
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Toomas Tamm

DeltaVR Multiplayer 2.0

Master's Thesis (30 ECTS)

Supervisor(s): Mark Muhhin, MSc

Tartu 2023

2

DeltaVR Multiplayer 2.0

Abstract:

This thesis presents an improved version of DeltaVR, building upon its predecessor,

DeltaVR Multiplayer, by addressing game-breaking bugs, enhancing the virtual Delta

Building, and introducing new experiences. The updated application features a tutorial, an

improved archery range experience, and two new experiences: a drawing experience and a

virtual spacewalk. Usability and performance testing showed that the new version is more

stable, user-friendly, and visually accurate than its predecessors. While some usability issues

and bugs remain, the application runs faster, and it should have a reduced incidence of

nausea among users. Overall, the new version of DeltaVR offers a better experience with

further scope for improvements.

Keywords:

Computer Graphics, Virtual Reality, Unity, User Testing, Game Design, Software

Development

CERCS: P170, computer science, numerical analysis, systems, control

3

DeltaVR mitmikmäng 2.0

Lühikokkuvõte:

Lõputöö kirjeldab täiustatud versiooni DeltaVR-ist, ehitades selle eelkäija DeltaVR

mitmikmängu peale. Töö käigus parandati mängu rikkuvaid vigu, täiendati virtuaalset Delta

hoonet ja lisati uusi kogemusi. Uuendatud rakendusel on sisseehitatud õpetus, parandatud

vibulaskmise kogemus ja kaks uut kogemust: joonistamine ja kosmoses kõndimine.

Kasutaja- ja jõudluse testimise tulemused näitasid, et uus versioon on stabiilse,

kasutajasõbralikum ja visuaalselt täpsem kui eelkäijad. Kuigi mõned kasutatavusprobleemid

ja vead on veel alles, töötab rakendus kiiremini ja kasutajatel peaks olema vähem

iiveldustunnet. Kokkuvõttes pakub uus DeltaVR kasutajatele paremat kogemust, millel on

veel arenguruumi.

Võtmesõnad:

Arvutigraafika, Virtuaalreaalsus, Unity, Kasutajatestimine, Mängudisain,

Tarkvaraarendamine

CERCS: P170, arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

(automaatjuhtimisteooria)

4

Table of Contents

Introduction ... 6

1 Background ... 8

1.1 The Lab ... 8

1.2 VR Chat .. 9

1.3 UNSW Business Classroom VR .. 10

1.4 DeltaVR Multiplayer .. 11

1.4.1 DeltaVR Multiplayer at Expos .. 12

2 Goal Overview and Design ... 14

2.1 Multiplayer ... 14

2.1.1 Issues in DeltaVR Multiplayer .. 14

2.1.2 Network Topologies and Architectures .. 15

2.1.2 Unity Libraries .. 16

2.2 Tutorial ... 17

2.3 Locomotion Changes .. 19

2.4 Building Improvements .. 20

2.5 Archery Range Modifications .. 21

2.6 CGVR Lab Tour ... 22

2.7 Additional Experiences .. 22

2.7.1 Non-Euclidean Space .. 22

2.7.2 Virtual Plank ... 23

2.7.3 Drawing ... 24

3 Implementation ... 25

3.1 Technologies Used ... 25

3.2 Locomotion Changes .. 25

3.3 Virtual Hands and Controllers .. 27

3.3.1 Controller Models ... 28

3.3.2 Offsetting Controllers .. 28

4.3.3 Animating Controllers .. 29

4.2.4 Virtual Hands ... 31

3.4 Tutorial ... 32

3.4.1 Controller Outline and Text .. 32

3.4.2 Tutorial Flow ... 37

5

3.5 Virtual Delta Building Changes ... 38

3.6 Spacewalk Experience .. 39

3.7 Multiplayer with Fish-Net .. 43

3.8 Drawing Experience ... 45

3.9 Archery Range Experience ... 47

4 Testing ... 50

4.1 University of Tartu Alumni Day Expo ... 50

4.1.1 Application Crashing .. 51

4.1.2 Tutorial Issues ... 52

4.1.3 Archery Range Issues .. 53

4.2 Performance Testing ... 54

4.3 Usability Testing .. 56

4.3.1 Feedback Questionnaire .. 57

4.3.2 Usability Testing Results .. 59

Conclusion ... 72

References ... 74

Appendix ... 76

I. Dictionary ... 76

II. Issues Discovered During Expos .. 79

III. E-mail Sent to Testers .. 82

IV. Feedback Questionnaire ... 83

V. User Guide .. 89

VI. Pictures of Application ... 92

VII. License .. 96

6

Introduction

In recent years, the virtual reality (VR) industry has experienced remarkable growth, with

increasing numbers of people embracing VR technology for various applications. According

to Statista, the number of active VR headsets worldwide reached almost 20 million units in

2022, demonstrating the growing interest in experiences offered by this technology. 1

Furthermore, the Road to VR reports that Valve's Steam platform, one of the largest digital

distribution platforms for PC gaming, has seen a steady increase in VR users, further

underscoring the potential for VR applications in various fields.2 Given this context, it

becomes crucial to explore innovative applications of VR technology and understand how

they can be enhanced to provide users with better experiences.

This thesis aims to build upon the work of two previous theses, DeltaVR and DeltaVR

Multiplayer, by addressing bugs and issues, expanding the virtual environment with the

entire Delta Building, and providing more experiences for users. By drawing from the

experience gained from previous projects, this thesis seeks to improve the application's

overall performance, usability and experience for users.

Chapter 1 covers similar works to this application, its predecessors, and their demonstration

at expos. Chapter 2 explains the goals and design of this thesis in detail. Chapter 3 explains

the implementation of the goals covered in the previous chapter. Chapter 4 talks about the

demonstration of this application at an expo and performance and usability testing.

The appendix contains a dictionary of technical terms used in this thesis, tables for issues

discovered in predecessors, communications sent to testers, a feedback questionnaire used

during testing, a guide on how to use the application and pictures of the application.

The attached materials include the build utilized in usability and performance testing, along

with the results and code for generating graphs. Additionally, it has usability testing data,

an Excel file containing graphs, and various videos and images showcasing the application.

1 https://www.statista.com/statistics/677096/vr-headsets-worldwide/
2 https://www.roadtovr.com/valve-fix-steam-survey-vr-population/

7

The source code for the application can be found in the following link:

https://gitlab.com/UT-CGVR/deltavr/.

This thesis has been written using AI-based tools, including Grammarly3 and ChatGPT4, to

enhance its readability. Grammarly facilitated in-text refinements, while ChatGPT was

provided with paragraphs and instructed to improve them in accordance with thesis writing

guidelines.

3 https://app.grammarly.com/

4 https://chat.openai.com/

8

1 Background

This chapter overviews the background and context necessary to understand virtual reality

(VR) games with experiences. As the demand for engaging and interactive multiplayer

experiences continues to grow5, exploring the design and functionality of existing VR games

and platforms is crucial.

This chapter specifically focuses on four experiences. Subchapter 2.1 explains The Lab by

Valve Corporation. Subchapter 2.2 explains VRChat. Subchapter 2.3 explains another

university's VR tour. Subchapter 2.4 explains DeltaVR Multiplayer by Joonas Püks and its

demonstrations during expos.

1.1 The Lab

The Lab6 is a virtual reality game developed by Valve Corporation, the company behind

popular games such as Half-Life, Portal, Counter-Strike, and Dota 2. The Lab is a collection

of VR experiences designed to showcase the capabilities of the HTC Vive, a VR headset

developed in collaboration between HTC and Valve.

These experiences include physics-based puzzles, tower defence, a retro-style arcade,

immersive experiences in scenic locations, educational explorations of the human body and

solar system, a robot repair interactive movie, and a Dota 2-inspired secret shop. An

example of the tower defence game mode is given in Figure 1.

5 https://www.roadtovr.com/valve-fix-steam-survey-vr-population/

6 https://store.steampowered.com/app/450390/The_Lab/

9

Figure 1. The Lab's tower defence game mode.

In the context of DeltaVR, The Lab serves as a highly relevant example due to its

implementation of various VR experiences. However, the main difference between DeltaVR

and The Lab is that the first takes place in the Delta Building and has multiplayer support.

1.2 VR Chat

VRChat7 is a free-to-play online virtual reality social platform that allows users to create,

share, and explore user-generated virtual worlds and avatars with others worldwide. The

platform supports VR headsets such as Oculus Rift, HTC Vive, Valve Index, Windows

Mixed Reality, and desktop mode.

7 https://store.steampowered.com/app/438100/VRChat/

10

Figure 2. One of VRChat’s worlds

VRChat has gained popularity for its open and creative community, where users can express

themselves through their avatars and worlds, participate in events, and explore diverse social

experiences. One of these worlds is shown in Figure 2.

In the context of DeltaVR, VRChat is a relevant example due to its focus on being able to

explore a virtual environment together. Although DeltaVR does not provide the same level

of customization, its multiplayer functionality enables social interaction between users.

Additionally, DeltaVR aims to create a more controlled and guided experience, focusing

only on exploring the Delta Building and its various experiences.

1.3 UNSW Business Classroom VR

The UNSW Business Classroom VR8 is an Android VR application that displays a virtual

replica of one of the University of New South Wales’s classrooms. It was introduced as part

of the university's Open Day. Within the classroom, users can watch videos and experience

what studying there might be like. Figure 3 presents an image of the application.

8 https://newsroom.unsw.edu.au/news/business-law/virtual-reality-unsw-open-day

11

Figure 3. The classroom shown in the application.

In the context of DeltaVR, both applications aim to showcase their respective buildings.

However, DeltaVR extends beyond a single classroom and aims to provide an entertaining

experience.

1.4 DeltaVR Multiplayer

DeltaVR Multiplayer9 by Joonas Püks is a multiplayer version of the original DeltaVR

experience. It extends the original version by allowing players to explore the building

together in virtual reality or the new non-VR version. The multiplayer features are synced

players and proximity voice chat. (Püks, 2022, pp. 13–19)

Besides the new multiplayer features, two other notable features were added to the

experience. One is a new material collection experience, where the materials are hidden

inside the building. The second one is the addition of a teleport menu, where the player can

teleport to existing experiences. (Püks, 2022, pp. 13–19)

9 https://gitlab.com/UT-CGVR/deltavr

12

1.4.1 DeltaVR Multiplayer at Expos

On September 17th, 2022, DeltaVR Multiplayer was presented10 at MängudeÖÖ11, which

posed several challenges during preparation and presentation. The team had initially planned

to use three Quest 2's, but only two were utilized due to laptop performance issues. In

addition, the two presenters struggled to adequately explain the experience to users, as the

application lacked a tutorial. Nonetheless, approximately 30 people were able to try the

application. A picture of the setup is shown in Figure 4.

Figure 4. DeltaVR Multiplayer at MängudeÖÖ.

A second demonstration of DeltaVR Multiplayer was held during the "Õpi Tartus" ("Study

in Tartu") Higher Education Day event12 on January 25th, 2023. The team demonstrating

had previous experience presenting the application, which made the event run more

smoothly. Roughly 15 people tried the application during this event. A picture of the setup

is shown in Figure 5.

10 https://cgvr.cs.ut.ee/games-at-mangudeoo-2022/
11 https://www.mangudeoo.ee/

12 https://opitartus.ee/

13

Figure 5. DeltaVR Multiplayer at Study in Tartu event.

During both demonstrations, a list of issues was compiled by explaining how to use the

application, observing users, and asking for verbal feedback. The issues were recorded in a

virtual notebook and sorted into three tables in the appendix. Table 4 lists performance

issues, Table 5 lists usability issues, and Table 6 lists functional issues. Each table has three

columns: issue ID, name, and description. Solutions to these issues are explained in the Goal

overview paragraph.

14

2 Goal Overview and Design

This chapter outlines the goals established during the thesis and the design decisions made

to achieve those objectives. Subchapter 3.1 focuses on multiplayer, addressing its issues in

the predecessor and proposing solutions. Subchapter 3.2 discusses the tutorial objectives.

Subchapter 3.3 covers player movement alterations. Subchapter 3.4 details desired

modifications to the Virtual Delta Building. Subchapter 3.5 examines changes to the archery

range experience. Subchapter 3.6 explores the tours offered in one of the university's labs.

Lastly, subchapter 3.7 considers different experiences to incorporate into the application.

2.1 Multiplayer

Many issues concerning multiplayer (see Appendix II) are due to various networking issues.

The main problems are that over time objects become de-synced between players (UI-6, FI-

8), and the multiplayer library requires an active internet connection due to proprietary

libraries used (UI-12, UI-13).

2.1.1 Issues in DeltaVR Multiplayer

The primary cause of the first issue is likely a defect or missing sync functionality in the

implementation, resulting in objects becoming de-synced between players. The issue

appears to be the underlying reason for other related issues, including the bow range being

only playable by one player (FI-2), bow range targets becoming stuck on the building (FI-

3), targets not getting hit (FI-4), players being unable to start the bow range mini-game (FI-

5), and doors teleporting around the building (FI-6).

The second main issue is that the multiplayer library uses a client-server topology, which

hosts the server in the cloud. Because the server is hosted in the cloud, an external internet

connection is required to demo the application. Depending on the number of people

participating at the venue, this may be unavailable, costly, or unreliable in expos.

Consequently, the experience cannot be demoed at the location or cause synchronization

issues and stuttering for the player.

Additionally, since the current multiplayer library called Photon is proprietary and needs to

be hosted on the cloud, the multiplayer may stop working if Photon makes any breaking

changes or licensing changes in the future. It would be necessary to stay up to date with any

15

modifications Photon makes and be prepared to update the experience accordingly to avoid

these issues. Due to the previously mentioned issues, it has been decided to switch the

networking library used in DeltaVR.

 2.1.2 Network Topologies and Architectures

Before selecting a library, potential network topologies are evaluated for DeltaVR. A more

suitable option might exist besides the client-server model. Glazer & Madhav discuss two

topologies: Client-Server and Peer-to-Peer (2015, pp. 166–169). An illustration of the

topologies is given in Figure 6.

Figure 6. Client-Server vs Peer-to-Peer network13.

The Client-Server topology has static bandwidth requirements for clients and allows server-

authoritative game logic. However, it can increase latency for clients. In contrast, the Peer-

to-Peer topology connects all instances, raising bandwidth requirements and making

authoritative game logic harder to implement. (Glazer & Madhav, 2015, pp. 166–169)

For DeltaVR, bandwidth requirements are less significant due to the few simultaneous

players. Cheating is not a concern as the game is typically played on our computers.

13 https://www.researchgate.net/figure/Server-based-network-vs-Peer-to-Peer-network-Digital-Impact-Labs-

2017_fig1_344233205

16

However, a more powerful server could enhance performance for weaker clients, such as

expo laptops. Thus, the Client-Server topology remains the choice.

Glazer & Madhav present two server types: dedicated server and listen server. The dedicated

server handles game state and client communication. In contrast, the listen server allows one

client to participate actively while managing the game state for all the other clients. (2015,

pp. 166–169) For DeltaVR, the listen server is the preferred choice due to its ease of use and

not requiring a separate executable for the server.

In summary, the chosen Unity library should support the Client-Server topology and have a

listen server option.

2.1.2 Unity Libraries

Unity lacks native multiplayer support but allows plug-ins and libraries for this

functionality. There are several official and unofficial Unity network libraries, as shown in

Table 1. Comparison of different Unity networking libraries.

Table 1. Comparison of different Unity networking libraries.

Photon
PUN14

Netcode for
GameObjects15

Mirror16 DarkRift17 FishNet18

Client-Server
topology

Yes Yes Yes Yes Yes

Listen Server No Yes Yes No Yes

Free Limited Limited Yes Yes Limited

Open Source No Yes Yes Paid Yes

Unity 2022
Support

Yes Yes No Unknown Yes

14 https://www.photonengine.com/PUN

15 https://docs-multiplayer.unity3d.com/releases/netcode/1.0.0/index.html

16 https://github.com/MirrorNetworking/Mirror
17 https://www.darkriftnetworking.com/

18 https://fish-networking.gitbook.io/docs/

17

Photon PUN is currently used in DeltaVR Multiplayer, but its issues and lack of listen server

support make it unsuitable.

Netcode for GameObjects, created by Unity, meets our needs, but its novelty19 raises

concerns about community support and undiscovered bugs.

Mirror fits our networking requirements but is not compatible with Unity 2022, which

DeltaVR requires for specific XR features.

DarkRift, while older than Netcode for GameObjects, suffers from sparse documentation,

making troubleshooting challenging.

Fishnet supports our desired topology and architecture. It is more established than Netcode

for GameObjects and has broader community usage. Although some features are paid20,

they are not essential for DeltaVR and can be manually implemented. Therefore, DeltaVR

Multiplayer 2.0 will utilise the Fishnet library.

2.2 Tutorial

In DeltaVR Multiplayer, game controls posed a significant challenge for users, often

requiring a dedicated helper to guide players. At the first expo, this issue was exacerbated

by having only two helpers for three gameplay stations. Implementing an in-game tutorial

could provide a self-guided introduction to game controls, as done in games like Until You

Fall (Figure 7) and Half-Life Alyx (Figure 8).

19 https://docs-multiplayer.unity3d.com/releases/netcode/1.0.0/index.html
20 https://fish-networking.gitbook.io/docs/master/pro-and-donating

18

Figure 7. Text and Diagram modality used in Until You Fall.

Figure 8. Text and Spatial modality used in Half-Life Alyx.

Kao et al. identify three common modalities for teaching game controls: Text, Text and

Diagram, and Text and Spatial. Text solely relies on written instructions, while Text and

Diagram include a controller diagram. Text and Spatial presents a virtual controller with

overlaid instructions. Overall, Text and Spatial proved the most effective. (2021, pp. 16–20)

19

Therefore, DeltaVR's tutorial should employ the Text and Spatial modality for optimal

comprehension. The tutorial should also cover the most used controllers when

demonstrating DeltaVR: Vive Wands, Quest 2 controllers, and Valve Index controllers.

2.3 Locomotion Changes

Locomotion refers to the ability to move oneself around. During expos, several problems

were identified with the implementation of DeltaVR Multiplayer. One issue involves turning

controls. VR headsets can be connected with a cable. To prevent users from twisting around

it, DeltaVR includes virtual turning controls.

Users reported nausea when using these controls. In DeltaVR Multiplayer, players turn

smoothly while the control is held down. Jerald suggests that instantaneous turns cause less

sickness compared to smooth turns (2015, p. 211). Therefore, smooth turning should be

replaced with snap turns to reduce nausea.

Glazer & Madhav mention that a lower field of view and fading scenes in and out are

associated with less motion sickness (2015, pp. 200–201, 344). A vignette effect (Figure 9)

could be added to all locomotion methods, smoothly fading over the user's vision during

movement to reduce perceived motion.

Figure 9. Example of a vignette.

20

In DeltaVR, teleportation is another locomotion method. In DeltaVR Multiplayer 2.0, users

can toggle the teleportation ray's visibility with a button and teleport to the ray's endpoint

by pressing another button. However, users frequently forget to turn off the ray, obstructing

their view while interacting with objects. To enhance usability, the ray should be modified

so that users must hold the button to aim and release it to teleport to the ray's endpoint.

Finally, users faced issues with the building setup, including one-way walls and non-

functional doors. To address these problems, meshes should be fixed, and broken doors must

be repaired. Moreover, some surfaces were mistakenly marked as teleportable, leading

players to teleport inside walls or unintended locations. To resolve this, teleportable surfaces

should be reviewed and restricted to floors and stairs only.

2.4 Building Improvements

The previous two theses on this project only included the first two floors, which were

optimised and furnished based on the DBV (Delta Building Visualization) project. The first

DeltaVR thesis improved on the DBV project by adding lamps, better walls, etc. In this

thesis, the building should be further improved. The missing floors should be readded, along

with distinctive features that make the building easily recognizable, such as the external ribs

shown in Figure 10.

Figure 10. Golden and black metallic ribs surround the Delta Building.

21

Furthermore, issues still need to be addressed with the existing floors, such as missing mesh

faces and lighting artefacts in certain areas.

2.5 Archery Range Modifications

The archery range (Figure 11) was the most popular experience in the original DeltaVR

thesis (Tamm, 2021, p. 30) and was frequently showcased at expos. Nonetheless, the latest

version encounters issues related to networking and gameplay design. As discussed in

Chapter 2.1, multiple networking problems hindered players from playing this experience.

These issues must be resolved to enable simultaneous gameplay for multiple participants.

Figure 11. Picture of the archery range experience from the first thesis.

From a usability standpoint, users faced difficulties when operating the bow. The sequence

of holding the bow, picking up an arrow, loading, aiming, and releasing proved confusing,

particularly for first-time users unfamiliar with the controller.

To improve bow usage, the shooting process should be streamlined. Rather than having a

separate step for loading the bow, it could remain perpetually loaded. Furthermore, the grip

could automatically adjust to the proper end of the bow based on whether the player is

already holding the bow with one hand. This modification would also permit a larger collider

to grab, enhancing usability.

22

2.6 CGVR Lab Tour

The University of Tartu Computer Graphics and Virtual Reality Study Lab (CGVR)

provides tours21 on its website, offering the opportunity to try out VR applications.

Typically, individuals have 5-6 minutes to test an application. Although some suitable

options like The Lab (see Chapter 1.1) are available, they do not precisely fit the 5–6-minute

timeframe and do not showcase CGVR Lab's unique offerings.

Demonstrating an application created by the University of Tartu students could highlight

potential learning opportunities for those who choose to study there, aligning with the tour's

goals.

The current version of DeltaVR is unsuitable for the tour, as it lacks a tutorial and engaging

content, as shown by expo feedback. A time-limited mode for DeltaVR could be developed

to cater to the tour's needs. Additional experiences should be added to fill the 5–6-minute

duration.

2.7 Additional Experiences

The current version of DeltaVR may be considered dull due to its limited selection of

experiences. The following subchapters discuss new experiences and the bow range that

will be incorporated into the application.

2.7.1 Non-Euclidean Space

A key distinction between real and virtual environments is that virtual spaces do not need

to adhere to physical laws. One intriguing way to defy these laws is by using non-Euclidean

geometry.

21 https://cgvr.cs.ut.ee/teenused/

23

Figure 12. Non-Euclidean geometry in Antichamber.

Non-Euclidean geometry in video games enables the creation of worlds that defy classical

geometry rules, allowing for illusions such as impossible architecture or teleportation

portals. Implementing this technique in VR can offer players an immersive experience of

impossible physics, as seen in successful games like Antichamber22 (Figure 12).

2.7.2 Virtual Plank

Virtual plank experiences offer a safe way to simulate dangerous scenarios. By immersing

users in the experience, they can feel the same emotions as if they were in real danger. A

popular example of this is Richie's Plank Experience23, a VR game that simulates walking

on a virtual plank with a long fall below (Figure 13).

22 https://store.steampowered.com/app/219890/Antichamber/

23 https://store.steampowered.com/app/517160/Richies_Plank_Experience

24

Figure 13. Richie's Plank Experience.

When adding this experience to DeltaVR, it could be combined with non-Euclidean space.

For example, creating a portal to space where the user would walk across a plank while

seeing the vast expanse of space below them. Additionally, this experience could help

players practise locomotion controls.

2.7.3 Drawing

Another experience for DeltaVR is drawing with spray cans. Drawing is a creative activity

that can be easily adapted to VR. This could be a fun and creative experience for users,

allowing them to express themselves and even collaborate with other users in multiplayer.

Additionally, players could practise interacting with simpler objects before moving on to

more complex ones, such as the archery range with the two-handed bow.

25

3 Implementation

DeltaVR Multiplayer 2.0 was developed utilizing the interactive design process.

Zimmerman characterizes this process as repeatedly prototyping, testing, and analysing as

frequently as possible. Employing this approach allows for the early detection of bugs and

issues within the application (2003, pp. 176–147). In the context of this thesis, multiple

iterations of this application underwent testing during development by the author, at expos

by visitors, and ultimately during usability testing.

Section 3.1 provides an overview of the technology employed during development. Section

3.2 discusses the implementation of player hands to support the tutorial. Section 3.3 delves

into the implementation of the tutorial. Section 3.4 offers an overview of modifications made

to the virtual Delta Building. Section 3.5 outlines the implementation of non-Euclidean

portals and the plank experience. Section 3.6 details the implementation of the drawing

experience. Section 3.7 highlights the changes made to the bow range. Lastly, Section 3.8

examines the implementation of multiplayer using the Fishnet library.

3.1 Technologies Used

This thesis builds upon the previous thesis on DeltaVR, using the Unity game engine with

an upgraded version to 2022. This upgrade enables support for additional VR features with

the XR Interaction Toolkit plugin, specifically version 2.3, which allows for two-handed

object manipulation. The previous versions of DeltaVR used the 0.9 pre-release version of

the plugin, which had less functionality.

To modify the virtual Delta Building, Blender24 was used, as it is a 3D modelling software

capable of changing the virtual building’s FBX file, and it provides a wide range of tools

and options for editing meshes. Additionally, Blender is open-source and free to use.

3.2 Locomotion Changes

As outlined in Chapter 3.3, DeltaVR had some usability issues with its locomotion system,

particularly concerning nausea experienced by users. DeltaVR has three non-roomscale

locomotion types: teleportation, smooth locomotion, and smooth turning. However, these

24 https://www.blender.org/

26

locomotion types can cause discomfort and nausea for newer users. As a solution, it was

decided to add a vignette effect to the player's vision during movement (Figure 14, Figure

15).

Figure 14. Player view without vignette.

Figure 15. Player view with vignette.

27

The vignette has a configurable option on how much of the screen to cover and fade-in-out

times. In the case of teleportation, the vignette covers the entire screen, as the player can

choose where to move before the move takes place.

Only a portion of the screen is obscured when applying the vignette effect to turning and

smooth locomotion, as depicted in Figure 15. This is done because the movement associated

with snap turning is less abrupt than teleportation. With smooth locomotion, the user needs

to see where they are going.

To ensure the vignette effect does not cause additional discomfort, a delay is introduced

between the user pressing the snap turn or teleportation button and the vignette being

displayed. This delay ensures that the vignette appears gradually, covering and uncovering

the screen over time rather than abruptly flashing the screen black.

In response to user feedback, gravity was added to the user in DeltaVR. Previously, users

could walk off the second floor and float in the air, unable to descend. This was described

as disorienting and made the experience feel unnatural.

To address issues with the teleportation aiming toggle in DeltaVR, it was removed in favour

of a new method that involves holding a button to aim and releasing it to teleport to the

targeted location. This approach should be more intuitive and less complex than the previous

toggle system.

The new method allows players to aim and interact with objects without the ray obstructing

their view. Additionally, the new system allows teleportation to be cancelled by aiming at

an invalid surface and releasing the button or pressing the grip button.

3.3 Virtual Hands and Controllers

In virtual reality, the headset completely covers the user's field of view, making it impossible

to see the physical controllers they are holding. To address this, the application must display

a virtual representation of the controllers, allowing the user to interact with the virtual

environment and navigate the interface simultaneously.

At the CGVR Lab, a variety of controllers are available for use. However, during

implementation, the focus was on the most used controllers: Quest Touch controllers, Valve

Index controllers, and Vive Wands. Quest Touch controllers are frequently used during

28

expos, as they are more portable than other options. In the lab, all these controllers are

commonly used for demonstrations.

3.3.1 Controller Models

To display the controllers in DeltaVR, corresponding 3D models are required. However, at

the time of writing this thesis, no suitable free packages were available for the specific

controllers used in the application.

The Oculus integration plugin only provides models for Oculus devices, while the SteamVR

Unity plugin only contains hand models. Although the SteamVR plugin can obtain models

from the SteamVR application, this approach may not always be feasible, such as when

running the application through the Oculus software instead.

One solution is to obtain the controller models directly from the SteamVR application,

which can be found in the rendermodels folder. This folder contains OBJ files for the

controller bodies and their buttons, thumbsticks, and other components.

However, two challenges arise when using these models. Firstly, the models may not be

accurately positioned within the custom DeltaVR application. Secondly, these models lack

any accompanying animations, making them appear static and less immersive.

3.3.2 Offsetting Controllers

The OpenXR API25, a cross-platform standard for virtual and augmented reality applications

developed by the Khronos Group, provides information about connected controllers. To

match this information with the corresponding controller models in DeltaVR, a new

ScriptableObject was created (see Figure 16). This scriptable object contains information

about a specific controller, including its name, prefabs26, and offsets.

25 https://www.khronos.org/OpenXR/

26 https://docs.unity3d.com/2020.3/Documentation/Manual/Prefabs.html

29

Figure 16. ScriptableObject for the Left Oculus Touch controller.

The controller's name is used to find the corresponding controller reported by OpenXR.

When the controller is detected, prefabs for both hands and controllers are instantiated.

Offsets are also included for both the hands and controllers used during prefab instantiation.

The position and rotation offsets were determined manually through trial and error. The

Valve Index headset has cameras attached to it, and SteamVR offers a passthrough mode27

that allows the user to see through these cameras while wearing the headset. The rotations

and position offsets of the virtual controllers were adjusted using the passthrough mode until

they matched the real-world position. These offsets were then stored in the ScriptableObject

for future use.

4.3.3 Animating Controllers

The second problem with the controller models was the lack of accompanying animations.

To address this, animations had to be manually created for each controller, covering three

different inputs: thumbstick rotation, button movement, and grip and trigger button rotation

and movement. Buttons were animated using Unity's built-in animation tool following the

official documentation28.

After creating the animations, each controller required a separate Animation Controller29.

For each input, an animation layer was created (Figure 17), with all layers set to additive so

27 https://www.youtube.com/watch?v=gzaVY8esYKg
28 https://docs.unity3d.com/Manual/animeditor-CreatingANewAnimationClip.html

29 https://docs.unity3d.com/Manual/class-AnimatorController.html

30

they can be played simultaneously. Additionally, the animation controller received a raw

parameter (Figure 18) for each possible raw input provided by the OpenXR API. Each layer

has a blend tree that converts the raw parameter values into specific animation keyframes

(Figure 19).

Figure 17. Layers in the animation controller.

Figure 18. Parameters in the animation controller.

31

Figure 19. Example joystick blend tree in the animation controller.

A script was developed for each controller prefab. The script retrieves the current input

values from the OpenXR API and passes them to the Animation Controller. This script

ensures that any button presses on the physical controller is replicated by the virtual

controller, making the controllers look less static and giving feedback if the user presses the

right button.

4.2.4 Virtual Hands

To display the virtual hands in DeltaVR, the prefab from the first single-player version of

the experience was reused, as it already had animations and support for all controllers used

through OpenXR (Tamm, 2021, pp. 13–14). Although the hand prefab is the same for all

controller types, the option to change it was still included in the ScriptableObject for future

use in case specific hand animations are required.

32

The only modification to the hands was to make them transparent instead of white.

Transparent hands reduce occlusion, making it easier for users to interact with the virtual

environment (Jerald, 2015, p. 326).

3.4 Tutorial

After implementing the ability to display the controllers, they can be used to teach the player

the controls in DeltaVR interactively. To achieve this, we use the Text and Spatial model

described in Chapter 2.2.

Subchapter 3.4.1 describes how we achieve a highlight effect and show the text above it.

Subchapter 4.4.2 describes how and when we use the combination.

3.4.1 Controller Outline and Text

To highlight the controller, a shader was made to outline a model (Figure 20). The shader

was made using the Shader Graph tool30 for Unity.

Figure 20. Shader graph for the outline shader.

30 https://docs.unity3d.com/Manual/shader-graph.html

33

Figure 21. Outlined Valve Index thumbstick.

This Unity shader graph computes the position of the outline of an object by combining the

object's position with the normalised object space normal vector multiplied by the desired

outline thickness. The "normalise" function ensures that the normal vector has a length of

one, which helps ensure that the outline's thickness is consistent across the object's surface.

The result of this shader can be seen in Figure 21.

Sometimes other objects can obstruct the highlighted button, or the controller meshes itself.

To ensure the player can always see the highlighted controller, we must always render it on

top. Also, to avoid confusion if the mesh is still occluded, it should be rendered a solid

colour when occluded.

First, another shader was made (Figure 22) that renders the mesh as a solid colour. To make

the object always be rendered on top, the URP31 (Universal Render Pipeline) “Render

Objects” feature32 is used. This feature allows configuring how and when specific layers are

rendered.

31 https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@16.0/manual/index.html
32 https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@16.0/manual/containers/how-to-

custom-effect-render-objects.html

34

Figure 22. Valve Index thumbstick is visible through the rest of the controller.

A separate layer was made for objects that should be outlined and always on top and were

configured not to be rendered by default. Then a new “Render Objects” feature (Figure 23)

was added to the configuration and was set only to render the “Outlined Objects” layer.

Figure 23. URP pipeline configuration for rendering opaque.

35

It was also configured to render the layer after rendering most of the scene. Then a new

overwrite for the material was configured, setting it to use the solid colour shader.

Additionally, it was configured only to render the material when the object has a greater

depth than other possible overlapping objects.

However, this only renders the object parts occluded by other objects. Hence, any object in

the layer that is not occluded is invisible. To fix this, another “Render Objects” feature

(Figure 24) was added and was set to render these objects regularly.

Figure 24. URP pipeline configuration for rendering outlined objects regularly.

The outline shader can be rendered similarly (Figure 25) but only rendering it when the

object is above other objects in the depth buffer. It was added to a later pass of rendering,

so anything that could block our outlined object is already rendered.

Figure 25. URP Render pipeline configuration for rendering outlines.

36

After URP was configured, the highlighted button was outlined and visible even when

occluded. An example of this is shown in Figure 26.

Figure 26. Combination of all pipeline configurations.

Next, the text needs to be shown above the controller. For this, a new prefab called billboard

was created. The billboard prefab consists of a canvas and text (Figure 27). The script for

the billboard makes the canvas always face the player camera and has methods to show,

hide and change the text.

It was first necessary to map all available controls

on the model to show a combination of both text

and highlight. A new script (Figure 28) was

created in the controller prefab that decides

which object to highlight and what text to show.

The script contains references to different inputs

of the controller and the previously added

billboard script.

The new HintController script has methods

to highlight a specific control and display accompanying text. Text is displayed by calling

Figure 27. Hint text above the Valve
Index controller.

37

methods in the billboard component, and buttons are highlighted by changing the layer to

the outline layer. Additionally, the script has a reference to the controller itself, so when a

new hint is shown, it vibrates the controller to draw attention to it.

Figure 28. Example parameters in the hint controller script.

Now by calling methods on the HintController script, hints can be shown on the

controller during the tutorial, which is explained in the next subchapter.

3.4.2 Tutorial Flow

The tutorial follows a specific flow to teach the user the game's controls. This is important

to ensure that the user learns the controls in a logical and interactive way. Each step of the

tutorial flow has a condition to enter and exit.

The tutorial currently has five states: initialising, turning, moving, teleporting, waiting for a

grabbable object, grabbing and finished. The first state of the tutorial is initialising. During

this step, the tutorial script waits for both user controllers to become visible to the

application.

Once the controllers become visible, the tutorial uses the Observer Pattern to start listening

to actions the player can perform, as in the future states, the script needs to know if the user

successfully performs the action requested before moving onto the next state.

Once the action listeners are set up, the tutorial moves onto the Turn state, telling the

previously created HintController script to show the matching text and button for the

turn action. The next state is entered when the script observes that the player successfully

turned. The moving, teleporting, and grabbing states behave similarly and are not explained

separately.

38

The waiting for grabbable object state looks for grabbable objects in front of the user. Once

it finds it, it highlights it and moves onto the grabbing state. Once the player grabs the object,

the highlight is removed.

The Observer Pattern and HintController script allow for interactive instruction. At

the same time, the condition-based states ensure that the user progresses through the tutorial

in a logical and structured manner. By following this flow, users should be able to learn the

controls without external assistance. The scripts for the tutorial and hands can be found in

the Assets/_PROJECT/Components/NewHandPresence folder.

3.5 Virtual Delta Building Changes

To reintroduce the missing floors, they were imported from the original building’s IFC file.

Architecture firm Arhitekt1133 created the IFC file containing the building's models and

materials. The IFC file was converted to a Unity-supported format FBX using

IfcOpenShell34. However, models in IFC files are typically not optimized for game engines

and require adjustments for real-time rendering.

The exported models were further optimized using Blender. First, the already existing first

and second floors were removed from the export. On the new floors, unnecessary details

were removed, overlapping meshes were adjusted or removed, and visible gaps between

meshes were filled. After editing the model, the resulting FBX file was imported into the

existing Blender file and merged with the rest of the scene. After re-importing the modified

Blender file into Unity, the new additions were visible in the game engine (Figure 29).

33 https://www.architect11.com/en/

34 https://ifcopenshell.org/

39

Figure 29. The new version of the virtual Delta Building visible in the Unity game engine.

Further optimization was done in Unity. One option is adjusting lightmapping. Since the

new floors do not have lights, they do not require as much detail when pre-computing

lighting using light baking. On the new floors, the lightmapping scale was lowered.

Another optimization technique in DeltaVR is occlusion culling, which does not render

occluded objects, saving rendering costs. Some meshes, like floors and walls, were large

and visible throughout the building. To make these meshes more easily cullable, they were

split into smaller pieces in Blender.

As a result of these steps, the virtual building now includes all floors and external ribs

without a visible impact on performance.

3.6 Spacewalk Experience

As discussed in Chapter 2.7.1, implementing non-Euclidean geometry in DeltaVR was an

idea to explore. Two variations of this implementation were created. The first was based on

Sellis's thesis, which used a virtual camera in the portal's target scene. The camera had to

match the player's position in the origin scene to produce the correct image in the portal.

Additionally, the image in the portal needed to be cropped to align with the player's view

through the portal (2022, pp. 11–14).

40

Some adjustments were made to the solution, such as sharing the portal mesh between eyes

instead of using two different meshes. In this case, the shader checked which eye was

rendering the portal and switched the texture accordingly.

Furthermore, instead of having a hard-coded eye distance in the shader code, the new shader

code used the eye distance from OpenXR, so it supported any OpenXR-compatible headset.

Sellis mentioned a slight stutter with the portal (2022, p. 34), which was resolved by moving

the camera matrix calculations to Application.onBeforeRender instead of LateUpdate. This

solution can be found in the Assets/_PROJECT/Components/Portals folder.

However, even with the adjustments, the performance of this solution was not good enough.

Each extra camera added 1-2ms to the time it takes to render a frame (frametime). So, with

a pair of portals, the minimum number of cameras needed was 4, which added 4-8ms of

extra frametime. Since the ideal frame rate is between 11.1ms and 6.94ms, depending on

the headset, this solution is not ideal for DeltaVR.

The second variant was developed using the stencil buffer. The stencil buffer is a graphics

feature that stores per-pixel information. It can be used to mask or selectively render parts

of a scene.35 This approach proved to be much faster, with no visible performance reduction.

To implement this method, the Unity Universal Render Pipeline (URP) was used to render

objects on a specific layer with a specific stencil value.

A shader was made to draw only the objects with the assigned stencil value. A duplicate of

the target scene was created and positioned behind the portal. These copies were placed on

a separate layer, making them visible only through the new shader.

As the portals needed to lead to space in our implementation, another shader was developed

to mimic the space outside the Delta Building. This shader surrounded the duplicates,

effectively creating a visible copy of the portal's target scene. An example of the result is in

Figure 30.

35 https://learn.microsoft.com/en-gb/windows/win32/direct3d9/stencil-buffer-techniques

41

Figure 30. Duplicate of target scene visible through the portal shader.

Additionally, the player must be able to move through the portal using either of the two

locomotion methods: teleporting and smooth locomotion. For smooth locomotion, a collider

was added to the portal that teleports the player to the other side on collision. For teleporting,

the teleport ray was allowed to hit the floor surfaces in the duplicate portal scene. If the

player chose to teleport onto the duplicate portal scene floor, it would redirect the teleport

to the linked portal destination.

This solution, however, has some drawbacks. First, the visible part of the target scene needs

to fit behind the portal. Otherwise, the player can see the actual geometry behind the portal,

breaking the illusion.

Secondly, creating a copy of the target scene is necessary, which could be time-consuming

during development. The copy also needed to be updated whenever the portal's target scene

was edited. To streamline this process, a script was created to automatically duplicate visible

objects from the other side of the portal.

42

However, lighting information was lost when copying parts of the Delta Building. Re-

baking lighting in the cloned scene was not feasible, as it lacked the complete geometry and

would produce different results. To address this issue, an additional script called

LightmapSync was created.

The LightmapSync component stores a reference to the original geometry and copies its

lighting information during runtime. This ensures that the cloned scene always has up-to-

date lighting information. The script works during runtime because Unity changes textures

at runtime, and misalignment could occur if set earlier. Additionally, Unity does not provide

a documented API to read or write scene lightmap data.

The script copied the original object's location for objects that used light probes instead of

baked lighting. Then the light probes took the lighting information from that point during

runtime. An example of synced lighting is visible in Figure 31 and Figure 32.

Figure 31. Delta Building hallway with synced lighting as seen through the shader.

43

Figure 32. Portal Scene without stencilling.

Combining these approaches ensured lighting remained synchronised between the original

and cloned scenes. The second variant can be found in the following folder:

Assets/_PROJECT/Components/Portals2.

3.7 Multiplayer with Fish-Net

Chapter 2.1 explains that DeltaVR Multiplayer 2.0 will utilize the Fish-Net library for

networking. The first step in implementing multiplayer was synchronizing players. Each

player has their own XR Rig prefab, containing all logic and game objects for a VR-based

player. However, if every player used the same rig with the same scripts over the network,

multiple instances would conflict.

To address this issue, a new prefab called XRNetworkPlayer was created, containing a

script called NetworkPlayer. This prefab is instantiated whenever a player connects to

the server across all clients and the server. The NetworkPlayer script checks for player

ownership in Fish-Net, because ownership determines who controls an object's actions.

44

If the NetworkPlayer script detects ownership, it locally instantiates the XR Rig,

meaning each client only creates their own XR Rig. This also means that players cannot see

others now, as only their own XR Rig is created.

To remedy this, another prefab with a script called XRPlayerMirror was created. This

prefab is instantiated regardless of client ownership, but only one client owns the

component. This prefab is a simple mirror of the complete XR Rig, containing only the

player's head and hand game objects without additional scripting. The XRPlayerMirror

script checks for ownership and, if found, sets the mirror head and hands' positions to match

the ones in the XR Rig.

To ensure all players see the mirror in the same position, the owner must send the game

objects' positions and rotations to the server. Fish-Net's NetworkTransform36 component is

used for this purpose. Adding these components to the player's head and hands automatically

synchronises their positions and rotations over the network.

Furthermore, since our hands have animations, the owner must synchronize them. To

achieve this, we use Fish-Net's NetworkAnimator37 component. This component ensures

that all animations are synced across the network.

With these implementations, players and their movements became visible across the

network. However, the rest of the scene, including experiences, remained unsynchronized.

To address this issue, a new script called XROwnershipRequester was created (Figure

33).

When a player grabs an object in the scene, the XROwnershipRequester script checks

if it has a NetworkTransform component. If it does, ownership of the GameObject is

requested from the server through an RPC (Remote Procedure Call). An RPC is a

communication method that enables a client to request the server to perform an action or

process on its behalf.

36 https://fish-networking.gitbook.io/docs/manual/components/network-transform
37 https://fish-networking.gitbook.io/docs/manual/components/network-animator

45

Once the server grants ownership, the player can move the GameObject with their hands,

and its position will be synchronized. When the player releases the object, the script sends

another RPC to the server to relinquish ownership, allowing other players to grab it.

Figure 33. Sequence diagram for XROwnershipRequester.

After adding the NetworkTransform component to every interactable prefab, this script

ensures that simpler interactables stay synchronized across the network. However, more

complex objects may require additional logic.

3.8 Drawing Experience

As discussed in Chapter 2.7.3, a drawing experience was planned. Two prefabs were created

for implementation: DrawableSurface and SprayGun. A sequence diagram of their

networking is given in Figure 34.

DrawableSurface consists of two main scripts: TextureDrawing and

NetworkDrawingManager. TextureDrawing updates the texture on the prefab's

mesh, which is stored in a Texture2D. It has a method for drawing on the texture with

parameters for coordinates, colour, and size, and it updates the mesh's texture accordingly.

46

NetworkDrawingManager syncs the Texture2D across the network. When a client

connects, the server sends the current Texture2D, ensuring new players see the same

drawing. It also contains RPCs for syncing player drawings. A separate script was made to

serialise and deserialize Texture2D, converting it into a PNG byte array for sending over

the network.

The SprayGun prefab includes a SprayGun mesh and spraying effects and can be grabbed

by players. The prefab has its own script, checking if the player is holding it and pressing

the trigger. If so, it shoots a raycast to detect the DrawableSurface prefab. If hit, it instructs

the NetworkDrawingManager to send an RPC based on the player's distance and the

SprayGun's colour. The RPC is then sent to all clients, whom all update their textures.

Figure 34. Sequence diagram for Drawing experience networking.

47

Figure 35. Playtesters drawing on the canvas.

These prefabs and components create a fully networked drawing experience (Figure 35).

The code can be found in the following folder: Assets/_PROJECT/Components/Drawing.

3.9 Archery Range Experience

The archery range already had some networking code in the previous multiplayer thesis.

Although this code used RPCs for network syncing and porting it to Fish-Net would have

been relatively simple, the bow needed to be re-implemented from scratch for two reasons.

First, the existing code contained critical bugs that prevented it from functioning correctly

over the network. Second, the XR Interaction Toolkit it was built on had been updated from

version 0.9 pre-release to 2.3, resulting in numerous changes to method signatures and

implementations, making the previous code incompatible.

The main bow logic was implemented similarly to the original single-player DeltaVR thesis,

with updates to accommodate the new toolkit methods. The primary change in this

implementation concerns arrow spawning. In the original version, players had to pick up

arrows and place them in the bow. With the new implementation, the server spawns and

positions the arrows in the bow for the players.

48

Although the universal XROwnershipRequester script synchronised the bow

ownership over the network, the arrows within it were not. A new script was added to the

bow, which checks for ownership changes. When a client recognizes that the ownership has

shifted to them, they also send out an RPC requesting ownership of the arrow (Figure 36).

Furthermore, the arrow is connected to the bow via XRSocketInteractor38. The

XRSocketInteractor is an Interaction Toolkit component that can grab objects like player

hands. However, XRSocketInteractor does not have to be attached to a controller. If the

client does not know that the arrow is socketed in the interactor, it will not follow the bow

once the client gets ownership. Therefore, this state was also communicated to the client

when giving it ownership (Figure 36).

Figure 36. Sequence diagram for bow and arrow networking.

Additionally, modifications were necessary for the archery target scripts. The server, rather

than clients, now spawns targets, and target movement logic is executed solely on the server.

Additionally, separate RPCs were introduced to update the scoreboard, high score, and time

left indicators across all clients.

38 https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.0/manual/xr-socket-interactor.html

49

With these implementations in place, the archery experience was networked. This version

of the archery range is in the Assets/_PROJECT/Components/Bow folder.

50

4 Testing

The goal of the thesis was to improve upon the previous thesis. To determine if this goal

was achieved, it is essential to conduct testing. Subchapter 4.1 showcases an in-development

version at an expo and describes some issues found and how they were fixed. Subchapter

4.2 describes how the application was performance tested and if it is better than the previous

iteration. Subchapter 4.3 describes usability testing with actual users, their opinions on the

application, and bugs found.

4.1 University of Tartu Alumni Day Expo

On March 18, 2023, the University of Tartu held an alumni day event39 where a development

version of DeltaVR Multiplayer 2.0 was showcased (Figure 37). The demonstration

occurred in the CGVR Lab (Room 2007) from 11:00 am to 6:00 pm, with approximately 15

people trying the application. Several issues with this version of the application were

identified throughout the event.

Figure 37. DeltaVR Multiplayer 2.0 setup at Alumni Day.

39 https://cs.ut.ee/et/vilistlaspaev

51

4.1.1 Application Crashing

The most significant issue discovered was that the application would crash after just a few

minutes, which had not been encountered during development. This problem was

particularly troublesome when multiple users attempted to play consecutively, as the

application had to be restarted pre-emptively to prevent crashes during gameplay.

Determining the cause of this error proved challenging, as the log files provided no valuable

information. The log file cited "Attempt to access invalid address" as the reason for the

crash. According to a Unity employee, this message indicates that Unity's crash handler

could not identify the underlying cause.

To identify the cause of the crash, the Post-Mortem/Forensic Debugging guide40 in Unity's

documentation was followed. This process involved forcing Windows (the operating

system) to generate a full memory dump when a crash occurred. The Windows Registry was

modified according to Microsoft’s guide41 to achieve this. Then the full memory dump was

opened using the Windows Debugger (WinDbg). After adding the symbol files mentioned

in Unity's documentation to WinDbg, the debugger displayed the exact method names where

the application crashed (Figure 33).

Figure 38. Stack trace from WinDbg tool.

40 https://docs.unity3d.com/2019.4/Documentation/Manual/WindowsDebugging.html

41 https://learn.microsoft.com/en-us/windows/win32/wer/collecting-user-mode-dumps

52

Investigating the specific stack trace and method names led to an issue42 on the Unity Issue

Tracker. This issue revealed that when a Video Player component in the application loops a

video, it has a chance of causing a crash. As a temporary workaround, all video players in

the scene were disabled. At the time of writing this thesis, this bug remains unresolved, and

the video players are still turned off.

4.1.2 Tutorial Issues

In the application's newer version, the tutorial's first iteration was introduced. Observing

people playing and gathering feedback revealed several usability issues with this iteration.

Only a few individuals managed to complete the tutorial without external help.

The first issue was that players did not notice the tutorial. The tutorial text was attached to

the controller and had a hard-to-notice dark blue colour. If players did notice the tutorial or

had it pointed out to them, they struggled to understand the text labels. For example, when

asked to move the joystick forward, they moved the entire controller forward instead.

Although the joystick on the controller was outlined, players did not notice it or make the

connection.

Two changes (Figure 39) were made after the expo to address these usability issues. The

text colour was changed from dark blue to safety orange, often used to distinguish objects

from their surroundings43.

42 https://issuetracker.unity3d.com/issues/crash-on-windowsvideomedia-getfirstreadytexturetime-when-

focusing-gameobject-in-tutorial

43 https://en.wikipedia.org/wiki/Safety_orange

53

Figure 39. Improved tutorial, with a different colour and a line between text and control.

Additionally, a line was added between the text and the highlighted control. This line aims

to help users understand which button the tutorial refers to. Even if the user is unfamiliar

with the term "joystick," the combination of the line and highlight should help them make

the connection.

4.1.3 Archery Range Issues

The updated application also featured a new version of the archery range mini-game. None

of the network issues mentioned in Chapter 2.1.1 occurred during the expo. However, users

still struggled to use the bow in some instances.

One problem was grabbing the bow. The bow has two small grabbable colliders on both

sides, and players often miss these colliders or grab the wrong one. Additionally, aiming the

bow could only be done by moving the hand that grabbed the front of the bow, which felt

unnatural for some players.

54

To address these issues, the bow prefab was redesigned. After upgrading the XR Interaction

Toolkit to version 2.3, support for multiple grabbing points on the same collider became

available. Using this new feature, the two smaller colliders were replaced with one large

collider that covers the entire bow (Figure 40). By setting the grabbing points to the original

smaller collider positions, players would always grab the front of the bow before the back

of the bow. The bow scripts were refactored to accommodate these changes.

Figure 40. Old bow (left) with two smaller colliders and new bow (right) with one large
collider. Colliders are shown in green.

This modification also allows players to aim the bow with both hands since they now share

a collider, and moving either hand moves the bow accordingly. This version of the bow can

be found in the following folder: Assets/_PROJECT/Components/TwoHandedBow.

4.2 Performance Testing

During this thesis, one of the primary additions was incorporating many missing details into

the building. The new version now includes all floors, unlike the previous version, which

only had two. Furthermore, the addition of multiplayer and other experiences increases

performance overhead. As a result, it is crucial to ensure that performance has not dropped

below the minimum threshold.

55

To assess the application's performance, we can measure frame time, the amount of time it

takes for the computer to generate a frame44. The ideal maximum frame time depends on

the headset and screen, typically between 11.1ms and 6.94ms.

The previous multiplayer thesis did not include performance testing on a PC, but the first

DeltaVR thesis did. In that thesis, the performance was tested on the Vive Pro with a target

of 11.1ms. The computer used was CGVR-Torrance45 in the CGVR Lab. The hardware

inside that computer remains the same as it was in the original thesis. Therefore, the

performance results should be comparable by testing on the same computer and with the

same headset.

The first thesis measured frame time during an entire game session, where a player navigated

most of the building and played all experiences. In order to get a fair measurement, testing

DeltaVR Multiplayer 2.0 followed the same pattern.

To measure the frametime, SteamVR’s Frame Timing tool was used. The result of the

frametime recordings was saved into a CSV file by following the tutorial on Valve’s

Developer Community wiki46.

Figure 41. Frametime during a test session.

44 https://cgvr.cs.ut.ee/frame-rate-vs-frame-time/
45 https://cgvr.cs.ut.ee/inventory/

46 https://developer.valvesoftware.com/wiki/SteamVR/Frame_Timing

56

The results of the recording are displayed in Figure 41. All the frames stayed below our

maximum frametime; therefore, the performance remains acceptable.

Table 2. Comparison of frametimes of the original and new version.

 DeltaVR DeltaVR Multiplayer 2.0 Difference

Average 6.54ms 2.7ms 2.42x

0.90-quartile 7.82ms 3.2ms 2.44x

0.99-quartile 8.94ms 3.7ms 2.41x

Table 2 compares the original DeltaVR frametimes against DeltaVR Multiplayer 2.0

frametimes. The table shows that the newer iteration of DeltaVR runs around 2.4 times faster

than its predecessor. This is a very positive result considering the additional detail added to

the virtual Delta Building during this thesis.

Additionally, the application should perform better on lower-end hardware, such as the expo

laptop mentioned in Chapter 1.4.1. On higher-end hardware, the available performance

could be used to render the application at a higher resolution or increase anti-aliasing47 to

improve the look of the application.

4.3 Usability Testing

Usability testing involves testing the application with real users to evaluate its ease of use

and identify any problems affecting the user's experience. This process helps to improve the

product's overall usability. (Moran, 2019)

While feedback about this iteration of DeltaVR has already been gathered at expos,

observing people's reactions to the application at expos may not provide as much specific

feedback or identify issues as effectively.

According to Jerald, this is because people at expos may not have the time, patience, or

privacy to provide detailed feedback or identify issues as they would in a controlled

environment like a usability testing session. They may also be more likely to hold back

47 https://learnopengl.com/Advanced-OpenGL/Anti-Aliasing

57

criticism or give positive feedback to avoid being perceived as negative or critical in a public

setting. (2015, pp. 436–437)

Therefore, conducting usability testing with users in a controlled environment would likely

provide more detailed and reliable feedback, which can help to improve DeltaVR's user

experience further. To gather feedback from the testers, a questionnaire is required.

4.3.1 Feedback Questionnaire

The feedback questionnaire is based on the example questionnaire provided by Jerald. The

questionnaire consists of four parts: a simulator sickness questionnaire, a Likert scale, a

background and experience questionnaire, and some open-ended questions. (2015, pp. 489–

493) The full questionnaire can be found in Appendix IV.

The first part is the Kennedy Simulator Sickness Questionnaire (SSQ). It contains 16

symptoms to rate from none to severe. (2015, pp. 195–196) These symptoms cover three

categories: oculomotor, disorientation, and nausea. Analysing the results of these three

categories will show if and how our application makes users sick. It is important to mention

that neither previous theses about DeltaVR measured sickness, so there is no baseline to see

if our locomotion improvements made a difference.

Additionally, the user is asked to only fill out the SSQ after testing the application. While

having accurate information on how the testers felt before playing the application would be

good for comparison, Young et al. have shown that taking a questionnaire before can make

the player sicker (2007, p. 427).

The second part of the questionnaire is the Likert scale. According to Bhandari, The Likert

scale measures the user's opinion of a statement or a question. The Likert scale should be

used to measure the opinion on a greater scale than just “yes and no”. Additionally, they

should be used to measure unobservable results. (2020)

Our scale asks the user to rate statements from “Strongly disagree” to “Strongly agree” with

no neutral opinion. The neutral opinion is replaced with “Not relevant” if the player does

not see or interact with whatever the statement says.

This questionnaire's Likert scale is split into six sections: the tutorial, spacewalk, archery,

drawing, application in general, and the Delta Building. With the tutorial, spacewalk,

58

archery, and drawing, the questionnaire measures four things: visibility, clarity, usability,

and if it achieves its goal.

For example, with the tutorial, the questionnaire measures:

1) Visibility: Did the player notice the tutorial;

2) Clarity: Did the player understand what the tutorial is telling the player to do;

3) Usability: Did the player successfully do what the tutorial asked;

4) Goal: Did the player successfully learn the controls.

Additionally, there is a statement about the controls themselves being good, as the tutorial

might be fine; however, the applications control scheme might be bad. The Likert scale

should be used to measure these because they are not always observable. For example, the

player might notice the tutorial but ignore it.

The questions are also in the order that the player interacts with that specific experience.

This should show where the first point of failure was if the player had a negative opinion of

the experience.

The final two sections of the Likert scale part are about the application in general and the

Delta Building. The application part measures the player’s opinion on the whole application.

Additionally, since the building was improved in this thesis, the building part measures

players’ opinions on how realistic the Delta Building looks and if they like its appearance.

The third part of the questionnaire is about background and experience. This part contains

questions about how often the player uses a computer and how experienced they are with

video games and virtual reality. Those familiar with virtual reality and video games may

find it easier to use the controls and experience less sickness. Therefore, this information is

required to determine if the tutorial, locomotion, and other usability changes help newer

players use the application and avoid sickness.

The fourth and last part of the questionnaire is open-ended questions. Open-ended questions

can provide information from the users that were not expected in the Likert scale or give

them a chance to explain their opinion. In this part, the questionnaire asks about the player's

likes and dislikes about the application, experiences, and the building. Additionally, it lets

the player fill out any other comments they might have in their mind that was not covered

by the previous questions.

59

4.3.2 Usability Testing Results

Usability testing was conducted from the 14th of April to the 28th of April 2023. Users for

usability testing were gathered by sending invitations (see Appendix III) to participate in

testing in the University of Tartu Computer Science students mailing list. The mailing list

had around 1300 users when sending the e-mail. Out of those, 23 students showed interest

in testing. Out of the students who showed interest, 20 were tested.

Figure 42. Picture of the testing area for one of the players.

The usability testing took place in room 2007 of the Delta Building (Figure 42). The

participants were given a short introduction on what they were testing, were instructed how

to put on the headsets, and were freely allowed to roam the virtual experience. They were,

however, required to try out all the experiences. After trying out the experiences, they could

optionally keep playing. After that, they were requested to fill out the questionnaire.

Subchapter 4.3.2.1 analyses the results of the sickness questionnaire. Subchapter 4.3.2.2

analyses the testers' opinions about the tutorial, the experiences, the Virtual Delta Building

and the application in general.

60

4.3.2.1 Sickness Questionnaire Responses

The first part of the questionnaire was questions about sickness. Out of 20 participants, one

reported that they had already felt bad before using the application. Their responses are not

shown in any charts, as it is unclear if the application or headset caused harmful effects.

Figure 43 shows how many participants reported feeling worse after using the application.

Most participants did not think they felt worse after using the application.

Figure 43. Participant answers to having side effects after playing the application.

Figure 44 shows participant answers related to the oculomotor section, which contains eye

movement and vision issues. Most of the issues were only slight. Participants who reported

feeling worse in this section said it was due to the headset not being properly adjusted for

them. Most of them said issues started after taking the headset off, with one person saying

it was due to the virtual scene being dark compared to the well-lit testing room.

No, 13

Yes, 6

Participants who reported feeling worse after using the
application

No Yes

61

Figure 44. Eye movement and vision-related issues.

Figure 45 shows participant responses regarding nausea, which contains issues related to

sickness and discomfort. Only a few participants reported issues in this category, with most

of the issues only being slight. Participants commented that they had issues when using a

lot of smooth locomotion, especially when walking on stairs or, in some rare cases, climbing

classroom desks and chairs.

Figure 45. Sickness or discomfort-related issues.

15

13

15

14

2

5

3

4

2

1

1

1

2 4 6 8 10 12 14 16 18 20

Headache

Eye Strain

Difficulty focusing

Blurred vision

Oculomotor responses

none slight moderate severe

18

13

15

19

1

4

2

2

2

2 4 6 8 10 12 14 16 18 20

Increased salivation

Nausea

Stomach awareness

Burping

Nausea responses

none slight moderate severe

62

Figure 46 shows participant responses regarding disorientation. Most participants only had

slight issues in this category. Participants noted again that issues here were primarily due to

smooth locomotion or fast movement in general.

Figure 46. Disorientation or confusion-related issues.

Figure 47 shows uncategorized responses in the SSQ. In this section, more participants

noted that they felt worse than before than in other sections; however, only slightly. Some

participants noted that they started to feel tired over a more extended playing period.

Additionally, some said the headset was on too tight, hurting their head, and the cable

annoyed them. Some said that these symptoms were due to VR in general.

15

17

15

3

2

3 1

1

2 4 6 8 10 12 14 16 18 20

Dizzy (eyes open)

Dizzy (eyes closed)

Vertigo

Disorientation responses

none slight moderate severe

63

Figure 47. Uncategorized responses in the SSQ.

One of the reasons brought out for feeling worse was the use of smooth locomotion. While

the application did offer an option to move by teleporting, many players chose not to use it.

To reduce nausea caused by this, the vignette could be made stronger, or the option of

smooth locomotion could be removed.

Another issue for feeling uncomfortable was due to one of the headsets used during testing,

the Quest 2. Players often said using it was uncomfortable, as it had a bad fit. A bad fit can

cause blurred vision and headaches. The lenses might not be appropriately aligned, and the

headset presses against the head too strongly. One possible solution would be to use an

alternative strap for the Quest 2 or better instruct the players on how the headset should fit.

4.3.2.2 Experience Related Responses

Figure 48 shows participant responses to questions about the tutorial. Most of the players

had a positive opinion across all questions. One of the issues regarding the tutorial was still

its noticeability. If players did not look down at their hands, they would not see the tutorial.

This should be fixed by making the tutorial text always visible to the camera. However,

once they noticed the tutorial, it was easy for most to follow its instructions.

9

12

10

14

13

9

5

7

5

6

1

2

2

2 4 6 8 10 12 14 16 18 20

General Discomfort

Fatigue

Sweating

Difficulty concentrating

Fullness of head

Other responses

none slight moderate severe

64

Figure 48. Playtester's opinion about the tutorial.

The control schema itself also brought out some issues. For locomotion, there are two

options: smooth locomotion and teleportation. Players often choose to keep using one after

completing the tutorial but forget how to use the other option. Since the application has

some unused buttons, they could be made to show all the controls again as a reminder.

Also, players would often accidentally push the joystick to the sides when they wanted to

move it forward, causing unwanted movements. To resolve this, the control schema could

be simplified. Rather than having multiple controls on both joysticks, one joystick could

teleport, and the other could only turn. This change would make the controls easier to

remember, as there are fewer of them.

An issue remarked by some VR-experienced players was that they wished that the snap

turning was instead smooth. However, as discussed in Chapter 2.3, such an option can create

nausea for newer players, so it should stay a snap turn. What could be considered instead is

giving experienced players the option to switch between these modes. However, as seen in

the SSQ responses, players who have reported nausea often use the smooth locomotion

option after being warned that it is more likely to create adverse effects, indicating that

players overestimate their tolerance.

65

Figure 49 shows participant responses to the drawing experience. Playtesters’ opinions

about the experience were overall positive across all categories; however, some negative

opinions were given.

Figure 49. Playtesters' opinion about the drawing experience.

It was in the starting room, so players mostly did not have issues finding it. Players also had

no issues with using the drawing tools. However, it was noted that it was difficult to draw

on the blackboard/canvas.

The first issue was knowing they could only draw on the blackboard, as there was no

indication. This could be fixed by adding a sign or having drawings on the b.

The second issue was that the spray cans only worked at a certain distance, and players often

tried to use them outside their maximum range. This could be fixed by increasing the

maximum range.

Overall, most players said they enjoyed the experience. The few that did not enjoy it said

that drawing was boring. Enjoyment could be improved by adding more drawing tools and

allowing players to mix colours.

66

Figure 50 shows participant responses to the spacewalk experience. While most of the

responses were positive, some negative responses were given.

Figure 50. Playtesters’ opinion about the spacewalk experience.

This experience was findable by just exiting the starting room, so players did not have

difficulty finding it. Entering the experience was walking through a doorway, and players

did not find this problematic. While the experience did require a mixed use of locomotion

controls, most players did not struggle with this.

More VR-experienced players noted that it was not very interesting for them, as they had

already tried alternatives. More content should be added to the spacewalk to improve this

rating, as just walking across a plank was trivial for them. Additionally, some graphical

glitches related to the Delta Building in the distance were brought out.

Figure 51 shows participant responses to the archery experience. Since the balcony was

away from the starting area, many players could not find it without external assistance.

67

Figure 51. Playtesters' opinions on the archery range experience.

Some players still had issues manipulating the bow. They said that it was unintuitive to use.

This was because it required interactions with both hands, but players were unaware they

could use both hands. A separate tutorial could be implemented for the archery range to

improve this.

Overall, the enjoyment of this experience was largely positive. This variant was playable by

multiple people compared to the previous multiplayer thesis. It did not break down after one

playthrough. However, people who played on the computer that did not host the server noted

a slight delay in launching arrows. This delay made shooting the bow harder for them and

should be fixed.

Some VR-experienced players noted that the experience gets boring quickly, as the enemy

pattern is always the same. Some more variety to enemies could be added to make it more

interesting for them.

Figure 52 shows participant responses to the virtual Delta Building. Most of the opinions

were strongly positive; however, some issues were still brought out.

68

Figure 52. Playtesters' opinion on the virtual Delta Building.

All participants successfully recognized parts of the building, including the starting room,

and overall think the application captures the likeness of the Delta Building well.

While most players liked how the building looked, they still noted some graphical issues.

For example, some small places still have missing geometry; some stairwells have missing

guardrails, and a tree was in the middle of the outside park walkway. Additionally, some

graphical artefacts appeared from different angles when viewing the building outside.

Additionally, some players were disappointed that they could not go on floors besides the

first and second floors. While the other floors do not have games, furniture or lighting,

players could still be allowed onto those floors, for example, with flashlights. In that case,

players should also be warned that nothing is there and they may get lost.

69

Figure 53. Playtesters' opinion on the application in general.

Chart X shows participant responses to some statements about DeltaVR in general. The first

one was if they could play DeltaVR in the way they wanted. Participants mostly responded

positively. Negative responses may be caused by participants being forced to play

experiences they are not interested in or the application not meeting their expectations.

The second statement was if they would use the application at home. Participants mostly

responded positively. The current iteration of DeltaVR is meant to be a short experience

with little replayability; therefore, any negative ratings are understandable.

The third statement was whether they would recommend the application to their friends.

Most players would recommend it to their friends, indicating that the application was

enjoyable to them and that others may enjoy it too.

The same is shown by the last statement, where players say they enjoyed the experience.

However, it was still brought out that there are not many things to do in the application, and

some experiences should be more polished, such as adding more sounds, effects and

feedback. Regarding multiplayer, some players felt that the minigames were not

multiplayer-focused.

70

4.3.2.3 Issues Found

 According to Nielsen, only five users are needed to find most issues in an application. To

find all the usability issues, at least 15 users are needed. (Nielsen, 2000) Since the

application was tested with 20 users, most issues should have been found. The issues found

are listed in Table 3. The table consists of the ID of the issue, its description and if there was

a matching issue in the predecessor DeltaVR Multiplayer.

Table 3. Issues found during Usability testing.

Issue ID Description Linked issue in predecessor

1 Arrows sometimes collide
with invisible objects in the
archery range

-

2 Drawing game spray looks
choppy when moving hand
too fast

-

3 Teleport ray is flipped
sideways on some surfaces

-

4 Player hands do not release
grip when walking too far
away from doors, causing
doors to teleport back and
forward.

UI-8, FI-6

5 Players can walk through
some doors

UI-8, FI-6

6 Players can not open some
doors

UI-8, FI-6

7 You can fall off the map and
get stuck falling

UI-7

8 You can physically walk
through the red bounds in
the spacewalk experience
and then fall

UI-7

9 Index grip controls are too
sensitive, causing players to
hold onto them for too long

UI-8, FI-6

10 Non-host players have slight -

71

delay when shooting arrows

11 Taking interactables from
other people’s hands causes
them to become desynced

UI-6

12 You can teleport up floors
by aiming at the ceiling

UI-11

13 In some cases, you can get
stuck in spacewalk after
portals get destroyed

-

14 In some cases, newly
connected players do not get
the current version of the
drawing canvas

-

While the application performed better than its predecessor, some issues were not

completely fixed, or new ones were introduced with new experiences.

More significant usability issues remain with the doors. This issue is caused by the XR

Interaction Toolkit changing the parent GameObject of the interactable the player is

grabbing. This change was not synced over the network. A separate script to sync the parent

would need to be developed to fix this.

New issues were created due to the addition of gravity. The map's borders should be walled

off, or the player should be allowed to reset their position. Additionally, the player should

be stopped from physically walking through some borders.

Networking code related to archery range needs client-side prediction to remove the slight

delay when firing. The firing should be done on the client side before returning ownership

to the server.

The Valve Index controller grip being too sensitive was a significant issue. The gripping

value threshold should be adjusted, or players should be better instructed on how the

controller works. The rest of the issues in the table are less critical but should be fixed.

72

Conclusion

During this thesis, a new version of DeltaVR was developed. The new version builds upon

its predecessor, DeltaVR Multiplayer, by fixing game-breaking bugs, improving the virtual

Delta Building, and adding and improving experiences. Additionally, the new version had

both usability testing and performance testing.

Compared to the predecessor, usability testing showed that experiences were less likely to

break down during gameplay due to various de-synchronization issues. Additionally, the

new networking solution does not require an external internet connection, making it easier

to show off during expos.

The first notable addition to the application was the inclusion of a tutorial. Usability testing

shows that around ¾ of players should be able to learn the application's controls

independently rather than requiring someone to explain them. However, some ideas to

improve the application further were brought out for those who still needed help.

The second notable change to the application was improving the virtual Delta Building.

Compared to the predecessors, this version of the building now includes all the building

floors rather than being cut off from the second floor. Additionally, performance testing

shows that even after adding much more detail to the experience, optimisations during the

thesis made the application run faster than its predecessors. Usability testing showed that

testers think the virtual building looks a lot like the actual building and most of the esters

like how it looks.

The third notable addition and change were related to the experiences. The already included

archery range experience was improved based on user feedback and observation, and

usability testing results show that all the testers had fun playing it. However, some usability

issues remained and were brought out during the testing chapter.

Two new experiences were added, a drawing experience and a virtual spacewalk experience.

Most testers enjoyed both experiences; however, some usability issues and bugs remain

here. The complete list of bugs remaining was brought out in Chapter 4.3.2.3.

Lastly, improvements were made to reduce the nausea caused by the application. During the

usability testing, 6 out of 19 said they felt worse after playing the application. Most of these

73

people rated their symptoms as slight on a scale of none to severe, and some of these issues

were caused by a bad fit of the headset rather than the application alone. Since neither of the

predecessors measured this, there was no baseline to compare this result.

In conclusion, this thesis has developed an enhanced version of DeltaVR, addressing

numerous issues, expanding the virtual environment, and introducing new and improved

user experiences. The usability and performance testing conducted throughout the

development process has helped refine the application and provided valuable insights into

areas requiring further improvement.

I want to thank Mark Muhhin for supervising this thesis. I am also grateful to Raimond-

Hendrik Tunnel for conducting informative thesis writing seminars. Furthermore, I would

like to extend my appreciation to Kaarel Rüüsak and Mathias Plans, fellow students from

the University of Tartu, for their insightful feedback on the thesis. Lastly, a special thanks

go to all the students from the University of Tartu Computer Science students mailing list

who demonstrated interest in testing the application.

74

References

Bhandari, P. (2020, July 3). What is a likert scale? Scribbr.

https://www.scribbr.com/methodology/likert-scale/

Glazer, J., & Madhav, S. (2015). Multiplayer Game Programming: Architecting

Networked Games. Addison-Wesley Professional.

Jerald, J. (2015). The VR Book: Human-Centered Design for Virtual Reality. Morgan &

Claypool.

Kao, D., Magana, A. J., & Mousas, C. (2021). Evaluating Tutorial-Based Instructions for

Controllers in Virtual Reality Games. Proceedings of the ACM on Human-

Computer Interaction, 5(CHI PLAY), 1–28. https://doi.org/10.1145/3474661

Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator

Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness.

The International Journal of Aviation Psychology, 3(3), 203–220.

https://doi.org/10.1207/s15327108ijap0303_3

Moran, K. (2019, December 1). Usability testing 101. Nielsen Norman Group.

https://www.nngroup.com/articles/usability-testing-101/

Nielsen, J. (2000, March 18). Why You Only Need to Test with 5 Users. Nielsen Norman

Group. https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Püks, J. (2022). DeltaVR - Multiplayer [University of Tartu].

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=74390&language=en

Sellis, H. (2022). Non-Euclidean Space in Virtual Reality.

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=74350&year=2022&language

=en

75

Tamm, T. (2021). DeltaVR [University of Tartu].

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=71682&year=2021&language

=en

Young, S. D., Adelstein, B. D., & Ellis, S. R. (2007). Demand Characteristics in Assessing

Motion Sickness in a Virtual Environment: Or Does Taking a Motion Sickness

Questionnaire Make You Sick? IEEE Transactions on Visualization and Computer

Graphics, 13(3), 422–428. https://doi.org/10.1109/tvcg.2007.1029

Zimmerman, E. (2003). Play as Research: The Iterative Design Process. In Design

Research: Methods and Perspectives. The MIT Press.

76

Appendix

I. Dictionary

1. CGVR Lab - The Computer Graphics and Virtual Reality Study Lab in

University of Tartu.48

2. Collider - Component for GameObjects in Unity. Allows two GameObjects

to collide with each other.49

3. De-sync - situation where the game state is different between the clients

and/or server.

4. Depth buffer - data structure in computer graphics used to determine the

visibility and order of objects in a 3D scene based on their distance from the

camera.50

5. Deserialize - converting serialised data back to its original format or

structure.

6. Disorientation - loss of one's sense of direction or awareness of one's

surroundings.

7. FBX file - file format for 3d models, animations, etc. Made for 3D

applications.

8. Frametime - the amount of time it takes for a single frame to be rendered.

9. IFC file - file format used in architecture, engineering and construction

industries to share data between different programs.

10. Layer (in Unity) - layer refers to a way of categorising game objects or

components.

11. Light probes - light probes are objects used to sample and approximate the

illumination of a 3D environment or scene by capturing and storing lighting

information from different positions.

12. Lightmapping - technique used to precalculate and store the lighting

information of a 3D scene into a texture or set of textures.

13. Locomotion - Locomotion refers to the ability to move oneself around.

48 https://cgvr.cs.ut.ee/
49 https://docs.unity3d.com/Manual/CollidersOverview.html
50 https://en.wikipedia.org/wiki/Z-buffering

77

14. Memory dump - contents of a computer's memory written to a storage

device.

15. Mesh - collection of information that defines the shape and geometry of a

3D object.

16. Model - see 15. Mesh

17. Observer pattern - object, called the subject, maintains a list of its

dependents, called observers, and notifies them automatically of any state

changes, enabling the observers to update their state or behaviour

accordingly.

18. Occlusion - blocking or obscuring of a portion of an object or scene by

another object or surface.

19. Occlusion culling - selectively skipping the rendering of objects or portions

of objects that are occluded or not visible to the camera.

20. Oculomotor - muscles and nerves involved in the movement and control of

the eyes.

21. Oculus Integration - software development kit (SDK) provided by Oculus

VR, designed to enable the development of virtual reality (VR) applications

and games for the Oculus platform.

22. Portal - virtual doorway or passage between two different areas or

environments within a game or virtual world

23. Raycast - simulating the path of a ray as it intersects with objects in a 3D

environment.

24. Render - process of generating or creating a 2D image from a 3D model or

scene.

25. ScriptableObject - objects that can store data.

26. Serialize - converting data or objects into a specific format that can be stored

or transmitted.

27. Shader - computer program that is used to define the appearance and

behaviour of objects or surfaces in a 3D scene.

28. Smooth turning - the player's view smoothly rotating or turning based on

the movement of the player's head or controller.

29. Snap turning - the player's view instantly rotating or turning to a pre-defined

orientation based on the movement of the player's head or controller.

78

30. SteamVR - virtual reality (VR) platform and software development kit

(SDK) developed by Valve Corporation

31. Stencil buffer - graphics feature that stores per-pixel information, and it can

be used to mask or selectively render parts of a scene.51

32. Texture - texture refers to an image or set of images that are applied to the

surface of a 3D object or scene to simulate surface details.

33. Texture2D - class that represents a 2D texture or image.

34. Universal Render Pipeline (URP) - rendering system and set of graphics

features provided by Unity game engine.

35. Instantiate - Instantiate refers to a method that creates a new instance of a

prefab of game object at runtime.

36. Modalities - different forms or types of communication

37. Nausea - feeling of discomfort or queasiness in the stomach.

38. Non-Euclidean geometry - type of geometry that deviates from traditional

rules, allowing for impossible geometries and spaces to be represented.

39. Passthrough mode - allows the user to temporarily view the real-world

environment around them, typically using cameras mounted on the headset.

40. Prefab - a reusable template or blueprint for a game object, containing all

the components, properties, and settings needed to create an instance of the

object at runtime.

41. Teleportation - movement technique where the player's avatar or viewpoint

is instantly transported from one location to another within the virtual

environment.

42. Vignette - vignette refers to a gradual fade or darkening of the edges or

corners of an image or video.

43. Virtual reality - computer-generated simulation or representation of a 3D

environment or world, typically experienced through a head-mounted

display or other specialised equipment.

51 https://learn.microsoft.com/en-gb/windows/win32/direct3d9/stencil-buffer-techniques

79

II. Issues Discovered During Expos

Table 4. Performance issues.

ID Name Description

PI-1 Room join stutter Game drops frames when joining a
room, causing nausea for users

PI-2 Game stutter on laptop Game started stuttering on a laptop,
causes nausea

PI-3 Game doesn’t run natively on Quest 2 Framerate issues on Quest 2

Table 5. Usability issues.

ID Name Description

UI-1 Can only customise with left controller You cannot use the right controller to
click buttons in the player
customization screen

UI-2 No tutorial Players currently need another player
to explain controls

UI-3 No reset When switching players, there is no
option to reset the game

UI-4 Smooth turning only Smooth turning causes nausea for
some players

UI-5 Can teleport onto walls Walls are teleportable surfaces, no
check for surface angle

80

UI-6 Desync between players Occasionally objects are out of sync
between players

UI-7 No gravity Players can float from the second floor
when using smooth movement

UI-8 Doors hard to open Players struggle to open doors

UI-9 Bow range hard to use Players struggled to use the bow
range, controls and movements are not
understandable

UI-10 Player hands can clip through walls

UI-11 Players can teleport through some surfaces For example, robotics room glass on
second floor

UI-12 Current multiplayer tied to central user
account

Current multiplayer implementation
requires authentication with a remote
service, that is currently tied to the
user who built the game.

UI-13 Running multiplayer in LAN mode requires
proprietary software

Running the game in LAN only mode
is not completely supported out of the
box

UI-14 Player can not customize appearance after
joining the room

Customizing appearance requires
leaving and entering the game.

UI-15 Teleportation menu has no clicking
cooldown

Teleportation menu on left hand keep
clicking the button when your hand
collides with it, repeatedly opening
and closing the menu. Players could
not open and close the teleportation
menu properly.

81

UI-16 No indication of successful area teleport Players didn’t notice that they had
successfully teleported using the
menu and tried to teleport to the same
place again

UI-17 Players can teleport under the building Players can exit the intended virtual
space in several places

Table 6. Functional issues.

ID Name Description

FI-1 Bow range only one player Only one player can play in the bow
range at a time

FI-2 Bow range sometimes can’t pick up bows Sometimes when picking up a bow,
the bow teleports out of your hand and
becomes unusable

FI-3 UFOs get stuck on the building Occasionally UFOs in the bow range
do not disappear when hitting the
building and stay visible.

FI-4 Bow range arrows shoot through UFOs Sometimes bow range arrows pass
through the UFOs, and the player
cannot score points.

FI-5 Bow range does not start Bow range can’t be started in some
cases

FI-6 Doors teleporting Over longer play sessions doors start
teleporting around the building

FI-7 Hand animations missing

FI-8 Desync between players In some situations, objects are not in
sync between players

82

III. E-mail Sent to Testers

/English below/

Tere!

Otsin testijaid magistritööle DeltaVR Multiplayer 2.0. DeltaVR on virtuaalreaalsuse elamus Delta
õppehoones, kus saab koos erinevaid minimänge mängida.
Testid toimuvad järgmise kolme nädala jooksul Delta õppehoone teise korruse arvutigraafika ja
virtuaalreaalsuse õppelaboris.
Test võtab aega umbes 10-20 minutit ja lõpus tuleb täita tagasiside küsitlus.
Testimine on paarides, seega võib sõbra kaasa võtta või leiame ise kaastestija.

Kui on testimiseks sõber kaasa võtta, võite mõlemad kohe aja kirja panna siin:
https://calendly.com/toomastamm/deltavr-multiplayer-2-0-testing

Kui on soov testida, aga sõpra ei leidu, saab siin endale sobivad ajad valida ja leiame kaastestija:
https://doodle.com/meeting/participate/id/el2pyMgb

Pärast kummagi vormi täitmist saadan teile e-kirja.

Küsimuste korral võib kirjutada e-mailile:
toomas@toomastamm.ee

Parimate soovidega
Toomas Tamm
--
Hi

I am seeking testers for my master's thesis, DeltaVR Multiplayer 2.0. DeltaVR is a virtual reality
experience where you can play various minigames together.
Tests are happening within the next three weeks on the second floor of the Delta Building in the
Computer Graphics and Virtual Reality Lab.
The test lasts 10-20 minutes and ends with a feedback form.
Tests are done in pairs, so either bring a friend or we can find someone you can test with.

If you already have a friend to bring with you, both can book the same time here:
https://calendly.com/toomastamm/deltavr-multiplayer-2-0-testing

If you want to test but don't have a friend to bring with you, fill in your available times here, and we
will find someone:
https://doodle.com/meeting/participate/id/el2pyMgb

After filling either of the forms, I will follow up with an e-mail.

In case of questions, send me an e-mail:
toomas@toomastamm.ee

Best regards
Toomas Tamm

83

IV. Feedback Questionnaire

Questionnaire Part 1 - Sickness

1. Did you feel that you are in the same state of good health as you started the

experiment?

☐ Yes ☐ No

 If you answered no, please explain briefly in the space provided below.

For each of the following conditions, please check how you are feeling right now,

on a scale of none to severe:

Condition none slight moderate severe

1. General discomfort

2. Fatigue

3. Headache

4. Eye strain

5. Nausea (stomach distress)

6. Blurred vision

7. Dizzy

8. Vertigo (surroundings seem
to swirl)

If you expressed slight, moderate, or severe on any of the questions above, please

state if you felt that way before using the application. And if so, explain how you

felt worse after using the application. If possible, specify when it started/changed

during the application use.

84

Questionnaire Part 2 - Likert scale

1. Mark a single box (strongly disagree, disagree, agree, or strongly agree, not

relevant) for each statement below.

2.1 Tutorial

 Strongly
disagree

Disagree Agree Strongly
agree

Not
relevant

The tutorial was easily
noticeable

The tutorial was easy to
follow

Once I followed the tutorial,
the controls were easy and
intuitive to use

Once I finished the tutorial, I
found that I could focus on
the content rather than on the
controls

2.2 Spacewalk

The spacewalk experience
was easy to find

Once I found the spacewalk,
it was easy to enter

Once I entered the
spacewalk, it was easy to
navigate

The spacewalk experience
was fun

85

2.3 Archery

 Strongly
disagree

Disagree Agree Strongly
agree

Not
relevant

The archery range minigame
was easy to find

Once I found the archery
minigame, it was easy to
manipulate the bow

Once I started using the bow,
it was easy to play the
minigame

The archery minigame was
fun to play

2.4 Drawing

The drawing experience was
easy to find

Once I found the drawing
experience, it was easy to
manipulate the drawing
tools (eg. spray cans)

Once I started manipulating
the drawing tools, it was
easy to paint on the canvas

The drawing experience was
fun to play

2.5 Application in general

I was able to play the
application in the way I
wanted

I would use the application at
home

86

I would recommend the
application to my friends

I enjoyed the experience

2.6 Delta Building

Have you been to the Delta building before this test session: ☐ Yes ☐ No

 Strongly
disagree

Disagree Agree Strongly
agree

Not
relevant

I recognized that the starting
room in the application is the
same as the test room

I recognized parts of the
Delta Building

The application captures the
general likeness of the Delta
Building

I like the way the virtual
Delta Building looks

87

Questionnaire Part 3 - Background/Experience

Age ____

Gender ____

For each question, put a check next to your answer.

1. How often do you use a computer in your average week?

Before today, I used computers less than:

☐ 1 hour ☐ 2 hours ☐ 5 hours ☐ 10 hours ☐ 20 hours ☐ 40 hours

☐ more than 40 hours

2. In the past 2 years, what is the most you have played video games in a single week?

(both virtual reality and regular)?

Before today, I played less than:

☐ 1 hour ☐ 2 hours ☐ 5 hours ☐ 10 hours ☐ 20 hours ☐ 40 hours

☐ more than 40 hours

3. Have you used virtual reality applications before this application (applications do

not have to be games)?

☐ Yes ☐ No

4. In the past 2 years, what is the most you have used virtual reality applications in a

single week (applications do not have to be games)?

Before today, I used applications for less than:

☐ 1 hour ☐ 2 hours ☐ 5 hours ☐ 10 hours ☐ 20 hours ☐ 40 hours

☐ more than 40 hours

88

Questionnaire Part 4 - Open-ended questions

1. What did you most like about the application?

2. What did you think about the experiences/minigames?

3. What did you think about the virtual Delta Building?

4. What did you dislike about the application?

5. What suggestions or ideas do you have for improving the application?

6. Any other comments?

89

V. User Guide

The build of the application can be found in the attached materials, in the following folder:

DeltaVRMultiplayer2\DeltaVR Build. Double click DeltaVR.exe to start. After launching,

the game window should open (Figure 54).

Figure 54. Game window after opening the game.

Figure 55. Zoomed-in view of networking controls and player settings on the top right of
the game window.

In the top right corner of the game window, 4 section should be visible (Figure 55). The first

section is settings. If “Use VR” is checked, the game will launch in VR mode when joining

90

the server. If it is not checked, the game will launch in desktop mode. It should be noted that

experiences are not playable in desktop mode.

The second section is server. This category has two buttons, one to “Start” the listen server,

and another to “Stop” the listen server. When playing alone or this should be the computer

that hosts the server, “Start” should be clicked here. If a firewall notification was received

and allowed, it is recommended to restart the application for the settings to take effect.

The third section “Advertising”. This option is only relevant if this computer is hosting the

server. If Advertising is started, the server will broadcast out to the local network that a

server is running on the computer and computers will be able to find and connect to it.

The fourth section is “Searching”. In this category you can toggle if servers should be

searched. Regardless if the server is being hosted on this computer or another, to get in the

game, you need to connect to a server found here. If the server is not visible, for

troubleshooting stopping and starting searching may find it.

After clicking on an IP below the “Searching” section, the game should start. In desktop

mode, by moving the mouse the camera pans around, and by holding WASD buttons the

character moves around. In VR mode, the controllers should show a tutorial, however for

convience sake, the controls are included below.

Figure 56. Quest 2 controls52.

52 Image from: https://www.vrteamspace.co.uk/setup/

91

In Figure 56, controls on the Quest 2 are numbered. The controls are as follows:

1) On the left controller, by moving joystick represented with number 1, the character

moves around using smooth locomotion

2) On the left and right controller, the buttons represented by number 6 let you spray

with the spray gun in the drawing experience.

3) On the left and right controller, the buttons represented by number 4 let you grip

items in the game by holding them down. The virtual controller or hand should be

inside the object to grip it.

4) On the right controller, by moving and holding the joystick represented by number

1 forward, you can aim the teleport ray. When the ray is white and ends with a blue

circle, you can teleport there by centering the joystick.

5) On the right controller, by moving the joystick represented by number 1 left or right,

you can turn your character left or right using snap turning. This is to avoid getting

tangled on the cable.

The controller scheme works similar on other controllers as well. Tested controllers are

the Valve Index controllers, the Quest Touch controllers and the Vive Wands. If your

controller is not on the list, it should still be supported by the application, but the tutorial

will default to the Quest Touch controllers.

When moving long distances in the application, it is strongly recommended to use

teleportation over smooth locomotion, as it causes less nausea to the user.

In case there are any issues during gameplay, a video is also available in the following

folder: DeltaVRMultiplayer2\Videos.

92

VI. Pictures of Application

93

94

95

96

VII. License

Non-exclusive licence to reproduce the thesis and make the thesis public

I, Toomas Tamm,

1. grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital
archives until the expiry of the term of copyright, my thesis

DeltaVR Multiplayer 2.0,

supervised by Mark Muhhin.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available
to the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows, by
giving appropriate credit to the author, to reproduce, distribute the work and communicate
it to the public, and prohibits the creation of derivative works and any commercial use of
the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection legislation.

Toomas Tamm
09/05/2023

