
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Software Engineering Curriculum

Ihar Suvorau

Scaling Out the Discovery of Business
Process Simulation Models from Event

Logs

Master’s Thesis (30 ECTS)

Supervisors: Marlon Dumas, Prof.

David Chapela de la Campa, PhD

Tartu 2023



Scaling Out the Discovery of Business Process Simulation
Models from Event Logs

Abstract:
Background. The automated discovery of business process simulation (BPS) models
has received considerable attention in the process mining community in the past
decade. The main open question in this field is how to make such discovery accurate,
fast and efficient to provide more value for the end-users.
Aim. This thesis aims at re-architecting an existing tool for automated BPS model
discovery, namely Simod, to manage varying workloads in a scalable and robust
manner.
Methods. Scalability and robustness are achieved through building a distributed
event-based system using the integration with the Kubernetes API. An efficiency
metric has been used to evaluate the scalability of the final solution. A robustness-
under-load experiment shows that the re-architected system remains available under
high demand.
Results. The results of the validation experiments showed the system is scalable
for small-sized event logs and robust under high load. A limitation of the study is
that the testing environment, based on kind -clusters of 1, 2, 3, and 4 worker nodes,
is not suitable for large-scale load testing experiments.
Conclusion. This thesis provides a framework for implementing scalable, robust,
and resilient workflows on Kubernetes for BPS model discovery that can benefit
the process mining community. Further work is needed to improve the Simod
architecture by splitting it into smaller independent components to achieve higher
scalability and resource utilisation.

Keywords:
Process mining, process discovery, process simulation, horizontal scaling, Kuber-
netes, cloud architecture

CERCS: P170—Computer Science, Numerical Analysis, Systems, Control

2



Äriprotsesside simulatsioonimudelite avastamine sündmuste
logidest

Lühikokkuvõte:
Taust. Automatiseeritud äriprotsesside simulatsiooni (BPS) mudeli avastamine on
protsesside kaevandamise kogukonnas oluline saavutus. Peamised küsimused on
nüüd seotud selle avastamise täpseks, kiireks ja tõhusaks muutmisega, et lõppkasu-
tajatele rohkem väärtust pakkuda.
Eesmärk. See lõputöö lihtsustab juurdepääsu Simodile, pakkudes HTTP API-d
ja võimaldab skaleeritavat BPS-i mudelite avastamist, mis haldavad tippnõudlust
tõhusalt.
Meetodid. Skaleeritavus ja töökindlus on saavutatud hajutatud sündmustepõhise
süsteemi loomisega, kasutades integratsiooni Kubernetes API-ga. Tõhususe mõõ-
dikut on kasutatud lõpplahenduse skaleeritavuse kinnitamiseks; ja koormuse all
töökindluse katse on näidanud, et süsteem suudab suure nõudluse korral kättesaa-
davaks jääda.
Tulemused. Valideerimiskatsete tulemused näitasid, et süsteem on skaleeritav väikese
suurusega sündmuste logide jaoks ja vastupidav suure koormuse korral. Kuid 1, 2,
3 ja 4 töötaja sõlmedest koosnevaid kind -klastreid kasutanud testimiskeskkonna
eripärad ei sobi suuremahuliste koormustestimise katsete jaoks.
Järeldused. See lõputöö pakub raamistikku skaleeritavate, töökindlate ja vastupida-
vate töövoogude käitamiseks Kubernetes BPS-i avastamiseks, mis võib olla kasulik
protsesside kaevandamise kogukonnale. Täiendavat tööd on vaja Simodi arhitek-
tuuri ülevaatamiseks ja väiksemateks sõltumatuteks komponentideks jagamiseks,
et saavutada suurem mastaapsus ja ressursside kasutamine.

Võtmesõnad:
Protsesside kaevandamine, protsesside avastamine, protsesside simuleerimine, hori-
sontaalne skaleerimine, Kubernetes, pilvearhitektuur

CERCS: P170—Arvutiteadus, numbriline analüüs, süsteemid, juhtimine

3



Contents
Introduction 8

1 Background 11
1.1 Business Process Simulation Model Discovery . . . . . . . . . . . . 11
1.2 Simod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Scaling Network-Based Distributed Systems . . . . . . . . . . . . . 16

2 Related Work 19

3 Approach 22
3.1 Design Principles for Scalability . . . . . . . . . . . . . . . . . . . . 23
3.2 Prerequisites for Scalability . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Simod Challenges . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Simod Refactoring and Maintenance . . . . . . . . . . . . . 25

3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 System Context . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Container Context . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Components Context . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Collaboration between Services . . . . . . . . . . . . . . . . 35

3.4 Scalability of Web API . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Scalability of Job Service . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Usage of Language Models and Smart Assistants . . . . . . . . . . . 40

4 Validation and Results 41
4.1 Validation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Scalability Experiment . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Robustness under Load Experiment . . . . . . . . . . . . . . 44

4.2 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Scalability Experiment . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Robustness under Load . . . . . . . . . . . . . . . . . . . . . 46

5 Discussion 54

Conclusions 57

References 62

4



Appendix 63
I. Implementation of the Solution . . . . . . . . . . . . . . . . . . . . . . 63
II. Kubernetes Manifest for Web API . . . . . . . . . . . . . . . . . . . . 64
III. Kubernetes Manifest for Job Service . . . . . . . . . . . . . . . . . . 66
IV. Simod Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
V. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5



List of Figures
1 BPMN model example formed by five activities and two XOR gate-

ways corresponding the event log of Table 1. . . . . . . . . . . . . . 12
2 Simod BPS model discovery approach [CDG20] . . . . . . . . . . . 14
3 System context diagram of the solution, where the violet colour

marks software systems which belong to the current solution . . . . 28
4 Simod on Containers’ system boundary with its internal containers

and related external systems . . . . . . . . . . . . . . . . . . . . . . 29
5 Kubernetes’ system boundary with its internal containers and related

external systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Monitoring Solution’s system boundary with its internal containers

and related external systems . . . . . . . . . . . . . . . . . . . . . . 31
7 HTTP Server’s boundary with its internal components marked in

green and related external systems in violet . . . . . . . . . . . . . 33
8 Job Controller’s boundary with its internal components marked in

light blue and related external systems in violet . . . . . . . . . . . 34
9 Dynamic diagram visualising communication steps when a new dis-

covery request comes in from the upstream Web UI. Communication
technology is specified in square brackets on relationship arrows . . 36

10 Efficiency with the extended capacity during the scalability experi-
ment for both event logs where Travel is the PrepaidTravelCost.xes
log, Payment—RequestForPayment.xes . . . . . . . . . . . . . . . . 47

11 Response time of the HTTP Server with the extended capacity
during the robustness experiment for the PrepaidTravelCost.xes
event log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12 Visualisation of measurements collected during the robustness ex-
periment with 1 worker node . . . . . . . . . . . . . . . . . . . . . . 50

13 Visualisation of measurements collected during the robustness ex-
periment with 2 worker nodes . . . . . . . . . . . . . . . . . . . . . 51

14 Visualisation of measurements collected during the robustness ex-
periment with 3 worker nodes . . . . . . . . . . . . . . . . . . . . . 52

15 Visualisation of measurements collected during the robustness ex-
periment with 4 worker nodes . . . . . . . . . . . . . . . . . . . . . 53

6



List of Tables
1 Example of a fraction of an event log with eight events storing the

case identifier, the executed activity, the start and end timestamps,
and the resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Main Simod refactoring metrics and improvements . . . . . . . . . . 27
3 HTTP Service API endpoints . . . . . . . . . . . . . . . . . . . . . 35
4 Baseline measurements for both workloads where RT is the response

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Results of the scalability experiment on both event logs where Nodes—

number of worker nodes; Log—event log (I: PrepaidTravelCost.xes, II:
RequestForPayment.xes); Jobs—number of successfully finished jobs;
Elapsed time—duration of the experimental run; Target RT—target
response time; Mean RT—mean cycle time of a job; Capacity—
throughput in requests per min . . . . . . . . . . . . . . . . . . . . 47

6 Results of the robustness experiment on PrepaidTravelCost.xes where
Nodes—number of worker nodes; RT—response time; rps—requests
per second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7



Introduction
Business process simulation (BPS) is a technique for analysing the efficiency of
business processes. A business process is a series of events in a particular order
executed by resources to achieve a business goal. Simulating such sequences of
events under various configurations allows us to answer what-if questions about
the process: "What if an order of activities is changed?", "What happens if more
resources are assigned to the front-end activity?", "Would the new adjustment
create a bottleneck downstream of the process?". Besides, recording various process
performance measures during this simulation (e.g., processing and waiting times,
resource utilisation, case frequency) is used for quantitative analysis of the process.

A Business Process Simulation model (henceforth, a BPS model) captures the
behaviour of a business process and acts as a starting point in the simulation.
A BPS model is constructed from a process model enriched with additional simu-
lation parameters, such as resource working hours, case arrival rates, branching
probabilities, and resource costs. Business analysts use BPS models for process
improvement, performance analysis, and analysis of compliance with industry
standards.

To a great extent, the simulation’s quality depends on the input to a simulator,
i.e., the process model and simulation parameters. Traditionally, BPS models are
composed by domain experts using manual data collection techniques, such as
employee interviews and on-site observations [CDG20]. This approach is time-
consuming and error-prone. Automated BPS model discovery from event logs
improves the discovery by removing the manual component [CDG20]. It also
enables organisations to utilise their data collected in organisation management
software1 for business process improvement.

BPS model discovery is more complex than traditional business process model
discovery, which focuses on the control-flow perspective. The discovery of simulation
parameters can be complicated and tedious. Additionally, large enterprises would
generate gigabytes of log data that BPS model discovery algorithms should handle,
while the number of users in such enterprises can be in the order of dozens or
hundreds of concurrent users. Thus, scalable discovery of BPS models is essential if
it is to be adopted by the industry. Besides large event logs, the discovery solution
facing the internet can meet unpredictable demand, leading to peak load hours and
long hours of inactivity.

Simod is a tool for automated discovery of accurate BPS models from event
logs developed by Camargo et al. [CDG20]. It was originally developed as a re-
search prototype with a command-line interface (CLI) and dependencies in two

1Such management software as supply chain management systems, enterprise resource planning,
or customer relationship management.

8



programming languages. The barrier for installing and using Simod v2.3.12 was
quite high. Also, the tool was not designed to handle large workloads or handle
simultaneous discovery requests, thus, limiting the application of Simod.

This thesis aims at simplifying access to automated BPS model discovery using
Simod, by providing a web service with an HTTP API and allowing scalable
discovery of BPS models that can handle multiple simultaneous users, sustain
efficiency at scale, and remain available during high demand. This will significantly
simplify the usage of the tool by business analysts and give access to a wider
community. End-users will benefit from removing the need to set up development
environments for Python and Java in order to install Simod and its dependencies.
As a side goal, this work aims to improve the development experience and prepare
the code base for future changes. The main requirements of the new solution for
scalable BPS model discovery include:

• the access to the tool through the HTTP API with the ability to submit
discovery tasks by uploading an event log in the XES format and the Simod
configuration in YAML;

• the ability to query the discovery job status and, when the job is finished, to
retrieve the discovery results;

• serving multiple users simultaneously by utilising several machines and auto-
matically instantiating Simod processing;

• storing of the user request-related data persistently.

The thesis author’s contributions are summarised as the following:
1. An implementation of the distributed solution for scalable discovery of BPS

models using Simod that exposes a web service with the Application Program-
ming Interface (API) based on the Representational State Transfer (REST)
architectural pattern.

2. Simod refactoring to enhance its code readability, maintainability, reduce
coupling between internal modules, and improve packaging and distribution
using an automated continuous integration (CI) pipeline and Docker.

3. An approach to scale out Simod (or other long-running task that can be
packaged into a Docker container) to handle a large number of concurrent
users employing the Kubernetes container orchestration technology.

The author thanks Dr. Camargo for the initial introduction into Simod; Prof. Dumas
and Dr. Chapela for their contributions to the Simod’s refactoring and guidance
throughout the work on the thesis, their domain knowledge and consultations in
process mining were invaluable in this research.

2https://github.com/AutomatedProcessImprovement/Simod/tree/v2.3.1

9

https://github.com/AutomatedProcessImprovement/Simod/tree/v2.3.1


The rest of the thesis is structured as follows. Section 1 describes the context
and several simulation concepts necessary to understand the goal and proposals of
the thesis. This section also introduces business process discovery concepts and
technologies for developing scalable software solutions. Section 2 introduces related
work concerning process discovery and development of distributed and scalable
software systems. Section 3 presents the approach to the problem, describes in
detail the architecture of the solution for scalable BPS model discovery, and other
methods and techniques applied during the work. Section 4 provides the validation
framework for testing that the main goal of building a scalable solution has been
achieved, the section also includes the results of the load testing experiments.
Section 5 discusses the results of the validation tests, concludes if the goal has been
achieved, and proposes further improvements to the system.

10



1 Background
This chapter introduces the background for the thesis by going deeper into three
main contexts: BPS model discovery, Simod, and scaling of distributed systems.
Section 1.1 describes the basic concepts and approaches in process mining to model
discovery and their use in performance analyses. Section 1.2 establishes the starting
point of the thesis. In the end, Section 1.3 develops a general approach to building
highly scalable applications for modern deployment environments.

1.1 Business Process Simulation Model Discovery

Typically, BPS model discovery and other process mining techniques take an event
log as an initial data source. An event log represents a series of events with attributes
that provide required and additional information for process mining tools, and
can come in various formats. The minimum required attributes are the timestamp
denoting when the event occurred, the name of the executed activity (e.g., Check
stock availability, Confirm order, Reject order), the name of the resource who
performed the activity, and an identifier of the process case (i.e., the instance
of the process this event belongs to), which usually either a customer reference
number or other unique identifiers that group series of activities in a case. The
series of such cases represent a single process. A process can be of a different
kind, in business process management, it is often an accounting process, invoicing,
recruitment, customer onboarding, product development and others. Table 1 shows
an example with eight events from an event log of a purchasing process. In this
example, the events store two timestamps, one denoting the executed activity’s
start and another denoting its end.

In BPS, the backbone of the process is the control-flow. It represents the
structure of the process and is composed of i) a process model, a diagrammatic
representation of the activities of the process and the transitions between them; and
ii) the probabilities associated with each transition, modelling the probability of the
flow to go through each path (e.g., either cancel or accept an order after assessing
its validity).3 The most frequent modelling languages used to represent a process
model are Petri nets and Business Process Model and Notation (BPMN). Petri nets
is a mathematical and graphical modelling technique that models and simulates
dynamic, concurrent, non-deterministic information systems using a directed acyclic
graph (DAG) [Mur89]. On the other hand, BPMN is a notation language designed
explicitly for modelling business processes and workflows [Obj14], which provides
a rich set of modelling elements (e.g., process, task, sub-process, gateway, event,

3Different approaches can be used to model the path flow, e.g., rules based on data associated
to the case being processed. The tools used in the scope of this thesis work with a stochastic
modelling of the control-flow.

11



Case ID Activity Start Time End Time Resource
...

512 Register order 03/11/2021 08:00:00 03/11/2021 08:31:11 Alice
512 Check stock availability 03/11/2021 08:31:11 03/11/2021 08:58:09 Bob
513 Register order 03/11/2021 08:31:11 03/11/2021 09:02:51 Bob
512 Confirm order 03/11/2021 09:00:00 03/11/2021 09:17:01 Alice
513 Check stock availability 03/11/2021 09:02:51 03/11/2021 09:35:50 Bob
513 Reject order 03/11/2021 09:17:01 03/11/2021 09:46:12 Bob
512 Notify customer 03/11/2021 15:17:01 03/11/2021 15:27:45 Alice
513 Notify customer 03/11/2021 15:46:12 03/11/2021 15:57:43 Alice

...

Table 1. Example of a fraction of an event log with eight events storing the case identifier, the
executed activity, the start and end timestamps, and the resource.

Figure 1. BPMN model example formed by five activities and two XOR gateways corresponding
the event log of Table 1.

message, and others). Figure 1 depicts an example of a process model in the BPMN
notation, corresponding to the event log in Table 1.

Process model discovery algorithms have to deal with noise and complexity.
Event logs may contain incorrect data, poorly formatted values, incomplete cases,
missing activities, unspecified resources, and other irregularities. Discovery algo-
rithms must be able to identify the issues, remove the noise, fill in the incomplete
data, and compose a sound and correct model that can represent reality in a gen-
eral and valuable way. Models, discovered with automated algorithms, can be
assessed by the four quality criteria: fitness, simplicity (complexity), precision,
and generalisation [Van16]. Fitness measures how much behaviour observed in the
event log can be reproduced by the process model. Complexity defines the ability
to understand the model. Precision and generalisation help measure how balanced
the resulting model is to avoid under-fitting and over-fitting.

Besides the control-flow, temporal data extracted from the event log can improve
the BPS model by providing additional information that can be used in BPS to
mimic the process in a more realistic way. Resources in the event log are usually

12



either particular employees, roles of the employees, or automated systems. If auto-
mated systems can work around-the-clock, employees usually have a predetermined
schedule which can be recovered from the event log even if such a schedule has not
been provided explicitly. Timetable mining can significantly increase the accuracy
of the model and subsequent simulations by providing the working hours of the
resources. This, in its turn, allows further time analysis, more accurate performance
measurement, and waste identification.4

Regarding the techniques employed in this thesis, the temporal perspective
of the process is modelled by two elements: the arrival model and the resource
allocation model. The first one models the arrival of new cases (i.e., executions of
the process) to the system by defining their frequency and periods of the day in
which they are created. The second one models the set of resources available to
perform the activities of the process, which activities they can perform and how
long they take, as well as the working schedules they follow.

BPS model discovery techniques aim to build a BPS model, with all its compo-
nents, from the event log of a process. Subsequently, the discovered BPS model can
be used by a simulation engine to generate a set of cases resembling the behaviour of
the modelled process. These simulated logs are useful for analysing the performance
of the process under the scenario described by the BPS model. The discovery of
the BPS model of a process enables modification of scenario characteristics, e.g.,
changing the resource schedules and analysis of such modifications’ impact on the
performance of the process.

1.2 Simod

The current work starts with Simod v2.3.1, a tool for the automated discovery
of BPS models from event logs, initially developed by Camargo et al. [CDG20];
[Cam21] as part of the Process Improvement Explorer (PIX) project funded by
the European Commission5. Simod v2.3.1 discovered accuracy-optimised process
models by introducing an optimisation feedback loop into its architecture with
additional model enhancement techniques.

Figure 2 illustrates the approach employed by Simod. The control-flow discovery
was implemented using Split Miner [Aug+19], the model discovery technique
controlled by two parameters, parallelism and frequency thresholds. The parallelism
threshold ϵ adjusts concurrent relations between captured events, and the frequency
threshold η is used to retain the best incoming and outgoing edges above the
threshold value [CDG20]. These two parameters were subjects to optimisation in

4Waste refers to time not spent on the execution of the activity assigned to the resource.
Waiting time is one example of such process waste that can be analysed further down [Las+22].

5https://cordis.europa.eu/project/id/834141

13

https://cordis.europa.eu/project/id/834141


Figure 2. Simod BPS model discovery approach [CDG20]

Simod in order to discover process models that capture the input event log with
the best accuracy.

Trace alignment was necessary for computing branching probabilities which are
essential simulations parameters. To compute the probabilities, each trace has to
be replayed to count how many times each conditional flow in a process model
was reached. Trace alignment algorithms do such replaying of an event log against
a process model and handle possible misalignments. The misalignments occur
because of imprecisions in discovered process models. In Figure 1, for example, the
process model assumes each case follows the sequence Register order—Check stock
availability—Confirm order OR Reject order—Notify customer. If the event log has
a different sequence, Register order—Confirm order—Notify customer, the trace
alignment algorithm must be able to figure out that the Check stock availability
activity has been skipped, so that branching probabilities can be computed correctly.

Simod used ProConformance 2.0 [Rei+17], a technique and corresponding tool
for computing misalignments between an event log and process model. The mis-
alignments were resolved either by removing, replacing or repairing non-conformant
log traces [CDG20]. It is worth noting that traversal of each gateway in the event
log is a computationally intensive task which can introduce significant overhead
during the BPS model discovery.

The parameters’ extraction step used different process mining techniques to
mine simulation parameters from the log. For timetable mining (calendar discovery),
Simod used a technique that accounted for resource availability constraints [Est+21].
For example, Simod may discover that one resource pool performs tasks Register
order and Check stock availability while the other one performs Confirm order, Reject
order, and Notify customer from Table 1. Calendar discovery was implemented
using the tool by Mahdy I.6. The tool provided resource pools with specific week
days and times. Using the previous example, the tool may return two resource
groups. Role 1 where resources work on Monday-Friday 09:00-18:00, while Role 2
worked from Wednesday to Friday between 14:00 and 18:00. Gateway branching
probabilities and their distributions, inter-arrival times were among other simulation
parameters mined by Simod during the parameter’s extraction.

6https://bitbucket.org/Ibrahim_Mahdy/calendar/src/master/

14

https://bitbucket.org/Ibrahim_Mahdy/calendar/src/master/


Assembly is the final stage of the BPS model discovery in Simod, during
which a BPMN model was constructed and written to disk as an XML file. The
QBP/BIMP simulator7 was used for simulation. A simulation generates a synthetic
event log (also known as a simulated log). In order to assess the accuracy of the
simulation, the simulated log is compared with the original log to assess their
similarity. The higher the similarity, the more evidence there is that the BPS model
is able to accurately replicate the observed reality. The similarity assessment used
the Damerau-Levenshtein (DL) distance metric, which measures the edit distance
in two strings. After calculating the distance metric, a decision was made whether
to start another loop of the control-flow discovery, trace alignment, and parameters
extractions or finish the discovery process and return the final model. The DL
distance metric has to be computed for every pair consisting of a trace from the
simulated log and from the original log. This pair-wise computation also leads to
significant computation overhead in the BPS model discovery.

Even though the above approach to BPS model discovery used in Simod provided
high-quality and simple process models, the software had its issues and drawbacks.
The execution time of Simod varied greatly depending on the event log size—the
optimisation loop forced to rerun the entire discovery pipeline many times, which
slowed down the processing. For example, an event log in XES format of 180 MB
in size, if run with 60 optimisation cycles on a machine with 20 CPU cores and 40
GB of RAM, took around two hours to process. Further, the installation and use
of Simod required deep knowledge of how the tool operates, which hindered the
accessibility of the tool for the research community.

Besides these limitations, underlying tooling, such as Split Miner, ProCon-
formance, and QBP/BIMP, were written in Java, while Simod was a Python
application. The reliance on two different development environments, Java and
Python, introduced additional difficulties for end-users, potential contributors, and
developers of Simod. Furthermore, two components that were under development
in the PIX project had to be integrated into Simod to improve the quality of the
discovered BPS models: i) Prosimos [LHD23], a new simulation engine supporting
a more complex resource allocation model (replacing QBP/BIMP); and ii) an
approach to discover a component to model extraneous activity delays [CD22].
These were the main reasons behind the decision to revise the architecture and
implementation of the discovery stages of Simod, which led to the subsequent
refactoring and scaling of Simod (the purpose of this thesis).

7https://www.qbp-simulator.com

15

https://www.qbp-simulator.com


1.3 Scaling Network-Based Distributed Systems

Providing public access to an application brings many challenges to an organisa-
tion. Modern software solutions often depend on many other applications and
libraries, which sometimes have conflicting dependencies. Software portability
and cross-platform distribution bring additional overhead and make continuous
integration and delivery (CI/CD) solutions almost a requirement. Organising
a software development process to make multiple teams work together on a single
product effectively is a challenge on its own. Unpredictable demand forces system
architects to design scalable and flexible systems that can automatically manage
their operational costs. This work focuses on the scalability challenge, so the
following discussion will delve into various strategies and approaches to ensure the
adaptability of an organisation’s software infrastructure.

When designing a system, it is important to consider a deployment environment
since the beginning, because this environment will dictate most of the properties
of the final solution. What are the target operating systems and platforms? What
kind of hardware is available? How is data stored and distributed? What is
the approximate scale of workload? Does the system require a single machine or
a cluster? Is it a multi-location system, and data has to be stored and processed in
multiple countries to comply with the legislation? Because of the many questions,
a handful of deployment environments emerged to this day.

On-premises environment is a traditional approach when the software solution is
installed and operated on the hardware available in-house by the organisation itself.
Running in data centres is a similar approach, which assumes a more extensive
hardware and software infrastructure, managed either by the organisation or by
a managed service provider. Private data centres may provide more control and
privacy with the cost of managing the operational overhead of running a data centre.
Cloud computing, or infrastructure as a service (IaaS), is an emerging solution
that provides on-demand computing resources. Clouds remove the need for the
organisation to maintain the hardware and provide API-based access to computing,
storing, networking and security. It is the most versatile way of deploying an
application because of the hundreds of services cloud providers make available, and
it is changing how software is designed, built, deployed and operated.

A cloud architecture leverages cloud capabilities to build scalable, flexible, and
efficient applications. Because computing resources and storage are now available
with a network request, cloud architecture enables solutions that can leverage
on-demand resources, and which encourages isolation, independent deployment
and scaling of system components. That is why microservices is one of the most
widely adopted patterns for cloud-native applications [Lin16]. Microservices are the
evolution of the service-oriented architecture (SOA) for cloud settings. The most
important distinction is greater isolation and independent deployment of system

16



components. Microservices pattern is also an organisational tool which allows
arranging development teams around the software product in a more manageable
way, with stricter boundaries. Because of the increased isolation and loose coupling
of the components, the emphasis is on communication between services rather
than state and data sharing. JSON over HTTP is the most widespread way to
implement messaging between cloud-based applications [Sil16].

Containerisation is the enabling technology for microservices and cloud envi-
ronments. Before containers, virtual machines (VMs) played a similar role and
helped to isolate different development and production environments for teams.
Containers improve performance, providing much less overhead than VMs, and
allowing for more efficient resource utilisation. They also have faster start-up
times, which makes the automated scaling of software containers more rapid. Con-
tainerisation also solves the dependency hell problem by isolating applications with
their dependencies and runtimes into containers [Cas19]. Finally, the application
portability and distribution are greatly improved by containerisation technology,
which provides better development and distribution experience. The Open Con-
tainer Initiative8 (OCI) develops the container image, runtime, and distribution
specifications, removing the reliance on vendors and improving long-term support
and adoption of the technology.

However, microservices and containerisation also have downsides; the biggest
is the cloud-native applications’ complexity. Microservices significantly increase
the number of moving parts in a system, relying heavily on communication and
networking, which is known to be unreliable. Thus, a more robust and fault-
tolerable approach is necessary to build microservice components. Testing becomes
harder, requiring stubs, fakes and mocks of other components to run the compo-
nent in a testing environment during the development. Orchestrating deployed
microservices and ensuring fine-grained control and observability is a big challenge.
Container orchestration solutions, such as Kubernetes, help to tackle this issue.

Container orchestration provides a platform for managing the whole cycle of
container-based applications, starting from their deployment. Resource control,
scheduling, load-balancing, fault-tolerance, self-healing, and autoscaling are the
main features of orchestrators [Cas19]. This also gives software development teams
a way to run the software themselves (NoOps) without resorting to a development
operations team (DevOps). Kubernetes is one of such container orchestrators
initially developed by Google based on its predecessor Borg [Ver+15].

Kubernetes is the platform that pioneered the application-oriented infrastruc-
ture model for data centers instead of being machine-oriented [Bur+16]. The
application-oriented infrastructure abstracts away hardware details from develop-
ers and simplifies application deployment and management. Kubernetes offers

8https://opencontainers.org

17

https://opencontainers.org


a declarative job specification language to describe workloads, where workload is an
application running in a cluster using one or more pods. Pod is a single instance of
a container with additional configuration parameters related either to the container
itself or to Kubernetes. Moreover, Kubernetes provides an API for applications to
leverage the power of automated scaling and launching workloads in a programmed
and dynamic manner. Docker Swarm and Red Hat’s OpenShift are among the
alternative solutions for container orchestration. However, Kubernetes is probably
the most feature-rich platform with support from major cloud providers which
eliminates the need to install and manage Kubernetes clusters by the user.

18



2 Related Work
The scaling of BPS model discovery can be achieved in several ways. One of
those is reimplementation of the discovery algorithm to work on large-scale
distributed data so that the discovery job can be run in a compute cluster, which
would imply to reimplement the discovery of all components (e.g., control-flow).
Focusing solely on the control-flow discovery, Evermann presented an approach
applying the Map-Reduce framework using Apache Hadoop to a distributed event
log by reimplementing two well known process model discovery algorithms (the
Alpha algorithm and the Flexible Heuristics Miner) [Eve16]. However, this approach
requires deep knowledge of process model discovery algorithms, and not all of them
can be efficiently parallelised. The Map-Reduce model requires the implementation
to convert all the processing to mapping and reducing operations, which can lead
to complex and unmaintainable code. The overhead of setting up Map-Reduce
tasks and distributing data across the cluster causes network I/O contention and
introduces additional latency, which might not be suitable for low-latency use
cases [WKK15]. Unbalanced, non-uniformly distributed data (the data skew)
causes some Hadoop workers to have a disproportionate amount of work, leading
to worse performance [WKK15].

Apache Spark addresses some of the limitations of the Hadoop Map-Reduce
model that made it a widely used framework for distributed big data cloud comput-
ing. Cheng et al. presented a scalable discovery of hybrid process models (f -HMD)
using Spark in cloud settings [CDA20]. As a result, the Spark framework proved
to be an excellent choice for building efficient and scalable process model discovery
solutions for large event logs. However, if one wants to apply such an approach
to small- and mid-size event logs, there is a high overhead cost. Spark requires at
least 8 GB of memory and at least 8–16 CPU cores per machine9, which makes it
less reasonable to use such discovery techniques for not so big data. Furthermore,
all the above-mentioned limitations would also hold for the parallelisation of the
rest of the BPS model discovery components (e.g., resource profiles). The purpose
of this approach is to discover BPS models over large datasets, which cannot be
processed in a single computing node.

Another approach to BPS model discovery, instead of big data processing
frameworks, is to use workflow engines and job orchestrators to handle
discovery of many BPS models in parallel. Workflow engines provide more flexible
data processing than big data frameworks. Not all steps in BPS model discovery are
scalable and can run in parallel. In addition, BPS model discovery is a more complex
and composite process than process model discovery, which may require multiple
process mining tools. Simod, for example, used Split Miner for process model

9https://spark.apache.org/docs/3.4.0/hardware-provisioning.html

19

https://spark.apache.org/docs/3.4.0/hardware-provisioning.html


discovery, ProConformance for conformance checking, a custom-built calendar
discovery application for resource pooling, and QBP/BIMP simulator for BPS
model simulation. Such a workflow would be difficult to build with big data
frameworks. Workflow engines and job orchestrators seem like a better fit for
a composite application like this.

Apache Airflow, Luigi, Dagster belong to a new generation of data processing
workflow engines with scheduling and distributed computing capabilities. Initially
built for extract-transform-load (ETL) data pipelines, they are flexible and versatile
frameworks that may integrate with big data frameworks like the one mentioned
above. Apache Airflow, for example, uses Python to describe its data ingestion,
processing, and extraction tasks. The tasks are assembled into a directed acyclic
graph which can be scheduled and executed on a cluster of workers. Data transfor-
mation is usually done with operators, such as PythonOperator, BashOperator,
EmailOperator, and others, splitting a workflow into small and manageable pieces
of work. One more benefit of using such workflow engines is that they usually come
with a graphical user interface (UI) to monitor the execution process, because some
jobs may take a long time to finish. No literature is available on applying such
workflow engines to BPS model discovery tasks.

Regarding highly scalable workloads, the cloud is often the default environment
for such deployments. Not all workflow engines are built to run in cloud settings.
Even though Apache Airflow currently has an integration with Docker, and can run
containerised applications, it was not designed for this from the beginning, and the
development experience can still be improved. Besides, Airflow is Python-centric;
operators in other languages can be used with the help of BashOperator, but the
rest of the framework is in Python. Thus, Apache Airflow might not be the best
choice if a data processing pipeline has many tools that use different technologies.
Here is where cloud-native workflow engines turn out to be useful. Argo
Workflows10 is a workflow engine for Kubernetes that supports data processing,
machine learning, ETL, and other use cases. Native integration with Kubernetes
makes the platform autoscalable, resilient, and technology-agnostic, because a task
in a workflow is just a containerised application which can be implemented using
any technology.

Although Argo Worfklows is already a cloud-native solution for orchestrating
data processing or other workflows, there is an even more fundamental way of
achieving a similar outcome. Kubernetes provides different kinds of workloads11,
like Jobs and CronJobs. Job is a basic workload type that provides a one-time
execution of a single task. As a Kubernetes workload, a job inherits such features
as scaling, resilience, and automated clean-up of finished jobs. If a job has to

10https://github.com/argoproj/argo-workflows/
11https://kubernetes.io/docs/concepts/workloads/controllers/

20

https://github.com/argoproj/argo-workflows/
https://kubernetes.io/docs/concepts/workloads/controllers/


be run on schedule, CronJob is used with the schedule syntax similar to cron,
a command-line utility on Unix-like operating systems. Because it is not possible
to know a schedule of BPS model discoveries submitted by users, CronJob is not
considered and the Job workload type is used to implement scalable BPS model
discovery in this thesis.

21



3 Approach
This chapter describes the proposed approach for developing a system for scalable
discovery of BPS models using Simod at its core. Having only Simod is not
enough to serve end-users. Public interface, task management, resource allocation,
persistent data storage, caching, and monitoring are all essential components of
a well-engineered system ready to serve end-users reliably.

Depending on the input event log and optimisation parameters, BPS model
discovery can take a significant amount of computing resources. It would be
impossible to design such a system as a desktop application, as end-users might not
have enough computing capacity for a job, or desire to run long-running tasks on
their machines. Thus, remote execution is the most appropriate method for such
jobs that removes the burden from the end-user and places it on the organisation.
This allows the organisation to utilise scheduling and resource allocation more
efficiently, and run the operations cost-effectively. A web service would allow the
control of the remote execution on behalf of the user.

The main focus of this thesis is to extend Simod to handle unpredictable demand
in BPS model discovery. One of the challenges is to scale each system component
differently, because they might be subject to different loads with varying load
profiles. Besides running at scale, there is a need to remain responsive and available
under peak loads, while having some response time degradation is acceptable.

Another concern is to refactor Simod to increase its maintainability and prepare
it for future change. Software maintenance and support are critical activities in
the software development lifecycle [BF14, ch. 5] that take the most time during
the software lifetime. Having self-contained loosely coupled system components
simplifies software testing, modification, independent deployment, and operation.

In this project, safety and security are not primary concerns, because the service
is not intended for use in critical, life-threatening situations. The input data is
not considered private at this stage of development. Furthermore, the service is
expected to be integrated into a larger software suite with an API gateway, making
the BPS model discovery system an internal component without direct exposure to
the internet. Thus, the security aspect is neglected in this study.

The following sections describe fundamental ideas on how to build a scalable
system (Section 3.1), present the work done on refactoring Simod to prepare it
for the primary goal of this thesis (Section 3.2), introduce the system with its
components at different levels of detail (Section 3.3), describe an approach to
scaling these services (Section 3.4 and Section 3.5), and present the use of language
models and other intelligent assistants in this work (Section 3.6).

22



3.1 Design Principles for Scalability

Scalability is the capacity of a system to maintain its productivity as load in-
creases [Dai12, p. 289]. Productivity, in its turn, is defined by business goals
and can usually be described with performance metrics like response time and
throughput.12

One of the design principles for scalability is the distribution of components
across several computing nodes. It is rarely so that the system load is spread evenly
across its subsystems. Usually, some components become bottlenecks and hinder
the whole system’s performance. Splitting such a system into loosely coupled parts
that communicate with each other through message passing makes it possible to
address each component individually by increasing the resource capacity (vertical
scaling) or the number of instances (horizontal scaling).

Modular software is easier to split into standalone components by its boundaries.
Therefore, designing for loose coupling improves maintainability and increases the
potential for scalability. Microservice architecture pattern also encourages such
loose coupling during the deployment stage. Other architectures do not require
the independent deployment of components, but the microservice style emphasises
it. Independent deployment is enabled by CI/CD pipelines configured for each
component separately.

Containerisation of services and applications enables scalability by simplifying
software packaging and delivery. It removes the dependency management problem
by utilising Linux kernel features such as namespaces and cgroups, which allow for
application runtimes isolation. However, containerisation technology increases the
dependency on the internet with the introduction of image registries that store and
distribute images. It also increases the load on the network during new components’
version rollout.

Caching and memoisation are universal techniques that reduce the load on
the system by avoiding redundant computation for similar requests, leading to
a speed-up. Caching also reduces the load on the internal network by reducing
the amount of data passing through the network from service to service. Besides
that, caching is vital in containerisation technologies for the same reasons. It may
take a long time to build an image of a service because of many dependencies to
compile and additional packages to install on the OS level. Image build caching
speeds up the whole containerisation process and reduces the network load.

Load balancing improves scalability by distributing the load across multiple
instances of the same component. It is an essential technique that enables the
horizontal scalability of services to handle peak-hour loads. The main role of
a load balancer is to relay requests or tasks to downstream services employing

12The efficiency metric used to measure the scalability is described more precisely in the
Validation and Results chapter (Section 4).

23



various scheduling strategies, e.g., round-robin, the least response times, or even
randomly. The concept of stateless services, i.e., services that either do not store
state information or delegate it to other components, complements load balancing
by simplifying the load distribution.

Autoscaling is an emerging technique that originated in cloud computing. It
improves scalability and resource management and reduces operating costs through
programmatic scaling of the system components based on their usage. Autoscaling
can scale from zero to n-number of instances. The ability to go to zero is often
called serverless computing. However, at least one server which is responsible
for the monitoring and scaling is required. Scaling also amplifies the need for
observability and monitoring, because autoscaling is enabled by resource utilisation
metrics or access to historical load data for scheduled autoscaling.

Resilience and self-healing are the principles of automatic recovering from
failures. In non-critical software, service failure is accepted and often expected,
which motivates system architects to design for failure. Designing services to handle
failures of other downstream services increases the overall robustness. Self-healing
is when the system can monitor its services’ up- and downtimes through health
checks, and act upon downtimes by restarting unresponsive or failed components.

Asynchronous communication improves responsiveness and scalability of the
system by removing the need for one service to wait for a response from the other.
Non-blocking event-based communication, besides increasing the throughput, also
makes it possible to introduce parallel message processing when a message has mul-
tiple destinations. Choosing standard communication protocols like HTTP/REST,
gRPC for blocking communication, or AQMP, and MQTT for message-based
communication simplifies the development because of the community support and
makes it easier to maintain services in future.

All of the above-mentioned principles and techniques are applied to the current
system with the exception of memoisation. Memoisation works by storing compu-
tation results in memory and returning them directly when the same computation
is submitted. Also, caching is limited only to the user’s input to optimise the disk
usage in this work. There is less emphasis on memoisation and caching, because it
is unlikely that several concurrent sessions will require a BPS model for the same
event log. Thus, the impact of memoisation and caching would be limited.

The microservice architectural pattern with independent services and asyn-
chronous decoupled communication is applied to the current design of the extended
version of Simod. Containerisation is used to package Simod and other system
components into standalone applications for independent versioning and distribu-
tion. Load balancing, autoscaling, and self-healing are provided by the Kubernetes
orchestration platform. The following chapters describe the role of Kubernetes in
more detail.

24



3.2 Prerequisites for Scalability

Simod is at the core of the current system for scalable BPS model discovery. The
starting point for this project is Simod v2.3.1, initially developed by Camargo et
al. [CDG20]; [Cam21]. This chapter describes the challenges presented by Simod
and how they have been resolved to proceed with the development of scalable and
distributed BPS model discovery.

3.2.1 Simod Challenges

As mentioned in Section 1.2, Simod, while being written in Python, used multi-
ple external Java applications for process model discovery, conformance analysis,
calendar discovery, and simulation. The need for two development environments
significantly complicated the installation and distribution of the software. Neither of
the software components had automated builds, tests, packaging, or documentation
in the repository, which slowed down any further modifications of Simod. Also, the
components’ high cohesion and tight coupling made new integrations difficult.

As part of the thesis, the QBP/BIMP simulator (written in Java) was replaced
with the Prosimos simulator, a fully Python-based BPS model simulator developed
in parallel with this Master’s project. Besides being Python-based, which makes
the integration with Simod more seamless, Prosimos offers additional functionality
not present in QBP/BIMP. For example, the ability to capture calendars assigned
to each resource separately, instead of attaching calendars to entire resource pools
is a prominent feature of Prosimos [LHD23].

Simod also had an unexpected hardware dependency. Some of the Java libraries
in external dependencies used the X11 windowing system even though Simod did
not have UI at the moment, nor it or its dependencies drew graphics in OS windows.
However, having X11 in the library forced Simod to be connected to a computer
display. Without an actual physical display, Simod was not able to run. Therefore,
it was impossible to use Simod on servers that usually do not have displays unless
a user set up a display and made it available through the network.

3.2.2 Simod Refactoring and Maintenance

To address the above issues, this Master’s project started with a major refactoring
of the Simod tool, which took it from version 2.3.1 (in July 2021) up to version
3.3.0 (in February 2023). However, not all time was allocated for the work on
the Simod’s refactoring. It took approximately two semesters of part-time work
to refactor Simod (and one more full-time semester to design and implement the
extension).

Out of 775 total commits to the code repository on the date of writing, 625
commits have been submitted since v2.3.1, which means that 80% of the contri-

25



butions to Simod are attributed to refactoring and further modifications of the
initial version of Simod. The code base, however, has not grown significantly, from
81.5k lines of code (LOC) to 85k LOC, which is about 4% growth in size. During
the course of the refactoring effort, as part of the thesis, the general code quality
increased from 3.33/10 to 6.96/10 according to PyLint v2.17.2 that was run on
the Simod v2.3.1 and v3.3.0 with default PyLint settings. The main achievements
are summarized in Table 2.

To improve the development process of the Simod system, an issue management
system has been introduced using GitHub Issues13. The issue management helped
to organize modification requests and track their progress. It also provided a place
for discussions related to particular issues and system’s components. Together
with weekly stand-up meetings introduced to the development team, it made the
development process more transparent and measurable.

As part of the thesis, a continuous integration (CI) pipeline has been imple-
mented using GitHub Actions14 to automate builds, tests, and packaging of Simod
into a Docker image. Containerisation greatly simplified the release and distribution
process, and made the installation of Simod effortless and reproducible. Automation
has been improved with Ansible scripts to deploy Simod to testing environments for
benchmarking and long-running tests using on-premises servers. GitHub Actions
and Ansible scripts also serve as documentation source for other developers on how
building, testing, packaging and possible deployment can be implemented.

The introduction of regression tests helped to recover the knowledge of how to
use different modules of Simod. It established the baseline, the minimum level of
quality for Simod and increased the confidence in refactoring and releasing new
versions. When it made sense, the test-driven development (TDD) approach was
applied to further Simod modifications. Test coverage has increased from 0 to 73%
at the moment of writing, with 91% of files and 77% of lines covered.

Code readability has increased notably with a more careful approach to naming.
It is important to be as clear as possible with one’s intentions while writing code
because developers spend considerable time reading it. So, many variables and
Simod configuration parameters received full names to increase comprehension. Re-
moving unnecessary, redundant, and dead code reduced the effort in understanding
the code base.

The Simod’s maintenance included not only the improvement and refactoring of
the existing code base but also the introduction of new changes. ProConformance,
a Java tool for conformance checking, was used in Simod to perform the trace
alignments to calculate branching probabilities as part of the BPS model discovery.
To reduce the dependency on Java, this tool has been replaced by a functionally

13https://github.com/AutomatedProcessImprovement/Simod/issues
14https://github.com/AutomatedProcessImprovement/Simod/actions

26

https://github.com/AutomatedProcessImprovement/Simod/issues
https://github.com/AutomatedProcessImprovement/Simod/actions


Metric, improvement Simod v2.3.1 Simod current Notes
LOC 81470 84996 4% increase

Commits 150 775 80% increase
Code quality 3.33/10 6.96/10 PyLint v2.17.2
Test coverage 0 73% PyCharm using PyTests

CI – + GitHub Actions
Issues Management – + GitHub Issues

Table 2. Main Simod refactoring metrics and improvements

equivalent Python-based module developed by another team member. Calendar dis-
covery implemented using another custom-built Java application has been replaced
by a Python-based module also developed by another team member. As mentioned
before, the QBP/BIMP simulator has been replaced with the Prosimos simulator
developed by other two team members. Because Simod is complex software with
many configuration parameters, Simod’s CLI has been improved to add more
CLI options and usage hints to streamline the user’s experience. Finally, new
measures for assessing the quality of the discovered BPS models [Cha+23] have
been integrated to Simod.

Overall, the refactoring of Simod enabled its extension from a batch CLI tool
for BPS model discovery to a more maintainable, testable, and scalable solution
with HTTP API ready for production deployment to serve end-users more reliably.
Also, changes in automation, testing, code readability, and packaging most likely
improved the development experience and shortened the delivery cycle time for
new features.

3.3 System Architecture

Scalability principles mentioned in Chapter 3.1 are directly applied to the current
solution. For the presentation of the software architecture in this chapter, the
C4 model15 is used. Different perspectives on the software are presented in the
order from high- to low-level details. The C4 model initially consisted of four
contexts: system context, container, component, and code. However, C4 is not
limited to these diagram types and can also contain system landscape, deployment,
and dynamic diagrams, for example. The implementation of the solution can be
accessed through this meta-repository that has links to all underlying systems,
https://github.com/AutomatedProcessImprovement/simod-on-containers. More
about the repositories structure is available in the appendix at page 63.

15https://c4model.com/

27

https://github.com/AutomatedProcessImprovement/simod-on-containers
https://c4model.com/


Figure 3. System context diagram of the solution, where the violet colour marks software systems
which belong to the current solution

3.3.1 System Context

Figure 3 describes the solution from the highest level, the system context. The
dashed box with the PIX label indicates the organisational boundary. The organi-
sational context contains multiple software systems. Parts of the current solution
are marked with a violet colour. The end-user interacts with the solution indirectly
through a web user interface (Web UI) by browsing the web application, uploading
event logs, and tuning discovery configuration in the web interface. The web appli-
cation, which is not part of the current solution, sends the event log and discovery
configuration to the current solution. Figure 3 is a simplified representation of the
system. A load balancer will first meet the actual POST request before hitting the
Simod on Containers system. Deployment is described in more detail later in this
chapter.

The overall solution contains the aforementioned Simod on Containers software
system, Broker for distributed and asynchronous communication, Monitoring
Solution, Kubernetes, and File Storage for event logs and discovery configuration
files. Kubernetes is essential to the current solution because it is a platform for
running and orchestrating the system. Kubernetes addresses many of the scalability
challenges mentioned before. Load balancing, resilience and self-healing, automated
deployment, autoscaling, resource scheduling and allocation—these are the roles
delegated to Kubernetes. Simod on Containers is the core system of the current
solution that uses Kubernetes API to schedule, execute, and monitor the execution
of Simod jobs described below.

28



Figure 4. Simod on Containers’ system boundary with its internal containers and related external
systems

3.3.2 Container Context

The next level of abstraction in C4 is the container context, where each software
system is depicted with its internal containers, i.e., its services, applications,
databases, and other subsystems. This section examines each software component
in more detail, starting from the core.

Simod on Containers depicted in Figure 4 has two services, Web API and
Job Service. Web API is the web service responsible for managing user discovery
requests. It takes the user input, records all the relevant information, stores it
persistently, and then passes discovery jobs to downstream systems. It has been
designed to be horizontally scalable and highly available with little side processing
as possible, communicating mostly through the HTTP protocol in JSON format.
Job Service, on the other hand, is a worker that listens to discovery requests on
the queue. When one appears, it initiates a long-running Simod job with the
help of Kubernetes’ internal scheduler, while in parallel watching for state changes
of the jobs through the Kubernetes API. Besides, Job Service exposes metrics

29



Figure 5. Kubernetes’ system boundary with its internal containers and related external systems

such as job waiting time, processing time, and the current number of jobs in the
queue, actively running and finished jobs. Broker enables distributed asynchronous
communication between internal services in the current solution. Still, Job Service
has direct access to Web API through the HTTP API if a discovery job state has
been updated. Using the queue for that kind of communication is possible, but this
introduces another long-running thread with a broker client and complicates the
implementation. However, using the queue for Web API allows us to skip waiting
for a response from downstream internal services while processing a user request.

Kubernetes is a well-described, mature, and extensible system16, so only parts
concerning this solution are covered here. Figure 5 depicts its internals in two
distinct groups, Control Plane and Worker Node. Control Plane consists of the API
server, Controller Manager, Scheduler, and etcd—an internal storage for Control
Plane. Any application that integrates into Kubernetes does it through the API
server by communicating directly through HTTP or community-developed client
libraries. The roles of Kubernetes are manifold in the current solution. Simod
on Containers uses Kubernetes to run Simod jobs in a resource-aware manner.
Job Service submits jobs through the Kubernetes API server, which are planned,

16https://kubernetes.io/docs/concepts/overview/components/

30

https://kubernetes.io/docs/concepts/overview/components/


Figure 6. Monitoring Solution’s system boundary with its internal containers and related external
systems

scheduled, and deployed by Kubernetes Scheduler to an available compute node
with such capacity. One relation is not shown on the diagram to avoid cluttering,
but is ubiquitous, from Kubelet to each service and application in the current
solution. Because Kubernetes orchestrates the deployment and running of the
solution, Kubelet, installed on each compute node, ensures each application is
healthy and running. In case of failures, applications are restarted automatically.
Kubernetes also provides load balancing and autoscaling services based on resource
utilization for applications that require it. Worker Node is a set of daemons that run
on any other node except the Control Plane to establish communication between
each node of the cluster running user applications and the Kubernetes management
software.

Monitoring Solution provides tools for ensuring system observability. The
core of the monitoring solution is Prometheus17, the open-source monitoring and
alerting software that collects and stores metrics as time-series data. There are

17https://prometheus.io

31

https://prometheus.io


two possible ways of collecting the metrics: serving them with a web server, or
the push gateway. In the current solution, Job Service exposes job duration and
the number of pending, running, succeeded, and failed jobs through a web server
running at the http://localhost/metrics endpoint. Kubernetes also exposes metrics
such as CPU usage, RAM consumption, I/O throughput, and others by default.
Prometheus, in its turn, polls these endpoints periodically and stores metrics in the
time-series database. Grafana is another ready-made software integrated into the
system to enhance observability by visualising metrics collected by Prometheus. It
allows us to build a dashboard for the project, run queries against the Prometheus
database, and visualise the results at near real-time resolution.

Broker, as mentioned before, decouples communication between Web API and
the rest of the system by providing a durable message queue that survives system
reloads. Job Service is subscribed to the queue and starts a lightweight co-routine
for each message processing, allowing for concurrently serving many requests.

File Storage for storing user inputs is implemented using an ordinary Linux
file system. It can be replaced with blob storage if deployed in a cloud-native
environment. However, it was not necessary for this project, so the most straight-
forward and still reliable solution has been chosen. File Storage must be attached
to Web API and Kubernetes worker nodes that run Simod jobs.

3.3.3 Components Context

The component’s context level examines each container closer. C4 modelling also has
code-level diagrams, but they are omitted in this description because components
in Simod on Containers are not very extensive and often directly correlate with
classes in the code. Thus, to avoid unnecessary details, the code-level diagrams
are replaced with dynamic diagrams, which are more helpful in understanding the
system’s behaviour at runtime.

Web API consists of the HTTP Server and the internal database. Mon-
goDB v6.0.5 plays the role of the NoSQL database. The NoSQL or document
type of the database helps to avoid strict database schemas in this project that
introduce unnecessary constraints at the beginning of the development. Also,
document databases suit more the distributed context and scale horizontally more
easily than row-based tables. HTTP Server is the core of the web service, and its
components are shown in Figure 7. The web application is implemented in Python
using FastAPI v0.92.0 18 and runs on top of the Uvicorn19 web server which runs
multiple instances of the same application in parallel. The web application ensures
that the asynchronous run of its internal components is safe and will not corrupt
the data or block underlying resources.

18https://fastapi.tiangolo.com
19https://www.uvicorn.org

32

https://fastapi.tiangolo.com
https://www.uvicorn.org


Figure 7. HTTP Server’s boundary with its internal components marked in green and related
external systems in violet

The Web API service has three underlying resources: the broker’s queue,
database, and file storage. The broker, RabbitMQ v3.11, and Mongo database can
sustain multiple asynchronous connections through client libraries developed by
the community. The Linux OS file system is used as the file storage for user inputs
and does not require any additional connections, but the disk volume must be
attached to containers that use the file system. The database contains only the
metadata about user requests and paths to user inputs in the file system. There is
a possibility of data races when using the pure file system. To avoid that, Web
API treats input data as immutable writing bytes to disk only once and then uses
it for read-only operations. Besides, Web API computes a SHA-256 hash of the file
content and uses it as a file name, which helps with caching. If the file is already in
the file system, its processing is stopped in the service to avoid redundant writes.

Job Controller shown in Figure 8 is the core part of the Job Service. The

33



Figure 8. Job Controller’s boundary with its internal components marked in light blue and related
external systems in violet

34



Verb Endpoint Description
GET /discoveries List discovery requests.

POST /discoveries Create a discovery request. Simod configura-
tion and event log must be provided in the
body as form data.

DELETE /discoveries Delete all discovery requests.
GET /discoveries/{request_id} Get general information about the request.
GET /discoveries/{request_id}/

{file_name}
Get a file attributed to the discovery request.
Used to fetch discovery results when ready.

GET /discoveries/{request_id}/
configuration

Get configuration of the discovery request.

PATCH /discoveries/{request_id} Update the request metadata. Used to update
the request’s status by Job Service.

DELETE /discoveries/{request_id} Delete the request.

Table 3. HTTP Service API endpoints

application is written in Go and is split into several internal lightweight workers
(servers) that run concurrently. These workers are Queue Server, Jobs Watcher,
and Job Metrics. Queue Server is subscribed to the Broker’s queue and waits for
discovery requests. As a request is published to the queue, the server receives the
message, composes a description of a Simod job, and submits it to Kubernetes for
scheduling and execution. In parallel, Jobs Watcher is subscribed to events related
to Simod jobs through the Kubernetes API. If there is any change in a Simod job,
the worker gets notified and updates the state of the discovery request at the HTTP
Server. Besides, Jobs Watcher updates job-related metrics (job duration, and the
number of pending, active, succeeded, and failed jobs) in the Job Metrics worker.
Job Metrics is a web server that exposes metrics at the well-known endpoint for
Prometheus at http://localhost/metrics.

Simod is marked in grey in Figure 8 because it is not an active part of the
Job Service. Job Controller composes a description of a Simod job specifying the
particular version of the Docker image of Simod, command arguments for the
Simod start-up, and path to the attached disk volume to access user inputs. Job
Controller also specifies the number of computing resources needed for a job so
that Kubernetes can better schedule the deployment of the job to nodes that can
accommodate such a load.

3.3.4 Collaboration between Services

The current solution has one obvious potential hot spot and one bottleneck. The
hot spot is the HTTP Server that accepts incoming requests from users. Because
user requests most likely would have exponential distribution, e.g., many visitors
come simultaneously after a link to the website is published in a blog article on

35



Figure 9. Dynamic diagram visualising communication steps when a new discovery request comes
in from the upstream Web UI. Communication technology is specified in square brackets on
relationship arrows

36



a university’s website, HTTP Server is the first component that faces the peak
load. As mentioned in Section 3.1, asynchronous message-based communication is
good practice to increase service availability. Thus, the communication between
Web API and Job Service is organised in a distributed manner using RabbitMQ as
a message broker, which implements AMQP 0-9-1 protocol.

However, the communication from the Job Service to Web API is implemented
through the HTTP REST API. Job Service is the system’s bottleneck because
discovery jobs with Simod can take a significant amount of time, from minutes
to hours. Job Service sends messages to Web API updating discovery request
statuses. As jobs take a long time, there would be few simultaneous updates to
Web API. Therefore, the frequency of communication initiated by Job Service is
low and limited by the number of available compute nodes. If there are 4 nodes,
there would be a maximum of 4 concurrent updates to Web API. That is why the
HTTP REST communication has been chosen for Job Controller instead of the
queue. This simplifies the development because blocking communication is easier
to implement and debug than distributed message-based communication.

Activity diagrams help examine a system’s dynamic nature by visualising the
order of interactions between subsystems. Figure 9 is a dynamic diagram for a use
case when a discovery request comes in from Web UI. The order of operations
is labelled with numbers on the arrows. (1) The HTTP Server accepts a POST
request, and the user input is saved to the file storage. (2) The HTTP Server
creates a record in the database for the new request with file paths to user inputs
in the file system, also a timestamp, and the current request status (accepted at
this step). Because a discovery job can take a considerable amount of time, the
Request–Acknowledge–Polling communication pattern has been chosen for the web
service. After processing the user input successfully, the HTTP Server returns the
202 acknowledged status code. From this point, the client application (Web
UI) can start polling the web service for updates and results of the BPS model
discovery. Table 3 shows the complete list of HTTP Server API endpoints.

After processing the user input, (3) the HTTP Server publishes the new request
message to the broker in a separate background thread. The message is a JSON
object encoded as an array of bytes. It contains the new request identifier and
path to the Simod configuration file, with all the information needed for Simod to
discover a BPS model. Then, (4) the Job Controller gets the message, prepares
a Simod job description for Kubernetes specifying the path to the configuration file,
and (5) submits it for execution through the Kubernetes API. (6) At the same time,
there is already a running process in a separate thread that watches updates for
Simod jobs from Kubernetes. If a status update happens, Job Controller updates
the metrics values, archives the results, and (7) updates the status through the
HTTP Server.

37



3.4 Scalability of Web API

Scalability of Web API is enabled by asynchronous (concurrent) programming for
requests processing and by Kubernetes Horizontal Pod Autoscaler 20. Endpoints in
the HTTP Server are declared using the async/await Python syntax supported
by the FastAPI web framework. This allows the Python interpreter to suspend
long-running functions usually related to I/O operations, switch to other tasks,
and then resume the suspended execution finishing the operation.

Concurrency can help increase processing efficiency and give a certain speed-up,
but it is not enough for highly scalable web servers. Another way to improve the
scalability is by running several web servers in parallel. Web API uses Uvicorn v0.20
as a web server for running the FastAPI application. Uvicorn implements Asyn-
chronous Server Gateway Interface (ASGI)21 that enables asynchronous processing
of multiple events simultaneously. Additionally, it introduces support for back-
ground tasks for a web server, which are used in the HTTP Server to send messages
to the broker. Background tasks remove the need for the user to wait for the
completion of downstream calls before receiving a response.

Kubernetes utilises ASGI implemented by Uvicorn and plays the role of a process
manager. This brings us to the Horizontal Pod Autoscaler (HPA), a Kubernetes
component responsible for horizontal scaling in response to certain metrics. For the
autoscaler to work, Kubernetes requires the Metrics Server 22 to be deployed to the
Kubernetes cluster. The Metrics Server collects Kubernetes Pods resource metrics
such as CPU or memory utilisation, which can be used for scaling. For example, if
the average CPU utilisation goes above 50%, then scale up to n-amount of nodes.
Scaling down is also can be additionally configured.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:

name: simod -http
spec:

maxReplicas: 6
minReplicas: 2
scaleTargetRef:

apiVersion: apps/v1
kind: Deployment
name: simod -http

Listing 1. Horizontal Pod Autoscaler manifest in YAML for HTTP Server

20https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
21https://asgi.readthedocs.io/en/latest/specs/main.html
22https://github.com/kubernetes-sigs/metrics-server

38

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://asgi.readthedocs.io/en/latest/specs/main.html
https://github.com/kubernetes-sigs/metrics-server


The Web API uses the default settings for scaling up and down: if the CPU
utilization goes above 50%, HPA scales up to a maximum number of replicas;
if the CPU utilization goes below 50%, HPA scale down. Kubernetes accepts
configuration as a manifest file in YAML format. Listing 1 shows the HPA manifest
for autoscaling the HTTP Server. It includes the minimum and maximum number
of replicas that result in the same number of parallel Uvicorn web servers. Also, for
HPA to find what should be automatically scaled, the property scaleTargetRef
points at the deployment, which is marked with {name: simod-http}. The entire
manifest for the Web API deployment is presented at page 64.

3.5 Scalability of Job Service

The Job Service is not a hot spot like Web API, and it does not face external
systems or users. It processes discovery requests from the queue at its own pace
depending on the available computing resources. A single Simod discovery can take
from minutes to hours. If it takes about a minute to discover a BPS model using
Simod for a lightweight event log, and there are 100 pending requests in the queue,
then it would take about 1.7 hours to run all the discovery jobs. Thus, it does not
matter if the Job Service processes pending requests in 1, 5, or 15 seconds.

Nevertheless, the Job Service is a performant application. It is written in Go to
utilize Go’s well-known concurrency model23 of the language based on goroutines.
Goroutines allow cheap and lightweight concurrent execution in the same address
space with a small stack, dynamic heap allocation and freeing. One can start
hundreds of goroutines without overwhelming the Go runtime. Goroutines are used
to start the Queue Server, Jobs Watcher, and Job Metrics components shown in
Figure 8. It means that all those workers run concurrently, most likely in parallel
threads (Go runtime manages it under the hood). When a new request comes in,
a new goroutine launches without blocking the processing of the subsequent request.
This concurrent model is similar to the process manager with ASGI mechanism
described in the section about the scaling of Web API.

It is possible to use HPA for autoscaling the Job Service too. However, there
is no need at the moment because the system bottleneck is still downstream, and
the current architecture of the service can handle peak loads without issues. The
entire manifest for the Job Service deployment is provided at page 66.

23https://go.dev/doc/effective_go#concurrency

39

https://go.dev/doc/effective_go#concurrency


3.6 Usage of Language Models and Smart Assistants

During the work on the thesis, such large language models (LLMs) as GPT-3.5,
GPT-4, and Codex were used24. GPT models were used as conversational assistants
that helped to explore a topic, suggest some starting points for the research, relevant
tools and technologies. LLMs were used in the same manner as search engines for
the web to do the initial exploration of the field before going deeper. LLMs were
not used to generate text for this thesis or for paraphrase. Grammarly25 was used
instead as a spell-checker and tool to improve the writing. Codex in the form of the
GitHub Copilot plugin to code editors (JetBrains’ PyCharm, GoLand, and Visual
Studio Code) was used as an intelligent auto-completion during the implementation
of applications mentioned in the thesis.

24https://platform.openai.com/docs/models
25https://www.grammarly.com

40

https://platform.openai.com/docs/models
https://www.grammarly.com


4 Validation and Results
There might be multiple definitions of scalability, and often an owner of a system
adjusts those definitions to the needs of a company. This work defines scalability
as the ability to handle an increased workload with the extended system’s capacity
while maintaining efficiency [WG06].

In modern cloud environments, we also define several types of application
scaling—vertical, horizontal, and cluster scaling26. Vertical scaling is aimed at
adjusting a single component of a resource for the application, e.g., increasing
RAM or CPU cores. Horizontal scaling increases the number of instances of the
application to match higher demand. Cluster scaling adds new resources to the
cluster, e.g., by changing the number of compute nodes.

This chapter establishes the validation approach to test the system’s scalability
using different scaling techniques for load management. Also, it describes another
important aspect of the validation, the implementation of the system’s observability,
which is required for collecting measurements for the validation. Finally, the results
of the validation experiments are presented.

4.1 Validation Framework

The validation of the current solution focuses on horizontal and cluster scaling.
Scalability can be achieved either by horizontal scaling of a system component or
cluster scaling, which usually goes together with horizontal scaling because adding
more compute nodes allows deploying more application instances to handle more
load.

Two experiments have been designed to validate if scalability is achieved. One of
the experiments ensures that the system maintains its efficiency under an increased
load with an extended capacity by employing cluster and horizontal scaling. The
other experiment shows that the system can sustain peak loads without collapsing
using horizontal scaling. The peak loads are achieved by ever growing number of
concurrent user sessions leading to a constant increase in requests rate.

4.1.1 Scalability Experiment

Design. The scalability experiment aims at validating if the system maintains its
efficiency under an increased load with an extended capacity. Efficiency is defined
as the ratio of the real capacity of the system over the ideal capacity [WG06, p. 14]:

En =

∑n
i=1Di

nD1

(1)

26https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

41

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/


where Di stands for the maximum added demand (capacity) by the i-th unit of
the system. For example, one compute node can satisfy the maximum demand D1,
the second node satisfies the maximum demand D2, and then the real capacity of
the system is D1 +D2. The ideal capacity is D1 because doubling the system’s
resources, e.g., adding a second compute node, usually does not double the capacity
because of additional overhead. In that case, D2 is expected to be less than D1.
Thus, nD1 is considered the ideal system capacity where n is a number of scaled
resources.

Additionally, the scalability experiment requires a response metric that must
be met by the system [WG06, p. 13]. In a more complex setting, it can be an
elaborate performance model. In this work, the cycle time of a Simod job is the
response metric, i.e., the time since the job has been submitted to the queue and
received the PENDING status, until it has successfully finished (SUCCEEDED)
or failed (FAILED). Further in the text, the cycle time is also called the response
time.

The Throughput or the number of processed discovery jobs per unit of time
is used as a measure of the demand in this experiment. The maximum number
of processed jobs given n-nodes is the capacity of the system. To determine the
capacity of the system with n-nodes, the system will be under load until it does
not meet the target response time, which is calculated below, or the experiment
times out.

This experiment considers mainly the Job Controller, Simod, and Kubernetes
from Figure 4 while intentionally omitting the solution’s Web API component.
This is because the response times of the two main services, Web API and Job
Service, are on different scales. It takes about 500 ms to process an HTTP request
and about 5 min to discover a BPS model. Therefore, scalability is judged by the
system’s bottleneck, its Job Service and related components. The Web Service is
evaluated in the other experiment where robustness under load is tested.

Workload. The workload for the test consists of a series of POST requests
with two files as a payload, an event log in the XES format, and a configuration
file in YAML for Simod which specifies how the BPS model discovery should be
conducted. The configuration file is the same for each test (a complete copy of
this file can be found at page 68). PrepaidTravelCost.xes (7.8 MB) [Don20a] and
RequestForPayment.xes (15.2 MB) [Don20b] are the two event logs used in the
experiment. Challenge: Because of the overhead of running the whole Kubernetes
cluster in the testing environment using a single laptop, it is impossible to run
logs of any size without crashing the cluster. This is why bigger event logs are not
considered in the experiments.

Target response time. The response time target is established as the mean
response time given the two different payloads used in the tests. Mean response

42



times for the payloads were measured in the testing environment by running POST
requests three times without additional load. The target times are summarized
in Table 4. The HTTP RT column specifies the time it took to receive the first
acknowledgement response from the HTTP Server. The Job RT column shows
the cycle time of a job. From the table, we see that it took, on average, 298.44
seconds to process the PrepaidTravelCost event log and 510.93 seconds to process
the RequestForPayment log.

Event log Run no. HTTP RT, s Job RT, s
PrepaidTravelCost 1 0.63 326.00

2 0.29 149.00
3 0.39 419.00
mean 0.44 298.00

RequestForPayment 1 0.82 574.00
2 0.56 483.00
3 0.42 474.00
mean 0.60 510.33

Table 4. Baseline measurements for both workloads where RT is the response time

Based on the measurements from Table 4, the target response time is taken as the
double of the baseline mean time because the job processing varies widely. Also, it
is expected for the system to experience some degradation in response time under
high load. Thus, the target response time for PrepaidTravelCost is 596 s or 10 min,
and for RequestForPayment it is 1021 s or 17 min.

Test implementation. To validate the scalability using the efficiency equa-
tion (1), the maximum capacity is required for each additional compute node.
In this test, the cluster of 1, 2, 3, and 4 worker nodes is considered. In the Kuber-
netes terminology, there are two types of nodes, the Control Plane and Worker
Node. It is highly recommended27 to keep the control plane on a separate node to
ensure the load on the cluster does not hinder the cluster management applications
of Kubernetes. It means if the cluster has one worker node, it actually has two
compute nodes, because one of them is the control plane node.

This experiment uses the Locust v2.15 28 load testing tool to implement the
workload and simulate users posting requests to the system29. Locust has been
launched with the following test parameters:

• the maximum number of users : 30

• spawn rate of users per second: 1

27https://kubernetes.io/docs/concepts/overview/components/
28https://locust.io
29Locust load profiles are available as Python scripts at

https://github.com/AutomatedProcessImprovement/simod-load-testing/tree/0.2.1/src

43

https://kubernetes.io/docs/concepts/overview/components/
https://locust.io
https://github.com/AutomatedProcessImprovement/simod-load-testing/tree/0.2.1/src


• running time of the load test: 30s

These parameters give up to 100 discovery jobs for the experiment, enough to
calculate the capacity. Because a job is expected to take at least 5 min each, and
each experimental run was limited to about 10 min, most jobs were not awaited
and cancelled after the timeout. Thus, larger parameter values are not needed.

Additionally, each test has a load profile (user profile) that describes how and
when to apply the load for a single simulated user. User profiles may differ for
simulating more complex behaviour. The simplest user profile with constant waiting
time between user requests is used in this experiment because it is sufficient to
generate enough load and calculate the throughput of the system with different
number of worker nodes.

4.1.2 Robustness under Load Experiment

Design and implementation. Stress testing of the HTTP component of the
solution helps to analyse if the system can handle peak loads gracefully without
collapsing. To do that, the system is a subject to high load for 3 min with the
following Locust parameters:

• the maximum number of users : 200

• spawn rate of users per second: 5

• running time of the load test: 3min

Depending on the network throughput, Locust can generate more than a thousand
requests to the system with these parameters. Besides Locust parameters, the load
profile is switched to the one with the exponential waiting time between subsequent
POST requests. That helps generate a peak load at one point and continues to
generate moderate loads the rest of the time.

In the experiment, request-related metrics such as requests rate, total request
count, and average response time are collected. To check if Kubernetes can apply
automatic horizontal scaling to Web API, the number of running HTTP Server
pods is measured. Also, failure rate is used to judge the overall robustness under
the load.

Workload. Similarly to the scalability experiment, the workload for the
robustness experiment consists of a series of POST requests with two files as
a payload, an event log in the XES format, and a Simod configuration file in
YAML. However, only one event log is used for the experiment, PrepaidTravelCost
(7.8 MB) [Don20a]. The travel log is a smaller event log that suits the experiment
better because of the specifics of the testing environment that does not allow for
much higher loads.

44



4.2 Testing Environment

Considering the testing environment during the load testing is important because
it directly impacts measurements collected from the system under test (SUT).
The primary goal of the testing environment for this study is to provide a way
to execute the whole system in a similar but not exact manner how that can be
done in production. Because the system has not been deployed to production
yet, there is no easily available Kubernetes cluster for testing. Also, creating or
renting an already existing cluster incurs significant costs. For this reason, the local
Kubernetes cluster has been set up using kind30, a tool for setting up Kubernetes
clusters for development purposes.

All tests are conducted on a laptop with the macOS 13.3 operating system,
Apple M1 Pro chip with 10 cores, and 16 GB LPDDR5 RAM using Docker Desktop
v4.17.0 as a container runtime. However, only 6 cores, 10 GB of RAM, 1 GB of
swap, 64 GB of disk are allocated for Docker.

Testing scenarios31 are implemented using Locust v2.1532 and run in Kubernetes
v1.25. Measurements are collected using Locust built-in reporting functionality,
the Kubernetes Metrics Server, Prometheus33, and visualised using Grafana34 and
ad-hoc Python scripts.

4.3 Observability

The main purpose of the Monitoring Solution from Figure 6 is to provide observabil-
ity of certain aspects of the system needed for the experiments. Kubernetes exposes
many metrics by default35, such as the number of running pods, nodes, resource
utilization per container, per pod, network and disk I/O, and others. The rest of
the components of the system require the metrics to be defined and exported by the
system so that Prometheus can collect them for further querying and processing.

Locust collects its own metrics during the load testing that are sufficient for the
tests. However, in the Job Service, the metrics such as pending, running, succeeded,
and failed job counts and job cycle times are instrumented using the Prometheus
SDK36 for the Go language. The metrics are exposed through a web server at
the endpoint http://localhost/metrics. This well-known location for Prometheus
metrics gets polled automatically if available. Also, such components as RabbitMQ,

30https://kind.sigs.k8s.io
31https://github.com/AutomatedProcessImprovement/simod-load-testing/tree/0.2.1/src
32https://locust.io
33Prometheus is an open-source systems monitoring and alerting toolkit, https://prometheus.io
34Grafana is a metrics visualisation toolkit, https://grafana.com/grafana/
35https://kubernetes.io/docs/reference/instrumentation/metrics/
36https://github.com/prometheus/client_golang

45

https://kind.sigs.k8s.io
https://github.com/AutomatedProcessImprovement/simod-load-testing/tree/0.2.1/src
https://locust.io
https://prometheus.io
https://grafana.com/grafana/
https://kubernetes.io/docs/reference/instrumentation/metrics/
https://github.com/prometheus/client_golang


MongoDB, and the HTTP Server can expose their metrics to increase observability,
but it was unnecessary for the current evaluation.

4.4 Results

This section presents the results of the experiments described in Section 4.1. The
scalability experiment results demonstrate if the scalability has been achieved, while
the robustness experiment shows the system can handle peak loads and remain
available.

4.4.1 Scalability Experiment

The results of the scalability experiment are summarised in Table 5. The table
shows the cluster and workload configuration, target response times, and measures
for eight experimental runs for both event logs. The experiments were executed
in the testing environment using Kubernetes clusters with 1, 2, 3, and 4 worker
nodes. Additionally, the system’s capacity in requests per minute was calculated,
which allowed it to compute the efficiency metric needed for the evaluation.

The efficiency metric for both event logs is visualised in Figure 10. The plot
shows that for the PrepaidTravelCost event log, the efficiency is maintained with
the extended capacity of the system. There is almost no efficiency drop when
extending from 1 to 2 worker nodes, 30% drop when extending further to 3 nodes,
and only 8% drop when extending to 4 nodes compared to the original efficiency of
100% using only one node.

However, the results are different for the other event log, RequestForPayment,
which is twice the size of the Travel log. There is constant degradation of efficiency
with more worker nodes added. The most significant drop of 34% is when extending
from 1 to 2 nodes, and then the degradation is more constant but significant, plus
15% with each additional node.

4.4.2 Robustness under Load

The results of the robustness under load experiment are summarised in Table 6
and visualised in Figures 11 to 15. PrepaidTravelCost, and four experimental runs
were conducted with only one event log. The table presents the measures collected
with Locust: the total amount of requests posted to Web API, the run time of
each experimental run (3 min), the total amount of failures, average response time,
throughput in requests per second, and the failure rate.

In Table 6, the number of total requests posted during the 3 min period varies
depending on the number of nodes. For the 1-worker node cluster, there were
885 POST requests submitted to Web API. There was a drop from 885 to 246

46



ID Nodes Log Jobs Elapsed time Target RT Mean RT Capacity Efficiency
1 1 I 2 9.48 min 10 min 6.33 min 0.22 rpm 1.00
2 2 I 4 9.52 min 10 min 6.10 min 0.42 rpm 1.00
3 3 I 5 11.15 min 10 min 7.45 min 0.45 rpm 0.71
4 4 I 7 9.05 min 10 min 6.21 min 0.77 rpm 0.92
5 1 II 2 14.30 min 17 min 10.65 min 0.14 rpm 1.00
6 2 II 2 11.18 min 17 min 9.22 min 0.18 rpm 0.64
7 3 II 2 9.55 min 17 min 8.96 min 0.21 rpm 0.50
8 4 II 2 11.32 min 17 min 10.21 min 0.18 rpm 0.32

Table 5. Results of the scalability experiment on both event logs where Nodes—number of worker
nodes; Log—event log (I: PrepaidTravelCost.xes, II: RequestForPayment.xes); Jobs—number of
successfully finished jobs; Elapsed time—duration of the experimental run; Target RT—target
response time; Mean RT—mean cycle time of a job; Capacity—throughput in requests per min

Figure 10. Efficiency with the extended capacity during the scalability experiment for both event
logs where Travel is the PrepaidTravelCost.xes log, Payment—RequestForPayment.xes

47



requests for the 2-worker nodes cluster. Then, the number of requests stayed more
consistent, with 438 requests for the 3-node cluster and 236 requests for the 4-node
cluster. The number of failures, in general, rose with more nodes added. The
throughput dropped significantly for the clusters with more than one node and
remained consistent.

Nevertheless, the average response time improved with more nodes in the cluster.
Figure 11 visualised the average and median response times and failure rates for
the PrepaidTravelCost log. Response time per request goes down with more nodes
added. It drops from the average response time of 19 s per request on the 1-node
cluster to 11 s on the 2- and 3-node clusters, finally dropping to 4.8 s on the 4-node
cluster. The median response time is even better, dropping from 16 s for the 1-node
cluster to 1.4 s for the 4-nodes cluster.

The failure rate rises with more nodes added to the cluster but stays relatively
low with a maximum of 4% failures on the 4-nodes cluster. There were two types
of failure, connection refused and timeout. Also, in some cases, the database had
more submitted discovery requests than reported by Locust, which means that the
request was sent and processed, but the response with acknowledgement was not
sent.

Figures 12 to 15 provide supplementary visualisation of the four experimental
runs with the running time on the x-axis and metrics on the y-axis. Among the
metrics, there are the request rate (requests per second), total request count over
time, number of running HTTP Server pods, average response time in seconds,
and failure rate in requests per second. These plots have similar shapes for all
the metrics, with a significant spike in requests during the first minute of the
experiment followed by a moderate request rate afterwards, which is expected
because the same load profile is used for all the runs. Then, looking at the number
of running HTTP Server pods, it is visible how Kubernetes managed to autoscale
the web server from 2 to 3, 4, and up to 6 concurrent web servers depending on
the number of available nodes. It also takes about 15 s to scale from 2 to 4 pods,
or from 4 to 6, or even from 2 to 6. However, we also see that the always-running
two web server pods usually handle the peak, and scaling happens after the load
peak occurs. It is caused by the fact that Kubernetes needs to record the spike in
the metrics server first before responding with scaling. The failure rate is usually
non-zero during the highest load or the scaling of the web server component.

48



ID Nodes Requests Run Time Failures Avg. RT Throughput Failure rate
9 1 885 3 min 1 19.0 s 4.92 rps 0.00
10 2 246 3 min 5 11.0 s 1.37 rps 0.02
11 3 438 3 min 12 11.0 s 2.43 rps 0.03
12 4 236 3 min 9 4.8 s 1.31 rps 0.04

Table 6. Results of the robustness experiment on PrepaidTravelCost.xes where Nodes—number
of worker nodes; RT—response time; rps—requests per second

Figure 11. Response time of the HTTP Server with the extended capacity during the robustness
experiment for the PrepaidTravelCost.xes event log

49



Figure 12. Visualisation of measurements collected during the robustness experiment with 1
worker node

50



Figure 13. Visualisation of measurements collected during the robustness experiment with 2
worker nodes

51



Figure 14. Visualisation of measurements collected during the robustness experiment with 3
worker nodes

52



Figure 15. Visualisation of measurements collected during the robustness experiment with 4
worker nodes

53



5 Discussion
This study aimed to design and implement a system for the scalable discovery of
BPS models using Simod by increasing the number of parallel discoveries. The
system’s architecture with its components and communication was described in
Section 3.3. The architecture proposed a distributed microservice-based system
tightly integrated into the Kubernetes platform for container orchestration, load
balancing, autoscaling, and self-healing. The solution used the job-type workload
of Kubernetes to launch BPS model discovery jobs using Simod in a serverless-like
manner. It can be compared to how Apache Airflow manages its jobs with the
difference that a task is implemented not as a Python script but as a container
application that can use any suitable technology.

Scalability is the ability to handle an increased workload with the extended
system’s capacity while maintaining efficiency [WG06]. Two experiments described
in Section 4.1 were executed to validate if the scalability has been achieved. The
efficiency degradation depending on the number of worker nodes in the Kubernetes
cluster has been shown in Figure 10. From the results, the efficiency is maintained
for the lightweight event log, PrepaidTravelCost.xes (7.8 MB). However, the other
event log, RequestForPayment.xes (15.2 MB), twice the size, was not handled
efficiently by the extended cluster. There is a strong belief that it is related mostly
to the testing environment and its limitations.

The testing environment implemented with the kind tool uses Docker containers
as compute nodes. It means that worker nodes of the cluster are not actual isolated
compute nodes but running Docker containers that share the same underlying
resources allocated to the Docker runtime. Therefore, the more nodes added to the
testing environment, the fewer resources each of them has. Suppose the intensive
workload gets distributed to more nodes. In that case, nodes have to compete for
resources, leading to the whole Kubernetes cluster becoming unresponsive or to
significant latency in computation. Thus, a larger event log leads to more intensive
computation, which, when scaled to more nodes in the testing environment, actually
leads to worse performance. If this can be confirmed by another experiment
in a proper production-ready Kubernetes environment, we can conclude that
the decreasing efficiency in Figure 10 for larger logs is attributed to the testing
environment rather than to drawbacks in the implementation.

The robustness under load experiment aimed at validating the horizontal
autoscaling of the Web API by Kubernetes and ensuring the system can handle peak
loads without collapsing. The results of the experiments summarised in Table 6
showed a significant drop in the throughput when moving from the 1-node cluster
to 2 and more nodes. The throughput for 2-, 3-, and 4-node clusters remained
consistent. The drop in the throughput can be explained by how the load testing
was deployed. In the current testing environment, there are two possible ways

54



of making a request to the system: (a) by launching the load testing script on
a laptop and port-forwarding requests from the host machine to the kind -cluster
that runs in the Docker network; (b) by deploying the load testing script alongside
the SUT in the Kubernetes cluster. Using port-forwarding is possible, and maybe
it can ensure better separation of the load testing framework from the SUT, but in
practice, the port-forwarding technique could not handle so many simultaneous
requests, and the connection was most of the time broken. This is why the second
approach was used in the validation, and the load testing framework was deployed
to the same Kubernetes cluster and shared the same resources. Inevitably, it leads
to SUT performance degradation when the load testing framework is highly active,
which was more of a concern during the robustness experiment. Thus, the drop
in the throughput can be explained by the fact that the 1-node cluster deploys
the SUT and load testing framework on the same node. Therefore, networking is
much more efficient when all systems are side by side. However, when the cluster
grows, the load-testing application has to make requests that cross the nodes’
boundary using the Docker network to reach the SUT. This is most likely the
reason behind such a high number of total requests (885) when using the 1-node
cluster compared to multiple-node clusters (236, 438). If we exclude the 1-node
cluster from the analysis, then the throughput did not degrade but was maintained
at about 1.67 rps independent of the number of nodes in the cluster. Together
with the improved response time, the robustness experiment can be considered
successful if the assumption is correct.

Figures 12 to 15 demonstrated that Kubernetes was able to successfully autoscale
the Web API when the load was applied. The current system’s configuration had
two web servers always running while additional four servers were automatically
deployed when necessary. However, as seen from the plots, the scaling happened
after the peak when the load decreased already to a moderate level. This is because
the Kubernetes Horizontal Pod Autoscaler uses Kubernetes Metrics Server to
register the increased load before acting, which is normal but can be improved.
The first improvement is decreasing the CPU utilisation threshold, 50% by default,
to a lower value so that Kubernetes could react faster. The second improvement is
employing a proactive approach using a prediction-based scaling policy [HW21].
However, the prediction-based approach makes sense when the system is operated
in the production environment for some time and historical data is available.

One of the study’s limitations is the testing environment which is the
weakest point and negatively impacts the ability to validate the implementation of
the system, forcing it to accept assumptions about resource sharing, computation
latency, and the speed of network I/O operations. Setting up and managing
a highly available Kubernetes cluster can be a significant challenge on its own. The
cluster should be bootstrapped securely, reliably, and cost-effectively. To allow for

55



automated cluster scaling (autoscaling the number of compute nodes), the Cluster
Autoscaler37 component is required. The autoscaler can be integrated into a cloud
provider or a custom infrastructure solution depending on the infrastructure. The
other way to achieve a production-ready environment would be to use already
existing Kubernetes services provided by cloud providers. The current study did
not consider it because of the additional costs such a solution incurs.

Another limitation of the study is that it does not consider the system’s
operational costs. In real settings, one must be careful with automated scaling and
choose a scaling strategy that includes the cost of running the system’s components.
The validation of the scalability and scaling would benefit an organisation more if
implemented in a cost-aware manner.

In future, because most of the tasks in process mining can be and usually are
implemented as batch processing tools with well-formed input and output, process
mining applications can benefit from workflow engines such as Apache Airflow and
Luigi. However, Kubernetes, as an orchestration platform, can offer even more.
Kubernetes is a more general container-native platform already supported by major
cloud providers. It is also technology-agnostic and does not depend on one language
or technology. Even though Airflow now provides container support and a user
can call non-Python applications through the BashOperator, Airflow has not been
initially designed and built for containers. Kubernetes is a platform for highly
parallel solutions suitable for a broader range of applications rather than only ETL,
which better suits enterprise needs and is most likely to be a part of the enterprise
infrastructure.

Argo Workflows38 is an emerging Kubernetes-native workflow engine similar to
Apache Airflow. The Job Service illustrated in Figure 8 uses Kubernetes API to
submit Simod jobs and watch for their status updates. So, the current solution may
benefit from transitioning this component to Argo Workflows. This would remove
the need to develop and support the custom integration with Kubernetes API while
providing a useful workflow monitoring UI. If Simod is split into smaller components
and services, the whole Simod architecture can be revised and transitioned from
a monolith to a modular workflow-based system, better fitting the complex and
composite nature of BPS model discovery.

37https://github.com/kubernetes/autoscaler
38https://github.com/argoproj/argo-workflows/

56

https://github.com/kubernetes/autoscaler
https://github.com/argoproj/argo-workflows/


Conclusion
This thesis presented a complete redesign and re-packaging of the Simod tool to
discover BPS models from event logs. The redesign and re-packaging improved the
tool with respect to the following dimensions:

1. Ease of use. The extension of Simod, when deployed to a Kubernetes
environment, allows users to access Simod through the web service with
an HTTP API.

2. Maintainability. Code quality improved from 3.33 to 6.96 out of 10 as mea-
sured by PyLint. The system was enhanced with regression tests providing
73% coverage. Automated builds, testing, and distribution were achieved
using the CI pipeline.

3. Scalability. The system provided an architecture and implementation using
the Kubernetes orchestration technology, increasing the BPS model discovery
throughput while ensuring high service availability during peak loads.

The software solution employed the microservice style with tight integration into
the Kubernetes orchestration platform through the Kubernetes API. System com-
ponents were written in different languages and used underlying technologies
depending on the task. Web API was written in Python, it used the FastAPI
web framework, MongoDB, and the file system for persistent storage. The Go
language was used to process the broker’s queue concurrently and integrate with
the Kubernetes API written originally in Go. Load-balancing, autoscaling, and
self-healing were delegated to Kubernetes, while observability was implemented
using Prometheus and Grafana.

One of the less emphasised contributions of the study is the refactoring of Simod
described in Section 3.2 that was a prerequisite for building the scalable discovery
of BPS models using Simod. The refactoring made it possible to modify Simod with
more confidence with the help of regression tests and decreased interdependency
of Python modules. The test coverage has increased from 0 to 73% while the
code quality improved from 3.33 to 6.96 out of 10, according to PyLint. The
distribution of Simod has been improved by removing unnecessary hardware and
software dependencies and packaging it into a Docker container image.

Simod shows that BPS model discovery is a complex process, thus requiring
a composite application that uses multiple underlying tools to execute a series of
data processing tasks on the input data. In this case, a workflow-based architecture
is a good fit and helps to improve the final solution’s maintenance, scalability,
robustness, and observability. Containerisation is the technology that introduces
isolation of system components providing strict boundaries on one hand while
improving the communication across the boundaries on the other hand by making

57



the communication transparent and obvious through the use of API and CLI. Thus,
container-based workflow engines make a great fit for complex data processing
tasks, such as BPS model discovery.

In future work, Simod, used as a black box in this solution, may benefit from
being split into smaller components and services that can be developed, deployed,
and scaled independently. The current Simod architecture consists of several
processing stages, where some can run in parallel and use the multi-threaded
approach. Multi-threading limits parallelism to the number of CPU cores on the
machine. This limitation can be overcome if such stages use a cluster of machines
instead of only a single computer. Splitting Simod into smaller independent services
and components would also benefit the software development process by reducing
the system’s scope, which must be considered during development. The usage
of workflow-based engines may additionally contribute to improved observability,
maintenance, and better scalability.

It is critical to continue researching the improvement of architecture solutions
for BPS model discovery by utilising modern technologies for distributed cloud
computing. The demand for new frameworks will grow as more enterprises transition
to the cloud for data storage and processing. Containerisation and orchestration
technologies enabled the new generation of workflow engines that can provide low-
to no-code solutions for the composition of data processing.

Another direction for future work is to redesign Simod to handle larger datasets.
The refactoring of Simod undertaken in this Master’s thesis was aimed at making
Simod scale out to handle concurrent discoveries. An equally important scalability
dimension in this field is to handle larger dataset sizes. To achieve this, there is an
opportunity to redesign Simod to use a map-reduce framework, such as Spark, or
parallel data frames processing libraries like Dask or Polars.

58



References
[Aug+19] Adriano Augusto et al. “Split miner: automated discovery of accurate

and simple business process models from event logs”. In: Knowledge
and Information Systems 59.2 (May 2019), pp. 251–284. issn: 0219-
1377, 0219-3116. doi: 10.1007/s10115- 018- 1214- x. url: http:
//link.springer.com/10.1007/s10115- 018- 1214- x (visited on
10/16/2022).

[BF14] P. Bourque and R.E. Fairley. Guide to the Software Engineering Body
of Knowledge, Version 3.0. IEEE Computer Society, 2014. url: https:
//www.computer.org/education/bodies-of-knowledge/software-
engineering (visited on 10/16/2022).

[Bur+16] Brendan Burns et al. “Borg, Omega, and Kubernetes: Lessons learned
from three container-management systems over a decade”. In: Queue
14.1 (Jan. 2016), pp. 70–93. issn: 1542-7730, 1542-7749. doi: 10.1145/
2898442.2898444. url: https://dl.acm.org/doi/10.1145/2898442.
2898444 (visited on 04/28/2023).

[Cam21] Manuel Camargo. Simod: Automated discovery of BPS models. Source
code at GitHub. Version v2.3.1. Mar. 24, 2021. url: https://github.
com/AutomatedProcessImprovement/simod/tree/v2.3.1 (visited on
10/16/2022).

[Cas19] Emiliano Casalicchio. “Container Orchestration: A Survey”. In: Sys-
tems Modeling: Methodologies and Tools. Ed. by Antonio Puliafito and
Kishor S. Trivedi. Series Title: EAI/Springer Innovations in Commu-
nication and Computing. Cham: Springer International Publishing,
2019, pp. 221–235. isbn: 978-3-319-92377-2 978-3-319-92378-9. doi:
10.1007/978-3-319-92378-9_14. url: http://link.springer.com/
10.1007/978-3-319-92378-9_14 (visited on 04/28/2023).

[CD22] David Chapela-Campa and Marlon Dumas. “Modeling Extraneous
Activity Delays in Business Process Simulation”. In: Proceedings of
the 4th International Conference on Process Mining (ICPM 2022). Ed.
by Andrea Burattin, Artem Polyvyanyy, and Barbara Weber. IEEE,
2022, pp. 72–79. doi: 10.1109/ICPM57379.2022.9980544. url: https:
//doi.org/10.1109/ICPM57379.2022.9980544.

[CDA20] Long Cheng, Boudewijn F. van Dongen, and Wil M.P. van der Aalst.
“Scalable Discovery of Hybrid Process Models in a Cloud Computing
Environment”. In: IEEE Transactions on Services Computing 13.2
(Mar. 1, 2020), pp. 368–380. issn: 1939-1374, 2372-0204. doi: 10.1109/

59

https://doi.org/10.1007/s10115-018-1214-x
http://link.springer.com/10.1007/s10115-018-1214-x
http://link.springer.com/10.1007/s10115-018-1214-x
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://dl.acm.org/doi/10.1145/2898442.2898444
https://dl.acm.org/doi/10.1145/2898442.2898444
https://github.com/AutomatedProcessImprovement/simod/tree/v2.3.1
https://github.com/AutomatedProcessImprovement/simod/tree/v2.3.1
https://doi.org/10.1007/978-3-319-92378-9_14
http://link.springer.com/10.1007/978-3-319-92378-9_14
http://link.springer.com/10.1007/978-3-319-92378-9_14
https://doi.org/10.1109/ICPM57379.2022.9980544
https://doi.org/10.1109/ICPM57379.2022.9980544
https://doi.org/10.1109/ICPM57379.2022.9980544
https://doi.org/10.1109/TSC.2019.2906203
https://doi.org/10.1109/TSC.2019.2906203


TSC.2019.2906203. url: https://ieeexplore.ieee.org/document/
8669858/ (visited on 11/24/2022).

[CDG20] Manuel Camargo, Marlon Dumas, and Oscar González-Rojas. “Auto-
mated discovery of business process simulation models from event logs”.
In: Decision Support Systems 134 (July 2020), p. 113284. issn: 01679236.
doi: 10 . 1016 / j . dss . 2020 . 113284. url: https : / / linkinghub .
elsevier.com/retrieve/pii/S0167923620300397 (visited on 10/16/2022).

[Cha+23] David Chapela-Campa et al. “Can I Trust My Simulation Model?
Measuring the Quality of Business Process Simulation Models”. In:
CoRR abs/2303.17463 (2023). doi: 10.48550/arXiv.2303.17463.
arXiv: 2303.17463. url: https://doi.org/10.48550/arXiv.2303.
17463.

[Dai12] Robert Daigneau. Service design patterns: fundamental design solutions
for SOAP/WSDL and RESTful Web services. Addison-Wesley signature
series. OCLC: ocn753468449. Upper Saddle River, NJ: Addison-Wesley,
2012. 321 pp. isbn: 978-0-321-54420-9.

[Don20a] Boudewijn van Dongen. BPI Challenge 2020: Prepaid Travel Costs. In
collab. with Department Of Mathematics {And} Computer Science
Eindhoven University Of Technology. Medium: media types: application/x-
gzip, text/plain, text/xml Version Number: 1 Type: dataset. Mar. 26,
2020. doi: 10.4121/UUID:5D2FE5E1-F91F-4A3B-AD9B-9E4126870165.
url: https://data.4tu.nl/articles/_/12696722/1 (visited on
04/10/2023).

[Don20b] Boudewijn van Dongen. BPI Challenge 2020: Request For Payment.
In collab. with Department Of Mathematics {And} Computer Science
Eindhoven University Of Technology. Medium: media types: application/x-
gzip, text/plain, text/xml Version Number: 1 Type: dataset. Mar. 26,
2020. doi: 10.4121/UUID:895B26FB-6F25-46EB-9E48-0DCA26FCD030.
url: https://data.4tu.nl/articles/_/12706886/1 (visited on
04/19/2023).

[Est+21] Bedilia Estrada-Torres et al. “Discovering business process simulation
models in the presence of multitasking and availability constraints”. In:
Data Knowl. Eng. 134 (2021), p. 101897. doi: 10.1016/j.datak.2021.
101897. url: https://doi.org/10.1016/j.datak.2021.101897.

[Eve16] Joerg Evermann. “Scalable Process Discovery Using Map-Reduce”. In:
IEEE Transactions on Services Computing 9.3 (May 1, 2016), pp. 469–
481. issn: 1939-1374. doi: 10.1109/TSC.2014.2367525. url: http:
//ieeexplore.ieee.org/document/6948229/ (visited on 11/24/2022).

60

https://doi.org/10.1109/TSC.2019.2906203
https://doi.org/10.1109/TSC.2019.2906203
https://doi.org/10.1109/TSC.2019.2906203
https://ieeexplore.ieee.org/document/8669858/
https://ieeexplore.ieee.org/document/8669858/
https://doi.org/10.1016/j.dss.2020.113284
https://linkinghub.elsevier.com/retrieve/pii/S0167923620300397
https://linkinghub.elsevier.com/retrieve/pii/S0167923620300397
https://doi.org/10.48550/arXiv.2303.17463
https://arxiv.org/abs/2303.17463
https://doi.org/10.48550/arXiv.2303.17463
https://doi.org/10.48550/arXiv.2303.17463
https://doi.org/10.4121/UUID:5D2FE5E1-F91F-4A3B-AD9B-9E4126870165
https://data.4tu.nl/articles/_/12696722/1
https://doi.org/10.4121/UUID:895B26FB-6F25-46EB-9E48-0DCA26FCD030
https://data.4tu.nl/articles/_/12706886/1
https://doi.org/10.1016/j.datak.2021.101897
https://doi.org/10.1016/j.datak.2021.101897
https://doi.org/10.1016/j.datak.2021.101897
https://doi.org/10.1109/TSC.2014.2367525
http://ieeexplore.ieee.org/document/6948229/
http://ieeexplore.ieee.org/document/6948229/


[HW21] Tengfei Hu and Yannian Wang. “A Kubernetes Autoscaler Based on Pod
Replicas Prediction”. In: 2021 Asia-Pacific Conference on Communica-
tions Technology and Computer Science (ACCTCS). 2021 Asia-Pacific
Conference on Communications Technology and Computer Science
(ACCTCS). Jan. 2021, pp. 238–241. doi: 10.1109/ACCTCS52002.2021.
00053.

[Las+22] Katsiaryna Lashkevich et al. Why am I Waiting? Data-Driven Analysis
of Waiting Times in Business Processes. Dec. 2, 2022. doi: 10.48550/
arXiv.2212.01392. arXiv: 2212.01392[cs]. url: http://arxiv.org/
abs/2212.01392 (visited on 04/27/2023).

[LHD23] Orlenys López-Pintado, Iryna Halenok, and Marlon Dumas. “Prosimos:
Discovering and Simulating Business Processes with Differentiated Re-
sources”. In: Enterprise Design, Operations, and Computing. EDOC
2022 Workshops. Ed. by Tiago Prince Sales et al. Lecture Notes in Busi-
ness Information Processing. Cham: Springer International Publishing,
2023, pp. 346–352. isbn: 978-3-031-26886-1. doi: 10.1007/978-3-031-
26886-1_23.

[Lin16] David S. Linthicum. “Practical Use of Microservices in Moving Work-
loads to the Cloud”. In: IEEE Cloud Computing 3.5 (Sept. 2016).
Conference Name: IEEE Cloud Computing, pp. 6–9. issn: 2325-6095.
doi: 10.1109/MCC.2016.114.

[Mur89] T. Murata. “Petri nets: Properties, analysis and applications”. In: Pro-
ceedings of the IEEE 77.4 (Apr. 1989), pp. 541–580. issn: 00189219. doi:
10.1109/5.24143. url: http://ieeexplore.ieee.org/document/
24143/ (visited on 11/25/2022).

[Obj14] Object Management Group. Business Process Model and Notation
(BPMN), Version 2.0. Version 2.0.2. 2014. url: https://www.omg.
org/spec/BPMN/2.0.2/PDF.

[Rei+17] Daniel Reißner et al. “Scalable Conformance Checking of Business
Processes”. In: On the Move to Meaningful Internet Systems. OTM 2017
Conferences. Ed. by Hervé Panetto et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2017, pp. 607–627.
isbn: 978-3-319-69462-7. doi: 10.1007/978-3-319-69462-7_38.

[Sil16] Alan Sill. “The Design and Architecture of Microservices”. In: IEEE
Cloud Computing 3.5 (Sept. 2016). Conference Name: IEEE Cloud
Computing, pp. 76–80. issn: 2325-6095. doi: 10.1109/MCC.2016.111.

61

https://doi.org/10.1109/ACCTCS52002.2021.00053
https://doi.org/10.1109/ACCTCS52002.2021.00053
https://doi.org/10.48550/arXiv.2212.01392
https://doi.org/10.48550/arXiv.2212.01392
https://arxiv.org/abs/2212.01392 [cs]
http://arxiv.org/abs/2212.01392
http://arxiv.org/abs/2212.01392
https://doi.org/10.1007/978-3-031-26886-1_23
https://doi.org/10.1007/978-3-031-26886-1_23
https://doi.org/10.1109/MCC.2016.114
https://doi.org/10.1109/5.24143
http://ieeexplore.ieee.org/document/24143/
http://ieeexplore.ieee.org/document/24143/
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://doi.org/10.1007/978-3-319-69462-7_38
https://doi.org/10.1109/MCC.2016.111


[Van16] Wil Van Der Aalst. Process Mining. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016. isbn: 978-3-662-49850-7 978-3-662-49851-4. doi: 10.
1007/978-3-662-49851-4. url: http://link.springer.com/10.
1007/978-3-662-49851-4 (visited on 04/27/2023).

[Ver+15] Abhishek Verma et al. “Large-scale cluster management at Google
with Borg”. In: Proceedings of the Tenth European Conference on Com-
puter Systems. EuroSys ’15: Tenth EuroSys Conference 2015. Bordeaux
France: ACM, Apr. 17, 2015, pp. 1–17. isbn: 978-1-4503-3238-5. doi:
10.1145/2741948.2741964. url: https://dl.acm.org/doi/10.1145/
2741948.2741964 (visited on 05/08/2023).

[WG06] Charles B. Weinstock and John B. Goodenough. On System Scal-
ability. Technical Note CMU/SEI-2006-TN-012. 2006. url: https:
//resources.sei.cmu.edu/library/asset-view.cfm?assetid=7887
(visited on 04/20/2023).

[WKK15] Jean-François Weets, Manish Kumar Kakhani, and Anil Kumar. “Limi-
tations and challenges of HDFS and MapReduce”. In: 2015 International
Conference on Green Computing and Internet of Things (ICGCIoT).
2015 International Conference on Green Computing and Internet of
Things (ICGCIoT). Oct. 2015, pp. 545–549. doi: 10.1109/ICGCIoT.
2015.7380524.

62

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
http://link.springer.com/10.1007/978-3-662-49851-4
http://link.springer.com/10.1007/978-3-662-49851-4
https://doi.org/10.1145/2741948.2741964
https://dl.acm.org/doi/10.1145/2741948.2741964
https://dl.acm.org/doi/10.1145/2741948.2741964
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7887
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7887
https://doi.org/10.1109/ICGCIoT.2015.7380524
https://doi.org/10.1109/ICGCIoT.2015.7380524


Appendix

I. Implementation of the Solution
The implementation of the solution consists of several repositories, with the meta-
repository located at https://github.com/automatedProcessImprovement/simod-on-
containers. The following code repositories contain corresponding implementations:

simod v3.3.0 Simod repository39 contains the version of Simod used in the thesis
with the Docker image publicly available at the Docker Hub40.

simod-http v0.11.1 Web API service repository41 contains the implementation
of the HTTP Server written in Python using the FastAPI web framework.
The Docker image is available at the Docker Hub with the corresponding
tag42.

simod-job-controller-go v0.6.0 Job Service repository43 contains the implemen-
tation of the Job Controller with the Docker image available at the Docker
Hub44.

simod-load-testing v0.2.1 Load testing solution repository45 that uses Locust
for validation experiments. The Docker image is available at the Docker
Hub46.

simod-on-containers The meta-repository47 that contains links to other reposi-
tory and, most importantly, contains deployment manifests for Kubernetes.

39https://github.com/AutomatedProcessImprovement/simod/tree/v3.3.0
40https://hub.docker.com/layers/nokal/simod/3.3.0/images/sha256-

74c3ab0bdac31b385a780168ca71f1eae3162631abd04e288cedc7bd6d7135a6?context=explore
41https://github.com/AutomatedProcessImprovement/simod-http/tree/0.11.1
42https://hub.docker.com/layers/nokal/simod-http/0.11.1/images/sha256-

325603e551bf29fd2488d25d2bbeff77e7e2b37dcaa01bbd5849402fe929927e?context=explore
43https://github.com/AutomatedProcessImprovement/simod-job-controller-go/tree/0.6.0
44https://hub.docker.com/layers/nokal/simod-job-controller-go/0.6.0/images/sha256-

bf77343dbbcf01838cbdac7598542796ae9778731be5336a5e25516cef117683?context=explore
45https://github.com/AutomatedProcessImprovement/simod-load-testing/tree/0.2.1
46https://hub.docker.com/layers/nokal/simod-load-testing/0.2.1/images/sha256-

aef3f8ce9d44e16dd753f518ff5b1fead4faca2f336deab77d0557f29df83849?context=explore
47https://github.com/automatedProcessImprovement/simod-on-containers

63

https://github.com/automatedProcessImprovement/simod-on-containers
https://github.com/automatedProcessImprovement/simod-on-containers
https://github.com/AutomatedProcessImprovement/simod/tree/v3.3.0
https://hub.docker.com/layers/nokal/simod/3.3.0/images/sha256-74c3ab0bdac31b385a780168ca71f1eae3162631abd04e288cedc7bd6d7135a6?context=explore
https://hub.docker.com/layers/nokal/simod/3.3.0/images/sha256-74c3ab0bdac31b385a780168ca71f1eae3162631abd04e288cedc7bd6d7135a6?context=explore
https://github.com/AutomatedProcessImprovement/simod-http/tree/0.11.1
https://hub.docker.com/layers/nokal/simod-http/0.11.1/images/sha256-325603e551bf29fd2488d25d2bbeff77e7e2b37dcaa01bbd5849402fe929927e?context=explore
https://hub.docker.com/layers/nokal/simod-http/0.11.1/images/sha256-325603e551bf29fd2488d25d2bbeff77e7e2b37dcaa01bbd5849402fe929927e?context=explore
https://github.com/AutomatedProcessImprovement/simod-job-controller-go/tree/0.6.0
https://hub.docker.com/layers/nokal/simod-job-controller-go/0.6.0/images/sha256-bf77343dbbcf01838cbdac7598542796ae9778731be5336a5e25516cef117683?context=explore
https://hub.docker.com/layers/nokal/simod-job-controller-go/0.6.0/images/sha256-bf77343dbbcf01838cbdac7598542796ae9778731be5336a5e25516cef117683?context=explore
https://github.com/AutomatedProcessImprovement/simod-load-testing/tree/0.2.1
https://hub.docker.com/layers/nokal/simod-load-testing/0.2.1/images/sha256-aef3f8ce9d44e16dd753f518ff5b1fead4faca2f336deab77d0557f29df83849?context=explore
https://hub.docker.com/layers/nokal/simod-load-testing/0.2.1/images/sha256-aef3f8ce9d44e16dd753f518ff5b1fead4faca2f336deab77d0557f29df83849?context=explore
https://github.com/automatedProcessImprovement/simod-on-containers


II. Kubernetes Manifest for Web API
The full Kubernetes manifest in YAML that is used to deploy the Web API service
to the testing environment in this thesis is presented below.
apiVersion: apps/v1
kind: Deployment
metadata:

name: simod -http
spec:

selector:
matchLabels:

app: simod -http
template:

metadata:
labels:

app: simod -http
spec:

volumes:
- name: simod -data

persistentVolumeClaim:
claimName: simod -volume -claim

containers:
- name: simod -http

image: nokal/simod -http :0.11.1
command: [ "/bin/bash" ]
args: [ "run_uvicorn.sh" ]
env:

- name: BROKER_URL
value: "amqp :// guest:guest@rabbitmq -service :5672"

- name: SIMOD_EXCHANGE_NAME
value: "simod"

- name: SIMOD_PENDING_ROUTING_KEY
value: "requests.status.pending"

- name: SIMOD_HTTP_HOST
value: "0.0.0.0"

- name: SIMOD_HTTP_PORT
value: "8000"

- name: SIMOD_HTTP_STORAGE_PATH
value: "/tmp/simod -volume/data"

- name: SIMOD_HTTP_LOG_LEVEL
value: "info"

- name: SIMOD_GUNICORN_WORKERS
value: "4"

- name: MONGO_URL
value: "mongodb :// mongodb :27017"

- name: MONGO_DATABASE
value: "simod"

- name: MONGO_USERNAME

64



value: "root"
- name: MONGO_PASSWORD

value: "example"
- name: MONGO_REQUESTS_COLLECTION

value: "requests"
resources:

requests:
cpu: 256m
memory: 256Mi

volumeMounts:
- name: simod -data

mountPath: /tmp/simod -volume
---
apiVersion: v1
kind: Service
metadata:

name: simod -http
labels:

app: simod -http
spec:

selector:
app: simod -http

ports:
- name: web

port: 8000
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:

name: simod -http
spec:

maxReplicas: 6
minReplicas: 2
scaleTargetRef:

apiVersion: apps/v1
kind: Deployment
name: simod -http

65



III. Kubernetes Manifest for Job Service
The full Kubernetes manifest in YAML that is used for deployment of the Job
Service to the testing environment in the thesis is presented below.
apiVersion: apps/v1
kind: Deployment
metadata:

name: simod -job -controller
spec:

selector:
matchLabels:

app: simod -job -controller
template:

metadata:
labels:

app: simod -job -controller
spec:

volumes:
- name: simod -data

persistentVolumeClaim:
claimName: simod -volume -claim

containers:
- name: simod -job -controller

image: nokal/simod -job -controller -go :0.6.0
env:

- name: BROKER_URL
value: amqp :// guest:guest@rabbitmq -service :5672

- name: SIMOD_EXCHANGE_NAME
value: simod

- name: SIMOD_DOCKER_IMAGE
value: nokal/simod :3.3.0

- name: SIMOD_JOB_RESOURCE_CPU_REQUEST
value: "1"

- name: SIMOD_JOB_RESOURCE_MEMORY_REQUEST
value: "4Gi"

- name: SIMOD_HTTP_HOST
value: simod -http

- name: SIMOD_HTTP_PORT
value: "8000"

- name: KUBERNETES_NAMESPACE
value: default

resources:
limits:

cpu: "1"
memory: 1Gi

requests:
cpu: 100m
memory: 128Mi

66



volumeMounts:
- name: simod -data

mountPath: /tmp/simod -volume
---
apiVersion: v1
kind: Service
metadata:

name: simod -job -controller
labels:

app: simod -job -controller
spec:

selector:
app: simod -job -controller

ports:
- name: web

port: 8080
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:

name: simod -job -controller
spec:

selector:
matchLabels:

app: simod -job -controller
endpoints:
- port: web

67



IV. Simod Configuration
Simod configuration for business process simulation model discovery is presented
below. The log path is dynamically adjusted depending on the provided event log
by the Web API.
version: 2
common:

log_path: /Users/ihar/Projects/PIX/simod -load -testing/assets/
PrepaidTravelCost.xes

repetitions: 1
evaluation_metrics:

- dl
- absolute_hourly_emd
- cycle_time_emd
- circadian_emd

preprocessing:
multitasking: false

structure:
max_evaluations: 1
mining_algorithm: sm3
optimization_metric: dl
concurrency:

- 0.0
- 1.0

epsilon:
- 0.0
- 1.0

eta:
- 0.0
- 1.0

gateway_probabilities:
- equiprobable
- discovery

replace_or_joins:
- true
- false

prioritize_parallelism:
- true
- false

calendars:
max_evaluations: 1
optimization_metric: absolute_hourly_emd
resource_profiles:

discovery_type: differentiated
granularity: 60
confidence: 0.1
support: 0.7
participation: 0.4

68



extraneous_activity_delays:
num_iterations: 1
optimization_metric: relative_emd

69



V. Licence

Non-exclusive licence to reproduce thesis and make thesis
public

I, Ihar Suvorau,

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Scaling Out the Discovery of Business Process Simulation Models
from Event Logs,

supervised by Marlon Dumas, David Chapela de la Campa.

2. I grant the University of Tartu a permit to make the work specified at page 1
available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives, under the Creative Commons
licence CC BY NC ND 3.0, which allows, by giving appropriate credit to the
author, to reproduce, distribute the work and communicate it to the public,
and prohibits the creation of derivative works and any commercial use of the
work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified at pages 1
and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Ihar Suvorau
1/05/2023

70


	Introduction
	Background
	Business Process Simulation Model Discovery
	Simod
	Scaling Network-Based Distributed Systems

	Related Work
	Approach
	Design Principles for Scalability
	Prerequisites for Scalability
	Simod Challenges
	Simod Refactoring and Maintenance

	System Architecture
	System Context
	Container Context
	Components Context
	Collaboration between Services

	Scalability of Web API
	Scalability of Job Service
	Usage of Language Models and Smart Assistants

	Validation and Results
	Validation Framework
	Scalability Experiment
	Robustness under Load Experiment

	Testing Environment
	Observability
	Results
	Scalability Experiment
	Robustness under Load


	Discussion
	Conclusions
	References
	Appendix
	I. Implementation of the Solution
	II. Kubernetes Manifest for Web API
	III. Kubernetes Manifest for Job Service
	IV. Simod Configuration
	V. Licence


