global observable behaviour that they give rise to is often complex. Such
systems, intuitively understood to be physical manifestations of the expression
”the whole is more than the sum of its parts”, are aptly called complex systems.
Canonical examples of complex systems include the human brain, ant colonies and
financial markets. Indeed, all these systems have many relatively simple parts (e.g.
neurons) whose collective behavior engenders complex phenomena (e.g. conscious-
ness).

In addition to physical systems, many mathematical models have been developed
that fall under the umbrella of complex systems. These theoretical models are
particularly interesting, because one has complete knowledge of how their various
parts are connected together and which rules they obey while interacting with
each other. Nevertheless, the emergent global structures are so complex that their
development is impossible to predict from the initial conditions and the interaction
rules without actually simulating the system. Cellular automata and the Ising
model are the quintessential examples of such models.

One way to analyse these complex models is to treat them as information pro-
cessing systems and measure the amount of information their elements have about
each other. Often, such analysis is done by using a well-known quantity from clas-
sical information theory, mutual information, and its various derivations, which
all measure the information between a pair of interacting agents. These measures
are particularly useful because of their sensitivity to both linear as well as non-
linear interactions between random variables. Among other things, they allow one
to quantify the amount of information that is stored [LPZ12], transferred [Sch00]
and modified [LPZ10] in different parts of the system.

However, only measuring the information that is processed between two subcom-
ponents is rather restrictive. Indeed, even the simplest of logic gates have more
interacting elements, being composed of a pair of inputs and an output. While one
could consider the inputs as a single subcomponent, this would not capture the in-
tricate interactions among the inputs themselves. In particular, components in the
input ensemble can provide information uniquely, redundantly, or synergetically
about the output [WB10].

To capture this subtle distribution of information between two inputs and a sin-
gle output, an extension to classical information theory is needed [WB10]. The
recently developed axiomatic framework called partial information decomposition
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(PID) [BRO+14] is such an extension. Computing this decomposition in actual
probability distributions is non-trivial, however. Despite the difficulties, the the-
oretical computer science and computational neuroscience groups at the Univer-
sity of Tartu have jointly managed to develop a much-needed numerical estima-
tor.

Contextually, this thesis can be viewed as an extension to the growing body of
work that analyses complex systems with information-theoretic tools. Specifically,
the overarching theme of this work is exploring the possibility of characterizing the
dynamics of complex systems in terms of PID. To this end, three different systems
are analysed. First, the dynamics of the 2-dimensional Ising model, an extensively
studied mathematical model of ferromagnetism that undergoes a phase transition,
are simulated while measuring the information distribution between the interacting
components of the system with the PID estimator. Second, the estimator is de-
ployed to measure the PID terms in elementary cellular automata. Based on these
measurements, a novel characterization of these models is obtained. Finally, the
average information distribution of another well-known class of dynamical com-
plex systems of increasing practical importance, feedforward neural networks, was
analysed. The obtained results from the latter experiment did not make it to the
main body of the thesis, but they are referred to in the discussion, which uses
them as concrete examples of promising research directions on one hand, and of
the severe limitations of the current PID framework on the other hand.

To the author’s knowledge, the work done in this thesis is the very first example
of practically applying the novel PID framework to analyse complex systems. To
facilitate further research, a significant portion of the thesis is devoted to provid-
ing a self-contained introduction to partial information decomposition and to the
necessary information theory prerequisites. A thorough introduction to both is
absent in the literature at the time of writing this thesis (a recent review article
by Wibral et al. [WLP15] being a notable exception, but it is still more focused
on neuroscientific applications specifically). Such an overview has the potential to
make the fascinating field of partial information decomposition more accessible to
researchers not necessarily trained in information theory.

The thesis is organized as follows. In Chapter 1, a sufficiently in-depth overview of
basic information theory, partial information decomposition, the Ising model and
elementary cellular automata is given. Chapter 2 outlines how the information-
theoretic tools introduced in the preceding chapter have been previously applied
to complex systems research, with a particular focus on the Ising model and el-
ementary cellular automata. Chapter 3 introduces the general methodology for
numerically simulating the dynamics of the Ising model, discusses how both com-
plex systems were analysed in terms of information distribution, and provides exact
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details of the experiments done in this thesis for reproducibility. The novel results
obtained from measuring PID terms in the Ising model and in elementary cellular
automata are given in Chapter 4. The last chapter discusses implications of the
results, takes a critical look at the possibility of using the approach taken in this
thesis to analyse other kinds of complex systems, and gives suggestions for future
work.
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1 Background

This chapter introduces the preliminary topics that are integral to understanding
and fully appreciating the methods and results of this thesis. The first section of
this chapter reviews the basics of information theory. The second section builds on
the first, introducing a recently proposed, more advanced concept of information
theory called partial information decomposition. The last two sections familiarize
the reader with the systems whose analysis with the novel information-theoretic
tools is the focus of this work. In particular, the third section focuses on the Ising
model, while the final section discusses elementary cellular automata.

The chapter assumes no previous knowledge of information theory and complex
systems science from the reader, although familiarity with elementary probability
theory is a prerequisite.

1.1 Classical information theory

In order to understand partial information decomposition, which is the mathe-
matical framework that is used in this thesis to analyse complex systems, a solid
understanding of basic information theory is essential. This section fills that gap,
giving a brief overview of the fundamental concepts of information theory. Where
appropriate, the rather abstract definitions are further elaborated on by providing
the reader with intuitive explanations, concrete examples and practical applica-
tions. The section is largely based on the second chapter of the seminal text-
book ”Elements of Information Theory” by Thomas M. Cover and Joy A. Thomas
[CT06].

In the following discussion, when not specified otherwise, it is assumed that X is a
discrete random variable with possible realizations from the set {x1, x2, ..., xn} and
a probability mass function pX(xi) = Pr{X = xi} (i = 1, ..., n). Similarly, Y is a
discrete random variable with possible realizations from the set {y1, y2, ..., ym} and
a probability mass function pY (yj) = Pr{Y = yj} (j = 1, ...,m). Furthermore, let
the joint probability mass function of the random variables X and Y be p(xi, yj) =
Pr{X = xi, Y = yj} (i = 1, ..., n; j = 1, ...,m).

1.1.1 Entropy

The most fundamental quantity of information theory is entropy, being a basic
building block of all the other information-theoretic functionals introduced in this
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thesis. The entropy of the random variable X is defined by Shannon [Sha48] as
follows:

H(X) = −
n∑
i=1

pX(xi) log pX(xi) (1)

If the base of the logarithm is 2, the units the entropy is measured in are called
bits. Another common base for the logarithm is Euler’s number e ≈ 2.718, in
which case the units of measurement are called nats. As in this definition, the
base of the logarithm is also omitted in subsequent discussion for both generality
and consistency with ”Elements of Information Theory”.

Intuitively, entropy can be thought of as the average amount of uncertainty of a
random variable. It is indeed an average, as the uncertainty of a single realization
xi of a random variable X can be quantified by − log pX(xi). Viewed from this
angle, the definition of entropy can be rewritten as an expectation of the random
variable − log p(X):

H(X) = E [− log pX(X)] = E
[
log

1

pX(X)

]
.

To see why this intuition should correspond to the mathematical definition, it is
instructive to look at a concrete example from the aforementioned book. Suppose
we have a binary random variable X with a Bernoulli distribution, defined as
follows:

X =

{
1 with probability p,

0, with probability 1− p.

Essentially, this random variable encodes a coin toss, where the probability of
flipping heads is p and the probability of flipping tails is 1− p. If p = 0.5, the coin
is considered to be unbiased, otherwise it is called biased.

Using equation 1, it is straightforward to calculate the entropy of X, given some
specific value of p. Figure 1 graphs the value of H(X) against every possible
p ∈ [0, 1]. If p ∈ {0, 1}, the outcome of the coin toss is completely deterministic,
meaning there is no uncertainty in the result whatsoever. Accordingly, the entropy
vanishes for these values of p. Conversely, when the coin is fair, one is completely
uncertain about the outcome, unable to favour neither heads or tails. Again, the
mathematical definition agrees with the intuition, as the entropy is indeed at its
maximum when p = 0.5.
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Figure 1: Entropy of X plotted against the value of p, the parameter of the
Bernoulli distribution.

Due to the fundamentality of the measure, the usage of entropy is ubiquitous
throughout science and engineering. For example, in finance, it is extensively
used in portfolio selection theory to measure the diversity and risk of the portfo-
lio [ZCT13]. In civil engineering, it is a key ingredient in structural optimization
design [DMC94] - a subfield of optimization that is concerned with improving the
design of structures with respect to various specifications (safety, cost, weight etc.).
A rather interesting example of application of entropy comes from cognitive neu-
roscience, where it has been used to characterize different states of consciousness
in the brain [CHLH+14].

1.1.2 Joint and conditional entropy

The joint entropy [CT06] of the pair (X, Y ) is defined as

H(X, Y ) = −
n∑
i=1

m∑
j=1

p(xi, yj) log p(xi, yj) (2)
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This is a direct generalization of entropy to multiple variables. Joint entropy for
more than 2 random variables can be defined analogously.

The conditional entropy [CT06] of the pair (X, Y ) is defined as

H(Y |X) = −
n∑
i=1

m∑
j=1

p(xi, yj) log p(yj|xi) (3)

Conditional entropy can be thought of as the amount of uncertainty one has about
a random variable Y , given that X has already been observed. As a special case,
if X and Y are independent, observing X does not reveal anything about Y , and
H(Y ) = H(Y |X).

The entropy of a pair of random variables is the entropy of one plus the conditional
entropy of the other [CT06]:

H(X, Y ) = −
n∑
i=1

m∑
j=1

p(xi, yj) log p(xi, yj)

= −
n∑
i=1

m∑
j=1

p(xi, yj) log pX(xi)p(yj|xi)

= −
n∑
i=1

m∑
j=1

p(xi, yj) log pX(xi)−
n∑
i=1

m∑
j=1

p(xi, yj) log p(yj|xi)

= −
n∑
i=1

pX(xi) log pX(xi)−
n∑
i=1

m∑
j=1

p(xi, yj) log p(yj|xi)

= H(X) +H(Y |X) (4)

1.1.3 Kullback-Leibler distance

Let pX(x) and qX(x) be two probability mass functions over the support of the ran-
dom variable X. The relative entropy or Kullback-Leibler distance [CT06] between
pX(x) and qX(x) is defined as

D(p||q) =
n∑
i=1

p(xi) log
pX(xi)

qX(xi)
(5)
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The above quantity is called a distance, because it can be thought of as measuring
how far two probability distributions are from each other. Importantly, the relative
entropy is non-negative, and equal to 0 exactly when the 2 distributions are equal
[CT06], again corresponding to our intuitive notion of distance. Indeed, when the
two distributions are the same, the logarithm in equation 5 evaluates to 0, which
in turn yields a relative entropy of 0. However, it must be stressed that since
the Kullback-Leibler distance is not symmetric and does not satisfy the triangle
inequality, it is not a formal distance in the mathematically rigorous sense but
rather a measure of dissimilarity.

1.1.4 Mutual information

The mutual information [CT06] between the random variables X and Y is given
by

MI(X;Y ) =
n∑
i=1

m∑
j=1

p(xi, yj) log
p(xi, yj)

pX(xi)pY (yj)
(6)

An attentive reader might notice that the mutual information is the Kullback-
Leibler distance between the joint distribution p(x, y) and the product distribution
pX(x)pY (y).

Because the mutual information is just a special case of Kullback-Leibler distance,
all the properties that hold for relative entropy must also hold for mutual informa-
tion. In particular, mutual information must be non-negative and 0 exactly when
the random variables X and Y are independent. According to the latter obser-
vation, it can be intuitively seen as measuring how far the two random variables
X and Y are from being independent. From equation 6, it is easy to verify that
mutual information is symmetric, meaning that the value of the functional does
not depend on the order of the arguments X and Y . It follows that the amount of
information X has about Y is always equal to the amount of information Y has
about X.

The picture of mutual information as a distance between two probability distribu-
tions yields a straightforward answer to the question: ”when is there no informa-
tion between the two random variables?” However, it does not help in answering
the orthogonal question: ”when is the information maximized?” To answer the
latter, the following identity, which relates mutual information directly to entropy,
is of importance:
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MI(X;Y ) =
n∑
i=1

m∑
j=1

p(xi, yj) log
p(xi, yj)

pX(xi)pY (yj)

=
n∑
i=1

m∑
j=1

p(xi, yj) log
p(xi|yj)
pX(xi)

= −
n∑
i=1

m∑
j=1

p(xi, yj) log pX(xi) +
n∑
i=1

m∑
j=1

p(xi, yj) log p(xi|yj)

= −
n∑
i=1

m∑
j=1

pX(xi)−

(
−

n∑
i=1

m∑
j=1

p(xi, yj) log p(xi|yj)

)
= H(X)−H(X|Y ) (7)

Intuitively, using identity 7, mutual information between random variables X and
Y can be thought of as the reduction in the uncertainty of X due to the knowledge
of Y [CT06]. Thus, it is maximized when knowing Y completely determines X,
yielding H(X|Y ) = 0.

1.1.5 Conditional mutual information

Let Z be a discrete random variable. The conditional mutual information [CT06]
between the random variables X and Y given Z is defined as

MI(X;Y |Z) = H(X|Z)−H(X|Y, Z) (8)

Intuitively, the conditional mutual information measures the reduction in the un-
certainty of X due to the knowledge of Y , given that Z has already been ob-
served.

Another useful property that will become important in the discussion on partial
information decomposition is the chain rule for information [CT06], which ex-
presses the mutual information between a random vector and a random variable
in terms of mutual informations between univariate random variables: 1

1Note that MI(X;Y,Z) means that the mutual information is measured between the random
variable X and the random vector (Y,Z). In particular, a semicolon (;) separates the random
vectors that the mutual information is measured between (a single random variable is considered
a univariate random vector), while a comma (,) separates the random variables in a single random
vector.
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MI(X;Y, Z) = H(Y, Z)−H(Y, Z|X)

= H(Y ) +H(Z|Y )−H(Y |X)−H(Z|Y,X)

= H(Y )−H(Y |X) +H(Z|Y )−H(Z|Y,X)

= MI(X;Y ) +MI(X;Z|Y ) (9)

When the information between two random variables is measured in a system with
many other dependent variables, conditional mutual information is used to elim-
inate the influence of the other variables, in order to isolate the two variables of
interest [WB10]. For example, it has been used to analyse the functional connec-
tivity of different brain regions in schizophrenic patients [SAG+10].

1.2 Partial information decomposition

Mutual information measures the amount of information two random variables, or
more generally, two random vectors have about each other. However, it is often
worthwhile to ask how much information does an ensemble of input (source) ran-
dom variables carry about some output (target) variable. A trivial solution would
be to measure the mutual information between the whole input ensemble consid-
ered as a single random vector and the output. However, this would not capture
the interactions between the input variables themselves. Moreover, by considering
the input ensemble as a single unit, knowledge about how the interactions between
specific individual units and the output differ is lost.

This section introduces partial information decomposition - a mathematical frame-
work for decomposing mutual information between a group of input variables and
single source variable.

1.2.1 Formulation

The simplest non-trivial system to analyse that has an ensemble of inputs and
a single output is a system with two inputs. Given this setup, one can ask how
much information does one input variable have about the output that the other
does not, how much information do they share about the output, and how much
information do they jointly have about the output such that both inputs must be
present for this information to exist.
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More formally, let Y and Z be two random variables that are considered as sources
to a third random variable X. By equation 7, the mutual information between the
pair (Y, Z) and X is defined as

MI(X;Y, Z) = H(X)−H(X|Y, Z)

The partial information decomposition framework decomposes this mutual infor-
mation into unique, redundant and complementary information terms. In the re-
maining part of this section, each of these terms is elaborated on with concrete ex-
amples, all of which are inspired by the illustrations provided in the paper ”Quan-
tifying Synergistic Mutual Information” by V.Griffith and C. Koch [GK14].

Unique information quantifies the amount of information that only one of the input
variables has about the output variable. The unique information that Y has about
the output X is denoted as UI(X : Y \ Z). Similarly, UI(X : Z \ Y ) denotes the
unique information that Z has about the target X. As an example, consider table
1, which depicts the joint distribution of the random vector (X, Y, Z). From the
table, it can be seen that the output variable X has 4 equiprobable states, each
of which is uniquely specified by the two inputs Y and Z. There is some unique
information present in both Y and Z, because they contain different information
about the output X that is not provided by the other input. Indeed, input Y
is able to differentiate between the sets {0, 1} and {2, 3}, while Z discriminates
between {0, 2} and {1, 3}.

Table 1: A joint distribution that provides an example of unique information.

Y Z X Pr
0 1 0 1/4
0 3 1 1/4
2 1 2 1/4
2 3 3 1/4

Shared information quantifies the amount of information both inputs share about
the output variable. It is also sometimes called redundant information, because
if both inputs contain the same information about the output, it would suffice
to observe only one of the input variables. The shared information is denoted as
SI(X : Y ;Z).2 Table 2 gives a toy example of shared information. The output

2To be consistent with ”Elements of Information Theory”, the notation used in this thesis for
PID terms deviates a little from the one introduced by Bertschinger et al. [BRO+14] Specifically,
a colon (:) is used to partition the set of random variables to a single output (on the left hand
side) and a set of inputs (on the right hand side). As before, a semicolon (;) is used to separate
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variable X has 2 equiprobable states, each of which is again uniquely specified by
the two inputs Y and Z. However, in this example, it would actually suffice to
observe only one of the inputs Y or Z to uniquely determine the output. This can
easily be verified by noticing that the output X is merely a replication of either
input. In other words, one of the input variables is redundant, since the two inputs
share all their information about the output.

Table 2: A joint distribution that provides an example of shared information.

Y Z X Pr
0 0 0 1/2
1 1 1 1/2

Complementary or synergetic information quantifies the amount of information
that is only present when both inputs are considered jointly. The complementary
information is denoted as CI(X : Y ;Z). Table 3 depicts the XOR-gate, the canon-
ical example for illustrating the concept of synergy. As before, the output X is
fully specified by the two inputs Y and Z. However, in this case both inputs Y and
Z must be present for the output to be fully determined, and observing a single
input Y or Z alone would not provide the observer any information about the
output X. Indeed, given a specific value of either Y or Z, two equiprobable values
for X remain, exactly as was the case before observing none of the inputs.

Table 3: Joint distribution of an XOR function that provides an example of com-
plementary information.

Y Z X Pr
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

It is generally agreed ([WB10], [BRO+14], [HSP12], [GK14]) that mutual informa-
tion can be decomposed into the four terms just described as follows:

MI(X;Y, Z) = SI(X : Y ;Z)+UI(X : Y \Z)+UI(X : Z\Y )+CI(X : Y ;Z) (10)

The same sources also agree on the decomposition of information that a single

the input variables on the right hand side, signifying that these variables are considered to be
separate entities, not part of a single random vector.
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variable, either Y or Z, has about the output X:

MI(X;Y ) = UI(X : Y \ Z) + SI(X : Y ;Z)

MI(X;Z) = UI(X : Z \ Y ) + SI(X : Y ;Z) (11)

It is important to note that thus far in this section, no formulas for actually calcu-
lating the PID terms have been given, only several logical relationships that such
a decomposition should satisfy have been stated. The only computable quantities
so far are the mutual information terms at the left hand side of equations 10 and
11, which can be calculated using formula 6. The discussion of computing the
specific PID terms is developed in the next section, which is heavily inspired by an
intuitive overview of the paper ”Quantifying Unique Information” by Bertschinger
et al. [BRO+14], provided by Wibral et al. [WPK+15]

1.2.2 Calculating PID terms

It turns out that the current tools from classical information theory - entropy and
various forms of mutual information - are not enough to calculate any of the terms
of the PID [WB10]. Indeed, there are only 3 equations (10, 11) relating to the 4
variables of interest, making the system underdetermined. In order to make the
problem tractable, a definition of at least one of the PID terms must be given
[BRO+14].

Taking inspiration from game theory, Bertschinger et al. [BRO+14] were able to
provide such a definition for unique information. Their insight was that if a variable
contains unique information, there must be a way to exploit it. In other words,
there must exist a situation such that an agent having access to unique information
has an advantage over another agent who does not possess this knowledge. Given
such a situation, the agent in possession of unique information can prove it to
others by designing a bet on the output variable, such that on average, the bet is
won by the designer.

In particular, suppose there are two agents, Alice and Bob, Alice having access
to the random variable Y and Bob having access to the random variable Z from
equation 10. Neither of them have access to the other player’s random variable, and
both of them can observe, but not directly modify, the output variable X. Alice
can prove to Bob that she has unique information about X via Y by constructing a
bet on the outcomes of X. Since Alice can only directly modify Y and observe the
outcome X, her reward will depend only on the distribution p(X, Y ). Similarly,
Bob’s reward will depend only on the distribution p(X,Z). From this, it follows
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that the results of the bet are not dependent on the full distribution p(X, Y, Z),
but rather only on its marginals p(X, Y ) and p(X,Z).

Let p = p(X, Y, Z) be the original joint probability distribution that we are in-
terested in computing the PID of, and let ∆ be the set of all joint probability
distributions of X, Y and Z. Under the assumption that the unique information
depends only on the two marginal distribution of p, a set of probability distribu-
tions ∆p can be defined such that the unique information stays constant for any
element in this set. Such a set must consist only of the probability distributions
that have the same marginal distributions of the pairs (X, Y ) and (X,Z) as p. It
is defined as follows:

∆p = {q ∈ ∆ : q(X = x, Y = y) = p(X = x, Y = y)

and q(X = x, Z = z) = p(X = x, Z = z) for all x ∈ X, y ∈ Y, z ∈ Z}

Putting the observation that unique information is constant on ∆p and equation 11
together, it becomes apparent that shared information will also be constant on ∆p.
Thus, only complementary information varies when considering arbitrary distribu-
tion q from ∆p. The last observation makes sense intuitively and is to be expected,
since ”complementary information should capture precisely the information that
is carried by the joint dependencies between X, Y and Z” [BRO+14].

Using the chain rule for information (equation 9) as well as decompositions 10 and
11, the following identities can be derived:

MI(X;Y |Z) = UI(X : Y \ Z) + CI(X : Y ;Z)

MI(X;Z|Y ) = UI(X : Z \ Y ) + CI(X : Y ;Z) (12)

Now, if a distribution q0 ∈ ∆p could be found that yields vanishing synergy, the
unique information could be calculated using quantities from classical information
theory. Indeed, from equation 12 it can be seen that when synergy is 0, the
mutual information and unique information terms coincide. Bertschinger et al.
[BRO+14] prove that a distribution q0 ∈ ∆p with this property only exists for
specific measures of unique, shared and complementary information. They define
the suitable measure for unique information as follows:

ŨI(X : Y \ Z) = min
q∈∆p

MIq(X;Y |Z) (13)
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ŨI(X : Z \ Y ) = min
q∈∆p

MIq(X;Z|Y ) (14)

where the subscript q under the mutual information symbol means that the quan-
tity is calculated over the distribution q.

Replacing these measures with the corresponding quantities in equations 10 and
11, measures for shared and complementary information can be defined as fol-
lows:

S̃I(X : Y ;Z) = max
q∈∆p

MIq(X;Y )−MIq(X;Y |Z) (15)

C̃I(X : Y ;Z) = MI(X;Y, Z)− min
q∈∆p

MIq(X;Y, Z) (16)

These 4 constrained optimization problems (equations 13, 14, 15, 16) are all equiv-
alent in the sense that it would suffice to solve only one of these problems and the
obtained optimal joint distribution q would produce the optimal value for all the
remaining three measures as well.

1.2.3 Numerical estimator

Bertschinger et al. show that ”the optimization problems involved in the defini-
tions of ŨI, S̃I and C̃I . . . are convex optimization problems on convex sets”
[BRO+14]. A notable property of convex functions is that their local and global
minimums coincide, making the optimization problems that involve such functions
relatively easy to solve. Indeed, many effective algorithms have been developed
that solve even large convex problems both efficiently and reliably [BV04].

However, in this particular case, the convex optimization problem is not trivial,
because ”the optimization problems . . . can be very ill-conditioned, in the sense
that there are directions in which the function varies fast, and other directions in
which the function varies slowly.” [BRO+14] This means that there exists extremely
small eigenvalues in the positive definite matrix that needs to be inverted as part
of the convex optimization procedure, making the method numerically unstable.
To alleviate the problem, the estimator iteratively finds suboptimal solutions and
eliminates some of the variable configurations in them whose probabilities are close
to 0. To decide which specific configurations to eliminate, a set of linear programs
needs to be solved. After many iterations, a satisfactory solution is eventually
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found. To obtain the final joint distribution q, the eliminated configurations are
added back to the solution with probabilities of 0.

The numerical estimator takes the approach of solving the optimization problem
given in equation 16 and then using the resulting distribution q to find the other
quantities of interest. The interface of the estimator is rather simple, abstracting
away all the details of its inner workings: it takes as input a probability distribution
p(X, Y, Z) and outputs the scalars MI(X;Y, Z), UI(X : Y \ Z), UI(X : Z \ Y ),
SI(X : Y ;Z) and CI(X : Y ;Z). The software is written in Python 3. The convex
programming is done in CVXOPT [MSAV16], while all linear programs are solved
using Gurobi [GO16].

1.3 Ising model

In nature, many systems have the property of abruptly transitioning from one
state to a completely different state due to some change in the external condi-
tions that they are influenced by. Such a phenomenon, where a system does
not change its state smoothly, but rather does it in an all-or-nothing fashion, is
called a phase transition. A large class of phase transitions, which are of great
practical importance, can be thought of as shifts from an ordered state to a dis-
ordered one, or vice versa. A canonical example of this phenomenon comes form
condensed matter physics, where matter transitions quickly from a fairly ordered
solid state to a relatively less organized liquid state when temperature passes a
specific threshold.[Bar13]

In this section, one of the simplest models that undergoes a phase transition - the
Ising model - is introduced. The Ising model can be characterized as a dynamical
complex system, because it has many parts whose simple local interactions give
rise to a complex global phenomenon in the form of a phase transition.

1.3.1 Ferromagnetism

Before introducing the Ising model, a short overview of a physical mechanism
that it is modelling - ferromagnetism - is in order. This is given in the current
subsection, which is based on the chapter dubbed ”Ferromagnetism” in the book
”Memory Systems: Cache, DRAM, Disk” [JNW10].

Electrons in a material have magnetic moments, caused by their spins, the latter
of which can be in either one of two states. These small magnetic properties of
individual electrons do not usually yield a global net magnetization of the material,
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because the electrons in the atoms often come in pairs of opposite spin states,
cancelling each other out. However, in ferromagnets, there are many unpaired
electrons, which line up with each other, producing a region called a domain. While
the magnetic field is strong within the domain, the material is still unmagnetized
because the many domains themselves are oriented randomly with respect to one
another. A characteristic property of a ferromagnetic materials is that even a
rather weak external magnetic field can can cause the magnetic domains to line
up with each other. When this happens, the material is said to be magnetized.
Importantly, in the case of a ferromagnet, the material will remain magnetized
even if the influencing external field is removed.

The stability of the magnetization is also dependent on the temperature of the
substance. Intuitively, at high temperatures, the atoms in the substance become
agitated and start to vibrate. This thermal oscillation breaks the alignment of
the spins and the material demagnetizes. This is yet another example of a phase
transition in which an ordered, magnetized system abruptly changes it state to a
disordered one. The critical temperature at which this transition happens is called
the Curie temperature.

1.3.2 Model

The Ising model, first conceived by Wilhelm Lenz in 1920 [Nis05], is a mathematical
model of ferromagnetism. The model abstracts away the rather complex details
of atomic structures of magnets, consisting simply of a discrete lattice of cells or
sites, denoted as si, each of which has an associated binary value of either -1 or
+1 [Hua87]. Conceptually, the lattice can be thought of as a physical material,
where the sites roughly represent the unpaired electrons of its atoms. The binary
value of each site intuitively corresponds to the direction of the electron’s spin. A
value of -1 means that the spin is considered to point down, otherwise it is said
to be pointing up. A given set of spins, denoted as s (without the subscript), is
called the configuration of the lattice [Hua87].

The magnetization of a configuration s of an Ising model with a lattice of N sites
is given by

M(s) =
1

N

N∑
i=1

si (17)

From equation 17, it can bee seen that the absolute magnetization is small when
the number of up spins is roughly the same as the number of down spins. On the
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other hand, if all the spins point in the same direction, the absolute magnetization
is at it maximum, having a value of 1. This is indeed analogous to the mechanism
in play in physical ferromagnets, as described earlier.

The dynamics of the Ising model stem from the fact that the specific spin configu-
rations of the Ising model are random variables. The probability of a configuration
s at thermal equilibrium is given by the Boltzmann distribution:

Pβ(s) =
e−βE(s)∑
s e
−βE(s)

(18)

where the sum in the denominator is over all possible spin configurations, E(s)
denotes the energy associated with the configuration s, and β = 1

kBT
, where T is

the temperature and kB is the Boltzmann constant. Thus, β is proportional to the
inverse temperature of the system.

The probability of a configuration s depends on 2 quantities: the internal energy
of the configuration under discussion, and the temperature. Two observations that
stem from equation 18 are of importance. First, the lower the energy E(s) of a
configuration s, the higher its probability. Second, the higher the temperature
T (or equivalently, the lower the parameter β), the more diffuse the distribution
becomes. The latter mathematical property models the physical fact that at high
temperatures, the thermal oscillation of the atoms break the alignment of the
spins, demagnetizing the material.

Energy is a central quantity that is associated with almost any model in physics.
In the Ising model, energy is given by the Hamiltonian

E(s) = −
∑
〈ij〉

εsisj −H
N∑
i=1

si (19)

where the first sum is over all different neighboring spins, ε is the interaction
strength between adjacent spins, and H denotes the strength of an external mag-
netic field. The latter two quantities are given constants that are specified by the
properties of the magnetic material and the external environment of the system,
respectively.

Often, the model is simplified even further, and it is this simplified system that
is analysed in this thesis. In particular, the external magnetic field interacting
with the lattice is omitted, and the interaction strength between pairs of nearest
neighbors is fixed to be equal to the Boltzmann constant kB, so that they cancel
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each other out in equation 19 and β becomes exactly the inverse temperature 1
T

.
After incorporating these assumptions into the model, the energy of a configuration
s simplifies to

H(s) = −
∑
〈ij〉

sisj (20)

From equation 20, it can be seen that the spins in the Ising model directly interact
with only their nearest neighbors. Moreover, since there is a minus sign in front of
the sum, lower energy (and thus, a higher probability) is achieved when neighboring
spins take on the same value, as this yields a positive product. It can be intuitively
thought as if the spins are intrinsically trying to align with their neighbors, and
the temperature of the system quantifies the amount of prohibition that prevents
them from doing so.

There are many questions one could ask about the dynamics of the Ising model,
but perhaps the most interesting and most extensively studied is the following:
how does the magnetization of the lattice change with temperature? Since for a
fixed value of β, the lattice configurations are random variables, an expectation of
the magnetization must be found, using the following formula:

〈M〉β =
∑
s

M(s)Pβ(s) (21)

By saying that there is a phase transition in the Ising model, what is meant is
that there exists a critical temperature Tc such that for temperatures T > Tc,
the expected magnetization given by equation 21 is 0 (or quickly approaches zero
if T is near Tc). Conversely, if T << Tc, the absolute magnetization is near its
maximum. Ernst Ising himself proved that there is no spontaneous magnetization
and therefore, no phase transition in the 1-dimensional Ising model [Isi25]. On the
other hand, in 1944, Lars Onsager showed [Ons44] that the 2-dimensional Ising
model with a square lattice does undergo a phase transition in the absence of an
external magnetic field. Furthermore, he gave the exact value for the parameter
β at which the swift order-disorder transition takes place. For higher dimensional
Ising models, no analytic solution for the phase transition exists.

1.4 Elementary cellular automata

Elementary cellular automata (ECA) are discrete dynamical complex systems that
consist of a 1-dimensional array of cells, each of which has an associated binary
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value. Every automaton is uniquely defined by its rule table - a function that maps
the value of a cell to a new value based on the cell’s current value and the values
of its 2 immediate neighbors. Since each rule table corresponds to a unique 8-bit
binary number, there are only 28 = 256 elementary cellular automata in total,
each of which is associated with a unique decimal number from 0 to 255. Figure 2
gives an example of one such rule table, where the top row represents the state’s
all possible local neighborhoods and the bottom row represents the center state’s
new value. For example, one can infer from the table that if a cell has a value of
0 (white) while both of its neighbors have a value of 1 (black), then this cell will
retain its value after the function has been applied.

Figure 2: Rule 30 [Wei].

Elementary cellular automata can be simulated in time by simultaneously applying
the update rule to each cell in the 1-dimensional array, producing a 2-dimensional
plot where the vertical axis represents time. The result of evolving the rule il-
lustrated in figure 2, given an initial lattice configuration of all white cells except
the center, can be seen in figure 3. Notably, the figure shows that the evolution
of the dynamics is rather non-trivial. Indeed, cellular automata are interesting
precisely because despite their simplicity, the patterns that emerge as a function
of the rule table and the initial configuration can be quite complex. For example,
elementary cellular automata have been shown to be capable of generating ran-
dom numbers [Wol86], modelling city traffic [DAR11] and simulating any Turing
machine [Coo04]. On the other hand, there exists a lot of rules which quickly
converge into an uninteresting homogeneous or repetitive state.

Because the set of all elementary cellular automata is rather diverse, consisting
of both computationally interesting as well as uninteresting rules, it would make
sense to try to group them based on the apparent complexity of their behaviour.
In his seminal paper ”Universality and Complexity in Cellular Automata” [Wol84],
Stephen Wolfram did just that. After qualitatively analysing the global structures
that the different rules give rise to given random initial states, he proposed a
classification scheme that partitions all elementary cellular automata into four
classes. The proposed classes are as follows:

• Class 1: Cellular automata which converge to a homogeneous state. For
example, rule 0, which takes any state into a 0 state, belongs to this class.
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Figure 3: A space-time diagram of the evolution of rule 30 [Wei].

• Class 2: Ceullar automata which converge to a repetitive or periodic state.
For example, rule 184, which has been used to model traffic, belongs to this
class.

• Class 3: Cellular automata which evolve chaotically. For example, rule 30,
which Mathematica uses as a random number generator [Wol02], belongs to
this class.

• Class 4: Cellular automata in which persistent propagating structures are
formed. For example, rule 110, which is capable of universal computation,
belongs to this class. It is conjectured that other rules in this class are also
universal.
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2 Related work

This chapter gives a brief overview of prior work closely related to this thesis.
The first section introduces previous work on analysing complex systems that
undergo a phase transition, such as the Ising model, with information-theoretic
tools. The second section focuses on related work that analyse elementary cellular
automata.

2.1 Phase transitions

There is a large body of previous work in applying information theory to anal-
yse dynamical complex systems that undergo phase transitions. Specifically, it
has been shown that mutual information and other related information-theoretic
measures peak at the critical point where the systems undergo an order-disorder
transition. Such is the case for several mathematical models like random boolean
networks [LPZ08a] and Vicsek’s self-propelled particle model [WCD07].

As for real-world systems, M. Harré and T. Bossomaier [HB09] measured mutual
information between pairs of selected stocks and found that the peaks in infor-
mation take place around known market crashes. In another paper [HBGS11],
to better understand phase transitions in cognitive behaviours, the same authors
analysed mutual information between successive moves in the game of Go as a
function of players’ skill level. They found that information peaks around the
transition from amateur to professional, ”agreeing with other evidence that a rad-
ical shift in strategic thinking occurs at this juncture” [BBH13].

Particularly relevant to the work at hand is the information-theoretic analysis of
the Ising model. It has been analytically shown that in a 2-dimensional Ising
model, the mutual information between joint states of two spin systems peaks
at the critical temperature [MKN+96]. Barnett et al. [BLH+13] show empirically
that mutual information measured between pairs of neighboring spins peaks at the
phase transition. In the current thesis, this result is replicated and extended by
also measuring the decomposition terms of this mutual information. They further
discovered that another related quantity called transfer entropy, a directed measure
that quantifies the transfer of information between two stochastic processes, peaks
strictly in the disorder phase before the phase transition.
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2.2 Elementary cellular automata

Not directly related to this thesis, but contextually rather relevant are various
works that have made use of information theory to quantitatively validate long-
held hypothesis about information storage and transfer in elementary cellular au-
tomata. In the article ”Local measures of information storage in complex dis-
tributed computation” [LPZ12], Lizier et al. found quantitative evidence that
specific structures in elementary cellular automata called blinkers and background
domains are ”dominant information storage processes in these systems.” In another
closely related paper [LPZ08b], the same authors conclude that ”local transfer en-
tropy provides the first quantitative evidence for the long-held conjecture that the
emergent traveling coherent structures known as particles . . . are the dominant
information transfer agents in cellular automata.”

Of particular interest to this thesis is the work done by Chliamovitch et al.
[CCD14], in which the behaviour of multi-information, a generalization of mutual
information to multiple variables, in elementary cellular automata was studied. It
was found that while it could be possible to establish a classification of cellular
automata rules based on this measure, it would not correspond with Wolfram’s 4
classes. This is because multi-information failed to discriminate between all pairs
of Wolfram’s classes except between classes I and IV.
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3 Methods

This chapter describes the approaches taken in this thesis to analyse complex sys-
tems in terms of partial information decomposition. The first section is devoted to
motivating the use of computational simulations in investigating the Ising model,
as well as to an overview of a specific algorithm used to carry out such simula-
tions in the current dissertation. The second and third sections of this chapter
describe in detail how the PID estimator is utilised to measure the information
distribution in the Ising model and elementary cellular automata, respectively. To
ensure reproducibility of the results, the exact values of all the parameters of the
experiments are given.

3.1 Numerical simulation of the Ising model

In theory, finding the expected magnetization of the Ising model at a given tem-
perature T is trivial. According to equation 21, one simply has to enumerate all
lattice configurations, multiply their probabilities by their magnetizations, and
sum the products. The problem arises in the very first part - doing an exhaustive
search through all lattice configurations. The number of possible configurations
of a lattice of size N is 2N , meaning that the number of configurations increases
exponentially in the size of the lattice. Therefore, the sum in equation 21 is in-
tractable for even rather modest sized lattices. This is of course a more general
problem that is not only present when calculating the expected magnetization,
but rather appears in any task where one has to deal with expectations in the
Ising model. For example, in this thesis, the average mutual information between
the neighboring sites at each temperature point is of interest. Unable to derive it
analytically, one must resort to simulating the dynamics of the model.

Because enumerating all possible configurations is intractable, a more clever so-
lution must be found. One way to approximate the average quantities is to draw
many samples (spin configurations) from the Boltzmann distribution and calculate
the quantities of interest on these configurations, taking their mean in the end. If
the configurations are drawn in proportion to their probabilities given by equation
18, the mean of the quantity of interest will become increasingly closer to the true
expectation as the sample size increases. Glauber dynamics, an instance of a more
general class of algorithms called Markov Chain Monte Carlo methods, allows one
to iteratively draw samples from the Boltzmann distribution according to their
probabilities.

The Glauber dynamics method works as follows. First, an initial lattice configu-
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ration is generated arbitrarily (as demonstrated in the next section, some clever
tricks in choosing the initial configuration can be done, however). Then, iteratively,
a site is chosen uniformly at random from the lattice, and the spin associated with
this site is flipped. The resulting configuration with a single flipped spin is ei-
ther accepted or rejected. The probability of acceptance is given by the following
equation:

P (s→ sn) =
1

1 + e
∆E(s→sn)

T

(22)

where s and sn denote the old and new lattice configurations, respectively, T
stands for temperature and ∆E(s→ sn) = E(s)−E(sn) is the difference between
the energies of the two successive configurations.

For a more compact overview of the method just described, a pseudocode of a
single iteration of Glauber dynamics is given in the following algorithm:

Algorithm 1: A single iteration of Glauber dynamics

1 Input: A lattice configuration s and temperature T
2 Choose a random site from the lattice;
3 Flip the spin associated with the chosen site to obtain a configuration sn;
4 Calculate P (s→ sn);
5 Generate a random number x uniformly at random within the range [0, 1];
6 if x ≤ P (s→ sn) then
7 return sn; . accept the new configuration sn by returning it
8 else
9 return s; . reject sn by returning s

There are two noteworthy additions to the naive algorithm 1 that must be dis-
cussed. First, to uncorrelate the samples, many potential spin flips are considered
before a sample is actually drawn, meaning that not every lattice configuration
returned by algorithm 1 is considered as a sample, but rather every L-th. The pa-
rameter L is a called the lag. This procedure is illustrated in algorithm 2. Notice
that indeed, all the intermediate configurations on line 3 are discarded, only the
L-th configuration is eventually returned. Second, in order to avoid biasing the
initial samples towards the random starting configuration, the very first samples
are discarded. The number of initial disposable samples is referred to as the burn-
in period. The entire simulation algorithm with Glauber dynamics, along with
the random initialization of the lattice, burn-in period and lag, is illustrated in
algorithm 3.
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Algorithm 2: A single Glauber dynamics update, which consists of L spin-flip
attempts

1 Input: A lattice configuration s, temperature T and lag L
2 for i = 1...L do
3 s = Run algorithm 1 on inputs s and T ;

4 return s;

Algorithm 3: The full Glauber dynamics algorithm

1 Input: Temperature T , burn-in period B, lag L, and the number of samples to
draw N

2 Initialize a random lattice configuration s;
3 for i = 1...B do
4 s = Run algorithm 2 on inputs s, T and L;

5 set samples to empty list . List to save the sampled configurations to
6 for i = 1...N do
7 s = Run algorithm 2 on input s, T and L;
8 save configuration s to samples ;

9 return samples

When implementing the Ising model with a finite lattice, one also has to decide
how are the neighbors for the sites on the edges of the lattice chosen. For example,
if a site is on the right edge of the lattice, it does not have an immediate right-
hand neighbor. There are two common way to deal with this complication. First,
periodic boundary conditions can be used, in which the lattice ”wraps around”
itself, such that the sites on one edge of the lattice have as neighbors sites on the
opposite edge, yielding all sites to have the same number of neighbors irrespective
of their position on the lattice [Mey00]. Second, the sites on the edges of the lattice
can be made to have only their usual immediate neighbors, so that sites on the
edges have fewer neighbors than sites at the center of the lattice [Mey00]. In this
case, the model is said to have free boundary conditions.

3.2 Methodology for analysing the Ising model

To estimate the PID terms in the Ising model, a 2-dimensional model with Glauber
dynamics, periodic boundary conditions and a square lattice of size 128x128 was
simulated. A single simulation consisted of a burn-in period of 104 updates, fol-
lowing 105 updates from which the samples were gathered. As in a related paper
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by Barnett et al. [BLH+13], ”each update comprised L (potential) spin-flips ac-
cording to Glauber transition probabilities”, where L is the size of the lattice. In
other words, the model was simulated according to algorithm 3 with B = 104,
N = 105 and L = 128 × 128. This procedure was performed at 102 temperature
points spaced evenly over the interval [2.0, 2.8], which encloses the theoretical
phase transition at Tc ≈ 2.269.

Figure 4: 100 randomly chosen sites (blue dots) of a 128× 128 square lattice.

The obtained 105 lattice configurations at each temperature point were subse-
quently used to construct the probability distributions that the PID estimator
takes as input. 100 sites were chosen uniformly at random at the beginning of
the simulation, and they stayed the same for all temperature points. Figure 4
illustrates the 100 randomly chosen sites of the 128 × 128 lattice. For each site,
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the relative frequency of the spin configurations of its local neighborhood (the site
itself along with 4 of its neighbors) was measured, yielding a total of 100 joint
probability distributions of 5 random variables per temperature point. An exam-
ple of one such distribution at temperature T ≈ 2.119 is given by table 4, where
the first random variable C represents the center site, and the following 4 random
variables represent its immediate neighbors. For example, the last row of the table
illustrates that the configuration where all the spins point upwards at a specific
location on the lattice has a probability of 0.776, meaning that is appears approx-
imately 0.776 × 105 = 77600 times out of a total of 105 configurations sampled.
The high probability of all aligned spins is to be expected, since the samples are
taken while the Ising model is in the ordered, low temperature regime.

Table 4: Joint probability distribution of a random site and its 4 neighbors at
temperature T ≈ 2.119. The column labels represent the location of the sites with
respect to the neighboring center (C) site: upper (U), right (R), down (D), left
(L).

C U R D L Pr
-1 -1 -1 -1 -1 0.004
-1 -1 -1 -1 1 0.002
-1 -1 -1 1 -1 0.003
-1 -1 -1 1 1 0.003
.. .. .. .. .. ..
1 1 1 -1 1 0.035
1 1 1 1 -1 0.033
1 1 1 1 1 0.776

Having created 100 probability distributions for each of the 102 temperature
points, it remains to feed the distributions into the PID estimator for analysis.
However, this can not be done naively with the current setup, as the estimator
works with probability distributions of 3 random vectors only, where one of them
is thought of as an output and the remaining as inputs. Thus, the distributions
of the same form as the one in table 4 must be reconfigured such that they are
understood by the estimator, i.e. it must be decided how are neighboring sites
partitioned into 2 sets of inputs and an output. Two different setups were con-
sidered. First, the center site was taken to be the output, and only 2 neighbors
were chosen without repetitions uniformly at random (out of the possible set of
4 neighbors) as inputs. Second, the center was again considered as an output,
but in this experiment all 4 neighbors were taken into consideration as inputs:
the full set of neighbors was randomly partitioned into 2 disjoint pairs, such that
each pair was a 2-dimensional random vector. After estimating the PID terms,
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an arithmetic mean across the sites was taken at each temperature point, yielding
102 average PID vectors, one for each temperature point.

Due to the randomness present in the Glauber dynamics and in choosing the 100
sites from the lattice for analysis, the results may vary across different runs. To gain
more confidence in the results, the whole experiment described above (simulating
the Ising model, choosing 100 random sites for analysis, estimating the PID of the
local neighborhood of the sites) was repeated 8 times and the results averaged.
In the very first run, each initial spin configuration was initialized randomly at
each temperature point as in line 2 of algorithm 3, and the configuration that was
arrived at after the burn in period of 104 updates was saved. For the subsequent 7
runs, the very first lattice configuration for temperature point Ti was chosen to be
equivalent to the saved lattice configuration from the very first run at temperature
point Ti. After doing the first run separately to obtain the initial configurations,
the 7 remaining simulations to gather the relevant lattice configurations were run
for 8 days on 41 computing nodes in parallel in the EENet computer cluster.

3.3 Methodology for analysing elementary cellular automata

The average information distribution was estimated in all 88 inequivalent elemen-
tary cellular automata. 3 To gather the probability distributions for the PID
estimator, 88 automata with 104 cells were simulated for 103 timesteps using pe-
riodic boundary conditions. For each automaton, a random initial configuration
was generated, such that each cell at timestep t = 0 was associated with a value
taken uniformly at random from the set {0, 1}.

The input pair for the PID was taken to be the cell’s 2 neighbors (considered as
a single random vector) and the cell itself at timestep t, while the output was the
cell’s value at the next timestep t + 1. This is indeed a logical setup to use, as it
ensures that the input set contains all the variables that the output is a function
of. Using these random variables, a single global distribution was generated for
each rule. Note that this differs from the methodology that was used in the case
of the Ising model, where a subset of the sites was chosen for analysis, yielding 100
different local distributions and PID values, the latter of which were subsequently
averaged to obtain estimates of the global measures.

3While there are 256 different rules in total, some of them are computationally equivalent.
In particular, exchanging the roles of black and white in the rule table and reflecting the rule
through a vertical axis does not change the computational capabilities of the automaton. Not
considering rules that are equivalent under these transformations yields 88 rules that are of
interest.
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Because the emergent dynamics of a cellular automaton depend on the initial con-
figuration of the lattice, the above experiment (generating initial configurations for
each of the 88 automata, simulating the dynamics and generating the distribution
that is fed into the estimator) was repeated 5 times, after which the resulting 5
PIDs of each rule were averaged.
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4 Results

This chapter provides the main results of the thesis. The focus of the first sec-
tion is on the Ising model, while the second concentrates on elementary cellular
automata.

4.1 Ising model

The first subsection of this section is dedicated to measuring the order parameter
(magnetization) of the Ising system to validate the simulation methodology. The
results obtained from measuring the partial information decomposition terms in
models with various lattice sizes are given in the two subsequent sections.

4.1.1 Phase transition

To gain confidence that the Ising model simulations behave as expected, the aver-
age absolute magnetization of the 8 runs was measured. The resulting plot can be
seen in figure 5. The phase transition is clearly present, and the critical tempera-
ture is around the theoretically correct value of Tc ≈ 2.269, as given by Onsager
[Ons44]. At temperatures T > Tc, the magnetization of the Ising model is near
0, while at temperatures T < Tc, the absolute magnetization quickly approaches
1 as T decreases. This agrees with previous practical and theoretical research
works conducted on the Ising model, thus validating that the simulation is done
correctly.

4.1.2 PID of 128x128 Ising model

In figure 6, the information-theoretic functionals of the Ising model can be ob-
served, where the mutual information is measured between the sites and their 2
random neighbours. Notice that the information is given in nats, meaning that
the base of the logarithm in equation 6 is taken to be e.

From the figure, it can be seen that mutual information peaks around the phase
transition (more precisely, at T ≈ 2.293) - a phenomenon that agrees with pre-
vious work, confirming that the method of estimating the information-theoretic
terms used in this thesis works as expected. In addition, since in the experiment
under discussion the mutual information was measured between a site and 2 of its
neighbors, as opposed to measuring it between 2 neighboring sites only, it would
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Figure 5: Average absolute magnetization of a 128x128 lattice Ising model evalu-
ated at 102 temperature points spaced evenly over the interval [2.0, 2.8].

be reasonable to expect the resulting mutual information to be higher in the cur-
rent experiment. Indeed, two neighbors should have more information about their
center site than a single neighbor has. Barnett et al. [BLH+13] observed that the
mutual information between 2 neighboring sites (the quantity Ipw in the paper)
achieves a maximum value of less than 0.3. In agreement with intuition, the blue
graph representing mutual information in figure 6 achieves a peak value of just
under 0.5.

Looking at the partial information decomposition of the Ising model in figure
6, one can see that that the non-zero terms peak around the phase transition,
just as mutual information itself does. Visually, the shared information curve
follows the mutual information graph almost exactly, with the exception of being
shifted downwards about 1.5 nats at every temperature point. The synergetic
information term is more interesting. It peaks slightly before mutual information
does, in the disorder phase at T ≈ 2.333. In addition, its overall behaviour also
deviates from that of mutual information, with the graph being quite a bit flatter,
not exhibiting a sharp peak. Both of the unique information terms are rather
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Figure 6: Average mutual information and PID terms (with 2 random neighbors
considered as inputs) of a 128x128 lattice Ising model evaluated at 102 temperature
points spaced evenly over the interval [2.0, 2.8].

uninteresting, as their values are essentially zero at every temperature point under
consideration.

Shared information is the most dominant of the partial information decomposition
terms in figure 6, meaning that there is an unproportional amount of redundancy
in the system. This is to be expected, as the neighbors of the center site are
directly influencing the latter to take on the same value as them, and vice versa.
Thus, reasoning by transitivity, a neighboring site A tries to orient its spin to be
parallel to the center spin, and similarly, the center site tries to align its spin such
that it points in the same direction as the spin of another neighbor B. Because A
and B are actively trying to make their spins parallel to each other through the
influence of the center site, it is not unreasonable to assume that if the spin of
one neighbor is known, the spin of the other neighor is also likely to be that same
value.

The unique information terms are always near 0, no matter which neighbor is
considered. First, it is reasonable that both of the unique information terms are
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identical, as the neighbors are chosen randomly. Second, the fact that there is
no unique information in the system is also intuitively plausible, as each neigh-
bor interacts with the center site in an identical fashion. As for the behaviour of
synergetic information, the author has no intuitive explanation for the observed
phenomenon. That said, it is possible that it is related to the peak of global
transfer entropy (a form of conditional mutual information) in the disorder phase
of the Ising model, as demonstrated by Barnett et al. [BLH+13]. According to
equation 12, when unique information vanishes, synergy becomes equal to condi-
tional mutual information as well. However, the relationship between the synergy
and transfer entropy in the Ising model remains unclear, as the random variables
considered as arguments to the conditional mutual information functional in this
thesis do not correspond to the ones used by Barnett et al.

Figure 7: Average mutual information and PID terms (with all random neighbors
considered as inputs) of a 128x128 lattice Ising model evaluated at 102 temperature
points spaced evenly over the interval [2.0, 2.8].

In figure 7, the results of measuring information-theoretic functionals between the
center sites and all of their neighbors are illustrated. As expected, the mutual
information term increases in value (about 1 nat) compared to figure 6, because
considering all 4 of the sites that interact with the center site, as opposed to just
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2, should reduce the amount of uncertainty one has about the center. Further
inspection reveals that the PID term most responsible for the increased mutual
information is shared information. The complementary and unique information
terms have roughly the same values in both experiments. Specifically, at all tem-
perature points, unique information terms are 0 and synergetic information varies
around 0.1 nats.

An unanticipated difference between the first and second experiment is that when
all neighbors are considered, the synergetic information term is flatter than be-
fore and peaks even deeper in the disorder phase, at temperature T ≈ 2.554,
while shared information does not change its maximum point across the 2 ex-
periments. The former observation is of great importance and could have many
practical applications. Its implications are thoroughly examined in the discussion
section.

4.1.3 PID of 64x64 Ising model

Figure 8: Average mutual information and PID terms (with 2 random neighbors
considered as inputs) of a 64x64 lattice Ising model evaluated at 102 temperature
points spaced evenly over the interval [2.0, 3.0].

To confirm that the observed phenomena are not specific to a lattice of size
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Figure 9: Average mutual information and PID terms (with all random neighbors
considered as inputs) of a 64x64 lattice Ising model evaluated at 102 temperature
points spaced evenly over the interval [2.0, 3.0].

128x128, but are general characteristics of the computational properties of the
Ising model, the simulations were repeated with a smaller, 64x64 lattice. The ex-
perimental setup was analogous to the one used in the previous experiments, with
the exception that the measurements were averaged over 6 different runs (instead
of 8) and for each run, 50 different random sites were chosen for PID analysis (in-
stead of 100). The simulations were run on 102 temperature points spaced evenly
over the interval [2.0, 3.0].

Figure 8 depicts the results when only 2 random immediate neighbors are con-
sidered as input to the center site in the PID framework. Although the mutual,
shared and synergetic information graphs are more shaky at the phase transition
due to random fluctuations, in general the graphs are almost identical to the cor-
responding graphs in figure 6. The mutual and shared information quantities peak
at T ≈ 2.2772, while synergetic information peaks at T ≈ 2.3267.

The results of measuring PID terms when all neighboring sites are considered
as inputs to the center site are illustrated in figure 9. Both mutual and shared
information again peak at T ≈ 2.772. Complementary information peaks at T ≈
2.5148, a little nearer to the phase transition than was the case when the lattice
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size was twice the size (figure 7). This observation validates that the peak in
synergy does not gradually move nearer to the phase transition with increasing
lattice sizes, ensuring that it is a general property of the model, independent of
the lattice size.

4.2 Elementary cellular automata

In figure 10, all 88 inequivalent elementary cellular automata have been depicted
based on their PID terms. Each point represents a single rule, and the points
are colored according to their Wolfram’s class. Because there are 4 terms in PID,
making their joint visualization on a single plot impossible, principal component
analysis was used to project the 4-dimensional PID vectors into 3-dimensional
space. It is important to explicitly mention that some ”points” in the plot are
actually clusters of several rules, but due to their almost identical PID terms, they
overlap with each other, yielding a single visual mark on the plot. For example,
the cluster numbered as 1 appears to be a single point, but there are actually 5
different rules present at this location.

Figure 10: All 88 inequivalent cellular automata positioned on a 3-dimensional
space according to their information distribution. The automata are coloured
based on their Wolfram’s class. Some of the clusters of rules are highlighted and
numbered, so that they can be referred to in the text.

From the figure, it can be seen that the rules corresponding to Wolfram’s class I are
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all clustered together in a single location separate from the rest of the automata.
This is natural, as these class I rules quickly converge to a homogeneous all-white
state, such that there is no uncertainty left in the system. In an all-white state,
the entropy of the system is 0, yielding mutual information and accordingly, all the
PID terms to be 0 as well. While various other cluster appear, they do not corre-
spond well to Wolfram’s other 3 classes, meaning that there is no straightforward
relationship between Wolfram’s classification and the information distribution in
elementary cellular automata.

(a) Complementary information. (b) Shared information.

(c) Unique information of the cell itself. (d) Unique information of the neighbors.

Figure 11: Boxplots representing the distributions of specific PID terms of cellular
automata belonging to Wolfram’s classes II, III and IV.

The last claim is further justified by figure 11, which shows the distribution of PID
values across Wolfram’s classes. From panel 11a it can be seen that in general,
the synergy goes up when the complexity of the automata in terms of Wolfram’s
classification increases. However, there are many outliers in the second class and
the variance of the third class is extremely high, making it hard to further draw any
specific conclusions. On average, shared information seems to be higher in class 2
automata, while it is almost 0 for the majority of class 3 and 4 automata. Focusing
on the last two panels (figures 11c and 11d), it is evident that two neighbors at
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the previous timestep have more information about a cell’s value at this timestep
than its own previous value does. Intuitively, this should indeed hold, since having
two sources of information is usually better than having just one.

Coming back to figure 10 and analysing some specific clusters, it becomes apparent
that the PID is rather oblivious of the intuitive computational characteristics of el-
ementary cellular automata that Wolfram’s classification is based on. For example,
it does not capture the complex long-term interactions between various dynamical
structures that are important in terms of computation, but happen so infrequently
that their influence on the overall probability distribution is minimal. Instead, the
PID terms seem to depend heavily on the specific local details of the emergent
repeating, ubiquituous patterns in the space-time diagrams of cellular automata.
To justify this conjecture, some specific examples of clusters are discussed in detail
below.

In figure 12, the space-time diagrams of 6 different rules are depicted, where the
dynamics were generated using random initial states. These automata all belong to
Wolfram’s second class, because they quickly converge into a repetitive state. The
diagrams look very alike visually as well, containing densely populated diagonal
lines. It would not be unreasonable to expect these rules to be clustered together
in figure 10. Interestingly, however, these rules are partitioned into 2 different
clusters that are spaced far apart from each other. In particular, the first 3 rules
depicted (rules 6, 38 and 134) appear in cluster 2, while the remaining automata
(rules 24, 130, 152) belong to cluster 3. At first glance, this partitioning might
be rather confusing, but the conundrum becomes apparent when one zooms in on
the space-time diagrams. As can be seen from figure 13, the intricate structure of
the diagonal lines is different between rules 6 and 130. It turns out that rules 6,
38 and 134 all have diagonal lines that are composed of small ”inverted L” type
blocks, while the diagonals of rules 24, 130 and 152 are much simpler, having a
thickness of just a single cell.

To better understand why the specific details of the diagonals yield a radical change
in the PID terms, a closer quantitative look at the PID of the rules under discussion
is in order. The mutual information of all of the 6 rules is almost exclusively divided
between synergy and the unique information provided by the neighbors, leaving
the remaining PID terms close to 0. The first 3 rules each have roughly about
0.55 nats of synergy and 0.25 nats of unique information. In contrast, the last 3
rules have no complementary information, but their neighbors have about twice
as much unique information about the cell’s next state, approximately 0.62 nats
each. Thus, almost all of the information in the systems with simpler diagonals is
provided uniquely by the neighbors of a site.
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(a) Rule 6. (b) Rule 38.

(c) Rule 134. (d) Rule 24.

(e) Rule 130. (f) Rule 152.

Figure 12: Space-time diagrams of various elementary cellular automata belonging
to Wolfram’s class II. The first 3 automata from the top belong to cluster 2 in figure
10, while the remaining rules are from cluster 3.

The former numeric observations are not surprising, because looking at the dy-
namics of rule 130 from figure 13b, the new states are almost always uniquely
determined by the neighbors alone. Indeed, the ubiquituous white background
arises mainly because if the right neighbor of a cell is white, this cell’s next value
will also be white. If, however, the left neighbor is white and the right is black,
the cell’s next state will be black. The latter relationship produces the diagonals.
In case of rule 6, there is a lot more synergy in the system, because neither the
cell’s previous state or the neighbors are able to produce the complex ”reversed
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(a) Rule 6. (b) Rule 130.

Figure 13: Zoomed space-time diagrams of rules 6 (figure 12a) and 130 (figure
12e).

L” shaped diagonals alone. The rather high unique information comes from the
fact that the left neighbor being black completely determines that the cell’s value
will be white in the next step.

(a) Rule 154 (Wolfram’s class 2). (b) Rule 30 (Wolfram’s class 3).

(c) Rule 45 (Wolfram’s class 3). (d) Rule 106 (Wolfram’s class 4).

Figure 14: Space-time diagrams of elementary cellular automata belonging to
cluster 4 in figure 10.

Some other clusters are not as straightforward to analyse, but nevertheless, in many
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cases it is still possible to give some intuitive justifications of the characterization
that the PID has produced. For example, figure 14 depicts the rules in cluster
4, which all have exactly 0.5 nats of synergy and 0.5 nats of unique information
from the neighbors. While the automata look rather different from the distance,
zooming into the lattices again reveals the similarities. Looking at the zoomed
space-time diagrams in figure 15, it can be seen that what the automata under
observation have in common is that they all contain rather complex stairway-like
structures travelling from the upper right to the lower left.

(a) Rule 154. (b) Rule 30.

(c) Rule 45. (d) Rule 106.

Figure 15: Zoomed space-time diagrams of the automata plotted in figure 14.

Another noteworthy collection of rules is cluster 5, which consists of 3 automata
that Wolfram has classified as chaotic. All the automata belonging to this cluster
have 1 nat of mutual information, which is all exclusively provided by comple-
mentary information. The cluster is interesting because it shows that at least
for some subset of automata, their qualitative characterization coincides with the
quantitative one provided by the PID.
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5 Discussion

This chapter starts by putting the results obtained in the two complex systems into
a larger context and by discussing their implications. The possibility of analysing
other dynamical complex systems with the information-theoretic tools used in this
thesis is critically examined in the second section. The chapter concludes with
numerous suggestions for further work.

5.1 Implications of the results

In the paper ”Information flow in a kinetic Ising model peaks in the disordered
phase” [BLH+13], it is shown that global transfer entropy peaks in the disorder
phase in the Ising model, just before the phase transition. In other words, trans-
fer entropy was found to be able predict the order-disorder transition before it
actually takes place. In a subsequent commentary discussing this work [Bar13],
Lionel Barnett, one of the authors of the paper, argues that this result might
also generalize to other real-world dynamical complex systems that undergo phase
transitions. The practical importance of this could be immense. Among other
things, one can imagine it being useful in predicting imminent epileptic seizures
and financial market crashes.

In this thesis, it was found that one of the PID terms, complementary information,
also obtains a maximum in the disorder regime in the Ising system. Taking the
commentary by Barnett into account, it would be worthwhile to study various
real-world systems in terms of partial information decomposition. In particular,
it would be interesting to measure the synergy between various components with
the hope of predicting the arising phase transition in advance.

As for elementary cellular automata, the obtained characterization of the rules
based on the PID terms is a great addition to Wolfram’s classification. Wolfram’s
classification relies largely on human intuition and was developed by qualitatively
analysing the space-time diagrams of all elementary cellular automata. In contrast,
the characterization based on partial information decomposition is automatic and
more grounded theoretically, not relying on qualitative observations. While Wol-
fram’s classification is able to differentiate between different automata based on
the global behaviour of the emergent structures, it is blind to the subtle details
in the structures themselves. As for the characterization based on the PID terms,
the opposite seems to be true.
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5.2 Limitations

The two complex systems analysed in this thesis have an important property in
common that makes their investigation with the PID estimator convenient, not to
say possible. First, they are both binary, meaning that the individual elements
of the systems can only be in two different states. Second, in both systems, each
local part of the model is directly influenced by only a handful of other agents.
Indeed, in the Ising model, the energy of a single site depends only on the spins
of its 4 immediate neighbors, while the next value of a cell in elementary cellular
automata is determined by the 3 cells in its local neighborhood. What follows
is a discussion of why both of these characteristics are paramount to successful
analysis of information distribution in complex systems.

First, the systems being binary, or more generally, discrete with relatively few pos-
sible states, ensures that the number of rows in the probability distribution that
the PID numerical estimator takes as input is relatively small. The number of rows
of the distribution increases polynomially in the number of states of the random
variables that it contains. For example, a distribution with 3 random variables
with 20 possible states would have 8000 rows. Such a large distribution would
be unmanagable for the numerical estimator, which is able to maximally handle
distributions with roughly 2500 rows. This problem also arises when the analysed
system has continuous elements, since one must approximate the continuous func-
tions using discretization, or in other words, by dividing the continuous signal into
a finite number of different states. To analyse the performance of the estimator, a
multivariate Gaussian probability distribution was generated, discretized, and fed
into the estimator. It was empirically validated that the estimator terminates and
gives a solution in reasonable time (under half an hour of processing) when the
level of discretization is less than 14.

Second, the systems having few directly interdependent components again ensures
that the number of rows in the distributions is relatively small, the latter increasing
polynomially in the number of random variables that the 3 random vectors contain.
There is, however, an even more fundamental problem that has nothing to do
with the numerical estimator, but rather with the fact that the PID mathematical
framework has currently been developed for 2 logical input sets only. In particular,
if the number of inputs in the system grows, and they are not logically partitionable
into two distinct sets, it becomes increasingly hard to reasonably choose the two
subsets of input channels. Even if the input space is composed of two logical
sets, taking only a small subset of components from each might not yield desirable
results. This is because there is exponentially many ways to choose the subsets
with respect to each other, and there is often no straightforward way to know
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which configuration is the ”right” one.

To better understand the argument put forth in the last paragraph, it is instructive
to look at the results of another preliminary experiment that was carried out as
part of this thesis. In particular, the average information distribution between
the nodes in a feedforward neural network was analysed while it was trained on
a classification task. The model consisted of 2 hidden layers, each containing 300
neurons. While such models usually have continuous activation functions, it is not
feasible to discretize these continuous signals with fine enough granularity without
making their analysis with the estimator unfeasible. Thus, binary activations
were used in the hidden layers of the network, as introduced by Courbariaux et al.
[CB16] The output layer of the network consisted of softmax units. The network
was trained on the MNIST handwritten digit database [LCB] for 150 epochs.
Figure 16 depicts the training and validation learning curves of this classifier.

Figure 16: Learning curves of a feedforward neural network that was trained to
classify MNIST handwritten digits. The blue curve represents the training loss,
while the validation loss is given by the green graph.

In neural networks, the parameters are initialized randomly, and as a result, the
model’s loss is initially rather high, as can also be seen from figure 16. During
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training, the weights of the network are incrementally tweaked in such a way that
the performance of the model increases. Thus, neural networks can be thought
of as exhibiting a phase transition, where the weights gradually move from an
unorganized random state to an organized one. The training or validation loss
represents the order parameter, with higher values meaning that the system has
more disorder. Inspired by the results obtained from analysing the Ising model,
the neural network under discussion was investigated with the PID numerical
estimator with the hope of discovering interesting behaviour of the PID functionals
near the order-disorder phase. More specifically, one could expect some interesting
behaviour of some of the PID terms between the epochs 15 and 50, because it is
during this time that the derivative of the loss function undergoes the most rapid
change.

Figure 17: The average information distribution between the nodes in a feedfor-
ward neural network.

To estimate the information distribution in the system, 200 triplets were taken
for analysis. For each triplet, the two inputs were taken to be two random nodes
from the last hidden layer of the network, and the output was taken to be the
true target decimal value. The 200 probability distributions were subsequently fed
into the PID numerical estimator and the results averaged. This procedure was

51



repeated for each epoch, but the 200 triplets remained the same throughout the
experiment. The obtained PID functionals are illustrated in figure 17.

From figure 17, it can be seen that the mutual information behaves similar to
the reflection of the training loss over the horizontal axis. This agrees with the
observation made in B̊ard Sørng̊ard’s master’s thesis ”Information Theory for An-
alyzing Neural Networks” [Sø14], in which the mutual information between the
neurons in a toy neural network was measured during training. Looking at the
PID terms in figure 17, one can see that the unique information terms follow the
mutual information curve almost exactly, and that complementary and redundant
information terms are both essentially 0. It is the author’s belief that the PID
terms are rather uninteresting largely because the inputs do not come from 2 log-
ically distinct subsystems. Every neuron in the last layer has 299 neighbors, and
there is no fundamental reason to prefer one neighbor over the other. One might
argue that no natural partitioning exists in the case of the Ising model as well.
However, in the latter system, a site depended only on 4 of its neighbors, making
the problem much less pressing.

5.3 Future work

There are various promising research directions in the domain of partial infor-
mation decomposition itself. First, the estimator could be improved in various
ways. Most notably, the optimization could be made faster, so that larger proba-
bility distributions would also be amenable to analysis. Further, the mathematical
framework of partial information decomposition has currently been developed only
for the bivariante input case. The general decomposition of multi-variate informa-
tion remains to be developed.

In the case of the Ising model, it might be of interest to study how information
is distributed between the different parts of the model more theoretically. This
would provide some further insight as to why the PID functionals behave as they
do in this specific model. In addition, the results obtained in the Ising system
should inspire further research into real-world complex systems in which it would
be of importance to predict the occurrence of a phase transition in advance.

In this thesis, elementary cellular automata were studied, in which by definition,
each cell is directly influenced by only 3 cells in its local neighborhood. However,
these relatively simple systems are just a special case of a larger class of models,
called 1-dimensional cellular automata, where cells can depend on an arbitrary
fixed number of nearby cells. It is up to further work to study the information
distribution in cellular automata that are not elementary. Das et al. [DMC94]
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used genetic algorithms to discover different rules that are able to perform specific
computational tasks, like classifying whether the majority of cells in the initial
configuration have a value of 1. It could worthwhile to study if the information
distribution is similar in different automata that solve common tasks.

Finally, there is more work to be done in analysing the information distribution
in artificial neural networks. The PID measurements obtained from analysing
feedforward neural networks in this thesis were uninteresting largely because there
is no natural partitioning of nodes in this model. However, such a partitioning
does exist in recurrent neural networks, where each neuron has both bottom-up
inputs from the previous layer and lateral contextual inputs from the same layer
at the previous timestep. Applying the current numerical estimator to recurrent
networks can prove to be difficult, however, as to the author’s knowledge, there is
no existing work validating that binarizing the activations of a recurrent network
yields a reasonable model.
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Conclusion

In this thesis, a self-contained and sufficiently rigorous introduction to the recently
developed partial information decomposition and to the necessary information-
theoretic prerequisites was provided. The main part of this thesis, however, con-
stituted of applying PID to empirically analyse the distribution of information in
three well-known dynamical complex systems.

First, it was discovered that complementary information peaks in the disorder
regime of the Ising model. If found to be generalizable to real-world complex sys-
tems, this result could be of significant practical value. Second, a novel quantitative
characterization of elementary cellular automata based on information distribution
was obtained. The proposed characterization is complementary, and orthogonal,
to the popular qualitative classification proposed by S. Wolfram. Third, feedfor-
ward neural networks were found not to be amenable to analysis within the current
PID framework. However, after giving proper justification as to why the experi-
ments done with feedforward neural networks failed to provide interesting insights,
a more promising research direction was laid out.

The author of this thesis was responsible for implementing the relevant models in
code and carrying out the subsequent analyses. The PID numerical estimator that
made measuring the PID terms possible was developed by the thesis supervisors.
Even so, the estimator was not treated as a complete black box, as some minor
bug fixes and modifications were done by the author of this thesis to get it working
as required.
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