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Abstract:
First high-quality machine translation models were mainly focusing on large lan-

guages, such as English and German. Thankfully, the trend has been growing toward
helping languages with fewer resources. Most Finno-Ugric languages are low-resource
and require the help of different techniques and larger languages for additional infor-
mation during translation. Recently, multiple big companies have released multilingual
pre-trained neural machine translation models that can be adapted to low-resource lan-
guages. However, some of the Finno-Ugric languages included in our work were not
included in the training of these pre-trained models. Thus, we need to use cross-lingual
transfer for fine-tuning the models to our selected languages. In addition, we do data
augmentation by back-translation to alleviate the data scarcity issue of low-resource
languages. We train multiple different models to determine the best setting for our
selected languages and improve over previous results for all language pairs. As a result,
we deploy the best model and create the first multilingual NMT system for multiple
low-resource Finno-Ugric languages.

Keywords:
neural networks, automatic learning, machine translation, language technology, transfer
learning

CERCS: P176 Artificial Intelligence

Väheste ressurssidega soome-ugri keelte neuromasintõlge keeltevahe-
lise siirdeõppe abil
Lühikokkuvõte:

Esimesed kvaliteetsed masintõlke mudelid treeniti enamasti suurte keelte peal nagu
inglise või saksa keel. Hiljutine suundumus on aga arendada ka väikeste ressurssidega
keeltele head masintõlget. Enamik soome-ugri keeltest on just nimelt väheste ressursside-
ga ning vajavad masintõlke treenimiseks erinevaid tehnikaid ning suurte keelte andmeid,
millelt tõlkeprotsessis kasulikku infot saada. Selles töös kasutame mitmekeelseid eeltree-
nitud masintõlke mudeleid, mida saab peenhäälestada soovitud keeltele. Suur osa siin
töös osalevatest soome-ugri keeltest ei kaasatud eeltreenitud mudelite treenimisprotsessi,
nii et peame kasutama keeltevahelist siirdeõpet. Lisaks sünteesime andmeid juurde ta-
gasitõlkimise abil, et leevendada andmevähesuse probleemi, mis väheste ressurssidega
keeltega kaasneb. Me treenime mitmeid mudeleid erineva seadistusega, et saada teada,
mis situatsioon valitud soome-ugri keeltele sobib. Näitame, et parandame tulemust kõi-
kidel väikeste soome-ugri keelepaaridel ning mitme soome-ugri keele jaoks avaldame
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nende esimese närvivõrkudel põhineva masintõlke mudeli.

Võtmesõnad:
tehisnärvivõrgud, tehisõpe, raaltõlge, keeletehnoloogia, siirdeõpe

CERCS: P176 Tehisintellekt
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1 Introduction
Neural machine translation has been making leaps in quality in recent years. Multiple
publicly available models are exceeding the human level for a selection of large languages.
However, for languages with fewer speakers and fewer resources, the quality is still
lacking or they are not even included in the training of these large machine translation
models (Fan et al., 2021; NLLB Team et al., 2022).

The smaller languages have a low amount of resources available for training a neural
machine translation (NMT) network. NMT, however, needs a lot of sample sentence
pairs of a language pair to be able to learn a good representation of it. This is why a lot
of very small languages are not included in the training process.

High-resource languages are often leveraged to help low-resource languages achieve
a reasonable translation quality because languages all share some parameters in sentence
structure, orthography, and lexical attributes. It has been shown that using related high-
resource languages can cause an even bigger positive effect on the quality of low-resource
translation (Gu et al., 2018). The patterns that have been learned from huge amounts of
high-resource language data can be transferred in part onto languages that have smaller
amounts of data available for training. This phenomenon is one of the reasons why
nowadays most models are multilingual, with languages sharing the parameters of the
model.

In our work, we make use of large multilingual pre-trained machine translation
models, that have been trained by large companies, specifically the M2M-100 models
from Facebook AI (Meta AI). We continue training the models on our selected low-
resource languages from the Finno-Ugric language family. Our work builds on the
previous effort to train a translation system between Estonian (et), Finnish (fi), Võro
(vro), North Sami (sme), and South Sami (sma) (Tars et al., 2021). In this work, we
acquire data for four new low-resource Finno-Ugric languages: Inari Sami (smn), Lule
Sami (smj), Skolt Sami (sms), and Livonian (liv). All in all, we are working with 7
low-resource Finno-Ugric languages and 5 high-resource languages: Estonian, Finnish,
Latvian (lv), Norwegian (no), and English (en). Some of the high-resource languages
are in the same language family while others are either geographically close to the areas
where the low-resource languages are spoken or just have available parallel data paired
with one of the low-resource languages.

All of the low-resource languages mentioned were not included in the original
training of the M2M-100 models. We perform cross-lingual transfer learning in order to
leverage information from large languages. Additionally, we produce synthetic data from
monolingual data by back-translation and include that in our experiments to boost the
performance. As M2M-100 is a resource-consuming system to fine-tune, we explore the
capabilities of two different-sized versions of the model to find out whether the capacity
of the smaller model is enough or the larger version is still needed to learn a better
representation.
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The main contributions of this work are the following:

1. Gathering data and creating a new benchmark for most of the low-resource Finno-
Ugric languages.

2. Showing how to do cross-lingual transfer to unseen Finno-Ugric languages on the
pre-trained M2M-100 models.

3. Analysis of the best data and model size scenarios for the selected Finno-Ugric
languages.

4. Reporting state-of-the-art neural machine translation results for all of the low-
resource Finno-Ugric languages on multiple benchmarks.

5. Publishing the first NMT system1 for multiple low-resource Finno-Ugric language
pairs included in our work.

The following work is based on two previously published articles. In Tars et al.
(2022b), we explain how to do cross-lingual transfer on the M2M-100 model to low-
resource Finno-Ugric languages, as well as perform model size comparison and find out
which dataset settings are the most suitable for our selected low-resource languages. In
Tars et al. (2022a), we perform back-translation iterations but in our experiments, we
mainly focus on Livonian because the paper was a part of the WMT22 General Machine
Translation task Kocmi et al. (2022) where English-Livonian language pair was one of
the focus points.

In Section 2 we give some background and explain some terminology. In Section
3 we mention important publications that are related to our current work. Section 4
describes the data, the gathering, and pre-processing steps. Section 5 gives an overview
of our used methods. Sections 6 and 7 describe the experiment setups and analyze the
quality and results of our trained models.

1https://neurotolge.ee/
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Figure 1. Map of low-resource Finno-Ugric languages included in our work: Võro (vro),
Livonian (liv), North Sami (sme), South Sami (sma), Inari Sami (smn), Lule Sami (smj),
Skolt Sami (sms).

2 Background

2.1 Finno-Ugric Languages and Low-resource Setting
The Finno-Ugric language family is small compared to other language families. About
23-25 million people speak Finno-Ugric languages in the world, with Hungarian, Finnish,
and Estonian making up the majority of the speakers. The number of speakers of a
language does not necessarily correspond to the amount of available data resources. For
example, according to the OPUS corpora (Tiedemann, 2012) English-Estonian has twice
as much public translation data as English-Hindi, while Hindi has ~425 million speakers2

and Estonian has only ~900 000 speakers3. There are however dozens of more minor
languages in the Finno-Ugric language family that do not get enough attention when it
comes to advancing language technology.

Digital material which is needed to develop natural language processing (NLP)
applications is fairly scarce for minor languages compared to the high-resource languages
mentioned before. Some of the languages do not have a unified orthography among
all the different dialects spoken inside the language which makes it difficult to gather
a normalized corpus and train for all the uncommon symbols that might be present in
the data. In this work, we attempt multiple techniques frequently used in low-resource

2https://www.britannica.com/topic/Hindi-language
3https://andmed.stat.ee/en/stat
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settings, countering the lack of parallel data between language pairs.
The low-resource languages that are present in the experiments of this work are the

following: Võro (vro), Livonian (liv), North Sami (sme), South Sami (sma), Inari Sami
(smn), Lule Sami (smj), Skolt Sami (sms) (see Figure 1). In addition to Finno-Ugric
languages, we include multiple other high-resource languages in the training process such
as Latvian, Norwegian, and English. The reasons for adding an unrelated high-resource
language differ for each of them but overall the main factor is the existence of parallel
data between one of the mentioned high-resource languages and a low-resource Finno-
Ugric language. Latvian has parallel data with Livonian because Livonian was mainly
spoken in the areas of modern-day Latvia. Similarly, Norwegian has parallel data with a
number of Sami languages, because Sami languages are spoken in Norwegian territories.
The public parallel data usually consists of either news or legislation documents to help
native low-resource language speakers stay informed about the country they are living in.
Latvian and Norwegian have also influenced the low-resource Finno-Ugric languages
grammatically as well as introducing new, more modern words and phrases into the
languages.

2.2 Transformers
The dominant architecture across NLP tasks at the moment is the Transformer (Vaswani
et al., 2017) (see Figure 2). This is also the case for the neural machine translation task.
Transformer is a neural network model consisting of multiple encoder-decoder layers.
It takes a sequence of tokens as an input and outputs a transformed sequence of tokens.
The mechanism called self-attention is the property that makes Transformers so efficient
and prevalent across different tasks.

Attention in the context of sequence-to-sequence tasks means learning which input
tokens should focus on which output tokens during translation. Self-attention takes
attention to another dimension. Here we learn to predict which tokens of the sequence
should focus on which other tokens in the same sequence, hence the "self" part. Self-
attention also reduces the problem of processing long sequences that in the past have been
avoided because of the use of recurrent neural networks that required the information to
flow linearly through the sequence.

The Transformer architecture allows the model to work in a much more parallelized
fashion, compared to recurrent or convolutional networks, with multi-head attention
compartments computing different attention representations at the same time. Since
self-attention is a process with quadratic complexity, we benefit greatly if the layered
computations of self-attention can be done in parallel, reducing the total time of training
significantly compared to if we performed the computations in a linear fashion.
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Figure 2. Transformer architecture (Vaswani et al., 2017).

2.3 Multilingual Neural Machine Translation
Multilingual neural machine translation (MNMT) is a method of automatic translation
where the translation system can translate between either 1) one source language and
multiple target languages, 2) multiple source languages and one target language, or 3)
multiple source languages and multiple target languages. With the rise of neural networks
in the machine learning world, the most efficient way of deploying real-world models
is to train one multilingual model that can cover multiple language pairs. Instead of
training one model for each language pair or translation direction, which might have
gotten the best result at some point with recurrent networks, with MNMT we train only
one model. Overall it proves to be more cost-efficient and Transformer models also yield
better translation quality utilizing the power of transfer learning between languages.

2.4 Byte-pair Encoding
Before the sentence pairs of training data are ready to be input into the model, we
tokenize them using the byte-pair encoding (BPE) algorithm (Gage, 1994; Sennrich et al.,
2016b). Tokenization is necessary, because languages have an infinite vocabulary, but
NMT models need a finite vocabulary, and the smaller the vocabulary the more efficient
the model is. We could add all the words from the training set into the vocabulary but
then the vocabulary would be very large and some of the words that come up during test
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time might not be present in the vocabulary. A better idea is to divide words into smaller
pieces and compile the vocabulary out of those word pieces which can be glued together
by the model at test time to produce the output.

The BPE algorithm divides words into characters and iteratively merges the most
frequent character combinations together until the vocabulary reaches a pre-determined
capacity of character combinations. The idea behind it is that very common words will
be intact in the final vocabulary, but infrequent words can be combined from frequent
subword pieces that occurred in the split training data. After the creation of the vocabulary,
the training data can be tokenized according to the available subword pieces existing in
the final vocabulary.

2.5 Cross-lingual Transfer Learning
In transfer learning (Olivas et al., 2009), the information learned during one task can be
transferred to another task or domain. It is common, that the tasks are somewhat related
to each other but it is not a strict requirement. In the process of transfer learning, the
weights of the original model are tuned to the new task at hand while some of the weights
that are deemed useful during training remain the same. If there was already a suitable
model available, then this technique could reduce training time greatly for producing a
model for the new task.

In this work, we utilize cross-lingual transfer learning. Cross-lingual transfer learning
is a special case of transfer learning in NLP, where the original model has not seen the
language(s) during training time, so it is seeing the new language data during the transfer
learning for the first time. We take publicly available pre-trained multilingual translation
models and introduce them to the multiple low-resource Finno-Ugric languages that were
not present in the training process of the pre-trained models.

2.6 Back-translation
Low-resource language pairs by definition have significantly lower amounts of parallel
training data than high-resource language pairs. However, low-resource languages
often have available monolingual data, meaning just sentences in one language. These
kinds of sources can be used for augmenting the parallel data with a method called
back-translation (Sennrich et al., 2016a). There are multiple ways and scenarios for
performing back-translation. In our case, we need a pre-trained machine translation
model which has been tuned to small amounts of parallel data from the low-resource
language pairs. Then we translate the monolingual data into languages that we wish
would have more parallel data. After the translation process, we switch the source and
target languages in the pair and add the produced translation samples to the original
training data. The switch is what gives it the name "back-translation". It is more helpful
if the clean and mostly correct original monolingual data is on the decoder side. This
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enables the decoder to learn on clean data and thus learn to predict clean and correct
sentences. The synthetic sentences produced during the back-translation process are
oftentimes faulty to various degrees, depending on the amount of parallel data that the
original model was trained on. This means that the encoder could learn to be more robust
across input sentences if it sees some noise among the data but the decoder still tries to
predict correct sentences.

2.7 Automatic Evaluation Metrics
There are multiple different automatic evaluation metrics to determine the quality of
machine translation models. The most used in the literature for machine translation
has been the BLEU (bilingual evaluation understudy) metric (Papineni et al., 2002)
which compares the reference translation (human translation) to the translation produced
by a model. The score is put together by comparing word n-grams (different length
consecutive word sequences) of these two sentences and seeing how many of them match
each other. During the years that BLEU has been dominant, researchers have noticed
multiple shortcomings with the metric, especially when it comes to morphologically rich
languages that Finno-Ugric languages definitely are. This is why just recently it has been
recommended to take other metrics next to BLEU and not give too much importance
to only one score. chrF (character n-gram F-score) is a metric designed with keeping
morphologically rich languages in mind and it has been shown to have better correlation
with human evaluations than BLEU (Popović, 2015, 2016, 2017). The main difference
from the BLEU metric is that instead of comparing word n-grams between the reference
and the model’s translation, the metric compares character n-grams. In this work, we
report results on BLEU and a variation of chrF (chrF++ – adds word n-grams to the
calculation of the score).

2.8 Pre-trained Models and M2M-100
We utilize pre-trained multilingual neural machine translation models in all of our
experiments. They are usually trained by big corporations (Google, Meta) that have
access to a lot of computing resources and training data. As a result of the companies
publishing these models and providing measures to repurpose the trained models for
many different tasks, for a good machine translation model, one just needs to fine-tune the
model to their desired dataset. This saves on computational costs and enables everyone
to help advance machine translation and other language technology tools.

In this work, we use the M2M-100 model (Fan et al., 2021) pre-trained by Meta AI
(see Figure 3). The architecture is based on the Transformer (Vaswani et al., 2017) with
size modifications. M2M-100 main aim is to lose the English-centric bias in multilingual
models. For creating a good non-English-centric multilingual model, a larger, more
diverse dataset and a larger model are needed. They first create an efficient data mining
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Figure 3. M2M-100 proposed architecture (Fan et al., 2021). The published pre-trained
models that we use as starting points did not use language-specific layers.

method to conquer the dataset challenge of collecting sentence pairs between all of
the 100 languages included in the model. Afterward, back-translation is also used as a
standard technique to augment the data.

In order to learn the information provided by the new, 7.5 billion sentence big corpora
mined, the model size also needs to increase. Here the creators of the model employ
different techniques such as scaling the number of parameters and training the model
by re-routing separated language-group-specific parameters. They publish models that
are great baseline models for fine-tuning with a small amount of data because there is so
much pre-existing knowledge already encoded into the parameters. Multiple language
pairs can therefore achieve higher translation quality while spending less computational
resources. The published models that we use in our experiments, however, do not use
any language-specific layers.

The M2M-100 improves on multiple non-English translation directions, but the
model itself is quite large compared to training a bilingual model or a multilingual model
with a couple of languages. Fine-tuning it requires memory capacity to upload it to
the training environment as well as updating the hundreds of millions of parameters.
Another issue is the size of the vocabulary. To cover all 100 languages the vocabulary
is relatively huge compared to smaller multilingual models containing about ~128 000
tokens (usually ~32 000 tokens for bilingual models), which also increases the training
time. For our scenario, we are only interested in Finno-Ugric languages plus a couple
of other high-resource languages. Thus, a large part of the vocabulary is unused in our
case, for example, everything outside of the Latin alphabet is mostly unused (Arabic,
Chinese).
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3 Related Work

3.1 Low-resource Machine Translation
The authors of Gu et al. (2018) explore multilingual translation from multiple source
languages into English. They propose new modules to the usual multilingual NMT
approach of just sharing the encoder between multiple languages. One of the additional
components is Universal Lexical Representation designed to help semantically similar
tokens become closer to each other in the embedding space. Another added part is using
Mixture of Language Experts (MoE) modules for high-resource languages to weigh each
of their contributions to the translation at a certain time. In their experiments, they also
experiment with different sets of high-resource languages added to the multilingual model
and conclude that related high-resource languages are able to give more knowledge to the
low-resource language translation process than unrelated ones. Overall, their methods
offer a maximum 5 BLEU point increase from the usual multilingual NMT model in the
low-resource English-Romanian setting.

In Sennrich and Zhang (2019), the authors try to find the best conditions for training
an NMT model for a low-resource language pair in a bilingual setting. In the process,
they also prove that with the right approach, the NMT model outperforms a phrase-based
statistical machine translation model. One interesting finding during their experiments
was that for low-resource settings, smaller training data batches are better, although the
tendency in NMT training is to use as big of a batch size as can be used. It is also worth
noting that they use Korean-English as a low-resource language although it has 90 000
parallel sentences whereas our datasets have multiple language pairs with less than 1000
training samples.

The experiments performed by Kocmi and Bojar (2018) are one of the most similar
to the transfer learning approach that we use in this work. They train a bilingual model
on a high-resource language pair and then train that model further to a low-resource
language pair, with the vocabulary shared across both language pairs. We, however, are
working with multilingual models, handling multiple language pairs at once, but also
sharing the vocabulary between all of the language pairs. Interestingly they find that
even non-related high-resource language pair helps to get better quality in this approach,
which is somewhat in conflict with the claims made by Gu et al. (2018). They also
include Estonian in their experiments as a low-resource language with 800 000 sentence
pairs in the English-Estonian pair.

In Goyal et al. (2020), they experiment with Indian low-resource languages, utilizing
multilingual transfer learning, as well as Unified Transliteration and subword segmenta-
tion (BPE algorithm that is also used in our work). Transfer learning here can happen
from a related high- or low-resource language. Unified Transliteration involves unifying
the orthographies of related languages. The combination of the methods described, gives
them an average of 5 BLEU point gain over all the Indian-English language pairs, which
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they consider a notable achievement.
In addition to multiple papers working on improving low-resource language ma-

chine translation, the topic has become more and more popular with multiple surveys
emerging about the task (Haddow et al., 2022; Wang et al., 2021). The surveys mention
using premade language models by leveraging data from high-resource languages, back-
translation through utilizing larger amounts of monolingual data, as well as multiple
forms of transfer learning. All of these methods are also in effect in our work.

3.2 Machine Translation for Finno-Ugric Languages
Earlier efforts of machine translation models were mainly bilingual. Some of the low-
resource languages in our work have also been trained in this setting, most of them
by ourselves in our previous work (Tars et al., 2021). There have also been models
for single language pairs such as a translation system developed by Giellatekno at The
Arctic University of Norway (UiT), translating between North, Inari, and Lule Sami4.
For the Livonian language, Rikters et al. (2022) analyzed different settings to train
Livonian in, comparing multilingual model where high-resource languages are Estonian,
Latvian, and English to bilingual baseline models. The Livonian dataset that was created
in the previously mentioned paper was also a part of the 2022 edition of the WMT
competition (Kocmi et al., 2022). During the competition, multiple teams of machine
translation developers submitted their best system for English-Livonian translation. Our
system placed first in the Livonian-English direction and second in the opposite direction
according to automatic metrics (COMET and chrF) on the WMT22 official test set (Tars
et al., 2022a). Human evaluation results for Livonian-English placed us first, sharing the
top place with four other systems. In the English-Livonian direction, we shared third
place with another system.

In Kocmi and Bojar (2018), one of the low-resource languages is Estonian and they
show multiple times that during transfer learning, the high-resource model does not
need to be trained on a related language pair to the low-resource language pair, with
English-Czech having more impact on English-Estonian than when English-Finnish is
the parent model.

Rikters et al. (2018) include Estonian in their experiments as a low-resource language
and also consider the aspects of NMT training with a morphologically rich language like
Estonian and all of the Finno-Ugric languages. In their analysis, they note that comparing
different NMT architectures, low-resource language pairs have more to gain when being
trained on a Transformer-style model and in a multilingual setting.

4https://gtweb.uit.no/mt
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3.3 Cross-lingual Transfer Learning
Transfer learning has been shown to be beneficial in low-resource settings, with Zoph
et al. (2016) being one of the first to employ the technique of transferring knowledge
from high-resource to low-resource languages in the pre-Transformer era. Their method
is to train a bilingual model on a high-resource language pair, then freeze some of the
parameters of the trained model and continue to tune others on a low-resource language
pair. The authors reason that transfer learning gets its advantage from having a strong
bilingual base model prior to fine-tuning some of the parameters on a smaller dataset.
Building on the work of Zoph et al. (2016), the authors in Nguyen and Chiang (2017)
replace the high-resource language pair with a related low-resource language pair and
share the vocabulary between the language pairs under question. They mark that since
the language pairs are related, they share similar language attributes and similar word
pieces in their vocabulary which can be exploited during the transfer learning.

The closest to our experiment is a work by Kim et al. (2019), where they employ a
pre-trained NMT model to perform transfer learning to a low-resource language that did
not share the vocabulary with the pre-trained model. They solve the vocabulary mismatch
by learning a word-embedding mapping between the pre-trained model embeddings and
the embeddings learned from the monolingual data of the new language. Then they
replace the embeddings of the pre-trained model with the newly learned ones. However,
they utilize techniques such as inserting noise into data and producing synthetic parallel
data without back-translation which are out of the scope of our work.

3.4 Pre-trained Machine Translation Models
Multilingual pre-trained models that have a hundred or more languages are trained by
big corporations like Google or Meta. One of these earlier examples is a work done by
Google where they trained an English-centric multilingual model with 102 languages.
In their experiments, they notice that a setting with 58 and more languages is especially
beneficial to low-resource language pairs (Aharoni et al., 2019). Following this work,
Zhang et al. (2020) notice that for some language pairs bilingual models still outperform
the multilingual model and go on to suggest solutions for this issue. They mainly see the
cause of poor performance in the capacity of the multilingual model itself and suggest a
deeper Transformer architecture as a fix which in turn benefits the low-resource language
pairs in the model.

Since the year 2020, there has been a steady trend of training more and more massive
multilingual pre-trained machine translation models which are then made available to the
public for free usage. One of the models that started this trend is the M2M-100 model
developed by Facebook AI (Meta AI). M2M-100 aims to move away from English-
centric models, including 100 languages and all of the translation directions between
them (9900 translation directions). One of the main contributions of this work is creating
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a large dataset between non-English-centric language pairs having 7.5 billion sentences
in the end. As the number of data samples increases, the capacity of the model also has
to grow. They propose scaling techniques and language-specific modules that interact
with each other during training. In the end, they release multiple different versions of
their models that get more than 10 BLEU points better scores than an English-centric
baseline for non-English-centric language pairs (Fan et al., 2021).

After the M2M-100, Google published their work modifying the T5 model into a
multilingual text-to-text transfer Transformer (mT5) for 101 languages. This model,
however, is not trained specifically for the machine translation task, but rather for all the
tasks where one is required to generate text conditioned on some input text (Xue et al.,
2021).

As a follow-up to the M2M-100 project, Meta AI released their NLLB (No Language
Left Behind) model (NLLB Team et al., 2022) in 2022, scaling up to 200 languages.
Though this model has twice as many languages, it still lacks any of the low-resource
Finno-Ugric languages that we work with. They enhance their data-mining techniques
to successfully gather data for all the translation directions between 200 languages as
well as develop a more intricate Mixture of Language Experts system to make up for the
increase of training data when trying to maintain the same model capacity. In our work,
we use M2M-100 because NLLB is quite recent and the released pre-trained models have
somewhat more parameters which requires longer training time and more resources.

3.5 Back-translation for Low-resource Setting
The authors in Sennrich et al. (2016a) try utilizing monolingual data in the target side of
the parallel data during training for NMT models. To fill the source side they have two
strategies: using a dummy sentence or using a synthetic sentence produced by some base
translation model. In their experiments, they realize that the synthetic translation is more
of a benefit when the encoder receives that instead of a more primitive dummy sentence.

Following this work, Hoang et al. (2018) demonstrate that the quality of the base
model which is used to produce the synthetic source sentences matters to the final
translation quality of the model trained on parallel data that includes back-translation
data. In addition, they introduce the idea of iterative back-translation. The reasoning
behind this is that if the synthetic data paired with the monolingual target data makes the
models better, then the developed model will be better at producing the synthetic side
another time around. They show that they see gains with only 1 or 2 additional iterations,
especially in the low-resource settings. It is worth noting that both Sennrich et al. (2016a)
and Hoang et al. (2018) work with bilingual models, not multilingual models, but their
techniques can be easily adapted into the multilingual setting also.

In Gu et al. (2018) one of the components they added to their own ideas was back-
translation using a multilingual NMT system to produce synthetic translations. This
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showed to give further improvements upon their own efforts to develop low-resource
NMT quality.

There are multiple different aspects of producing synthetic parallel data from mono-
lingual sentences. In Edunov et al. (2018), the authors mainly explore the different
algorithms or strategies for creating the synthetic source sentences and conclude that
instead of the usual beam and greedy search, sampling or adding some noise to the beam
search might be even more beneficial. This keeps the synthetic outputs more random
instead of always choosing the best possible translation produced. Burchell et al. (2022)
investigate the diversity of synthetic data in further detail, also noting that the usual
methods of choosing the most likely translation is not a good strategy and move to
suggest diversifying the synthetic bitext lexically as well as syntactically.
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4 Data

4.1 Gathering and Description
Low-resource language data collection took place in multiple parts. Part of the data is
from our previous work (Tars et al., 2021), namely the data for Võro, North Sami, and
South Sami languages. The data for other Sami languages was gathered by us from
publicly available sources5 of The Arctic University of Norway (UiT) as is described
in Tars et al. (2022b). UiT itself compiled the parallel data and published it for free
downloading. Monolingual data, however, needed to be gathered semi-manually from a
list of documents6 that were in various formats (TXT, XML, HTML). Livonian data was
provided by the WMT22 workshop competition on English-Livonian machine translation
(Kocmi et al., 2022). Parallel and monolingual data for Livonian used in the competition
is also published in the OPUS corpora (Tiedemann, 2012) in a collection under the name
of "liv4ever"7 (Rikters et al., 2022).

Table 1. Monolingual data amounts per low-resource language. vro - Võro, sma - South
Sami, sme - North Sami, sms - Skolt Sami, smn - Inari Sami, smj - Lule Sami, liv -
Livonian. The table is adapted from Tars et al. (2022b).

language vro sma sme sms smn smj liv

nr of segments 162 807 55 088 33 964 76 685 122 916 128 180 40 329

Parallel data for language pairs between high- and medium-resource languages
(Estonian, Finnish, Norwegian, Latvian, English) was sampled from the OPUS corpus.
20 000 sentence pairs for each language pair were sampled and added to the dataset
to keep the amount of high-resource data in balance with the amount of low-resource
data. Monolingual data for the high-resourced languages originates from WMT news
crawl corpora8 (Kocmi et al., 2022) with 500 000 sentences randomly sampled for each
language. The number of high-resource monolingual sentences was chosen according to
the estimation of our time and resource capabilities for translating each high-resource
language into each low-resource language with which they had original parallel data.
The amounts of monolingual data for the low-resource languages can be seen in detail in
Table 1. Here we notice, that when comparing to Table 2, for multiple languages there is
more monolingual data than parallel data in their respective language pairs. This is in
coherence with the usual tendency of low-resource languages to be richer in monolingual
data.

5https://giellalt.uit.no/tm/TranslationMemory.html
6https://gtsvn.uit.no/freecorpus/orig/
7https://opus.nlpl.eu/liv4ever.php
8https://data.statmt.org/news-crawl/

19

https://giellalt.uit.no/tm/TranslationMemory.html
https://gtsvn.uit.no/freecorpus/orig/
https://opus.nlpl.eu/liv4ever.php
https://data.statmt.org/news-crawl/


4.2 Pre-processing
The pre-processing of the whole dataset included detokenization, punctuation normal-
ization, and filtering. The detokenization and punctuation normalization was performed
ahead of filtering with the help of Moses scripts9. Here, detokenization is defined as a
process, where unnecessary whitespace between a word and punctuation mark is removed.
Punctuation was normalized following a set of pre-determined regex transformations. We
modified the original Moses normalization script to be more suitable to the Finno-Ugric
languages by removing and adding some regex rules10.

Monolingual data was not filtered because in large part it was either collected semi-
manually (low-resource) or sampled from the WMT news crawl corpus (Kocmi et al.,
2022) which has already undergone quality control. Parallel data, however, went through
a series of filtering heuristics calibrated to the data at hand. We use a pre-processing tool
OpusFilter (Aulamo et al., 2020). It is easy to use with predetermined filter options and
adjustable thresholds for each filter. Before filtering, the whitespace across the parallel
data was normalized. The filtering steps that we used were the following:

• maximum segment length: 1000 characters or 400 words

• maximum word length: 50 characters

• source and target segment length difference: max 3 times

• ratio of numeric characters in the segment: 0.5 or less

• ratio of alphabetic characters in the Latin alphabet: 1

• ratio of alphabetic characters in the segment: 0.75 or more

• ratio of similar numerals between parallel segments, with zeros removed: 0.5 or
more

After filtering, the number of parallel data per low-resource language pair varied
strongly. For example, Norwegian-North Sami direction is at one extremum with 200 000
sentence pairs, whereas English-Livonian only has about 300 sentence pairs of training
data. All of the amounts before and after the filtering steps can be found in Table 2.

4.3 Evaluation and Validation Data
We evaluate our models on a couple of different test sets, containing data from different
domains and varying in quality of the sentences in the test set. One test set that we

9https://github.com/moses-smt/mosesdecoder
10https://github.com/Project-MTee/model_training/blob/main/normalization.py
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Table 2. Parallel data amounts before
and after filtering (in sentence pairs) per
language pair. The table is adapted from
Tars et al. (2022b).

lang-pair raw filtered

et-vro 31 551 29 775
fi-sme 77 710 62 837
fi-sma 2913 2766
fi-smn 10 639 9459
fi-sms 5769 2708
no-sma 17 388 15 702
no-sme 241 598 195 970
no-smj 12 400 11 627
sme-sma 21 993 19 963
sme-smj 16 440 14 985
sme-smn 934 894
en-liv 617 280
et-liv 14 261 12 887
lv-liv 11 732 10 763

Table 3. Evaluation and validation
datasets (in sentence pairs) per language
pair. The table is adapted from Tars et al.
(2022b)

lang-pair test valid

et-vro 500 200
fi-sme 500 200
fi-sma 500 200
fi-smn 500 200
fi-sms 500 200
no-sma 500 200
no-sme 500 200
no-smj 500 200
sme-sma 500 200
sme-smj 500 200
sme-smn 500 200
en-liv 856 586
et-liv 856 586
lv-liv 856 586

use to compare to previous results is from our previous work on Finno-Ugric NMT
systems (Tars et al., 2021). This test data however did not contain any of the newly
added languages (Inari Sami, Lule Sami, Skolt Sami, Livonian), had some quality issues,
as well as contained some overlapping sentences with the training data. As a result of
these circumstances, we decided to compile a new held-out test set from the filtered
parallel training data11 in this work. For some of the language pairs, this test set is the
first machine translation benchmark to the best of our knowledge.

With the exception of Livonian, the new held-out test set contains 500 and the
validation set contains 200 sentences per language pair. The "liv4ever" dataset had
complementary test and validation sets already available. The exact amounts of test and
validation data for each language pair can be found in Table 3.

Recently, we have managed to translate parts of the FLORES-200 benchmark (Goyal
et al., 2022; NLLB Team et al., 2022) into Livonian (Yankovskaya et al., 2023). FLO-
RES is a collection of the same sentences translated into 200 languages from English,
consisting of 3000 sentences from the Wikimedia12 corpora collection. Having the same
sentences as a test set across all languages allows for a fair comparison between machine
translation models for all 200 languages. We have 250 sentences for Livonian translated

11https://huggingface.co/datasets/tartuNLP/finno-ugric-benchmark
12https://www.wikimedia.org/
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from the FLORES-200 set13. This should give a more unbiased evaluation of the quality
of our models than our own held-out test set.

In order to report the most trustworthy results, we remove the test sentences from
the training set as best as possible. We use some usual heuristics for detecting overlap
between the training and test sets, by comparing pairs of sentences with punctuation and
whitespace removed.

13https://huggingface.co/datasets/tartuNLP/smugri-flores-testset
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5 Methods

5.1 Cross-lingual Transfer Learning
One of the methods that we use to compensate for the lack of training data for low-
resource languages is cross-lingual transfer learning. We take a pre-trained multilingual
machine translation model as a starting point and continue training it on our Finno-Ugric
language pairs. All of the low-resource languages in this work were not included in
the initial training of the pre-trained model. This means that there are no parameters
in the model trained for the new language pairs and no knowledge of these languages.
However, as the pre-trained model is trained on 100 languages, a number of them are
related to the low-resource Finno-Ugric languages or share some linguistic patterns with
the new language pairs that are going to be introduced during the transfer learning stage.
The knowledge encoded into the model parameters during pre-training is therefore partly
transferable across languages and can be adapted to the new language pairs.

One of the problems with this method, however, is catastrophic forgetting, which
means that we overwrite some parameters trained for a particular language (e.g. a high-
resource language pair) with information from a new language that we are tuning the
model for. Since our aim is to focus on Finno-Ugric language pairs only, we do not apply
any complicated measures to hold off the forgetting process. However, to mitigate it
for translation directions that interest us (Estonian-English, Finnish-English, etc.) we
include some data for the language pairs between two high-resource languages and mix
it with the other parallel training data. This allows the model to see those language pairs
during training and will not completely forget them.

5.2 Vocabulary and Embedding Matrix Enhancement
Since all of the low-resource languages were unknown to the pre-trained model before
the transfer learning process, the model has no knowledge of the language codes and
will not recognize the new characters or symbols that were not present in the original
languages. To get around this obstacle, we create scripts14 to expand the vocabulary file
of the model as well as increase the embedding matrix size of the encoder to include the
codes and symbols of the new languages. The indexes of the new symbols are randomly
initialized.

We use the Huggingface implementation of the pre-trained M2M-100 model and its
fine-tuning framework15. The implementation requires each source sentence and each
target sentence to precede with the language ID token (language code). We adapt our
script to input JSON files, in which the sample sentence pairs are in the format of the

14https://github.com/TartuNLP/m2m-100-finetune
15https://huggingface.co/docs/transformers/model_doc/m2m_100
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following example: {"translation": {"et": "Aga ometi olime nii lähedal.",
"vro": "Aga ummõhtõ ollimi nii lähkün."}}.

5.3 Back-translation
Another technique for reducing the data scarcity of low-resource languages is producing
synthetic sentence pairs that act as proxy parallel data. Synthetic data is usually produced
by back-translation (Sennrich et al., 2016a). In this work, for back-translation, we take a
machine translation model that has been previously trained on some amounts of parallel
data for a certain language pair and use it to translate monolingual data in a translation
direction known to the base model.

As a result of this process, one side of the parallel data is the original monolingual
text and should be grammatically correct. The other side is synthetically produced by
the base model. The artificial parallel data is then turned around so that the synthetic
sentence becomes the source sentence and the original sentence becomes the target
sentence. This way the decoder learns on data that we are certain is clean and probably
with very few mistakes (monolingual data) and thus the model makes fewer mistakes
during the decoding of the input sentence into the output sentence. The new synthetic
parallel data is then added to the original parallel data and the models are trained again.

5.4 SentencePiece
The vocabulary of the M2M-100 in the Huggingface implementation is created by the
popular framework SentencePiece (Kudo and Richardson, 2018) which implements
the byte-pair encoding mechanism. The pre-determined vocabulary has ~128 000 most
frequent word pieces obtained from the training data of the original M2M-100 model. The
vocabulary was created in a balanced manner between all of the languages. Huggingface’s
M2M100Tokenizer which uses the SentencePiece framework was used to encode the
sentences into tokens. M2M100Tokenizer was adapted to recognize new symbols from
previously unseen languages.

5.5 Supporting Applications
Basic free Grammarly16 was used to check grammatical correctness throughout the
written part of this work.

16https://app.grammarly.com/
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6 Experiments

6.1 Model Size Comparison
M2M-100 has multiple different versions of their model by parameter amount. We
compare the 418 million parameter (418M) and 1.2 billion parameter (1.2B) size models.
One of our research questions was to find out whether the smaller and the bigger model
level out at some point in translation quality during the training time. There is a big
difference in resource consumption between the two model sizes when training them
and also in the test mode (inference process). For example, in our setting, the 1.2B
model consumes 5710 MB of GPU memory at the start of training whereas the 418M
model consumes 2816 MB of GPU memory. If at some point the smaller, 418 million
parameter model catches up to the larger, 1.2 billion parameter one, it would be optimal
to do further experiments with the smaller model and at the end of training to deploy the
smaller model, because it will be faster to load and faster while translating the user’s
input.

One of the reasons behind the model size comparison experiment was that the dataset
we tune the models on is relatively small compared to the amount of data that the pre-
trained model was trained with. Thus, we hypothesize that maybe our relatively tiny
dataset does not need so many parameters to learn our language pairs.

6.2 Effect of English
As a separate experiment branch, we test whether removing language pairs where one
side is English affects the quality of translation. The reasoning for this experiment is that
English is not a related language to any of the Finno-Ugric low-resource languages and it
is not a national language in any country where the low-resource Finno-Ugric languages
are spoken. Specifically, we remove the high-resource language pairs involving English
(en-fi, en-no, en-et, en-lv) and one low-resource language pair data (en-liv) which
only had about 300 training sentences as a part of the original parallel data.

6.3 Related Language Groups
Another hypothesis that we raise is that training related language pairs, rather than
unrelated language pairs, in the same model, helps to transfer more relevant and accurate
translation pattern information between languages during training. Since some of the
low-resource languages can differ from each other across the Finno-Ugric language
family notably, they can be divided into even smaller language groups. In turn, we set up
multiple datasets with different combinations of smaller language groups.

We separate Livonian, Võro, and Sami languages into three branches. For the separate
Livonian experiment, we have language pairs where Livonian is paired with multiple
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high-resource languages (English, Latvian, Estonian). For the Võro experiment, we only
have Estonian-Võro translation directions to tune the pre-trained model. Sami languages
are all paired with either Finnish, Norwegian, both or to each other (language pairs
between fi-sm*, no-sm*, sm*-sm*).

6.4 Back-translation Iterations
There were in total two back-translation iterations in the experiments. In the first iteration,
the monolingual data was translated with the model that performed best overall in the
initial tuning with the original parallel data. After completing the first back-translation
iteration, the different language group experiments are repeated, but this time the turned-
around synthetic parallel data was added to the original parallel data. This means that
there was a lot more training data and thus it takes longer for the model to reach one
epoch (go through all of the training samples once).

From the experiments trained with the first synthetic dataset, we select the best-
performing model. That model is then used for the second iteration of back-translation
for the same monolingual data used in the first back-translation iteration. This time,
however, the base model that is being used for synthetic data creation should be better
and produce higher-quality translations. After the second back-translation iteration, the
pre-trained model is tuned again from the start now with the training data consisting of
original parallel data and the data from only the second back-translation iteration. We
do not evaluate the models produced after the second back-translation iteration on all
of the translation directions, but only language pairs connected to Livonian in order to
optimize the models to reach the best result for English-Livonian as was the objective in
the WMT22 competition (Kocmi et al., 2022).

6.5 Additional Transfer Learning to Livonian
We took part in the WMT22 competition (Kocmi et al., 2022) and published our results
(Tars et al., 2022a) which are partly described in this work also. To achieve the best
results for the English-Livonian language pair, we proceed to fine-tune the best model
after training with the second back-translation iteration on the original parallel dataset of
Livonian-related language pairs (en-liv, et-liv, lv-liv). The model will somewhat
forget the other Finno-Ugric language pairs as their translation quality drops, but since
we were only interested in getting the best English to Livonian and vice versa results, we
accept the drawback of further fine-tuning to a specific language.
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6.6 Experimental Setup
Throughout the work, the BLEU17 and chrF++18 results were calculated using the
SacreBLEU code (Post, 2018). The models all were trained using the Huggingface
implementation of the M2M-100 framework. M2M-100 418 million and 1.2 billion
parameter versions were used in the experiments. All models were trained using one
Tesla A100 GPU with 40GB of VRAM, using the University of Tartu High-Performance
Cluster (HPC) (University of Tartu, 2018). The models were initialized with the default
hyperparameters set by the Huggingface implementation with the learning rate at 0.00005.
The batch size was set to 12 segments with gradient accumulation step value of 8, which
means that the backward pass (updating of model’s parameters/weights) was performed
after 8 update steps. This means that the batch size was 96 sentences. All of the
experiments were trained for different numbers of epochs.

Model size comparison experiments were stopped at 25 epochs. For other experi-
ments, the epochs were chosen according to validation data. The setup was to train 40
epochs with no early stopping or patience. Most of the epochs took very long to complete
(multiple hours to multiple days depending on dataset size) so many of them did not
reach 40 epochs due to time constraints.

More specifically, a premature end of the experiment was only needed for models
trained with all of the original parallel data and models trained with original parallel data
plus synthetic data from the first back-translation iteration. For other experiments, the
epochs were chosen by monitoring the loss value and BLEU metric on the validation
data. When the values started to worsen or plateau, we stopped the experiments and
chose the best epochs. Here the models did not need more than 12 epochs to reach the
highest quality. In cases where we compare the 1.2B model and the 418M model, the
epoch we compare has seen the same number of updates.

17sacreBLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
18sacreBLEU signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.0.0
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7 Results

7.1 Model Size Comparison
7.1.1 Validation Data Results

Averaged over all language pairs We used two sizes of the M2M-100 model that we
tuned on all of the original parallel data. In Figure 4, we compare the learning curve of
the two models on validation data and average the result over all low-resource translation
directions. Both of the models were trained on 25 epochs. From the graph, we can
see that during the 25 epochs, the models learn gradually in parallel, with the smaller
model being always a couple of BLEU points behind the bigger model. The difference is
already apparent after the first epoch with the larger model beating the smaller one by
about 2 BLEU points.

According to this, there is a clear benefit in choosing the larger model over the smaller
one, although it comes with the downside of increased computational costs. However,
the experiments might need to train longer, for more epochs, before showing any signs
of the gap getting smaller. We trained the models for 25 epochs because of time and
computational resource constraints.

Detailed analysis For deeper analysis, we take a look at a couple of language pairs
separately. From Figure 5a, where we see the results of the Norwegian-South Sami
language pair, at the ninth epoch, the smaller model actually surpasses the larger one and
stays ahead of the larger model for the rest of the training period. Both of the curves,
however, are trending down after the ninth epoch, which means that the best epoch
for this particular language pair was the ninth one. However, since we are tuning a
multilingual model with a shared encoder and decoder between all the languages, we
cannot make decisions based only on one language pair.

The second example is about Estonian-Livonian which can be seen in Figure 5b. Here
the larger model is ahead of the smaller one for the whole duration of the training, but
the lines merge at the 25th epoch. For the larger model, the curve stays level for most of
the training time, whereas the smaller model gets steadily better. The most likely reason
for this is the amount of data. Since the amount of original parallel data is quite small for
us, the larger model reaches the highest quality quite quickly, whereas the smaller one
takes more time to adjust the parameters to the new data. The larger model starts to at
one point overfit to the training data and lose in quality for some of the language pairs
that we are training for when evaluated on the test data.

7.1.2 Evaluation Data Results

The results of the models compared on the held-out test set show similar tendencies,
with the larger model performing consistently better than the smaller one. This can
be seen in Table 4, where the gain over the smaller model is on average over all of
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Figure 4. 418M vs 1.2B model on validation data for 25 epochs (averaged over all
low-resource language pairs). The figure is from Tars et al. (2022b).

(a) 418M vs 1.2B model for no-sma. (b) 418M vs 1.2B model for et-liv.

Figure 5. Comparison of 418M vs 1.2B models on specific language pairs. The figure is
from Tars et al. (2022b).
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the translation directions 3.3 BLEU points. The most significant improvements are
related to the Sami languages with South Sami-Finnish translation direction scoring
the highest quality improvement with the larger, 1.2 billion parameter, model. Another
aspect related to this is the considerable gaps in improvement between different language
pairs. The pattern here does not seem to be connected to language groupings inside the
Finno-Ugric language family. The size of the dataset per language pair is also not an
explanation, because the Norwegian-North Sami language pair had the most parallel data
but improved quite modestly, by 0.4 BLEU compared to South Sami-Finnish translation
direction (+10.6 BLEU points).

7.2 Effect of English
We trained the smaller 418 million parameter model with the dataset where we remove
all language pairs with English before training. We then evaluate both of the models
(418M and not-en) on the held-out test set created in Tars et al. (2022b) and "liv4ever"
test set for Livonian language pairs. In Table 4, we notice that the quality difference
of this model to the standard 418M model trained on all of the original parallel data is
actually quite small, apart from Livonian-English, because now the model was shown
zero examples of this language pair.

For other language pairs, the average difference was 0.2 BLEU points, which could be
counted as a circumstantial difference and not a significant change in the automatic metric
score. Other than for North Sami-Lule Sami and Inari Sami-North Sami, the change was
around 1 BLEU point or smaller. The lack of impact could be explained by the amounts
of English language pairs in the pre-training stage. The small amounts we added in the
further training with only the original parallel data might not be significant enough to
cause any change. Another explanation would be that the Finno-Ugric languages that we
tune for do not actually get any useful information from English which also supports the
theory that related high-resource languages should help low-resource languages more
than non-related high-resource languages.

7.3 Related Language Groups
We performed these experiments also only with the smaller model 418M, because of
resource constraints, and since we know that the larger model is better anyway, we can
make quicker and more efficient comparisons between models trained with different sets
of language pairs.

The aim of these experiments was to see whether certain language pairs need to be
trained in even smaller language groups rather than with all of the Finno-Ugric language
pairs together. We divided the low-resource languages into three smaller clusters: 1)
Võro language pairs; 2) Livonian language pairs, and 3) Sami language pairs. The results
of the experiments are reported in Table 4. Here we notice that since Estonian-Võro was
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Table 4. BLEU scores on new held-out test data. 1.2B was trained on the same data as
418M. not-en had English removed from the training data. only-group signifies separate
models trained with smaller datasets containing data for only that smaller language group.
∆ shows the difference from 418M model. Green indicates the best improvement per ∆
column and red indicates the worst improvement. bold line separates the language pairs
into groups.

lang-pair 418M 1.2B ∆ not-en ∆ only-group ∆

et-vro 29.3 30.1 0.8 30.4 1.1 34.1 4.8
vro-et 36.3 37.2 0.9 35.4 -0.9 40.0 3.8

en-liv 10.6 11.5 0.9 2.5 -8.1 9.0 -1.7
liv-en 14.1 15.9 1.8 4.3 -9.7 14.3 0.2
et-liv 14.0 14.5 0.5 13.7 -0.3 13.9 -0.1
liv-et 19.0 19.6 0.6 18.3 -0.7 18.7 -0.3
lv-liv 13.6 15.1 1.5 13.4 -0.2 13.9 0.3
liv-lv 18.4 20.5 2.1 18.3 -0.1 20.3 2.0

fi-sme 40.2 42.9 2.7 40.2 0.0 41.3 1.1
sme-fi 48.5 50.1 1.6 47.9 -0.6 47.7 -0.8
fi-sma 17.4 26.6 9.2 18.2 0.7 21.7 4.3
sma-fi 20.8 31.5 10.6 22.2 1.4 27.9 7.1
fi-smn 52.1 53.3 1.2 52.1 0.0 53.2 1.0
smn-fi 70.6 75.4 4.9 71.0 0.4 74.3 3.7
fi-sms 32.9 33.1 0.3 32.6 -0.3 33.7 0.8
sms-fi 57.0 61.4 4.4 58.9 1.9 61.5 4.5

no-sma 43.9 46.8 2.9 43.3 -0.7 45.9 2.0
sma-no 50.4 53.5 3.1 49.9 -0.5 51.3 0.9
no-sme 34.6 34.9 0.4 35.4 0.8 35.2 0.6
sme-no 44.8 45.8 1.1 44.8 0.0 45.0 0.2
no-smj 33.4 40.0 6.6 34.4 1.0 37.0 3.6
smj-no 48.2 52.4 4.3 48.2 0.0 50.0 1.8

sme-sma 33.1 36.3 3.2 33.7 0.6 35.6 2.5
sma-sme 37.8 44.4 6.7 37.5 -0.2 40.3 2.5
sme-smj 28.7 34.1 5.4 31.1 2.4 31.1 2.4
smj-sme 38.9 46.4 7.5 39.9 1.0 42.5 3.6
sme-smn 27.4 33.5 6.2 28.5 1.1 30.0 2.6
smn-sme 32.6 34.2 1.6 30.5 -2.1 31.7 -0.9
average 3.3 -0.4 1.9

the only language pair in its group, the impact of being the sole focus gets an approximate
4 BLEU point gain. For Livonian, however, the effect seems to be the opposite. Here the
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three language pairs involving Livonian were also in their own separate group. For the
Sami language groups, where all of them were placed in the same language group, the
results vary, but overall the impact of separating them from Võro and Livonian language
pairs during training seems to produce a positive result with only North Sami-Finnish
getting worse.

Overall, it seems that inside the Finno-Ugric language family, the low-resource
languages do not help each other as much as we hoped. Perhaps one of the reasons
is the scarcity of the data combined with a likely domain mismatch between language
pairs’ training data which has a damaging impact. As we have seen from some previous
works, related high-resource languages help the low-resource languages, which might
be because of the relatedness but also because high-resource language data is often
cleaner and from different domains. The high-resource language data is representing the
language, on the whole, better than some of the low-resource language pairs have the
ability to do as a consequence of the low amounts of data.

7.4 Back-translation
We perform one back-translation iteration for all of the language pairs and present results
for experiments on both sizes (418M, 1.2B) of the pre-trained M2M-100 model. This
time we do not examine the results of removing some language pairs but rather train
the models with all of the data. Otherwise training all the variants again would become
too resource consuming and we already analyzed the effect of different language group
settings in the previous parts.

The results of training the models with original parallel data and synthetic parallel
data produced in the back-translation part can be seen in Table 5. We trained the 1.2B +
bt1 and 418M + bt1 both for 12 epochs.

Low-resource languages usually benefit from additional synthetic parallel data, ac-
cording to multiple experiments in related research. Here, however, some language pairs,
especially some low-high pairs have gotten worse as a result. For example, in the low-
to high-resource directions, Sami languages seem to struggle with the new information
from the synthetic sentence pairs with South Sami(sma)-Finnish worsening by 12 BLEU
points in comparison to the baseline 1.2B model. In the high-low direction, however, the
overall result is positive with some considerable improvements happening in Finnish-
South Sami, Norwegian-South Sami, and Finnish-Inari Sami(smn) directions. For the
low-low directions, the results are more irregular with scores jumping between Lule
Sami(smj)-North Sami(sme)’s -12.6 and North Sami-South Sami’s 18.9 point changes in
the score. The same experiments on the smaller 418M model seem to follow the patterns
seen with the larger 1.2B model.

Overall, the 1.2B model trained with back-translation data is still on average 2.1
BLEU points better than the one trained on only original parallel data. While we see that
for the language pairs involving Sami languages, the results vary strongly, even inside
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Table 5. BLEU scores on new held-out test data comparing models trained only on
original parallel data to models trained with original parallel data + data from the first
back-translation iteration (bt1). ∆ signifies the difference between bt1 model and the
respective baseline model. Green indicates the best improvement per ∆ column and red
indicates the worst improvement

high-low 1.2B 1.2B + bt1 ∆ 418M 418M + bt1 ∆

en-liv 11.5 14.3 2.8 10.6 12.2 1.5
et-liv 14.5 22.9 8.4 14.0 19.7 5.8
et-vro 30.1 30.4 0.4 29.3 29.9 0.6
fi-sma 26.6 43.4 16.8 17.4 20.9 3.5
fi-sme 42.9 39.3 -3.6 40.2 36.6 -3.6
fi-smn 53.3 64.9 11.6 52.1 58.7 6.6
fi-sms 33.1 35.2 2.1 32.9 31.7 -1.2
lv-liv 15.1 25.0 9.8 13.6 19.8 6.1
no-sma 46.8 58.7 11.9 43.9 47.7 3.8
no-sme 34.9 33.6 -1.4 34.6 33.1 -1.4
no-smj 40.0 45.2 5.1 33.4 32.5 -0.9
average 5.8 1.9
low-high

liv-en 15.9 17.7 1.9 14.1 16.4 2.3
liv-et 19.6 24.8 5.2 19.0 23.3 4.3
liv-lv 20.5 27.7 7.2 18.4 26.9 8.5
sma-fi 31.5 19.1 -12.3 20.8 13.0 -7.9
sma-no 53.5 49.3 -4.2 50.4 45.8 -4.6
sme-fi 50.1 49.1 -1.1 48.5 47.1 -1.4
sme-no 45.8 44.8 -1.1 44.8 42.5 -2.3
smj-no 52.4 47.9 -4.5 48.2 44.3 -3.8
smn-fi 75.4 69.9 -5.6 70.6 63.1 -7.5
sms-fi 61.4 61.6 0.2 57.0 55.2 -1.8
vro-et 37.2 41.8 4.7 36.3 42.4 6.1
average -0.9 -0.7
low-low

sma-sme 44.4 35.8 -8.7 37.8 29.1 -8.7
sme-sma 36.3 55.2 18.9 33.1 39.0 5.9
sme-smj 34.1 37.5 3.5 28.7 28.6 -0.2
sme-smn 33.5 39.0 5.5 27.4 35.6 8.2
smj-sme 46.4 33.8 -12.6 38.9 27.8 -11.2
smn-sme 34.2 31.9 -2.3 32.6 32.4 -0.2
average 0.7 -1.0

one language pair (e.g. fi-sma), for Võro and Livonian back-translation seems to give
a positive effect. The average result is carried by some big increases in the evaluation
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of this test set, with sme-sma, fi-sma, no-sma and fi-smn jumping for more than 10
BLEU points. Meaning that sma and smn monolingual data was probably very similar to
the test data.

The reasons for this variability might be the low quality of the base model, low-quality
original parallel data, the overwhelming amount of out-of-domain monolingual data, or
the lack of evaluation data that represents the language pair well enough. In order to find
out the exact reason, more large-scale and in-depth analysis is needed which is out of the
scope of this work.

7.5 chrF++ Results
We also report chrF++ results for models described in Sections 7.1 to 7.4, showing
complementary results to Tables 4 and 5. The analysis of chrF++ scores, which can be
seen in the Appendix Table 11 and Table 12, shows an overall correlation with the results
calculated with the BLEU metric.

In Table 11 we see that the averages follow a similar pattern to BLEU scores, however,
the gaps between the best improvement and the worst improvement per model sets are
generally smaller than those seen in Table 4. The only exception is the not-en experiment,
where Livonian-English shows to be more sensitive to losing the English data according
to chrF++.

For the back-translation experiment analysis, we notice similar tendencies. The best
and the worst improvements in Table 12 overlap with those in Table 5, except for the
high-resource to low-resource translation directions on the 418 million parameter model.

7.6 Additional Experiments for Livonian
The second back-translation iteration was performed for all of the language pairs. The
first batch of the models described in Table 6 were trained with all original parallel data
and the synthetic parallel data. For the second batch seen in Table 7 the bt1 and bt2
included only the Livonian language pairs.

From Table 6 we notice that bt2 improves over the baseline models (1.2B and 418M)
but overall underperforms compared to bt1. This is an odd behavior because bt2 data
was produced by the 1.2B + bt1 model and thus bt2 should improve over the quality of
bt1. When we look at the results in Table 7, where back-translation data involved only
Livonian language pairs, we see that bt2 actually does improve over bt1, contrasting the
results seen in Table 6. Comparing the results of these two tables we could infer that
perhaps for the first batch of experiments, the other language pairs disturbed the Livonian
pairs either during the back-translation production or during training. Another reason for
this could be that bt2 was trained with the model that was deemed best over all of the
language pairs. Thus, even though Livonian scores got better, for one they are still quite
low-quality (under 30 BLEU), and as we noticed in Table 5, some of the language pairs
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Table 6. BLEU metric results for Livonian-specific experiments. bt1 and bt2 included all
of the Finno-Ugric language pairs. tune refers to additional fine-tuning with the original
parallel data for the Livonian language pairs. ∆ is the difference between the bt2 + tune
model and the baseline model (1.2B or 418M).

lang-pair 1.2B 1.2B + bt1 1.2B + bt2 1.2B + bt2 + tune ∆

en-liv 11.5 14.3 11.6 12.9 1.4
liv-en 15.9 17.7 17.9 20.4 4.5
et-liv 14.5 22.9 17.9 20.5 5.9
liv-et 19.6 24.8 23.7 26.5 6.9
lv-liv 15.1 25.0 18.7 21.6 6.5
liv-lv 20.5 27.7 26.1 29.1 8.6
average 5.6

418M 418M + bt1 418M + bt2 418M + bt2 + tune

en-liv 10.6 12.2 9.1 9.7 -0.9
liv-en 14.1 16.4 15.4 18.8 4.7
et-liv 14.0 19.7 15.6 15.9 1.9
liv-et 19.0 23.3 22.5 24.5 5.4
lv-liv 13.6 19.8 15.6 16.5 2.8
liv-lv 18.4 26.9 23.9 25.8 7.5
average 3.6

had a significant decrease in the BLEU score, which in turn could disturb the Livonian
language pairs since the languages are all sharing the model parameters.

For both of the situations (training with all back-translation data vs with only Livonian
data), the end result improves almost always if the final fine-tuning is performed only on
Livonian original parallel data.

7.6.1 FLORES-200

For Livonian-specific experiments, we had a chance to use the 250 sentences translated
from the FLORES-200 benchmark into Livonian. Since the FLORES-200 was already
available in English, Estonian and Latvian, we can compare the results of the "liv4ever"
test set to the results computed on part of the FLORES-200 test set. This way we gain a
better overview of the quality of our models and have the chance to see whether the test
sets agree with each other.

In Table 8 we have displayed BLEU scores for experiments with the larger, 1.2 billion
parameter model. In the first part of the table, the experiment with back-translation
data included all of the language pairs (Table 8a). In the second part of the table, the
back-translation experiments had data only for Livonian-specific language pairs (Table
8b).

Right away we can see a pattern where translation directions into Livonian (*-liv) are
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Table 7. BLEU metric results for Livonian-specific experiments. bt1 and bt2 include only
Livonian back-translation data. tune refers to additional fine-tuning with the Livonian
original parallel data. ∆ is derived by getting the difference between the bt2 + tune
model and the baseline model (1.2B or 418M).

lang-pair 1.2B 1.2B + bt1 1.2B + bt2 1.2B + bt2 + tune ∆

en-liv 11.5 14.8 15.4 18.03 6.5
liv-en 15.9 17.81 18.24 20.76 4.9
et-liv 14.5 23.06 24.19 25.5 11.0
liv-et 19.6 24.04 25.11 26.41 6.8
lv-liv 15.1 25.05 26.81 27.13 12.0
liv-lv 20.5 27.48 28.68 30.37 9.9
average 8.5

418M 418M + bt1 418M + bt2 418M + bt2 + tune

en-liv 10.6 12.39 12.06 14.08 3.4
liv-en 14.1 17.72 17.37 18.75 4.7
et-liv 14.0 19.51 20.52 22.16 8.2
liv-et 19.0 23.23 23.42 25.9 6.9
lv-liv 13.6 20.49 21.93 24.42 10.8
liv-lv 18.4 26.64 27.2 28.94 10.6
average 7.4

performing much worse than the translation directions from Livonian (liv-*) directions.
This tendency was not very clear from the "liv4ever" test set results (Tables 6 and 7),
except for maybe in Table 6 with the experiments on the 418M model, but the gaps
between *-liv and liv-* directions here are much smaller.

7.7 Comparison to Previous State-Of-The-Art
In terms of achieving a new state-of-the-art quality for all of the low-resource Finno-
Ugric language pairs in our work, we reach that goal as can be seen in Table 9 and 10.
The back-translation results are not described in Table 9, because we beat the previous
best without using it. The 1.2B baseline yields the most improvements in a number of
language pairs. Võro gets a huge gain from the only-group experiment where it was the
sole language pair in the dataset. For the Livonian pairs, we compare to results achieved
after four back-translation iterations in Rikters et al. (2022). Our best model was the
1.2B model trained on original parallel data and bt2 data that only contained Livonian
language pairs plus final fine-tuning on original Livonian parallel data. All in all, our
approach overtakes the previous best results by using fewer back-translation iterations.
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Table 8. BLEU scores for Livonian-specific experiments evaluated on a part of the
FLORES-200 test set.

(a) bt experiments performed with all of the language pairs

lang-pair 1.2B 1.2B + bt1 1.2B + bt2 1.2B + bt2 + tune ∆

en-liv 7.3 7.4 8.3 10.4 3.1
liv-en 15.0 24.2 23.6 25.0 10.1
et-liv 10.7 11.2 12.7 14.4 3.6
liv-et 19.8 25.7 27.3 28.9 9.0
lv-liv 5.3 5.0 6.1 6.6 1.3
liv-lv 9.9 14.3 12.7 14.0 4.1
average 5.2

(b) bt experiments performed with only Livonian language pairs.

lang-pair 1.2B 1.2B + bt1 1.2B + bt2 1.2B + bt2 + tune ∆

en-liv 7.3 6.2 7.9 8.1 0.9
liv-en 15.0 23.5 23.5 23.8 8.8
et-liv 10.7 9.1 11.1 12.1 1.3
liv-et 19.8 27.1 27.9 28.7 8.9
lv-liv 5.3 4.9 6.2 6.4 1.1
liv-lv 9.9 15.5 13.8 14.6 4.8
average 4.3
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Table 9. BLEU scores with test data from Tars et al. (2021). 418M and 1.2B refer to
models trained with all data. not-en refers to model trained without any English data.
only-group refers to a model trained only on that specific language group data. prev_best
refers to best results by Tars et al. (2021). bold - best BLEU score for a language pair. ∆
indicates the difference between our best and the previous best per language pair. Table
is adapted from Tars et al. (2022b).

lang-pair 418M not-en only-group 1.2B prev_best ∆

et-vro 25.7 25.7 30.3 26.0 26.2 4.1
vro-et 30.3 29.7 34.0 31.7 31.7 2.3
fi-sme 38.5 38.3 38.0 37.8 32.3 6.2
sme-fi 42.8 45.1 45.2 45.8 37.5 8.3
fi-sma 17.8 20.0 22.6 25.3 12.4 12.9
sma-fi 21.7 21.9 27.9 29.4 10.9 18.5
sme-sma 33.5 33.7 34.9 38.1 21.6 16.5
sma-sme 35.4 36.5 38.4 43.0 21.0 22.0
average 11.4

Table 10. BLEU scores comparing our 1.2B + bt2 + tune model trained with only
Livonian specific bt2 to results reported in Rikters et al. (2022). Differences are portrayed
in the ∆ column.

lang-pair Rikters et al. (2022) our best ∆

en-liv 11.0 18.0 7.0
liv-en 19.0 20.8 1.8
et-liv 16.5 25.5 9.0
liv-et 23.1 26.4 3.4
lv-liv 17.7 27.1 9.5
liv-lv 25.2 30.4 5.1
average 6.0
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8 Discussion

8.1 Back-translation
Throughout the analysis of our results, we noticed out-of-ordinary patterns where back-
translation did not perform as expected but rather varied very strongly between different
language pairs and dataset scenarios.

There could be multiple reasons for the erratic behavior of the back-translation
experiments. One explanation could be that we produced synthetic sentences from high
amounts of monolingual data that was outside of the domain of the test data. Since the
test data was originally held-out from original parallel training data, it was from the
same domain as all of the data that the 1.2B baseline model was trained on. Now, taking,
for example, the Finnish monolingual news dataset to produce back-translation data for
sma-fi, it throws off the balance of in-domain and out-of-domain data. There were only
2700 sentences of parallel data for that language pair. After back-translation, there were
502 700 sentences. This means that there were 500 000 possibly out-of-domain sentences
added to the training set, affecting the test results severely. For certain language pairs,
we can see this problem as either overfitting to the back-translated data or that the test
data does not actually represent the domain that we are training for.

This also highlights the importance of creating a good benchmark and testing on
multiple test sets from different domains for a more accurate estimation of model quality.
In conjunction with that, the other side of the problem is acquiring well-rounded training
sets for a language pair, or well-rounded monolingual data, which for low-resource
languages is as problematic as finding multiple test sets for these languages. In addition,
this demonstrates the analysis done by back-translation research in the past about the
diversity of back-translation data and how the base model’s quality is one of the key
aspects of allowing good translation models to be trained.

One of the obvious culprits behind these variations in back-translation results could
be the low quality of the parallel data itself. The original parallel data underwent several
filtering heuristics, but due to not understanding the languages ourselves, we are unable
to clearly state if the quality of the parallel data is good enough for training. For the same
reason, we are not able to give a grade of quality to the test data that was ultimately held
out from the filtered training data and therefore shares its features.

8.2 Future Work
Part of the future work that involves adding more low-resource Finno-Ugric languages
has been implemented and published but was out of the scope of this work (Yankovskaya
et al., 2023).

For all of the experiments analyzed, we could try training them for more epochs, to
get a better overview of quality and be more sure that the data was exhausted during the
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training to the best of its possibilities. Another way to gain a more trustworthy view of
the quality is by performing human evaluation. However, finding multiple people who
speak any of the low-resource Finno-Ugric languages could prove to be problematic and
it is much more resource-heavy than using automatic metrics.

In terms of back-translation problems, we could perform a deeper analysis of the
reasons why it did not work as expected, to determine whether the problem was in
the training data, test data, or training methods. Otherwise, we could try filtering the
back-translation data, because we left that step out in this work. Another way would
be to retrain the models but add back-translation data to only those language pairs that
benefited from it according to our evaluation results.
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9 Conclusion
The aim of this work was to achieve higher machine translation quality for Finno-Ugric
low-resource languages as well as create the first neural machine translation system for
some of the low-resource Finno-Ugric languages involved in this work.

We utilized pre-trained multilingual machine translation models and performed cross-
lingual transfer learning to the selected low-resource language pairs. We compared
two different-sized pre-trained models throughout the analysis and concluded that even
with our small-sized dataset, the larger (more than twice the size of the smaller one)
model performs better in most experiments than the smaller one. The experiments with
different dataset settings showed that training the multiple low-resource language pairs all
together in one model could be disadvantageous to some smaller groups in the family and
additional experiments showed that indeed they benefited from being tuned separately.
This, however, unfortunately means that there would have to be multiple models trained
and deployed at the same time, which is more complicated and resource-consuming than
one multilingual neural machine translation model.

We also employed the technique of back-translation to create synthetic data in order
to mitigate the data scarcity issue with low-resource languages. In our detailed analysis
of the results, we found that although back-translation has been a trustworthy method
in low-resource machine translation, here it produced very variable results, with some
language pairs gaining ~18 BLEU points and others losing ~12 BLEU points as a result
of adding the synthetic data. We speculated on the multiple reasons why this might be
but leave the in-depth analysis for future work.

Overall, we achieved state-of-the-art results for all of our low-resource Finno-Ugric
language pairs.
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Appendix

I. chrF++ Results

Table 11. chrF++ scores on new held-out test data. 1.2B was trained on the same data as
418M. not-en had English removed from the training data. only-group signifies separate
models trained with smaller datasets containing data for only that smaller language group.
∆ shows the difference from 418M model. Green indicates the best improvement per ∆
column and red indicates the worst improvement. bold line separates the language pairs
into groups.

lang-pair 418M 1.2B ∆ not-en ∆ only-group ∆

et-vro 54.8 54.8 -0.1 55.3 0.5 57.7 2.9
vro-et 58.0 58.7 0.7 57.4 -0.6 60.7 2.7

en-liv 29.9 31.1 1.2 17.4 -12.5 30.6 0.7
liv-en 37.2 38.5 1.3 22.2 -15.0 39.0 1.8
et-liv 38.3 38.4 0.1 37.6 -0.7 38.8 0.4
liv-et 46.5 46.9 0.4 46.2 -0.2 47.1 0.6
lv-liv 36.8 37.9 1.0 36.7 -0.1 38.1 1.3
liv-lv 44.3 44.9 0.7 43.7 -0.6 46.4 2.1

fi-sme 65.5 66.8 1.2 65.2 -0.3 66.1 0.6
sme-fi 68.6 69.4 0.8 68.1 -0.5 68.2 -0.4
fi-sma 47.1 52.4 5.3 47.2 0.1 49.6 2.5
sma-fi 44.6 51.4 6.8 45.4 0.8 48.9 4.3
fi-smn 75.8 76.7 0.9 75.8 0.0 76.5 0.8
smn-fi 85.0 87.3 2.3 85.1 0.1 87.0 2.0
fi-sms 61.6 61.3 -0.3 61.3 -0.3 61.2 -0.4
sms-fi 75.8 77.7 2.0 76.8 1.1 78.3 2.6

no-sma 69.4 70.8 1.4 69.3 0.0 70.5 1.1
sma-no 69.3 71.3 2.0 69.1 -0.2 69.8 0.5
no-sme 62.5 62.6 0.1 63.1 0.6 62.8 0.3
sme-no 67.0 67.5 0.5 66.8 -0.2 66.8 -0.3
no-smj 62.6 66.1 3.5 62.9 0.4 64.7 2.2
smj-no 68.5 71.2 2.7 68.4 0.0 69.8 1.3

sme-sma 60.8 62.4 1.6 60.7 -0.1 62.1 1.3
sma-sme 61.7 65.1 3.4 61.2 -0.5 62.7 1.0
sme-smj 58.1 60.8 2.6 58.7 0.6 59.2 1.0
smj-sme 63.2 67.7 4.5 63.7 0.5 65.3 2.1
sme-smn 56.7 61.2 4.4 57.4 0.7 58.1 1.3
smn-sme 61.5 62.6 1.1 60.1 -1.4 60.7 -0.8
average 1.9 -1.0 1.3
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Table 12. chrF++ scores on new held-out test data comparing models trained only on
original parallel data to models trained with original parallel data + data from the first
back-translation iteration (bt1). ∆ signifies the difference between bt1 model and the
respective baseline model. Green indicates the best improvement per ∆ column and red
indicates the worst improvement

high-low 1.2B 1.2B + bt1 ∆ 418M 418M + bt1 ∆

en-liv 31.1 33.5 2.4 29.9 31.5 1.6
et-liv 38.4 43.2 4.8 38.3 40.9 2.6
et-vro 54.8 56.1 1.4 54.8 55.9 1.1
fi-sma 52.4 63.4 11.0 47.1 49.5 2.4
fi-sme 66.8 64.5 -2.2 65.5 62.6 -2.9
fi-smn 76.7 82.1 5.4 75.8 78.6 2.8
fi-sms 61.3 60.9 -0.4 61.6 56.8 -4.8
lv-liv 37.9 43.5 5.6 36.8 40.0 3.2
no-sma 70.8 76.8 6.0 69.4 71.6 2.2
no-sme 62.6 62.5 -0.2 62.5 61.9 -0.6
no-smj 66.1 67.0 0.9 62.6 59.7 -2.9
average 3.2 0.4
low-high

liv-en 38.5 41.5 3.0 37.2 39.9 2.8
liv-et 46.9 50.6 3.7 46.5 49.3 2.8
liv-lv 44.9 50.0 5.1 44.3 49.2 5.0
sma-fi 51.4 43.6 -7.9 44.6 39.3 -5.3
sma-no 71.3 69.0 -2.3 69.3 67.3 -2.0
sme-fi 69.4 68.9 -0.5 68.6 68.3 -0.3
sme-no 67.5 67.7 0.2 67.0 66.2 -0.9
smj-no 71.2 68.9 -2.3 68.5 66.5 -2.0
smn-fi 87.3 85.2 -2.1 85.0 82.3 -2.7
sms-fi 77.7 78.8 1.1 75.8 75.0 -0.7
vro-et 58.7 62.0 3.3 58.0 62.4 4.4
average 0.1 0.1
low-low

sma-sme 65.1 60.3 -4.8 61.7 56.6 -5.1
sme-sma 62.4 73.8 11.4 60.8 64.8 4.0
sme-smj 60.8 61.9 1.2 58.1 56.5 -1.6
sme-smn 61.2 64.8 3.6 56.7 63.3 6.6
smj-sme 67.7 60.0 -7.7 63.2 56.7 -6.6
smn-sme 62.6 60.9 -1.8 61.5 61.9 0.4
average 0.3 -0.4
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