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Generalising health events by using frequent itemset mining

Abstract:

The digitisation of health data has enabled us to conduct studies that enhance healthcare

practices and make clinical processes more efficient. However, the diverse types of health

data and their sparse nature create challenges in understanding a patient's health status and

utilising it in data mining tasks and analytics techniques. The primary objective of this

research is to use frequent itemset mining to generalise similar health events into a

higher-level event and assess its practicality and limitations. The study involves extracting

health event transactions from Estonian healthcare data using a sliding window technique and

applying the FP-Max algorithm to identify frequent itemsets of health concepts. These

itemsets are clustered into higher-level events, providing a generalised representation of a

patient's health event timeline. Experimenting with different parameters resulted in clusters

with varying levels of generalisation which ultimately helped to describe a patient's health

status by reducing elements and giving them generalised labels.

Keywords: frequent itemset mining, electronic healthcare records, data summarisation

CERCS: P170 Computer science, numerical analysis, systems, control
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Terviseandmete üldistamine sagedaste andmehulkade abil

Lühikokkuvõte:

Terviseandmete digiteerimine on võimaldanud viia läbi uuringuid, mis on parandanud

tervishoiupraktikaid ja teinud kliinilisi protsesse tõhusamaks. Siiski on tervishoiu infot

patsiendi terviseseisundi hindamisel ja andmepõhistel meetoditel raske kasutada, kuna info

on oma olemuselt väga hõre ja mitmekesine. Selle uurimistöö peamine eesmärk on kasutada

sagedasi andmehulkasid tervisesündmuste üldistamiseks kõrgemal tasemel sündmuseks ning

hinnata nende rakendatavust ja piiranguid. Töö käigus leitakse Eesti terviseandmetest

FP-Max algoritmi kasutades sagedased terviseandmete hulgad. Need hulgad klasterdatakse

kõrgema taseme sündmusteks, mida kasutatakse selleks, et teha patsientide terviseündmuste

ajajoon üldisemaks. Erinevate parameetritega eksperimenteerimise tulemusena tekkisid

erineva üldistustasemega klastrid, mis aitasid luua üldistatud pildi patsiendi terviseseisundist,

vähendades sündmuste arvu.

Võtmesõnad: sagedaste andmehulkade kaeve, elektroonilised terviseandmed, andmete

üldistamine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction

The digitisation of health data has enabled, in addition to managing patients' health-related

information, utilisation of health records in clinical research and the enhancement of

healthcare practices. The application of data mining and analytics techniques to Electronic

Health Records (EHR) has allowed profound studies of patient cohorts, facilitating various

clinical and research challenges such as disease prediction, detection, and progression

analysis.

However, using health data creates significant challenges due to the diverse array of data

types and their associated complexities. It is very sparse, containing several various facts

(disease codes, drugs, laboratory measurements, etc.) with record dates for each patient (see

Figure 1).
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Figure 1. Health event timeline of an elderly person. Each dot represents a fact in the data, dfferent colors indicate different meaning of the facts

(e.g., diclofenac, ramipril, surgical biopsy, colonoscopy)
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Even the exact condition of the patient (e.g. a particular disease) ends up as a number of facts

in the data (e.g. case summary, prescription, bill, etc.) and it is hard to get an overview of the

patient’s health status, especially when the patient has several concurrent chronic diseases. It

also makes it challenging to analyse the data of a set of patients. The individual health

records, on their own, cannot succinctly describe a patient's health status. Moreover, the

temporal accuracy of these events is often lacking, leading to ambiguity regarding the precise

chronological order of occurrences. Some of the inaccuracies can be caused by the policies of

general healthcare or organisation (e.g. the case summaries are reported at the end of the

disease onset, but bills may be sent out earlier). It has been shown that many variations in the

order of the facts make it difficult to apply process mining techniques to get an overview of

the underlying processes [6, 7]. Multiple research papers have noted the heterogeneity of the

data as a limitation, for example, when applying any pathway, pattern, or process mining

methods to health data [5, 6, 7, 9].

The main goal of this research is to generalise similar health events to an upper-level event

using frequent itemset mining and to evaluate its applicability. This technique was chosen

since it allows finding items from transactional data that appear together frequently and fall

into similar concepts. Furthermore, the time of the events in the transaction is ignored,

eliminating the problem of the wrong order of health events. This technique is applied to a

sample of Estonian healthcare database records comprising 10% of the patients in the

database, resulting in clusters of similar events that can be used to generalise health events.

The research questions addressed in this research are as follows:

RQ1: How can frequent itemset mining be used to generalise Estonian healthcare data?

RQ2: What limitations restrict the implication of frequent itemset mining to Estonian

healthcare data?

The thesis begins with an introduction to related work in this field, along with a description

of key concepts such as frequent itemset mining and the different algorithms in Chapter 2.

Chapter 3 describes the data and the chosen methods for generalising health events. In

Chapter 4, the outcomes of applying the methods and validation metrics are presented.

Subsequently, the results of applying the methods to health data and future work are

discussed in Chapter 5, followed by the conclusion of the research in Chapter 6.
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2 Background and related work

This section introduces the core method for achieving the objective of this thesis, gives a

summary of the usage of frequent itemset mining in the different fields and ultimately serves

to explain the need for generalising health events.

2.1 Frequent itemset mining

Frequent itemset mining is a data mining method aimed at discovering groups of items that

frequently co-occur in a dataset. This technique finds applications in transactional databases,

market basket analysis, recommendation systems, and other domains where uncovering

associations between items holds significance.

The Apriori algorithm [1], proposed by Agrawal and Srikant, is one of the most well-known

and widely used for this purpose. Given a list of transactions and a minimum support

threshold, it returns frequent itemsets. An itemset is considered "frequent" if its items occur

together in at least the specified support percentage of all transactions within the dataset. The

algorithm uses a pruning step which is based on the Apriori principle, which states that if an

itemset is infrequent, all of its supersets must also be infrequent. Usually, association rules

are generated from frequent itemsets as a last step, but this thesis does not focus on this step.

For example, as shown in Table 1, there are 6 transactions where A, B, C, and D are items in

the transactions. The minimum support threshold is set to 3.

Table 1. Example transactions.

Transaction ID Items

t1 {A, B, C}

t2 {B, C, D}

t3 {D}

t4 {A, B}

t5 {A, B, C}

t6 {A, B, C, D}
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Transactions are scanned to find the support of each item. The result is shown in Table 2.

Table 2. Support of items in transactions.

Item Support

A 4

B 5

C 4

D 3

Since the minimum support threshold is 3, all items are frequent itemsets of size 1. Next,

candidate itemsets of size 2 are generated and checked if they do not contain any infrequent

itemsets. The support of pruned candidates is found. The result is shown in Table 3.

Table 3. Support of candidate itemsets of size 2.

Itemset Support

{A, B} 4

{A, C} 3

{A, D} 1

{B, C} 4

{B, D} 2

{C, D} 2

Out of these candidates, itemsets {A, B}, {A, C}, and {B, C} are frequent itemsets of size 2.

The process is iterated once more and the result is shown in Table 4.

Table 4. Support of candidate itemsets of size 3.

Itemset Support

{A, B, C} 3
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Itemset {A, B, C} is also a frequent itemset, hence from the transactions with the minimum

support of 3, 8 frequent itemsets were discovered.

Mannila et al. [2] introduced the WinEpi and MinEpi algorithms for mining frequent patterns

in sequences. The names of these methods derive from their underlying technique: a sliding

window. This window, characterised by a fixed width and movement step, traverses the

sequence of events to identify recurring subsequences of events over time. Like the Apriori

algorithm, WinEpi and MinEpi employ a frequency threshold and incrementally generate

itemsets by constructing candidates. The method used in this thesis is similar since it

combines aggregating health events that appear close together using a sliding window and

applying an algorithm to these transactions to find frequent itemsets.

In addition to the Apriori algorithm, multiple other algorithms like FP-Growth [3] and

FP-Max [4] have emerged, which yield similar outputs. Essentially, they share similarities as

they operate on a list of transactions and a minimum support threshold variable. The main

difference between the above-mentioned algorithms is the performance on large datasets.

Although Apriori may be suitable for smaller datasets or scenarios where simplicity and ease

of implementation are prioritised, multiple scans of the dataset are required to compute

support counts and generate candidate item sets. FP-Growth constructs a compact data

structure called the FP-tree [3], which represents the frequency of itemsets. It requires a

single pass over the dataset to build the tree and a second pass to mine frequent itemsets,

making this approach attractive for large datasets. FP-Max utilises FP-tree as well, but the

output consists only of maximal frequent itemsets. An itemset is maximal if it is frequent and

none of its immediate supersets are frequent [4].

Singleton sets and non-maximal frequent itemsets add no value to achieving the goal of this

study. Hence, the FP-Max algorithm was selected for the remainder of the study, in addition

to its performance, by removing singleton sets from its output.

2.2 Related work

Multiple health data researchers have identified the need for data generalisation, for example

when exploring event sequences or applying data mining tasks.

When running a validation study by using health data from the Netherlands on a framework

built for detecting clinical event trajectories using Estonian health data, Künnapuu et al. noted

that one of the discrepancies resulted from the fact that different medical concepts are used in

other cultures or healthcare environments for documenting the same medical condition. They
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highlighted that using concepts generalised at a higher level would be considerably more

efficient [5].

Salamov explored the applicability of process mining to Estonian health data while analysing

the limitations and assessing the feasibility. He highlighted multiple limitations regarding

missing or inaccurate time values of the processes’ data records, limitations that frequent

itemset mining could potentially solve. These limitations could lead to processes appearing in

the wrong order in the process model, as seen in one case of a cervical cancer screening event

log, where the test result appeared before the test itself. The author brought out the

importance of combining concepts into activities, before using them in process mining, due to

the complexity of clinical processes [6].

Toth et al. also noted the challenges of applying process mining to health data. One of the

challenges they identified is the diversity of the code systems used in healthcare. They

proposed aggregating similar medical concepts and creating a hierarchical code system that

would allow generating process models on different levels of detail [7].

Campbell et al. introduced a temporal condition pattern mining method to address the sparse

utilisation of medical concepts in electronic health record (EHR) data. They applied this

method to analyse condition patterns surrounding initial paediatric asthma diagnoses,

utilising the SPADE algorithm on datasets with International Classification of Diseases (ICD)

codes and expanded diagnostic clusters (EDCs) [8]. The study, conducted on 71,824 patients

from the Children’s Hospital of Philadelphia, revealed 36 unique diagnoses in the EDC

dataset compared to 19 in the ICD dataset. Moreover, temporal trends in condition diagnoses

were only identified in the EDC dataset, highlighting the potential of this approach to

uncover clinically relevant insights [9].

Several studies have demonstrated how utilising generalised data in some way or form has

enhanced the outcomes of their research. The application of frequent itemset mining for

generalising health events has not yet been extensively explored in academic research;

however, other fields have used similar methods for the same objective.

Gupta et al. proposed a model called "FRI-CL" for summarising biomedical text, which

assists researchers in the clinical field with the time-consuming process of extracting precise

information from scientific articles and EHR-s. Their model operates similarly to the method

used in this thesis. Semantic biomedical concepts were initially extracted from archives and

then clustered using an adapted Dirichlet process mixture model (DPMM) clustering [10] to
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create sentence representations. Subsequently, sentences were processed using a modified

FP-Growth algorithm. Using PageRank [11], highly informative sentences containing

frequent concepts were scored to generate summaries. These summaries were evaluated using

the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric [12]. Compared

with benchmarks, the model demonstrated improvements in memory utilisation and ROUGE

scores [13].
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3 Data andmethods

This section introduces the data and methodology used for the research.

3.1 Data

In this study, a dataset having the Observational Medical Outcome Partnership (OMOP)

common data model (CDM) is used. It is a result of a project by Oja et al. [14], where data

from three Estonian national health databases of a 10% sample from the population from the

period of 2012-2019 was transformed into this model. In total, the database contained

medical information of 149,364 patients. The acquired data includes temporal information

about patients’ conditions, measurements, procedures and drug exposure with a link to the

corresponding medical concept.

The following values from the corresponding data records were necessary to create itemsets:

● person_id: Identifier of the patient, identifying the person whose health records are

utilised.

● concept_id: Identifier of the medical concept.

● start_date: Date of the concept being recorded in the system.

It should be noted that one of the advantages of using frequent itemset mining is that it allows

concurrent events and does not necessitate the specification of end times for the events. This

is beneficial, particularly considering that the end times of health events are typically either

unrecorded or inaccurately documented.

With these database records, examples were constructed of health event timelines for an

elderly patient, as shown in Figure 1, and for a child, as depicted in Figure 2. As evident in

the figures, these timelines vary regarding the number of concurrent and overall events.

Despite Figure 2 having a significantly smaller number of events, it remains challenging to

analyse.
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Figure 2. Health event timeline of a child. Each dot represents a fact in the data, dfferent colors indicate different meaning of the facts (e.g., child

examination, audiometric test, amoxicillin, poliovirus)
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3.2 Methodology

In this study, we are trying to generalise the detailed health events (records in the database) of

each patient into higher-level events. For this, we first create itemsets of the records, apply

frequent itemset mining, and finally create itemsets clusters. Each cluster of records

represents a generalised health event. We try to propose a name for each such event.

The overall steps for this process are illustrated in Figure 3.

Figure 3. General analysis pipeline of the thesis.

3.2.1 Creating itemsets

A sample size of 10% of all the patients in the database was chosen for this research

(n=14,936), as it covers most typical medical concepts observed within the population while

maintaining reasonable computational processing times.

For each patient, records are collected from 3 data tables:

condition_occurrence: This table contains records of medical conditions or diseases,

including diagnoses, symptoms, or signs. These values are usually inferred from the

International Classification of Diseases ICD-10. An example concept name for a clinical

finding is "Hyperplasia of the prostate", originating from ICD-code N40.1.

drug_exposure: This table contains records of utilising drugs that are in some way

introduced into the patient's body. An example concept name for a drug is "Tamsulosin."
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procedure_occurence: This table contains records of procedures and activities that are

carried out on the patient by the healthcare professional. An example concept name for a

procedure is "Endorectal ultrasonography."

Using our method, all preceding examples would be generalised into a higher-level event

related to prostate cancer and treatment.

All records with concepts that appear less than 10 times in the dataset were considered

infrequent and filtered out. Consequently, the dates of the events are mapped to integers

representing days between the period of 2012-2019 and then converted to a list of events in

the format of integer - concept_id list pairs. Most records in the database lack precise

timestamps, and for the sake of simplicity, the time unit utilised is days.

A sliding window technique is applied to the list of events for creating itemsets. For each

patient, the events that appear in the same window within a fixed window length are arranged

into itemsets of distinct concepts. Two methods were tested for moving the window along the

path of events. The first method uses a fixed-size step equal to the window length, splitting

the path into equal-sized sectors (See Figure 4). This would ensure that one event could not

belong to multiple itemsets. If no events exist in the window, no itemsets will be created. For

the alternative method, every window starts from a new event, including the first event (See

Figure 5). This approach is similar to the one used in the Winepi algorithm [2] and allows

duplicates.

Figure 4. Sliding window method for constructing itemsets. Each dot represents a health

event in the patient's timeline.
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Figure 5. Alternative sliding window method for constructing itemsets. Each dot represents a

health event in the patient's timeline.

The following window lengths were used for creating the itemsets: 1, 2, 4, 7, 14, 30.

3.2.2 Frequent itemset mining

The resulting itemsets were first transformed into a one-hot encoded Pandas dataframe [15]

which was then inputted into the MLxtend [16] (Machine Learning Extensions) Python

library's FP-Max algorithm, along with the minimal threshold support to create frequent

itemsets. The itemsets were generated using various minimal supports (0.001, 0.0009, 0.0007,

0.0005, 0.0003), where smaller support led to larger itemsets. Using FP-Max ensured that

only frequent super-sets were generated.

3.2.3 Clustering of frequent itemsets

Following the generation of frequent itemsets, clusters that are the base of generalised health

events, were created. Two methods were used for clustering.

The first method concatenates all concepts in the itemsets into a string representation. This

string representation is then transformed into vectors using the bag-of-words model. Here,

each item set resembles a "sentence," with individual items akin to "words." Subsequently, a

k-means algorithm [17] with a selected number of clusters is applied to the bag-of-words

object, enabling the categorisation of distinct clusters.

The following number of clusters were tested in this research: 50, 100, 200, 400.

An alternative method for clustering was also studied. Specifically, within each frequent

itemset, the most important concept was identified and the itemsets with the same most
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important concept were clustered together. Term frequency-inverse document frequency

(TF-IDF) [18] score was used for this, considering each frequent itemset as a document and

items as terms.

3.2.4 Proposing a name for each cluster

Chronic diseases often occur frequently alongside less common concepts when dealing with

health data, leading to their dispersion across all clusters. To identify the most significant

items within the cluster and filter out redundant concepts, TF-IDF score is calculated for each

item in the cluster. The cluster is then labelled with the concept name of the item having the

highest TF-IDF score. This technique ensures that the labels of the clusters are mostly unique

since uninformative concepts are given a lower score.

For the alternative method, clusters that share the same label or the concept with the highest

TF-IDF score, are also merged, since multiple frequent itemsets exist for the same concepts.

3.2.5 Validation of the clusters

Ideally, each cluster would exclusively contain concepts that are specific to that cluster.

Different metrics that use predefined use cases as validation sets were created to assess the

quality and validity of the clusters. All use cases were selected by the author of this thesis and

are based on clinical guidelines and discussions with medical doctors. Each use case set

comprises concepts that are specific to that particular condition. For example, use case UC1

contains various concepts related to childbirth (such as "Spontaneous vertex delivery" and

"Ultrasound scan") and use case UC2 contains concepts related to eye diseases (such as

"Open-angle glaucoma", "Senile incipient cataract", "Refraction assessment"). Use cases

were not created for common chronic diseases like cardiovascular disease and type II

diabetes, as their concepts may appear in several clusters, thus not conveying the quality of

the clusters. In total, 23 use cases of similar concepts were defined (see Appendix I). All use

case concepts are used once only in use cases (no duplicates).

The metrics defined for validating clusters using the predefined use cases:

1. Average number of clusters per use case. For each use case, the number of clusters

that have matching items are counted. Subsequently, the average of these counts is

calculated. The ideal score is 1 (indicating one cluster for each use case). This score

helps determine the optimal number of clusters, as ideally, every use case should have

one matching cluster.

18



2. Standard deviation of clusters per use case. The number of clusters containing

matching items is counted for each use case. Subsequently, the standard deviation is

calculated using these counts. This measures the distribution of clusters across use

cases. A lower score indicates a better distribution.

3. Average number of use cases per cluster. For each cluster, the number of use cases

containing matching items is counted. Subsequently, the sum of the counts is divided

by the number of clusters with at least one matching item with any of the use cases.

This score assists in determining the optimal number of clusters as the goal is to avoid

the concepts of several use cases being presented in the same cluster. The ideal value

of the metric is the number of use cases divided by the total number of clusters.

4. Standard deviation of use cases per cluster. For each cluster, the number of use

cases containing matching items is counted. Subsequently, the standard deviation is

calculated using these counts. This measures the distribution of use cases across

clusters. A lower score indicates a better distribution.

Two more indicative metrics were created for deciding the minimal support threshold:

1. Use case concepts in frequent itemsets. The proportion of all use case items

included in all items in frequent itemsets. This indicates how many of the predefined

use case concepts actually are represented in the frequent itemsets. The ideal score is

1, meaning all the use cases are represented in the itemsets.

2. Proportion of all concepts included in clusters. The proportion of all initial items

included in clusters. This is calculated by dividing the number of initial items that

appear in clusters by the number of items from the initial data. This metric considers

the actual frequencies of the items in the original data, better indicating the proportion

of the original data covered by the clusters (the larger the better).

Parameters and test values used for validation of the clusters are shown in Table 5. These

values were chosen to keep in mind the goal of this thesis and based on how general the

resulting events would be.
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Table 5. Parameters and values used for testing.

Param Values

Window length 1, 2, 4, 7, 14, 30

Number of clusters 50, 100, 200, 400

Minimum support 0.001, 0.0009, 0.0007, 0.0005, 0.0003

Each combination of these parameters was iterated three times on different samples of

healthcare data to ensure robustness. The average value was calculated from these iterations.

3.2.6 Generalising health events of a single patient

To generalise the health events of a single patient using the clusters of similar concepts, the

events on the timeline are first split into itemsets using a sliding window, similar to the

previous approach. Subsequently, each item in the set is allocated to a cluster based on where

it attains the highest TF-IDF score. Ideally, all events within a window would belong to one

cluster. In cases where no clusters contain the event, a "NaN" value is assigned. The result of

generalising the timelines of two persons shown in Figure 1 and Figure 2 can be seen in the

following section, "Results".

3.3 Location of code

The Python code implemented in this study is available in the GitHub repository1.

3.4 Ethics approval

This work was approved by the Estonian Bioethics and Human Research Council (EBIN, no.

1.1-12/653).

1 https://github.com/OliverSuik/fim-health-data
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4 Results

This section displays, summarises, and discusses the results of the thesis. It starts with

comparing the metric scores using different values for the parameters. Then the results of

using an alternative method for creating itemsets and clustering are presented followed by

examples of clusters. Lastly, generalised representations of the previous health event

timelines in Figure 1 and Figure 2 are shown.

For the 10% sample of the population (n=14,936), the first sliding window method created

around 950,000 transactions. From these transactions, 558 frequent itemsets were generated

when the window length was set to 1 and with the minimum support is 0.0008. Using the

same minimum support, but having a window length of 30, 2187 frequent itemsets were

generated.

Table 6 shows the number of unique concepts contained in frequent itemsets using different

minimum supports. It can be seen that lowering the minimum support increases the number

of unique concepts.

Table 6. Number of concepts in frequent itemsets using different minimum support.

Minimum Support Number of Unique Concepts
0.015 10
0.01 13
0.005 57
0.001 474
0.0005 743
0.0008 1191
0.0001 1738

4.1 Relationships between parameters and metrics

Relationships between different parameter values and metrics are presented in the following

section.

Figure 6 shows that increasing the window length results in higher scores for all metrics,

indicating that more concepts appear in clusters but the quality of the clusters declines. The

first two metrics begin to increase significantly when the window length is 7, while the other

metrics show slower growth.

21



Figure 6. Relationships between window length and metric scores. The number of clusters is

fixed at 200 and the minimum support is 0.0008. Dashed lines in the charts represent metrics

with an ideal score of 1.

Figure 7 illustrates that increasing the minimum support decreases the values of the last two

metrics from 86.9% and 74.2% (min_sup = 0.0003) to 70.65% and 56.7% (min_sup = 0.001),

respectively. Conversely, the quality of the clusters improves significantly, with the first and

third metrics approaching a value of 1.
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Figure 7. Relationships between minimal support and metric scores. Number of clusters is

fixed to 200 and the window length is 7. Dashed lines in the charts represent metrics with an

ideal score of 1.

Compared to the previous graphs, Figure 8 demonstrates that increasing the number of

clusters affects the first two metrics differently compared to the other two metrics, with the

first metrics increasing while the others decreasing. The metrics scores are the most similar

when the number of clusters is 75.

Figure 8. Relationships between the number of clusters and metrics. The minimum support is

0.001 and the window length is 7. Dashed lines in the charts represent metrics with an ideal

score of 1.

4.2 Using alternative methods

Using the alternative sliding window method created around 1,100,000 transactions, which is

150,000 more than the first method.

Figure 9 illustrates that employing the alternative sliding window method enhances the scores

of the last two metrics by 20% and 15% with every window length, compared to the first

method. However, as the window length is increased, all the other scores start to degrade

significantly, especially the first two metrics.
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Figure 9. Relationships between window length and metrics using an alternative sliding

window method. The number of clusters is fixed at 200 and the minimum support is 0.0008.

Dashed lines in the charts represent metrics with an ideal score of 1.

When using the alternative clustering method, out of the initial 558 frequent itemsets

(win_length=1), 234 itemsets remained after merging the itemsets containing the same

concept with the highest TF-IDF score. An average cluster contained 4 concepts. The metric

scores using different window lengths are shown in Figure 10.
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Figure 10. Relationships between window length and metrics using an alternative clustering

method. Minimum support is 0.0008. Dashed lines in the charts represent metrics with an

ideal score of 1.

4.3 Resulting clusters

Based on the scores obtained using different values for the parameters and the preferences of

the thesis author, clusters for closer inspection were created using the parameters

win_length=4, num_clusters=200, and min_sup=0.0008. The sizes of the clusters vary from a

single concept to 50 concepts, with the average cluster size consisting of 12 concepts.

Examples of the resulting clusters, showing the top 7 concepts in each, can be seen in Table

7, Table 8 and Table 9. The given labels for the clusters are at the top of the tables.

Table 7. Cluster containing concepts related to pregnancy and childbirth.

Nr TF-IDF Score Concept

1 1.0 Finding related to pregnancy

2 0.144 Spontaneous vertex delivery

3 0.144 Infections of the genital tract in pregnancy

4 0.144 Gestational diabetes mellitus

5 0.144 Threatened miscarriage

6 0.144 Uterine scar from previous surgery in pregnancy, childbirth and
the puerperium

7 0.125 Ultrasound scan - obstetric

Table 8. Cluster containing concepts related to treatment using antibiotics.

Nr TF-IDF Score Concept

1 1.0 Amoxicillin

2 0.144 Asymptomatic periapical periodontitis

3 0.077 Amoxicillin 80 MG/ML / Clavulanate 11.4 MG/ML Powder for
Oral Solution

4 0.077 Acute pharyngitis
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5 0.077 Acute tonsillitis

6 0.077 Acute sinusitis

7 0.059 Acute bronchitis

Table 9. Cluster containing concepts related to chronic diseases.

Nr TF-IDF Score Concept

1 0.799 Nebivolol

2 0.799 Nebivolol 5 MG Oral Tablet

3 0.062 Primary open angle glaucoma

4 0.054 Type 2 diabetes mellitus without complication

5 0.077 Metformin

6 0.047 Disorder of lipid metabolism

7 0.04 Hypertensive heart disease

4.4 Generalised timelines

Using the same parameter values as in the previous section, generalised versions of timelines

similar to those seen in Figure 1 and Figure 2 were created. These can be observed in Figure

11 and Figure 12.
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Figure 11. Generalised health event timeline of an elderly person.
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Figure 12. Generalised health event timeline of a child.

28



5 Discussion

This section analyses the results presented in the previous section, answers research

questions, and compares the method proposed in this thesis with similar work. In addition,

future work and possible use cases for the method are discussed.

5.1 Interpreting results

5.1.1 Choosing parameter values and alternative methods

Several factors must be considered when selecting parameter values and defining use cases.

For example, increasing the window length leads to larger itemset transactions, generating

more candidates for the algorithm to combine into frequent itemsets. This results in more

concepts within clusters; however, it also causes the clusters to grow in size and become

more mixed with concepts from different use cases since the events become more general.

Lowering the minimum threshold support also increases the number of concepts within

clusters, exposing rarer events. Conversely, setting the minimum support too high would lead

to a lack of frequent itemsets. As seen in Figure 11 and Figure 12, a significant number of

concepts are given a "NaN" value, since they are not present in frequent itemsets. In this

research, the minimum support value should be set to at least 0.015 (1.5%) to obtain any

frequent itemsets (see Table 6).

The number of clusters should be determined based on the number of concepts within

frequent itemsets. Setting this value too low may result in noisy and overly generic clusters

while setting it too high could create anomalies with clusters containing only a single

element.

As seen in Figure 9, using the alternative sliding window method, compared with the first

method, resulted in more concepts due to the duplication, which led to larger itemsets.

However, this comes with the expense of "Avg. Clusters/Use Case" increasing rapidly,

compared to the first method. This could have occurred because the method begins to amplify

the occurrence of frequent events in itemsets. If an event occurs clearly separately from

others, it is in exactly one itemset. But if there are two other events around this event, then

this event already occurs in three itemsets.

The advantages of using the alternative clustering method, which prioritises the most

important item, include eliminating the need to choose the number of clusters, which can be
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challenging in the first method. Even when the minimal support is set high and a large

majority of the concepts are frequent, the resulting clusters remain easily distinguishable

compared to the first method. However, the clusters are smaller and more generalised at a

lower level. This can be observed in Figure 10, where the "Avg. Clusters/Use Case" score is

very high because the concepts in the use cases are distributed across multiple clusters. In

contrast, the "Avg. Use Case/Clusters" score is nearly optimal, reflecting the small size of the

clusters. To conclude, this approach is suitable when the defined use cases are small,

containing up to 4 concepts.

5.1.2 Resulting clusters

It should be considered that many of the resulting clusters represent the same generalised

events but with slight differences. These typically include clusters of chronic diseases, as

illustrated in Table 9. The number of these clusters can be reduced by adjusting the

parameters.

In the cluster in Table 8 and Table 9, it can be seen that multiple variants of a drug can appear

in the system. This typically occurs when a drug is reported multiple times: once when

prescribed with a general name, and again when purchased from a pharmacy under a specific

name. Using the method of this thesis, drugs and their variants are clustered together,

however as seen in Figure 11, for clusters labelled "Ramipril" and "Levothyroxine", clusters

can also be created for their variants and appear alongside the timeline.

Using the TF-IDF measure to identify the most informative concepts for labelling clusters

yields mixed results. In Table 7, the suggested label "Finding related to pregnancy"

effectively describes the concepts associated with pregnancy and childbirth in a generalised

context. Similarly, the label "Amoxicillin" in Table 8 is appropriate, as the cluster comprises

conditions treated with antibiotics, making it sensible to use the name of the drug used as

treatment as the label. Some labels are less self-explanatory initially, such as "Plain chest

X-ray" in Figure 12. Upon closer inspection, the cluster's name includes concepts related to

respiratory system diseases, making the proposed label somewhat accurate since it involves

this particular diagnostic procedure. However, some labels are from concepts that indeed are

part of the general event but may not be highly significant, for example, "Nebivolol" in Table

9, which is a drug used to treat high blood pressure. This cluster is also a mix of concepts of

eye diseases and type II diabetes which appear frequently together but do not contain a

concept with a name that describes them all, making it challenging to label.
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5.1.3 Generalised timelines

Applying the method to the initial timelines significantly improved the clarity of the pictures.

In the child's timeline shown in Figure 12, multiple distinguishable events common to

children are visible that were not apparent in the initial figure. For instance, the timeline

includes events related to school nurse examinations and vaccinations in line with the

national vaccination plan. Concurrent events in the middle of the diagram suggest that the

person underwent an emergency procedure (involving concepts such as

"Dislocations/sprains/strains," "Emergency examination for triage," "Plain X-ray of upper

wound," and "Surgical debridement of wound"). The original figure contained 266 events,

which were reduced to 96, with 23 assigned a "NaN" value.

The event timeline of an elderly person exhibits fewer distinguishable events but remains

more interpretable than the initial image, revealing occurrences of several chronic diseases

and associated procedures and drug prescriptions. The original 1550 events were generalised

to 381 events, with 89 classified as "NaN." This illustrates that using our model, frequent

items are more likely to be clustered than rarer items, aligning with the objectives of this

thesis.

5.2 Reflections and limitations

The primary focus of this research was to explore the potential of frequent itemset mining in

generalising Estonian healthcare data. Through developing and implementing a health event

generalisation method that combines frequent itemset mining and clustering techniques, this

thesis aims to provide insights into how this approach can enhance the representation and

analysis of healthcare data. This process addresses RQ1. How can frequent itemset mining be

used to generalise Estonian healthcare data?

In this work, a health event generalisation method was conducted on an Estonian dataset for

the first time. The technique used in the thesis can also be applied to health data of other

nations, considering that globally, as of 2023, 12% of health data is standardised to the

OMOP format [19]. The method reduced the number of events appearing in the same time

window and made the timeline of health events easier to interpret. Also, the use cases created

to validate the results can be used in other works to generalise health events.

Furthermore, its implementation can notably enhance the efficiency of displaying health data

within health information systems. By offering users of the portal a comprehensive overview
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of a patient's health status, it significantly enhances the system's utility and effectiveness. A

new version of Estonia's health information system is being developed at the time of this

research and the data viewer function could benefit from this model [20].

Although the results of this thesis may not be directly applicable in practical contexts, studies

requiring the manual creation of generalised health event reference sets can benefit from this

work by automating the process.

In Salamov’s thesis [6], the author classified concepts related to cervical cancer screening

into activities and used them in process mining. When comparing the defined activities with

the clusters in this thesis, some show similar generalisations or overlaps. For example, in the

activity "Contraception based on ICD10 diagnosis", out of 57 concepts, 4 are present in the

cluster labelled "Contraception care management". Among the other 4 concepts in the cluster,

2 are indirectly related ("Transvaginal echography", "DNA analysis"), one is a drug variant

("Ethinyl estradiol 0.02 MG / gestodene …"), and one is the drug "Gestodene," which could

belong to the activity as it is used for birth control. This shows that the method could even be

used to discover initially left-out relevant concepts.

Some clusters are even identical to the activities, as one of them labelled "Cervical biopsy"

contains the exact same concepts ("Cervical biopsy", "Colposcopy") as the activity "CIN or

CC related diagnostic procedures".

While frequent itemset mining showed promise in generalising Estonian healthcare data,

several limitations emerged during the research process. The following section addresses

RQ2. What limitations restrict the implication of frequent itemset mining to Estonian

healthcare data?

The limitations that emerged are related to the initial data, the chosen method, and

fundamental problems.

A majority of the concepts in the dataset are rare and do not appear unless the minimal

support is set very low. Approximately 5.5% of all concepts in the dataset appear only once.

Furthermore, the research was conducted using only Estonian health data, which is limited in

scope and lacks comprehensive coverage of various diseases. The dataset also contained

records of measurements; however, due to challenges in their incorporation and validation,

they were not analysed.

One of the cons of using frequent itemset mining as was demonstrated in this work is that

there is no direct way to control the degree of generalisation besides the parameters. It is hard
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to tell whether using k-means to cluster itemsets and TF-IDF to label these clusters is the best

approach, as there is no validation set to compare the results to and objectively assess if the

methods used in this research are sufficient. The metrics developed in this thesis can be

applied within predefined use cases; however, there is no metric similar to ROUGE, as used

in the research by Gupta et al [13].

In addition, there should have been many more use cases of generalised events created with

medical professionals' help. One reason is that determining whether a cluster can be

considered generalised is challenging (clusters containing 2 concepts and those containing 20

are both deemed generalised).

5.3 Future work

In terms of future work, there are several directions for advancing this research. First,

exploring different clustering methods for grouping frequent itemsets could reveal new

insights. Comparative studies using various algorithms like hierarchical clustering [21] or

Density-based spatial clustering of applications with noise algorithms (DBSCAN) [22] may

reveal different formations of clusters. Additionally, experimenting with new methods for

proposing cluster names beyond TF-IDF could enhance the interpretability of results.

In this thesis, health events on the timeline were reduced only to fixed time windows.

Grouping these generalised events horizontally, creating a method for determining the start

and end dates of these events, and constructing a validation method is another key area for

improvement. This would help to eliminate the problem of inaccurate timestamps for events.
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6 Conclusion

The main aim of this thesis was to evaluate the use of frequent itemset mining techniques to

generalise healthcare data. In addition to creating a model and validation methods for

examining the feasibility, the results of using different values for parameters and limitations

were discussed.

To explore the applicability of frequent itemset mining, frequent itemsets were generated

from Estonia's Electronic Health Records using an FP-Max algorithm, which were then

transformed into clusters representing higher-level events. The resulting clusters were utilised

to generalise a patient's health event timeline.

Exploring different parameter values led to clusters of varying sizes, levels of generalisation,

and numbers of contained concepts. Therefore, depending on the task, one has to find the best

balance between the outcome metrics when choosing the parameters for the method. The

method presented in this thesis enables investigators to build their own test cases and

generate clusters of higher-level events that can be applied in their work or further develop

the methods proposed in this thesis. The main limitations identified with this approach

included the exclusion of rare events in frequent itemsets and the need for an evaluation

metric to assess the results of the chosen methods objectively.

Ultimately, the implemented solution helped to describe a patient's health status by reducing

elements and giving them generalised labels, demonstrating the potential applicability of

frequent itemset mining in this context.
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Appendix

I. Table of use cases

ID Concept Relation

1 ● 4062484 - Screening for malignant neoplasm of
cervix

● 44789520 - Human papilloma virus nucleic acid
detection

● 43531329 - Microscopic cytologic examination of
smear of specimen from female genital tract
prepared using Papanicolaou technique

● 4023405 - Cytologic test
● 4162714 - Negative for intraepithelial lesion or

malignancy
● 4191603 - Atypical squamous cells of undetermined

significance
● 4161591 - Atypical squamous cells, cannot exclude

HSIL
● 196359 - Primary malignant neoplasm of uterine

cervix
● 4175471 - Cervical biopsy

Human papillomavirus
(HPV)

2 ● 4278515 - Biopsy of prostate
● 924566 - Gamsulosin
● 40222572 - Dutasteride 0.5 MG / tamsulosin

hydrochloride 0.4 MG Oral Capsule
● 989482 - Dutasteride
● 197032 - Hyperplasia of prostate
● 40166540 - Tamsulosin hydrochloride 0.4 MG Oral

Capsule

Prostata cancer

3 ● 1167322 - Allopurinol
● 440674 - Gout
● 1167323 - Allopurinol 100 MG Oral Tablet
● 19018787 - Allopurinol 300 MG Oral Tablet

Gout and treatment

4 ● 939259 - Budesonide
● 1196677 - Formoterol
● 4110051 - Mixed asthma
● 317009 - Asthma
● 783232 - Budesonide 0.16 MG/ACTUAT /

formoterol 0.0045 MG/ACTUAT Inhalation
Solution

● 36405113 - Budesonide 0.4 MG Inhalant Powder
● 19063315 - Budesonide 0.064 MG/ACTUAT Nasal

Spray

Asthma and treatment
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● 36778958 - 60 ACTUAT Budesonide 0.32
MG/ACTUAT / formoterol 0.009 MG/ACTUAT
Inhalant Powder Box of 1

● 1154161 - Montelukast
● 19023368 - Montelukast 10 MG Oral Tablet
● 1137529 - Salmeterol

5 ● 19044883 - Zopiclone
● 374905 - Non-organic sleep disorder
● 439708 - Disorders of initiating and maintaining

sleep
● 744740 - Zolpidem
● 40163492 - Zolpidem tartrate 10 MG Oral Tablet
● 19044885 - Zopiclone 7.5 MG Oral Tablet

Sleeping disorders and
treatment

6 ● 1713332 - Amoxicillin
● 19073188 - Amoxicillin 500 MG Oral Tablet
● 1713412 - Amoxicillin 1000 MG Oral Tablet
● 44033419 - Amoxicillin 50 MG/ML Oral Powder
● 19115197 - Amoxicillin 875 MG / clavulanate 125

MG Oral Tablet

Antibiotics

7 ● 444094 - Finding related to pregnancy
● 440457 - Threatened miscarriage
● 4205240 - Spontaneous vertex delivery
● 4060556 - Uterine scar from previous surgery in

pregnancy, childbirth and the puerperium
● 4024659 - Gestational diabetes mellitus
● 434701 - Anemia in mother complicating

pregnancy, childbirth and/or puerperium
● 4152021 - Ultrasound scan - obstetric

Birth control

8 ● 444094 - Finding related to pregnancy
● 440457 - Threatened miscarriage
● 4205240 - Spontaneous vertex delivery
● 4060556 - Uterine scar from previous surgery in

pregnancy, childbirth and the puerperium
● 4024659 - Gestational diabetes mellitus
● 434701 - Anemia in mother complicating

pregnancy, childbirth and/or puerperium

Childbirth

9 ● 4152021 - Ultrasound scan - obstetric
● 4170107 - Us obstetric doppler

Ultrasound scan

10 ● 4307111 - Moderate major depression
● 4088609 - Somatic syndrome absent
● 4088489 - Somatic syndrome present
● 715940 - Escitalopram 10 mg oral tablet
● 715939 - Escitalopram
● 440383 - Depressive disorder

Depression and
anxiety
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● 442077 - Anxiety disorder
● 19072934 - Alprazolam 0.5 mg oral tablet
● 781039 - Alprazolam
● 4077577 - Moderate recurrent major depression

11 ● 381270 - Parkinson's disease
● 19123237 - Rasagiline 1 mg oral tablet
● 715710 - Rasagiline
● 789654 - Benserazide 25 mg / levodopa 100 mg

extended release oral capsule

Parkinson's and
prevention

12 ● 44012547 - Bilastine
● 44033226 - Bilastine 20 mg oral tablet
● 257007 - Allergic rhinitis
● 4320791 - Rhinitis
● 4031019 - Allergic contact dermatitis
● 133834 - Atopic dermatitis

Allergies

13 ● 40484028 - Dental caries extending into dentin
● 437589 - Pulpitis
● 37397422 - Asymptomatic periapical periodontitis

Dental

14 ● 1140643 - Sumatriptan
● 318736 - Migraine
● 19079711 - Sumatriptan 100 mg oral tablet

Migraine

15 ● 197223 - Enterobiasis
● 1794280 - Mebendazole
● 1794307 - Mebendazole 100 mg oral tablet

Enterobiasis

16 ● 4216397 - Nerve root disorder
● 4227449 - Spondylosis
● 75344 - Intervertebral disc disorder

Back pain

17 ● 1000632 - Clotrimazole
● 4084966 - Candida infection of genital region
● 44097550 - Clotrimazole 100 mg vaginal

suppository

Candidiasis

18 ● 4237233 - Tympanometry testing
● 4334402 - Examination of ear under microscope
● 4071702 - Audiometric test

Ear functioning tests

19 ● 528323 - Hepatitis b surface antigen vaccine
● 4015584 - Administration of second dose of

hepatitis b vaccine
● 4015017 - Administration of third dose of hepatitis

b vaccine
● 4015583 - Administration of first dose of hepatitis b

vaccine

Hepatitis B vaccine
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20 ● 4324693 - Mammography
● 4178367 - Radiographic imaging procedure

Mammography

21 ● 1717704 - Valacyclovir
● 444429 - Herpes simplex
● 1717708 - Valacyclovir 500 mg oral tablet

Herpes diseases

22 ● 4165354 - Administration of measles vaccine
● 4179181 - Administration of mumps vaccine
● 41111268 - Measles vaccine / mumps vaccine /

rubella virus vaccine injectable solution
● 4218920 - Administration of rubella vaccine

Measles and mumps
vaccines

23 ● 46272790 - X-ray of limb
● 4094343 - Dislocations/sprains/strains
● 4075112 - Emergency examination for triage

Limb fracture
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