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Asymptotic Bounds on the Length of Functional Batch and PIR Codes

Abstract: Batch codes were first introduced in 2004 by Ishai et al. to be used in
distributed storage systems for load balancing. Batch codes can be viewed as a special
case of another family of codes called Private Information Retrieval (PIR) codes. PIR
codes are used for retrieving information from a distributed storage system so that the
system does not know what information was requested. This thesis studies variants
of batch and PIR codes called functional batch and functional PIR codes, respectively.
For both of these types of codes, it is desirable to find codes that can support as many
simultaneous queries as possible, while minimizing the storage overhead. Bounds on
the length of these codes for a fixed query size are presented and a simplex-based near-
optimal construction for these bounds is described. The bounds are compared with the
minimum code lengths found by computer search.

Keywords: Coding theory, batch codes, Private Information Retrieval (PIR) codes

CERCS: P170, Computer science, numerical analysis, systems, control

Funktsionaalsete partiikoodide ja privaatse infootsingu koodide pik-
kuse asümptootilised tõkked
Lühikokkuvõte: Partiikoode tutvustasid esimesena aastal 2004 Ishai jt hajusfailisüs-
teemide koormusjaotuse tasakaalustamise eesmärgil. Partiikoode võib vaadelda ühe teise
koodiliigi, privaatse infootsingu (PIO) koodide erijuhuna. PIO-koode kasutatakse selleks,
et pärida süsteemilt infot, ilma et süsteem päringu sisu kohta midagi teada saaks. Töös on
käsitletud partii- ja PIO-koodide variante, mida nimetatakse vastavalt funktsionaalseteks
partiikoodideks ja funktsionaalseteks PIO-koodideks. Mõlema kooditüübi puhul on ees-
märgiks leida koode, mis võimaldavad korraga vastata võimalikult paljudele päringutele,
hoides talletatud andmete hulga võimalikult väiksena. Töös on esitatud tõkked selliste
koodide pikkuse kohta, kui päringu suurus on fikseeritud, ja kirjeldatud on ka simpleks-
koodidel põhinevat konstruktsiooni, mis on esitatud tõkete suhtes peaaegu optimaalne.
Tõkkeid võrreldakse arvutiotsingu abil leitud vähima koodipikkuse väärtustega.

Võtmesõnad: Kodeerimisteooria, partiikoodid, privaatse infootsingu (PIO) koodid

CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
This thesis studies two families of codes: functional batch codes and functional PIR
codes.

Batch codes were first introduced in Ishai et al. [1] for the purpose of load balancing
in distributed data storage systems. In a distributed data storage system, the original
data is stored in a database. This data is then replicated and distributed across multiple
nodes (also called servers or buckets). When a user requests an element from the original
database, it is retrieved using elements from the distributed nodes. The system should be
able to simultaneously retrieve as many requested elements as necessary, while reducing
the storage overhead. Batch codes are used to describe such distribution schemes. The
parameters of the code describe the characteristics of the system, such as the size of
the original database, the number of nodes and the size of the largest recoverable batch
of elements. A batch code request consists of a batch (of a certain size) of the original
database elements. Functional batch codes are a variant of batch codes, where the
requests consist of a batch of linear combinations of the original database elements.

Private Information Retrieval (PIR) describes a scenario where the user wants to
retrieve information from a database without the database gaining any knowledge of the
information that was requested. A naive approach to this would be to request all database
elements at once. However, this approach is not suitable for large databases due to the
large amount of data downloaded to retrieve just one element. Also, this solution can only
ensure computational privacy (i.e. the privacy depends on the computational limitations
of the system). Distributed storage systems offer information-theoretic privacy, which
means that privacy is ensured even if the computing power of the system is unbounded
(assuming that the servers do not collude). A typical PIR scheme is similar to that of
the batch codes, except that a PIR request consists of copies of one original database
element (in other words, the requested elements are identical). Functional PIR codes are
a generalization of PIR codes, where a request consists of identical copies of some linear
combination of original database elements.

In the case of both (functional) batch and (functional) PIR codes, it is desirable to
find the minimal amount of storage needed in order to allow for retrieving user requests
(also called the code length), given the size of the original database and the size of a
request. If the request size is fixed, there exists some relationship between the size of the
original database and the length of the code. The thesis presents asymptotic results on
the minimum value of the code length, as the size of the original database approaches
infinity. Section 3 gives definitions for the terms used in the thesis. Four bounds are
presented in Section 4, a lower and an upper bound for functional batch codes and related
bounds for functional PIR codes. Finally, experimental results for small parameter values
are compared with the bounds in Section 5.
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2 Overview of literature and related works
Batch and PIR codes have been studied extensively after their introduction. Several
constructions of batch codes with a near-optimal redundancy for a fixed batch size and
large code dimension were presented in a paper by Vardy and Yaakobi [2], achieving
redundancy O(

√
k log k), where k is the dimension of the code. This result was improved

upon (along with other results) in another paper by Asi and Yaakobi [3], where the authors
presented constructions of PIR and batch codes with a fixed request size, as well as
several asymptotic bounds on the redundancy achieved by those constructions. A survey
of batch and PIR codes by Skachek [4] presents various bounds of the parameters of
PIR and batch codes, and discusses relations between batch and PIR codes and locally
repairable codes (LRC).

The study of linear batch codes (which are studied in this thesis also) was initiated
in a paper by Lipmaa and Skachek [5]. In that paper, linear batch codes were related to
classical error-correcting codes and bounds were derived based on this relation. Construc-
tions of larger linear batch codes from the existing smaller codes were also presented.
Another family of codes related to batch codes called switch codes were studied in a
paper by Wang et al. [6]. The authors presented a construction of binary switch codes
based on simplex codes, which is analogous to a construction used in this thesis, only
here it is used for functional batch codes.

Functional variants of batch and PIR codes have also been studied in various works.
In a paper by Zhang et al. [7], various bounds on the length of functional PIR and batch
codes were presented. This included two bounds for which the alternative proofs in
this thesis are given. In the paper, it was also proved that the binary simplex code is a
2k−1-functional PIR code and conjectured that it is also a 2k−1-functional batch code.
The gap between this conjecture and existing knowledge was narrowed in a paper by
Yohananov and Yaakobi [8], where it was shown that for the request size t =

⌊
5
6
2k−1

⌋
−k,

the bound n ≤ 2k−1 holds, having used a construction based on extended simplex codes
to achieve this result. A paper by Hollmann et al. [9] studied the batch code properties of
the simplex code. In the paper, it was proved that the binary simplex code of dimension
k and length n = 2k − 1 can serve any request of length 2k−1 consisting of odd-weight
vectors. The authors also presented a stronger conjecture than the previously mentioned
conjecture that the binary simplex code is a 2k−1-functional batch code, stating that the
recovery sets for the functional batch requests are of size at most two.
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3 Preliminaries
This section gives definitions for the terms used in the work.

Definition 1. [10] A group is a nonempty set G with a binary operation “·" that satisfies
the following properties:

• Closure: a · b ∈ G for every a, b ∈ G.

• Associativity: (a · b) · c = a · (b · c) for every a, b, c ∈ G.

• Unity element: there exists an element 1 ∈ G such that 1 · a = a · 1 = a for every
a ∈ G.

• Inverse element: for every element a ̸= 0 ∈ G, a ̸= 0 there is an element a−1 such
that a · a−1 = a−1 · a = 1

Definition 2. [10] A group G is called commutative or Abelian if a · b = b · a for every
a, b ∈ G.

Definition 3. [10] A ring is a nonempty set R with two binary operations “+" and “·"
that satisfy the following properties:

• R is a commutative group with respect to “+".

• Associativity of “·": (a · b) · c = a · (b · c) for every a, b, c ∈ R.

• Distributivity: a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a) for
every a, b, c ∈ R.

Definition 4. [10] A commutative ring is a ring in which the operation “·" is commuta-
tive.

Definition 5. [10] A field is a commutative ring in which the nonzero elements form a
group with respect to the operation “·".

Definition 6. [10] A finite (Galois) field is a field that contains a finite number of
elements. We denote a finite field of size q as GF(q). If q is a prime, the field GF(q)
coincides with the ring of integer residues modulo q .
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Example 3.1 The finite field GF(2) has two elements, 0 and 1. The element 1 is the
unity element of multiplication and the multiplicative inverse of itself, the element 0 is
the unity element of addition. Addition and multiplication in GF(2) are described in the
following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Definition 7. [10] An (n,M) block code over a finite alphabet F is a nonempty subset
C of size M of F n. The parameter n is called the code length and M is the code size.
The dimension (or information length) of C is defined by k = log|F | M .

Definition 8. [10] The elements of a code are called codewords.

Definition 9. In block coding, information words are vectors v = (v1, v2, ..., vk) ∈ F k

that are encoded into codewords c = (c1, c2, ..., cn) ∈ F n. The value n− k is called the
redundancy of the code.

Definition 10. [10] An (n,M) code C over a field F = GF(q) is called linear if C is
a linear subspace of Fn over F; namely, for every two codewords c1, c2 ∈ C and two
scalars a1, a2 ∈ F we have a1c1 + a2c2 ∈ C.
If k is the dimension of C, we say that C is a linear [n, k] code over F.

All of the codes in this work are defined over the binary field, F = GF(2).

Definition 11. [10] A generator matrix of a linear [n, k] code over F is a k × n matrix
whose rows form a basis of the code.

Example 3.2 Consider the following 2× 3 generator matrix over GF(2):

G =

(
1 0 1
0 1 1

)
The matrix G corresponds to a binary [3, 2] simplex code (see Definition 18). In this code,
the information word (x1, x2) is encoded into the codeword (y1, y2, y3) = (x1, x2, x1 +
x2).
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Example 3.3 Consider the following 3× 7 generator matrix over GF(2):

G =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


The matrix G corresponds to a binary [7, 3] simplex code. In this code, the information
word (x1, x2, x3) is encoded into the codeword
(y1, y2, y3, y4, y5, y6, y7) = (x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3).

Definition 12. [10] Let C be a linear [n, k] code over F and G be a generator matrix
of C. We can encode information words to codewords of C by regarding the former as
vectors u ∈ Fk and using a mapping Fk → C defined by

u 7→ uG.

Since rank(G) = k, this mapping is one-to-one.

Definition 13. [10] A k × n generator matrix is called systematic if it has the form

(I|A),

where I is a k × k identity matrix and A is a k × (n− k) matrix.

Definition 14. [5] Let Σ be a finite alphabet. We say that C is a (k,N, t, n, r)Σ batch
code over a finite alphabet Σ if it encodes any string x = (x1, x2, ..., xk) ∈ Σk into n
strings (buckets) of total length N over Σ, namely y1, y2, ..., yn, such that for each t-tuple
(batch) of (not necessarily distinct) indices i1, i2, ..., it ∈ [k], the entries xi1 , xi2 , ..., xit

can be retrieved by reading at most r symbols from each bucket. If Σ = Fq is a finite
field, we also use the notation (k,N, t, n, r)q to denote (k,N, t, n, r)Σ.

Definition 15. [5] We say that a (k,N, t, n, r)q batch code is linear, if every entry of
every bucket is a linear combination of the original string elements.

Definition 16. [2] A (k,N, t, n, r) multiset batch code is a (k,N, t, n, r) batch code
which also satisfies the following property: For any multiset i1, ..., it ∈ [k] there is a
partition of the buckets into t subsets S1, ..., St ⊆ [n] such that each symbol xij , j ∈ [t],
can be recovered by reading at most r symbols from each bucket in Sj .
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Definition 17. [2] A (k,N, t, n) (multiset) batch code is a (k,N, t, n, 1) (multiset)
batch code and a primitive (multiset) batch code is a (k,N, t, n) (multiset) batch code in
which each bucket contains a single symbol, that is N = n.

In the sequel, the notation [n, k, t]q will be used to denote a linear primitive multiset
batch (or PIR) code with parameters n, k and t over GF(q). The notation [n, k, t] is used
when q = 2.

Definition 18. A binary simplex code is an [n, k] code where n = 2k − 1. The columns
of the generator matrix for such a code are made up of all nonzero binary vectors of
length k.

Definition 19. [4] Let C be an [n, k, t]q batch code. It is possible to retrieve xi1 , xi2 , ..., xil

by t different users in the primitive multiset batch code model (where the symbol xil

is retrieved by the user l, l = 1, 2, ..., t, respectively) if and only if there exist t non-
intersecting sets T1, T2, ..., Tt of indices of columns in the generator matrix G, and for
each Tl, 1 ≤ l ≤ t, there exists a linear combination of columns of G indexed by that set,
which equals to the column vector eTil , for all l ∈ [t].
Here, ei denotes a vector where the element at index i is a 1 and the remaining elements
are zeros.

In a batch code request, information word elements can be represented as vectors of
length k, where each vector has a 1-value at the index of the corresponding information
word. For example, if the information word is x = (x1, x2, x3, x4), then the requests
x1 and x3 can be represented as 

1
0
0
0

 ,


0
0
1
0

 ,

respectively.

Definition 20. A binary linear [n, k] code C is called a t-functional batch code if there
exists a generator matrix G for C that can serve any request consisting of t nonzero
vectors in Fk

2.

Definition 21. A binary linear [n, k] code C is called a t-odd batch code if there exists
a generator matrix G for C that can serve any request consisting of t odd-weight vectors
in Fk

2.
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Definition 22. A binary linear [n, k] code C is called a t-PIR code if there exists a
generator matrix G for C that can serve any request consisting of t copies of a unit vector
in Fk

2.

Definition 23. A binary linear [n, k] code C is called a t-functional PIR code if there
exists a generator matrix G for C that can serve any request consisting of t copies of a
vector in Fk

2.

Definition 24. [10] Let F be a finite field. The Hamming weight of e ∈ Fn is the
number of nonzero entries in e. We denote the Hamming weight by w(e).

Definition 25. [11] A Stirling number of the second kind is the number of ways to
partition a set of n objects into k non-empty subsets and is denoted by

{
n
k

}
.

Definition 26. [10] Define the binary entropy function H : [0, 1] → [0, 1] by

H(x) = −x log2 x− (1− x) log2(1− x) ,

where H(0) = H(1) = 0.
Here, x is the crossover probability of the binary symmetric channel. The function

describes the relationship between the error probability and transmission rate of the
channel, reaching its maximum value at x = 1/2. The binary entropy function is plotted
below in Figure 1.

0 0.5 1

1

x

H(x)

Figure 1. Binary entropy function.
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Definition 27. [12] A Taylor series is a series expansion of a function about a point.
A one-dimensional Taylor series is an expansion of a real function f(x) about a point
x = a is given by

f(x) = f(a)x+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+...+

f (n)(a)

n!
(x−a)n+....

If a = 0, the expansion is known as a Maclaurin series.

Definition 28. A null matrix is a matrix whose entries are all 0.
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4 Bounds on the code length
In this section, the properties of functional batch and PIR codes are studied. Several
bounds on the length of such codes are presented .

In the general scenario of a block code, a sequence of k symbols (or bits), called an
information word, is encoded into a sequence of n symbols, n ≥ k, called a codeword.
Batch codes are block codes which allow for a batch of some t information symbols
to be simultaneously recovered, using the symbols of the codeword. Functional batch
codes are a variant of batch codes where requests consist of t linear combinations of the
information symbols. PIR codes are similar to batch codes, with the difference that a
request consists of t copies of the same information symbol, or in the case of (linear)
functional PIR codes, t equal linear combinations of information symbols.

The codes under study in this thesis are functional batch codes and functional PIR
codes. For a given k and t, it is desirable to find the lowest possible value of n, such that
any t requests can be satisfied.

An example of a functional batch code is given below.

Example 4.1 The generator matrix in Example 3.1,

G =

(
1 0 1
0 1 1

)
,

is a functional batch code with k = 2, t = 2 and n = 3. An information word
x = (x1, x2) is coded into the codeword xG = (x1, x2, x1 + x2) = (y1, y2, y3). All
possible functional batch requests for t = 2 (ignoring permutation of the requested
elements) are as follows:

• x1, x1, which can be expressed as a pair of vectors
[
1
0

]
,

[
1
0

]
, respectively,

• x1, x2, which can be expressed as
[
1
0

]
,

[
0
1

]
,

• x2, x2, which can be expressed as
[
0
1

]
,

[
0
1

]
,

• x1 + x2, x1, which can be expressed as
[
1
1

]
,

[
1
0

]
,

• x1 + x2, x2, which can be expressed as
[
1
1

]
,

[
0
1

]
, and

• x1 + x2, x1 + x2, which can be expressed as
[
1
1

]
,

[
1
1

]
.
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The element x1 can be recovered using y1 or y2 + y3, because the column corresponding
to y1 is equal to the column corresponding to x1, and so is the sum of y2 and y3,[

0
1

]
+

[
1
1

]
=

[
1
0

]
.

The element x2 can be recovered using y2 or y1 + y3. The combination x1 + x2 can be
recovered using y1 + y2 or y3. Since every request can be satisfied using two disjoint
sets of codeword elements, the functional batch requirement is fulfilled. This is also the
shortest possible functional batch code for k = 2, t = 2, because any code of length two
cannot satisfy both requests x1, x1 and x2, x2 (both rows of the generator matrix need to
contain at least two ones, but since n = 2, there is no way to achieve a 2× 2 matrix with
linearly independent rows, that meets this requirement). Since the possible functional
PIR requests for k = 2 and t = 2 are pairs of identical elements or combinations, (x1, x1),
(x2, x2) or (x1 + x2, x1 + x2), it can be seen that G is also a functional PIR code. It is
also the minimum length code for these k and t, because of the same reason as described
above in the batch case.

4.1 Asymptotic lower bounds
This section presents asymptotic results on the optimum value of n depending on a fixed
t, as k approaches infinity. Two lower bounds are presented, one for functional batch
codes and another for functional PIR codes.

The following result appears as Theorem 23 in a paper by Zhang et al. [7], but the
proof given here is slightly different.

Theorem 1. Fix some integer t > 0. Let C be a family of [n, k, t] functional batch codes,
where k and n both tend to infinity. Then

lim
k→∞

n(k) ≥ t

log2(t+ 1)
k. (1)

Proof. The number of different nonzero binary vectors of length k is 2k − 1. Since C
is a multiset functional t-batch code, the number of different requests for C is there-
fore

((
2k−1

t

))
=

(
2k+t−2

t

)
. Let G be the generator matrix of C. To satisfy a request

u1,u2, ...,ut of t nonzero vectors in Fk, we need t mutually disjoint sets T1, T2, ..., Tt of
indices of the columns in G. For each Tl, 1 ≤ l ≤ t, there exists a linear combination of
the columns indexed by that set, which is equal to ul. The remaining columns, which do
not belong to any set Tl, form a set of unused columns. Altogether, the columns of G are
divided into t+ 1 non-empty partitions, or t non-empty partitions if there are no unused
columns. The number of ways to divide the columns of G into t+1 non-empty partitions
is equal to

{
n

t+1

}
. For each such partition, the set of unused columns can be chosen in
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t + 1 ways. The number of ways to divide the columns into t non-empty partitions is{
n
t

}
. Therefore, the total number of ways to divide the columns of G, such that the result

satisfies a request in C, is (t+ 1)
{

n
t+1

}
+
{
n
t

}
.

Since C is a functional batch code, this number is larger or equal to the number of
different requests. Thus,

(t+ 1)

{
n

t+ 1

}
+

{
n

t

}
≥

(
2k + t− 2

t

)
.

By using the property m
{

n
m

}
+
{

n
m−1

}
=

{
n+1
m

}
[13, p. 264], we obtain{

n+ 1

t+ 1

}
≥

(
2k + t− 2

t

)
.

By using
(
m
v

)
≥ mv

vv
[14, p. 1186] and

{
m
v

}
≥ (v2+v+2)vm−v−1

2
− 1 [13, Theorem 3], we

obtain
((t+ 1)2 + (t+ 1) + 2)(t+ 1)n+1−(t+1)−1

2
− 1 ≥ (2k + t− 1)t

tt
.

By ignoring the small term of −1 in the left-hand side and by multiplying the inequality
by 2tt, we obtain

tt((t+ 1)2 + (t+ 1) + 2)(t+ 1)n+1−(t+1)−1 ≥ 2(2k + t− 1)t .

By simplifying further and by ignoring the small terms, we obtain an asymptotic inequal-
ity

(t+ 1)t(t+ 1)2(t+ 1)n−t−1 ≥ 2kt+1 ,

equivalently

(t+ 1)n+1 ≥ 2kt+1 .

By taking logarithm to the base 2, we obtain

(n+ 1) log2(t+ 1) ≥ kt+ 1 and thus,

n ≥ kt

log2(t+ 1)
+

1

log2(t+ 1)
− 1 .

Finally,

lim
k→∞

n ≥ kt

log2(t+ 1)
.

A similar bound can be proved for PIR codes. The following result is analogous to
Theorem 14 in the aforementioned paper by Zhang et al. [7], but the proof given here is
simpler.
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Theorem 2. Fix some integer t > 0. Let C be a family of [n, k, t] functional PIR codes,
where k and n both tend to infinity. Then

lim
k→∞

n(k) ≥ 1

H(1/t)
k. (2)

Proof. The number of possible different functional PIR requests of size t, which do not
contain nonzero vectors, is 2k − 1 . Let G be a generator matrix of C. Each request is
satisfied by some partition of the columns of G. There are n columns in G. To satisfy a
functional t-PIR request u1,u2, ...,ut consisting of t copies of a vector in Fk, we need
t mutually disjoint sets T1, T2, ..., Tt of indices of the columns in G, where Ti recovers
ui, i ∈ 1, 2, ..., t. The size of the smallest of these sets Tl, 1 ≤ l ≤ t, is at most ⌊n/t⌋. By
counting the number of different ways to divide the columns of G into sets T1, T2, ..., Tt

by the smallest Tl, 1 ≤ l ≤ t, we get
∑⌊n/t⌋

i=1

(
n
i

)
(there may be different ways of dividing

the other columns besides the smallest set, such that they satisfy the same request, but
we can just choose one of those equivalent options for each smallest set). Each partition
of columns that satisfies a t-PIR request contains one of the sets counted in the previous
sum, and C must be able to satisfy any of the possible 2k − 1 requests, therefore, the
partitions counted by

∑⌊n/t⌋
i=1

(
n
i

)
definitely cover all t-PIR requests for C. Since C is a

functional PIR code, the value of this sum is larger or equal to the number of requests,
2k − 1, therefore

⌊n/t⌋∑
i=1

(
n

i

)
≥ 2k − 1 .

By simplifying the left-hand side of the inequality using∑
m≤αn

(
n
m

)
= 2nH(α)− 1

2
logn+O(1), where 0 < α < 1/2 [11, p. 598], we get

2nH(1/t) ≥ 2k − 1 .

If we ignore the small term −1 on the right-hand side and take logarithm to the base 2,
we get

log2 2
nH(1/t) ≥ log2 2

k ,

thus

nH(1/t) ≥ k

and finally

lim
k→∞

n ≥ 1

H(1/t)
k.
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4.2 Upper bounds for simplex-based constructions
This section presents constructions for functional batch and PIR codes, based on the
simplex codes. The upper bounds on the code length are proved for these constructions,
and these bounds are analyzed along with the lower bounds presented in Section 4.1.

The simplex-based construction in the following proof is analogous to the construc-
tion of switch codes in the work of Wang et al. [6], but the construction given here is
applied for functional batch codes.

Theorem 3. For a given batch size t = 2k
′−1, there exists a family of functional batch

codes of length

n =
3t− 1

log2 t+ 1
k, (3)

for any k ∈ N divisible by k′ .

Proof. Let Gk′ be a generator matrix of an [2k
′ −1, k′] simplex code Ck′ . The matrix Gk′

consists of every non-zero binary vector in Fk′ . It has been proven that Gk′ is a 2k′−1-odd
batch code [9, Theorem 2.3].

Consider the following k′ × (2k
′ − 1 + 2k

′−1) matrix

Gt =

 Gk′

1 1 · · · 1
0 0 · · · 0
...

... · · · ...
0 0 · · · 0

.

The first 2k′ − 1 columns of G make up the sub-matrix Gk′ , and the remaining 2k
′−1

columns are vectors e1 = (1, 0, 0, ..., 0) of length k′, where the first element in every
vector is 1 and the rest are zeros.

Let us show that Gt is a 2k
′−1-functional batch code. Every even-weight vector of

length k′ can be presented as the sum of an odd-weight vector of length k′ and the vector
e1. Therefore, for every t-functional batch request, we can construct a new request by
replacing each even-weight vector ue with the odd-weight vector ue + e1 and one copy
of e1, which together add up to the original even-weight vector ue. Since ue + e1 is an
odd-weight vector, it can be recovered using the sub-matrix Gk′ . Evidently, the remaining
vector e1 can be recovered by using one column from the remaining sub-matrix on the
right. After finding recovery sets for each of the two vectors, we can add the two sets
together to obtain a recovery set for the original even-weight vector ue. Since there are
2k

′−1 vectors in the original functional batch request, the new request will consist of 2k′−1

odd-weight vectors (these vectors may also be in the form e1), which will be recovered
using G′

k, and some c copies of e1, c ∈ 0, 1, ..., 2k
′−1, which will be recovered using the

remaining sub-matrix. Therefore, Gt can satisfy any functional batch request of size
2k

′−1.
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Now consider the following dk′ × d(2k
′ − 1 + 2k

′−1), d ∈ N, matrix

Gd =


Gt 0 · · · 0
0 Gt · · · 0
...

... . . . ...
0 0 · · · Gt

,

where 0 denotes a k′ × n′ null matrix. The matrix Gd is a 2k
′−1-functional batch code of

dimension dk′ and length d(2k
′ − 1 + 2k

′−1), d ∈ N. To satisfy a request u1,u2, ...,ut,
we construct t mutually disjoint sets of columns T1, T2, ..., Tt accordingly: for the first
k′ symbols of each element u1,u2, ...,ut, we construct recovery sets T11 , T21 , ..., Tt1 ,
respectively, using mutually disjoint sets of columns from the first 2k′ − 1 + 2k

′−1

columns of Gd. This is possible because the copy of Gt located in the first k′ rows
and 2k

′ − 1 + 2k
′−1 columns is a 2k

′−1-functional batch code of length k′. The next k′

symbols will be recovered using the next 2k′ − 1 + 2k
′−1 columns of Gd, and so on until

recovery sets have been found for the last k′ symbols of each element. Then, for every
ui, i ∈ {1, 2, ..., t}, sets Ti1 , Ti2 , ..., Tid will be added together to form Ti.

Therefore, the code defined by Gd is a 2k
′−1-functional batch code.

Let the length of Gt be denoted by nt. Since t = 2k
′−1, kt = k′, and nt = 2k

′ − 1 +
2k

′−1, we can write kt = log2 t+ 1 and nt = 3t− 1. Thus, we obtain (n being the length
of Gd, and k being the dimension)

n

k
=

dnt

dkt
=

nt

kt
=

3t− 1

log2 t+ 1

and finally,

n =
3t− 1

log2 t+ 1
k.

A similar result can be proved for PIR codes.

Theorem 4. For a given request size t = 2k
′−1, there exists a family of functional PIR

codes of length

n =
2t− 1

log2 t+ 1
k, (4)

for any k ∈ N divisible by k′.

Proof. Consider the same k′ × (2k
′ − 1) matrix Gk′ as in Theorem 3. The matrix Gk′ is

a 2k′−1-functional PIR code. This is because for each column (vector) that is not equal to
the requested vector, there exists exactly one other column in Gk′ such that their sum is
equal to the requested vector. Since the pairs are one-to-one, there are exactly 2k

′−1 − 1
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such pairs, and the remaining vector is equal to the requested vector by itself, giving
2k

′−1 recovery sets for any linear combination of information word elements.
Let us construct a dk′ × d(2k

′ − 1), d ∈ N, matrix

Gd =


Gk′ 0 · · · 0
0 Gk′ · · · 0
...

... . . . ...
0 0 · · · Gk′

,

where 0 denotes a k′ × n′ null matrix. Since Gk′ is a 2k′−1-functional PIR code, any PIR
request of size 2k

′−1 (with requested vectors of length dk′) can be satisfied using Gd,
with the first k′ elements of each requested vector being recovered using the copy of Gk′

located in the first k′ rows and 2k
′ − 1 columns of Gd, and so on, similarly to the proof

of Theorem 3.
Let the length of Gk′ be denoted by n′. Since t = 2k

′−1 and n′ = 2k
′−1, we can write

k′ = log2 t+ 1 and n′ = 2t− 1. Thus, we obtain

n

k
=

dn′

dk′ =
n′

k′ =
2t− 1

log2 t+ 1
=

2t− 1

log2 t+ 1

and finally,

n =
2t− 1

log2 t+ 1
k.

From Theorem 3, we see that the bound (3) on functional batch code length holds for
the construction based on the simplex codes. Also, according to Theorem 1, the bound
(1) holds for any linear batch code. Thus, we obtain that the optimum value of n satisfies

t

log2(t+ 1)
k ≤ n ≤ 3t− 1

log2 t+ 1
k.

By ignoring small constants, we obtain that:

t

log2 t
k ≤ n ≤ 3t

log2 t
k. (5)

Thus, we can see that the simplex-based codes satisfy n(k) = Θ( t
log2 t

k). Therefore, the
bound in Theorem 1 is asymptotically tight.

It can also be shown that for large values of t, the bounds (1) and (2) in Theorem
1 and Theorem 2, respectively, are very close to each other. From the definition of the
binary entropy function,
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H(x) = −x log2 x− (1− x) log2(1− x) .

For small values of x, the value of (1− x) is approximately 1. The Maclaurin series (see
Definition 27) of log2(1− x) is

log2(1− x) = −x− x2

2
− x3

3
− ... ,

and thus, the value of −(1 − x) log2(1 − x) for small values of x is approximately x.
Thus, H(x) ≈ −x log2 x + x. In this expression, the dominant term is −x log2 x. In
Theorem 2, x = 1

t
, which means that x is small when t is large. Thus, for large values of

t, it holds that

H(1/t) ≈ −1

t
log2

1

t
= −1

t
log2 t

−1 =
log2 t

t
.

From this, we obtain that:

1

H(1/t)
k ≈ 1

log2 t
t

k =
t

log2 t
k ,

which is very close to the result in Theorem 1, if the small value 1 in log2(t + 1) is
ignored.

By using this knowledge, a similar result as (5) can be shown for the simplex-based
functional PIR codes. From Theorem 4, it is seen that the bound (4) holds for the
construction based on the simplex codes. According to Theorem 2 and the previously
shown estimate for 1

H(1/t)
k, the bound

lim
k→∞

n ≥ t

log2 t
k,

holds for large values of t. Thus, (for large values of t) we obtain that the optimum value
of n satisfies

t

log2 t
k ≤ n ≤ 2t− 1

log2 t+ 1
k.

By ignoring small constants, we obtain that:

t

log2 t
k ≤ n ≤ 2t

log2 t
k.

Therefore, the functional PIR code length of the simplex-based codes satisfies
n(k) = Θ( t

log2 t
k) for the functional PIR case, which shows that the bound (2) in

Theorem 2 is also asymptotically tight.
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5 Experimental results
This section presents computer search algorithms for finding the smallest functional
batch and PIR code lengths for a given request size and code dimension. The algorithms
are applied to small values of these parameters and the results are compared with the
values given by the bounds from Section 4.

5.1 Algorithms for the computer search of codes
This section describes the algorithms used in searching for the smallest functional batch
and functional PIR code length for given values of k and t.

Algorithm 1: Check if a functional batch (PIR) code exists for a given k, n and t

Input: typeinteger k, typeinteger n, typeinteger t

Result: typeBoolean exists

1 matrices = generate matrices size k × n;

2 for matrix in matrices do

3 if matrix has at least t ones in each row then

4 if matrix satisfies all size t requests then

5 return True;

6 return False;

Algorithm 1 checks all possible matrices of a given size k × n until it finds one that
corresponds to a t-functional batch (PIR) code, meaning that it can satisfy all t-functional
batch (PIR) requests.

The following list further explains parts of this algorithm:

1. Line 1 describes generating binary matrices of size k×n. This is done by generating
non-zero vectors of length k and taking combinations of size n from those vectors
(not accounting for permutations). To check only systematic matrices, a different
function can be used which first generates the systematic portion of size k × k
and then generates all remaining different sub-matrices for the remaining n− k
columns.

2. Line 3 describes a function that checks whether the matrix given as the argument
has at least one 1 in each row. Any matrices that do not meet this requirement are
skipped, because it is impossible for such matrices to satisfy a functional batch
(PIR) code request where every requested vector contains a 1 at the same index.

20



3. Line 4 describes a function which checks whether every t-functional batch (PIR)
request can be satisfied using the given matrix. The algorithm for this is shown
below in Algorithm 2.

Algorithm 2: Check if a matrix satisfies every t-functional batch (PIR) request
Input: typearray matrix, typeinteger t

Result: typeBoolean satisfies

1 requests = generate requests length k (determined by the input matrix), size t;

2 for request in requests do

3 if matrix does not satisfy request then

4 return False;

5 return True;

Algorithm 2 checks whether a given matrix can satisfy all different t-functional batch
(PIR) requests by generating all different requests and searching for recovery sets for
each request.

The following list further explains parts of the algorithm:

1. Line 1 describes a function that returns an array of all different functional batch
requests of size t by generating binary vectors of length k and taking combinations
of size t (not accounting for permutations). To check whether a matrix corresponds
to a functional PIR code, a different function can be used which returns arrays
comprising t copies of the same binary vector, for all different binary vectors of
length k.

2. Line 3 describes a function that checks whether the given request can be recovered
using t disjoint sets of the columns of the matrix. The algorithm for this is described
below in Algorithm 3.

Algorithm 3 is used to check if a given matrix can satisfy a given request by finding t
disjoint subsets of the columns of the matrix, each recovering one of the request elements.
The function starts with the first element of the request, finds all possible recovery sets
for that column, then for each of those possible recovery sets, finds all possible recovery
sets for the second column using the remaining columns, and so on (going through
the outermost for-cycle for each request element) until all request elements have been
covered.
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Algorithm 3: Check if the given matrix satisfies the given request
Input: typearray matrix, typearray request

Result: typeBoolean canRecover

1 partialAnswers = [[emptyArray, allMatrixIndexesArray ]];

2 for element in request do

3 initialize empty array updatedPartialAnswers;

4 for partialAnswer in partialAnswers do

5 construct submatrix from unused columns;

6 recSetsForIthCol = find recovery sets for the i-th column;

7 for recSet in recSetsForIthCol do

8 convert indexes of recSet to original matrix indexes;

9 identify remaining indexes after removing recSet indexes;

10 add the newly found partial answer to updatedPartialAnswers;

11 if updatedPartialAnswers is empty then

12 return False;

13 partialAnswers = updatedPartialAnswers;

14 if at least one set of recovery sets has been found then

15 return True;

16 return False;

The following list further explains parts of Algorithm 3:

1. Line 5 describes a function that removes already used columns from the matrix
before searching for recovery sets for the new element, to ensure that the recovery
sets for all elements will be disjoint. To do that, it uses an array of usable indexes
(in the beginning this means all column indexes) which correspond to the columns
of the original given matrix.

2. Line 6 describes a function that finds all different recovery sets for the i-th el-
ement of the request, using the sub-matrix that was left over after determining
recovery sets for the previous request elements. This is described further below in
Algorithm 4.
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3. Line 8 describes a function that converts the indexes of the columns of the sub-
matrix (the indexes corresponding to the newly found recovery set) to the indexes
that those same columns had in the original matrix.

4. Line 9 describes a function that removes the indexes of the newly found recovery
set (for the i-th column) from the list of usable column indexes, so that they will
not be used for constructing recovery sets for the next element in the request.

5. Line 10 describes adding the updated partial collection of recovery sets to the
list of such partial answers already found. It includes the array of recovery sets
for columns up to the i-th column, along with an array of the remaining unused
column indexes.

Algorithm 4: Find all different recovery sets for given vector
Input: typearray targetElement, typeinteger currentIndex, typearray

allColumns, typearray chosenIndexes, typearray foundRecSets

Result: typearray allRecSets

1 if currentIndex > length of allColumns then

2 return empty array;

3 initialize empty array chosenColumns;

4 add elements of allColumns at chosenIndexes to chosenColumns;

5 if sum of chosenColumns is equal to targetElement then

6 return foundRecSets + [chosenIndexes ]

7 else

8 return (recursive call with currentIndex increased and next column added to

chosenIndexes) + (recursive call with currentIndex increased and next

column skipped from chosenIndexes)

Algorithm 4 recursively searches for recovery sets among the given columns for the
given request element. It returns an array containing all of the recovery sets it found for
the element.
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5.2 Numerical results
This section presents the actual minimal code lengths for small values of the code
parameters. The minimal length values were found by exhaustive computer search, using
the algorithms described in Section 5.1. The results are compared with the theoretical
bounds proved in Section 4.

5.2.1 Functional batch codes

Table 1. Actual smallest length of a functional batch code vs. the value given by the
bounds, for various small values of t and k.

k t = 2 t = 3 t = 4 t = 5

2 3 ; 2.52; 5 5 ; 3.0 6 ; 3.45 8 ; 3.87
3 5 ; 3.79 6 ; 4.5 7 ; 5.17 ; 11 10 ; 5.80
4 6 ; 5.05 ; 10 8 ; 6.0 ... ...
5 8 ; 6.31 10 ; 7.5 ... ...
6 9 ; 7.57 ; 15 ... ... ...

Table 1 shows a side-by-side comparison of the actual smallest length of the functional
batch code for a given t and k, alongside the value given by the lower bound described
in Theorem 1 (along with the value from the upper bound for some parameter values).
Each cell contains two (or three) values, separated by a semicolon. The value on the
left is the minimal length for a t-functional batch code of dimension k found using the
algorithms described in Section 5.1. The values in bold font are the values given by the
bound in Theorem 3, for suitable code lengths. The value on the right (excluding the
bold numbers) is the value of the lower bound for the corresponding t and k.

5.2.2 Functional PIR codes

Table 2 shows a side-by-side comparison of the actual smallest length of the functional
PIR code for a given t and k, alongside the value given by the lower bound described in
Theorem 2 (along with the value from the upper bound for some parameter values). Each
cell contains two (or three) values, separated by a semicolon. The value on the left is the
minimal length for a t-functional PIR code of dimension k found using the algorithms
described in Section 5.1. The values in bold font are given by the bound in Theorem
4, for suitable code lengths. The value on the right (excluding the bold numbers) is the
value of the lower bound for the corresponding t and k.

24



Table 2. Actual smallest length of a functional PIR code vs. the value given by the
bounds, for various small values of t and k.

k t = 2 t = 3 t = 4 t = 5

2 3 ; 2.0 ; 3 5 ; 2.18 6 ; 2.47 8 ; 2.77
3 4 ; 3.0 6 ; 3.27 7 ; 3.70 ; 7 10 ; 4.16
4 5 ; 4.0 ; 6 8 ; 4.36 9 ; 4.93 11 ; 5.54
5 6 ; 5.0 10 ; 5.44 ... ...
6 7 ; 6.0 ; 9 ... ... ...

From the comparison tables, it can be seen that the values of the lower bounds increase
fairly similarly to the actual minimal lengths, while staying below the actual value. That
being said, the lower bound values are not expected to be particularly accurate for such
small values of k, because the bounds are asymptotic, with k approaching infinity.
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6 Conclusion
In this thesis, functional batch and functional PIR codes were studied, in particular
the relation between the code dimension, the request size and the code length was
investigated. Two asymptotic lower bounds on the code length for a fixed request size
were presented. Two upper bounds for the constructions based on the simplex codes
were proved. Analysis of the bounds showed that the lower bounds are asymptotically
tight and that they are very close to the corresponding upper bounds. The theoretical
bounds were compared with the actual values of the minimum code length for small
parameter values, using computer search algorithms. The comparison showed that the
actual lengths behaved similarly to the bounds.

Future work could include improving the search algorithms for finding actual min-
imum code lengths for larger parameter values, for example, by applying the batch
code and PIR code searching algorithms in the thesis of Simisker [15] to the functional
scenario. The multiplicative constants in the bounds can probably be improved upon,
which would result in an even tighter bound. Another question is whether there are other
constructions of optimal or near-optimal codes that are not related to the simplex codes.
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