UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science speciality

Peeter Jurviste

Supporting Internet Search
by Search-Log Publishing

Master Thesis (30 EAP)

Supervisors: Prof. Eero Vainikko, PhD,
Ulrich Norbisrath, PhD

Author: ..o “on August 2012

SUPETVISOT: wevvvviiiieririiiiiiiiiiiieeceeeee e “.n0 August 2012

Allowed to defence

Professor:ccccccoiiiiiiiiiis “...07 August 2012

TARTU 2012

Contents

Acknowledgements
Introduction

1 Theoretical background and related work

1.1 TImportant definitions and concepts

1.2 Web search taxonomies L.

1.3 Search engine user behaviour L

1.4 Related work in exploratory search and search task logging systems

1.5 Crowdsourcing feasibility study
1.5.1 Motivation
1.5.2 Crowdsourcing in academia
1.5.3 Crowdsourcing platforms
1.5.4 Practical scenarios for exploratory search

1.6 Roundup e

2 Implementation and evaluation
2.1 Practical scenarioso
2.1.1 Publishing a search task
2.1.2 Finding asearch task
2.2 Requirements analysis oL
2.3 Architecture and design Lo
2.4 Comparison with the original Search Logger
2.5 Implementation details o000
2.5.1 Rewriting Web pages L.
2.5.2 Search task logger. o0
2.5.3 XML-RPC data transfer
2.5.4 WordPress search task repository
2.6 Evolution of the solution
2.7 Evaluationo oL
2.8 Roundup.

3 User manual
3.1 Set-up tutorial
3.2 Recording and publishing a search task

4 Future work
4.1 Vision for search log aided search
4.2 Improving proxy-based search logging

4.3 Improving search task repository
4.4 Roundup

Conclusion
Summary (in Estonian)
Bibliography

A Resources

52

54

56

61

Acknowledgements

Hereby T would like to express my sincere gratitude to everyone who have helped
me during my Master studies. A big thank you to Dr. Ulrich Norbisrath for all
his all-round support and wisdom. Many innovative ideas have emerged from my
numerous conversations with him. I am very grateful to Prof. Dr. Eero Vainikko
for providing technical advice and supervising my writing. Last but not least I want
to thank Georg Singer who inspired me to take a plunge into exploratory search and
information management.

I am very fortunate to have received a lot of support from my parents and I wish
to thank them for their continued love and prayers.

Finally, I would like to acknowledge that the research was supported by European
Social Fund and Internationalization Programme DoRa.

Introduction

Now that the size of World Wide Web is growing exponentially, there is an increasing
demand for better information retrieval algorithms as well as Internet search supporting
tools to find the relevant information especially in case of complex exploratory search
tasks. As part of a collective ongoing effort to support Internet search, the aim of
this thesis is to provide the tools for detailed search task log creation, annotation and
publishing. Tt is a part of the information management efforts and can be located in
the research field of Information Retrieval (IR), although it must be noted this is not
a traditional IR project.

I decided to undertake this project because I was somewhat frustrated with the
state of the art in traditional query-based search methods which are inherently not
suited for bigger and more difficult search tasks. What also motivated was being a
part of a research group made up of likely minded people who all share my ambition
and want to bring a change to how we think about Internet search. The main research
problem of my thesis is engineering a new type of search task logging and publishing
framework which would provide a better alternative for existing browser plug-in based
methods.

Let us consider the following practical scenario. Jade is a high school graduate with
a goal of finding a top European university on a monthly budget of 1500 EUR where
to study machine engineering in English. She starts by googling “machine engineering
Europe universities” and goes through ranked lists of universities and visits each of
their home pages for more information. This takes a lot of time but Jade is not happy
with the results. She decides to change the search query to “top universities in Europe
machine engineering”.

This time she has more luck and finds the QS World University Rankings. As she is
building a list of potential candidates, Jade is confused by the fact that universities in
different countries are difficult to compare: some have tuition fees, some do not have;
they provide different entry criteria and financial support packages. She changes her
search query a few more time to include related terms “mechanical engineering” and
“electrical engineering”. Her list of universities gets longer but also the list of discovered
gaps in her knowledge. After hours of fruitless search Jade gives up.

Jade’s scenario is not an isolated example of complex search tasks gone wrong.
Prevalent Internet search are reasonably good for simple lookup operations. However,
we could do better when things get more complicated and users want to combine
multiple queries in one search task. An important characteristic of these scenarios is
users learning, investigating and exploring the subject matter while they are conducting
the search. This means that it is even possible that they do not have the “right words”
for what they are searching for and do not know what they are going to find out. As a
result, such search tasks of complex nature tend to be long-winded and unsatisfactory.

In order to tackle this problem, I propose a proxy-based method for logging user

search behaviour across different browsers and operating systems. I also compare it
with an existing plug-in based search monitoring solution for Mozilla Firefox 3.6 and
other similar solutions. The logs created by my solution are subsequently annotated by
the user and made publicly available on a dedicated Internet blog called the Search Task
Repository. Users can search against the already annotated and published Internet
search logs. Ideally this would mean reduced complexity of search tasks for the users
which in turn saves time.

To illustrate the benefits of my solution, T will highlight what would be different in
Jade’s scenario. Assuming that her computer is already set up to use my solution, Jade
would start by visiting my search task repository and search like she would normally
do. If there were no publicly available related search task logs by members of the
community, my solution would not be of any help to Jade. However, she could be the
first in the community to publish a university-related search task log with annotations
so that the next person in a similar situation could benefit from it. If lucky, Jade would
find at least one matching search task log with ideas how to proceed from other users.
Having found her best university, Jade would choose to publish her own annotated
search logs too, and the next person looking for a university would have even more
search advice to consider.

There are many challenges ahead in search information management. For example,
we need even more user-friendly search monitoring and supporting systems that can
work in the background without user interaction. Efforts requiring lots of user activity
are unlikely to be actively used unless the users are sufficiently rewarded for their part
in annotating search logs. A number of these challenges actually have their roots in the
society. Things like the user’s location and cultural upbringing, information freshness
and reliability, willingness to adapt to new search paradigms all have to be taken into
account if we are to maximize the benefits from logging Internet search and making
decisions based on logged information.

From a technical perspective, we can clearly comprehend that one of the most
challenging tasks ahead would be indexing and ranking search logs. And even though
my thesis is centred on designing, implementing and testing out new search information
management solutions, one cannot neglect challenges related to Internet security nor
the actual performance and scalability of them. All in all, the management of complex
Internet search tasks will continue to be at the forefront of research for years to come.

My thesis is divided into four chapters. After this introduction, the first chapter
defines complex search tasks in the framework of exploratory search and describes
related work and projects. It is followed by a chapter providing a detailed overview of
the proxy-based search logging solution as well as the search task repository. A guide
to new users is given in Chapter three. The last chapter is dedicated to future work.
Links to all relevant resources are provided in Appendix A.

Chapter 1

Theoretical background and related
work

In this chapter, I introduce the meaning of complex search tasks and review the at-
tempts that have been made to record user search behaviour. I start from defining and
explaining some of the basic terms from classical Information Retrieval in the context
of my thesis. Also, I give an overview of related research in search behaviour analysis.
The possibilities of crowdsourcing are analysed in detail to determine its suitability for
exploratory search studies in the future.

1.1 Important definitions and concepts

For the sake of clarity I will give a few definitions for most frequently used and/or
relevant terms in my thesis.

Information Retrieval (IR) A broad area of computer science that deals with the
representation, storage, organization of, and access to information items such
as documents, Web pages, online catalogues, structured and semi-structured
records, multimedia objects. The representation and organization of the infor-
mation items should be set up in a way to provide the users with easy access to
information of their interest 6, p. 1.

Information need The topic about which the user desires to know more [37, p. 5]|.
For example, a high school graduate might be needing information about univer-
sity life, offered curricula, tuition fees, and living expenses. This forms a base for
his/her Internet search actions and behaviour.

Query The user input conveyed to the computer in an attempt to communicate the
information need [37, p. 5]. The simplest query is a single-word query. Matching
Web pages will have one or more occurrences of the query word. A single word
is not sufficient to express all information needs [33, pp. 197-200]. A multi-
word query is comprised of two or more words with optional context information.
Most Web search engines offer both multimedia and text search capability. In
keyword-based search the contents of multimedia files are not used directly: the
text in a neighbourhood of the multimedia file represents its content and it is
assumed that a description of the file will be found in its neighbouring text [33,
pp. 197-200]. Another dominant interface type for searching and browsing large

Figure 1.1: The terms precision and recall illustrated (taken from [57])

image collections is searching by overall similarity to sample images. Yee et al.
designed an image access interface that allows users to navigate a large collection
using hierarchical faceted metadata in a flexible manner. This enables users to
navigate along conceptual dimensions that describe the images [64]. Query length
is the number of terms (sometimes just “words”) in a query. According to Jansen
and Spink, term is a series of alpha-numeric characters separated by white space
or other delimiter [29].

Relevance A document is relevant if it is one that users perceive as containing infor-

mation of value with respect to their personal information need |37, p. 5].

Effectiveness The quality of the search results. It is often assessed by the following

two key statistics about the system’s returned results for a query, like explained
in the next two points: precision and recall |37, p. 5].

Precision The fraction of the returned results that are relevant to the information

need [37, p. 5|. For example, in Figure 1.1 precision is the quotient of the left
green region by the whole oval where the relevant items are to the left of the
straight line while the retrieved items are within the oval. Precision can be seen
as a measure of exactness or quality, and in even simpler terms, high precision
means that an algorithm returned more relevant results than irrelevant [57].

Recall The fraction of the relevant documents that were returned by the system [37,

p. 5]. For instance, in Figure 1.1 recall is the quotient of the left green region by
the whole left region where the relevant items are to the left of the straight line
while the retrieved items are within the oval. Recall is a measure of completeness
or quantity and high recall means that an algorithm returned most of the relevant
results [57].

Search task Marchionini defines “search tasks” as information-seeking activities risen

from different layers of information needs, each with associated strategies and
tactics that might be supported with computational tools. He distinguishes three

8

[Information Need }

Today’s Web Search

Codan]

Exploratory Search

Investigate

« Fact retrieval -Enowledhge apql;isition -E\nallys_is Negati

. . + Comprehension * Exclusion/Negation

. Ege%’;tlit;? search Interpretation . Synthes_is

« Transaction . Comparispn . Eyaluatlon

+ Verification * Aggregation/ - Discovery)

- Question answering Integrgtlop . PIannmg/Forecastmg
L L + Socialization * Transformation

Figure 1.2: Marchionini’s model of search activities|38] (taken from [43])

basic categories of such activities: information lookup, learning and investigating
(Figure 1.2). These three are often overlapping because people may engage in
multiple kinds of search in parallel, and some activities may be embedded in
others. A good example of this phenomenon are lookup activities which are often
embedded in learn and investigate activities [38]. In my thesis, I define it also as
a collection of purposeful information-seeking activities that can be decomposed
into an ordered set of simpler lookup, learning and investigating activities.

Information lookup Lookup is the most basic kind of search task, the focus of de-
velopment for database management systems. These are akin to fact retrieval
and question answering, and are satisfied by short, discrete pieces of information
such as numbers, short statements, names, or names of files or Web sites. In jour-
nalism, lookups are related to questions of who, when and where [38]|. According
to Marchionini, lookup tasks are generally suited to analytical search strategies
that begin with carefully specified queries and yield precise results. Thus, the
need for result set examination and item comparison is minimal [38, 6, p. 22|.

Exploratory search A class of information seeking tasks pertinent to learn and in-
vestigate search activities (see Figure 1.2). Learning searches require more than
one query-response pair, and require scanning and reading multiple information
items by the searcher as well as synthesizing content to form new understanding.
Investigating is seen as a longer-term process that involves multiple iterations
over a potentially very long time span and they encompass critical assessment
and validation of results |38, 6, p. 22|. In journalism, exploratory search is related
to questions of what, how, and why [38]. According to Ryen W. White from Mi-
crosoft Research, “exploratory search describes an information-seeking problem
context that is open-ended, persistent, and multifaceted, and information-seeking
processes that are opportunistic, iterative, and multitactical” [54]. Exploratory
searchers aim to solve complex problems and develop enhanced mental capac-
ities while exploratory search systems support this through symbiotic human-
machine relationships that provide guidance in exploring unfamiliar information
landscapes [54].

Complex search task Aula and Russell from Google suggest two undiscussed dimen-
sions to information searches: complexity of the information need and clarity of

9

learn something

A

explorativeness

move to Helsinki
in three weeks

about Finland \

notetaking boundary

\

\
N

complexity
A

A

find the ten best
neighbourhoods
in Helsinki

find the capital
of Finland

Figure 1.3: Search task space according to Aula and Russell [5]

what is needed to satisfy the information need [5]. It is the number of steps that
are required to collect the needed information that among other factors affect
the complexity of the information need. Storing found information becomes in-
creasingly important as the complexity of the task increases since there is a limit
to the amount of information to hold in human memory. They also show how
“exploratory search may sometimes be complex, but is not necessarily so, and
is characterized more accurately by the degree of clarity the searcher has about
the goal” [5]. According to Aula and Russell, “complex search tasks often include
exploring the topic, but do not necessarily require exploration or may require ex-
ploration only in certain phases of the search process”. Figure 1.3 illustrates the
difference between exploratory and complex search tasks [5]. Some researchers
do not draw a distinct line between the two terms. For instance, Singer et al.
define complex search as “a multi-step and time consuming process that requires
multiple queries, scanning through many documents, and extracting and compil-
ing information from multiple sources” [44]. Thereby, a complex search task is
the one that leads to a complex search activity |44].

Social search Contrary to the solitary activity of an individual searcher, social search

is a form of information seeking in which social interactions play an important
role throughout the search process [16]. This notion encompasses collaborative
co-located search, as well as remote and asynchronous collaborative and collective
search [16]. Social search can be aided through instant messaging access to the
searchers’ personal connections alongside the search box [16].

Session Jansen, Spink, Blakely, and Koshman define a session “from a contextual view-

point as a series of interactions by the user toward addressing a single information
need” [30]. They explored three alternative methods for detecting session bound-
aries and conclude that “using IP address, cookie, and query-content changes,
appears to provide the most detailed method for session identification with both
session length and session duration” [30]. As this method does not rely on prob-

10

Information need

Corpus

Matching rules

Query refinement

(Results

Figure 1.4: The classic model for information retrieval [10]

ability methods, it can be calculated in real time with near 100% precision of
new session identification [30]. Session length can be formulated as the number
of queries that a searcher submits in one episode with a Web search engine [29)].

1.2 Web search taxonomies

Current information retrieval literature shares the assumption that Web searches are
motivated by an information need [10]. According to the classic model for information
retrieval (Figure 1.4), a user, driven by an information need, constructs a query in
some query language. Then the query is submitted to a system that selects from a
collection of documents (also known as a corpus), those documents that match the
query as indicated by certain matching rules. If not satisfied, the user can refine the
old query to create new queries and/or to refine the results [10].

This basic model can be augmented as in Figure 1.5, to reflect the human-computer
interaction factors and the applicable cognitive aspects. In essence, we recognize that
the information need is associated with some task. This need is verbalized (not neces-
sarily loud) and translated into a query conveyed to a search engine [10].

Andrei Broder argues that the need behind a Web search is often not informational
(users want to find information on a certain topic) — it might be also navigational
(seeking the URL of the Web site I want to reach) or transactional (the intent is to
perform some Web-mediated activity, e.g. do online shopping, download a file, or find
a map) [10]. Modern search engines need to deal with all three types (informational,
navigational, and transactional queries) although each type is best satisfied by very
different results [10].

11

Information need

Verbal form

Corpus

Search engine

Query refinement

(Results

Figure 1.5: Augmented IR model for the Web [10]

Peter Morville and Jeffery Callender [39, p. 25| provide a simple, user-centred view
to search as a process in general. They call it “The Anatomy of Search” as in Figure
1.6. Their map to search features five elements: users, creators, content, engine, and
interface |39, p. 25]|.

1.3 Search engine user behaviour

Knowing how people search and what affects their search behaviour is an important
factor in designing advanced search engines, interfaces and information management
support systems. There is a large number of research done in this field, most involving
medium to large scale user studies. Only a fraction of these will be covered in the
following subsection.

Prof. Dirk Lewandowski from Hamburg University of Applied Sciences, Germany
describes the typical behaviour of the Web search engine user: “a user only types in
one or a few keywords and expects the search engine to produce relevant results in
an instant” [36]. In fact, his opinion is to a certain degree backed up by a number of

12

user studies |35, 29]. Back in 2008 he acknowledged that the major problem in Web
searching was still the same as it had been 10 years before: relevance [36]. Today, the
same probably holds true as search engines have surely improved a great deal over the
years, but their results are still far from perfect.

Jansen and Spink (2006) compare the changes in session length, query length, oper-
ator usage, and number of results pages viewed across these nine studies from 1997 to
2002. Their comparative analysis shows that for the US-based search engines the per-
centage of one-term queries is holding steady, within a range of 20-29% of all queries.
For the European-based search engines it is within a range of about 25-35% [29].
Lewandowski finds that the average query length is 1.7 words for German language
queries [35]. Other studies have shown that queries in English are a bit longer, but he
thinks that this has to do with the specifics of the German language, where there is
heavy use of compound words [36].

When compared to some more recent studies, there seems to be a trend such that
search queries on all the major search engines are starting to get longer and longer.
Hitwise has established (see Figure 1.7) that from January 2008 to January 2009 one
and two-word search engine queries became slightly less popular, while the number of
three-word queries remained flat. Instead, a growing number of users are now opting to
use longer queries [51]. This could indicate that searchers are not totally happy with the
results they get from short and unspecific queries and are becoming more sophisticated
in how they structure their queries. Interestingly, Lewandowski maintains that search
engine users are indeed easily satisfied |[36]. When asked about the quality of the results
they achieve, they usually express satisfaction with their searching strategies [36].

According to Jansen and Spink (2004), session durations are in most cases 15 min-
utes or less, although the average is a couple of hours [48, p. 185]. They also note that
a substantial percentage of Web sessions are even less than five minutes [48, p. 185].
Although already dated, this is an interesting finding that could shed some light on
the distribution of search session duration. We can expect to see two types of search
sessions: simple information lookup which often takes less than five minutes, and ex-
ploratory search taking hours. Authors also mark a growth in multitasking sessions,
which are sessions that include at least two topics [48, p. 185].

Another interesting related area is assessing user search behaviour when deciding
which links to follow in rank-ordered result lists. Mark T. Keane, Maeve O’Brien, and
Barry Smyth show people do manifest some bias, favouring items at the top of results
lists, nevertheless they also seek out high-relevance items listed further down a list [32].

Goals Interaction Features Indexing Tools
Psychology Affordances Technology Structure Process
Behavior Language Algorithms Metadata Incentives

Interface

O,

W

=

4

Engine Content

Users Creators

Figure 1.6: The anatomy of search (taken from [39])

13

Percentage of U.S. clicks by number of keywords

Year-over-year
Subject Jan-08 Dec-08 Jan-09 percent change
1 word 20.96% | 20.70% 20.29% -3%
2 words 24.91% | 24.13% 23.65% 5%
3 words 22.03% | 21.94% 21.92% 0%
4 words 14.54% | 14.67% 14.89% 2%
5 words 8.20% 8.37% 8.68% 6%
6 words 4.32% 4.47% 4.65% 8%
7 words 2.23% 2.40% 2.49% 12%
8+ words 2.81% 3.31% 3.43% 22%

Note: Data is based on four-week rolling periods (ending Jan. 31, 2009;
Dec. 27, 2008; and Jan. 26, 2008) from the Hitwise sample of 10 million
U.S. Internet users.

Source: Hitwise, an Experian company

Figure 1.7: Search query length findings from Hitwise|51]

Their experiment shows that when lower-relevance-ranked items are placed on top of
the results list, they are chosen more often by searchers, despite their limited relevance
[32]. On the contrary, when highest-relevance items are placed last, they are being
chosen by users considerably less often [32].

Granka et al. conducted eye-tracking analysis which seem to indicate that attention
paid to links ranked 1 and 2 is almost equal [21]. After the second link, fixation time
drops off sharply. In addition, there is an interesting dip around results 6 and 7, both
in the viewing time as well as in the number of clicks [21]. This phenomenon can
be justified by the fact people are intrinsically lazy and only the first 5-6 links are
visible without scrolling. Unlike for ranks 2 to 5, the abstracts ranked 6 to 10 receive
approximately equal attention [21]. Various studies [29, 36, 21, 32| point out that a
sharp drop occurs after link 10, as ten results are usually displayed per page and most
users do not go past the first results list.

1.4 Related work in exploratory search and search
task logging systems

Georg Singer, Dmitri Danilov, and Ulrich Norbisrath [44]| argue that the exploratory
search concepts of aggregation, discovery, and synthesis are today the most time con-
suming activities, especially when fulfilling a complex information need. After a thor-
ough theoretical analysis, they come to a conclusion that these three terms — aggre-
gation, discovery, and synthesis — are the main steps or “three pillars” in the process,
that Marchionini calls exploratory search [44].

Singer et al. view aggregation as the “support for selecting, storing, and accessing
the relevant documents for a certain aspect of a search need” [44] and maintain that it is
supported to some extent by all systems which they investigated, including the classic
search interfaces of Google and Bing. There is also support as far as dynamic query
interfaces, faceted browsing, collaborative search tools, social search, and universal

14

search interfaces are concerned. However, they are of the opinion that even the support
for aggregation is just in its roots and could theoretically serve users better [44].

Discovery means the support for finding unknown relevant documents or informa-
tion especially in new and unknown categories [44]. When it comes to discovery, the
authors have found that “discovery is nearly not supported in standard Web search
interfaces and that first support for information discovery is given by dynamic query
interfaces, collaborative search tools, faceted browsing, and universal search interfaces”
[44]. This also means that we are about to see major breakthroughs in this area, one
possible field being graph visualization techniques that will tremendously impact the
field of information discovery in the middle and long term.

Singer et al. understand synthesis as the support for compiling multiple documents
into one and extracting relevant information [44]. Interestingly, when it comes to
synthesis, their survey shows that this aspect of exploratory search is not supported
at all in present search systems. Information synthesis comprises amongst others the
steps information ordering, automatic editing, information fusion, and information
compression which all require heavy use of artificial intelligence and research in those
areas has not progressed far enough to come up with commercially usable solutions
[44]. However, new and promising innovations can be seen for all three activities.

Singer et al. [45]| present a new methodology and corresponding tools to evaluate
the user behaviour when carrying out exploratory search tasks as well as to describe
and quantify their complexity. These tools consist of a client called Search-Logger, and
a server side database with front-end and an analysis environment [45]. The client is a
plug-in for Firefox Web browsers. In order to evaluate the system, they compiled a pilot
user study consisting of seven search tasks performed by ten participants mainly with
an academic background. The main findings of their experiment are that when carrying
out exploratory search tasks, classic search engines are mainly used as a gateway to
the Web |45]. After that “users work with several search systems in parallel, they have
multiple browser tabs open and frequently use the clipboard to memorize, analyse and
synthesize potentially useful data and information” [45]. The idea of my Search Logger
arose from this project to try and overcome its certain limitations (see the comparison
of my solution with the original Search Logger in Section 2.4 for more information). In
a related project for evaluating mobile search, Gleb Stsenov adapted the Webkit-based
browser itself, enabling intense monitoring on the client side without confusing security
messages [50].

Singer, Norbisrath, and Lewandowski [46] took the above-mentioned pilot user
study [45] a step further by carrying out an experiment with 60 people in Hamburg,
Germany. Their main goal was to investigate the characteristics of complex informa-
tion needs in the context of Web search engines. Again, they use the Search-Logger
plug-in for Firefox to record the user behaviour. As a result, they present a number of
simple measures for complex search tasks which also serve as proxies to characterize
this kind of task. For example, all time-based measurements (i.e. search time, time
on search engine results pages, reading time) are higher than in simple search tasks;
the average number of sessions in complex search tasks is larger which may indicate
users having difficulty in completing the search tasks; and users are entering longer
queries for complex search tasks as well as refining their queries more times when they
may be unsure about how to express their information need [46]. Yet, as far as the
final outcome of the search process is concerned, it seems to be difficult to distinguish
successful from unsuccessful search behaviour [46]. They claim that successful tasks

15

are carried out with more strategy; users start issuing a query and then either narrow
the query or extend it, which can be interpreted as a sign of strategy and playing with
the result space. They also spend less times on search engine result pages. This leads
us to a conclusion that experienced searchers seem to be able to get an overview of the
results quicker than inexperienced searchers [46].

In his upcoming PhD thesis Georg Singer outlines three main causes impacting
search task complexity [43]:

e a lot of information needs to be processed, read, qualified and collected;

e the collected information needs to be synthesized into a single document, causing
a lot of effort;

e the openness of a task where a lot of effort is needed to discover the dimensionality
of the result space and the main aspects of the task.

He also outlines the ATMS approach [43] to improve the support for complex search
in search engines:

1. Build awareness

2. Offer a task-based search structure

3. Monitor the search process and help if needed
4. Share best practices with other users

I have found several other tools designed mainly for the same purpose of logging user
events. The first tool to look at is called “Wrapper” by Bernard J. Jansen [28]. Tt
addresses a fundamental issue in exploratory search evaluation in that user may seek
information over an extended period and on multiple information systems. Being a
desktop application, it logs a wide range of user interactions, such as interactions with
the browser toolbars, interactions with the system clipboard, scrolling of results listing
or documents, and numerous implicit feedback actions, such as bookmark, copy, print,
save, and scroll [28]. Although this broad logging functionality is an advantage, the
software does not collect explicit user feedback [45] and it only works on the Windows
operating system. Wrapper also does not have the functionality built in, to relate a
set of logs to a certain search task |45]. The concept of search task does not exist in
this approach [45].

Another tool is a browser plug-in that was created by Fox et al. in 2005 [19]. Fox’s
approach was implemented as an add-on for the Internet Explorer [19]. It was the first
tool to gather explicit as well as implicit information during searches at the same time
[45]. Explicit feedback was collected at two levels of detail: for individual result visits
and for the overall search session. A state machine was developed to prompt the user
for feedback at appropriate times [19]. Their data was collected in a workplace setting
among Microsoft employees during a period of six weeks to improve the generalizability
of the results. Unfortunately, Fox’s Internet Explorer add-on is not publicly available
[45] and is not designed to work on other platforms and browsers.

A third tool is an open-source project called “Lemur Query Log Toolbar” [52]. It
is a Web browser plug-in that captures user search and browsing behaviour to support
research on information seeking behaviour, learning to rank, and related topics [52].

16

Task: Answer:

(a.) The task pane

-

1. Re—writes links to pass back through the proxy
2. Injects JavaScript calls to functions in the outer window
— this can keep track of, with time stamps:
+ mouse movements
+ queries entered
+ pages clicked
+ pages viewed
+ scrolling
+ anything else that JavaScript can capture

(b.) The proxy frame

Figure 1.8: The proxy set-up for the study of Feild et al. (taken from [17])

The solution is currently available for Firefox and Internet Explorer. The creators of
the toolbar have put a lot of emphasis on user privacy. For instance, the toolbar allows
the user to set up phrases and items that can be “blacklisted” — that is, if a URL,
copied text, or search result has the found blacklisted item in it, the matched item
will be replaced by the generic text “##—#4" |52]. Also, users can generate a random
session ID when they choose to upload data to the server and, of course, they encrypt
user data for privacy [52]|. Nevertheless, it does not collect explicit information from
the user and is not designed for exploratory search tasks.

Henry Feild et al. [17] address the relationship between searcher self-efficacy as-
sessments and their strategies for conducting complex searches. From their initial
experiments of using Amazon Mechanical Turk to conduct experiments in this area
they discovered that “it is too much to expect Amazon Mechanical Turk (see 1.5.3)
workers to install new software in their browsers, especially software that may inadver-
tently violate the worker’s privacy in other browsing, unrelated to the assigned search
task” [17]. Thus, they set up an environment on an Amazon Mechanical Turk HIT page
in which they show each “turker” a page with a task pane and an embedded frame,
which points to the proxy (Figure 1.8). The proxy frame is directed to a modified
search engine interface and it rewrites all links on every page that passes through so
that those pages are redirected via the proxy as well. Their solution utilizes JavaScript
injection in a way that events, such as pages visited and mouse movements, can be
logged [17]. Similarly with my solution, search logs from users on a variety of browsers
can be successfully captured using their approach. What is different, however, is that
users are forced to browse the Web for solving search tasks inside the proxy frame
which can be just a small part of the browser window. And even more importantly,
this method severely limits users’ freedom to search in a way and in a surrounding they

17

are used to. Feild et al. reported themselves that some users had chosen not to adhere
to the rules by doing all the search in a non-logged environment and just copying over
the answers [17].

Henry Feild, James Allan, and Joshua Glatt present “a novel framework for collect-
ing, storing, and mining search logs in a distributed, private, and anonymous manner”
[18|. Their project is called CrowdLogging and it is motivated jointly by a need to have
search logs available to researchers outside of large search companies and a need to in-
stil trust in the users that provide search data [18]. The framework gives researchers
access to up-to-date search data and also allows users an unprecedented amount of
control over their data [18].

CoScripter [23, 56] is a macro recorder implemented as an extension for the Mozilla
Firefox browser. It records user actions and saves them in semi-natural language
scripts. The scripts made are saved in a central wiki for sharing with other users.
CoScripter was created by a research team at IBM led by Allen Cypher, and it allows
to record user actions on the Web, play them back, and share them with others [7]. For
instance, one popular script quickly automates the process of adding a phone number
to the national do not call registry.

Further tools, which T will not discuss here, are: The HCI browser [11], The Cu-
rious Browser [12], and Weblogger [42]. Some of these are either discontinued, or do
not fulfil my requirements enough to be included in this comparison. All tools men-
tioned, have some features with my proxy-based Search Logger in common (i.e. the
logging of user-triggered events), while some aspects are not covered at all. Most of
the tools were developed for evaluating the query level while my solution was purely
developed for evaluating the exploratory search task level. None of the tools have the
built-in functionality to have a user-defined set of exploratory search tasks carried out
and published to a dedicated repository of search stories by a test group in a non
laboratory environment without any time constraints. Realistic user study results for
exploratory search experiments will only be possible if the participants are free of any
time constraints and can search in a way and in a surrounding they are used to [45].

1.5 Crowdsourcing feasibility study

A theoretical feasibility study was carried out in fall 2010 to study the meaning of
crowdsourcing, related projects, and possible benefits and shortcomings as a means for
user-based relevance evaluation in an academic environment. At that time I decided
not to go forward with it for two reasons: 1) I deemed porting our existing tools
to a crowdsourcing platform technically too complex and way out of scope; and 2)
human experimentation in the lab seemed a good low-tech alternative. Nevertheless,
this section presents the most interesting findings about crowdsourcing in the context
of my thesis.

1.5.1 Motivation

The research in IR is often criticized for two main reasons: 1) lacking a more formal
framework as a basic foundation; and 2) lacking robust and consistent testbeds and
benchmarks [6, pp. 159-160]. Baeza-Yates and Ribeiro-Neto argue that the first of these
criticisms is difficult to dismiss “due to the inherent degree of subjectiveness associated
with the task of deciding on the relevance of a given document to an information

18

Initiation Execution

Preparation

Figure 1.9: The crowdsourcing process (taken from [49])

need” |6, pp. 159-160|. Thus, they do not expect any developments on this front
any time soon. However, there are attempts to deal with the second main problem.
Text REtrieval Conference (TREC) is an annual promoted conference dedicated to
experimentation with large datasets comprising millions of documents or even more [6,
pp. 159-160]. A set of experiments is designed for each TREC conference which are held
since November 1992. The goal of the conference series is to encourage IR research from
large text applications by providing a big test collection, uniform scoring procedures,
and a forum for organizations interested in comparing their outcomes. Each TREC
workshop consists of a set tracks, areas of focus in which particular retrieval tasks are
defined. TREC 2012 tracks include a Contextual Suggestion Track, a Crowdsourcing
Track, a Knowledge Base Acceleration Track, a Legal Track, a Medical Records Track,
a Microblog Track, a Session Track, and a Web Track [53].

In 1950s Cyril Cleverdon, a librarian at the College of Aeronautics at Cranfield in
the UK, initiated a series of experiments out of which came the systematic evaluation of
IR systems. These experiments provide a foundation for the evaluation of information
retrieval systems, and are now called the Cranfield experiments |6, p. 132]. However, as
far as my created tools for detailed search task log creation, annotation and publishing
are concerned, proper evaluation of the user interface and of the interactions initiated by
the searchers requires methods that go beyond the framework of Cranfield experiments.
Accordingly, I determined that user-based evaluation is best suited for this task.

Crowdsourcing has emerged as a promising alternative for relevance evaluation be-
cause it combines the flexibility of the editorial approach (assembling a large body of
editorial staff to judge the relevance of search results as suggested in the Cranfield
experiments) at a much larger scale [2]. By definition, crowdsourcing is a term used to
describe tasks that are outsourced to a large group of people (also known as “workers”)
instead of performed by an employee or contractor [6, p. 170]. It is an open call to
solve a problem or carry out a task and this service is usually paid by the benefiting
organization. Yet, the lower cost of running experiments makes this approach very
attractive for a variety of purposes and environments [6, p. 170].

According to Stanoevska-Slabeva, there are various attempts to give an overview of
crowdsourcing related processes identifying and analysing the underlying characteristics
[49]. An aggregated view on the crowdsourcing process is provided by Gassmann et al.
[20], who consider 5 steps (see Figure 1.9): 1) Preparation; 2) Initiation; 3) Execution;
4) Evaluation; and 5) Exploitation.

19

1.5.2 Crowdsourcing in academia

Since 2006, when the term was coined, various papers have been published about
applying the notion of crowdsourcing to different fields of computer science, mainly
for user-based evaluation in IR. Here I aim to provide a detailed overview of the main
results of selected related studies.

Omar Alonso, Daniel E. Rose, and Benjamin Stewart describe a new approach to rel-
evance evaluation called TERC, based on the crowdsourcing paradigm, in which many
online users, drawn from a large community, each performs a small evaluation task [2].
In contrast to traditional evaluation approaches, their solution has fast turnaround (all
the HITs on Amazon Mechanical Turk completed in a couple of days), low cost ($125
for their task), flexibility and high quality (by getting several opinions and eliminating
the noise) [2].

Requiring feedback from workers enables researchers to get justifications for certain
answers. Post-processing this feedback can help improve instructions and systems [6,
p. 170]. Interestingly, some studies claim that “turkers [workers in Amazon Mechanical
Turk| not only are accurate in assessing relevance but in some cases were more precise
than the original experts” [1]. Also, it has been established that only a small number of
non-expert annotations per item are necessary to equal the performance of an expert
annotator for producing annotations in natural language texts [47]. Thus, many large
labelling tasks can be effectively designed and executed in this method at a fraction of
the usual expense [47].

Daren C. Brabham surveyed 651 people at iStockphoto, in essence, a giant, royalty-
free stock photography agency. His main findings are that the desire to make money,
develop individual skills, and to have fun were the strongest motivators for participation
at iStockphoto, and that the crowd at iStockphoto is quite homogeneous and elite [9].
Unlike general purpose social networks, Brabham’s survey indicates that friendship
and other social networking features are secondary to individual fulfilment and profit
in the crowdsourcing context [9]. He portrays the typical iStocker as a white, married,
middle to upper-class, higher educated, 30-something, working in a so-called “white
collar” job with a high-speed Internet connection in the home [9]. Geographically, 56.4
percent of respondents hailed from North America, 33.4 percent from Europe, and 4.1
percent from Australia and New Zealand [9)].

Jiang Yang, Lada A. Adamic, and Mark S. Ackerman examine the behaviour of users
on one of the biggest Witkey Websites in China, Taskcn.com. They observed several
characteristics in users’ activity over time and tried to find interesting behavioural
patterns. For instance, most users become inactive after only a few submissions while
others keep attempting tasks [63]. Over time, users tend to select tasks where they
are competing against fewer opponents to increase their chances of winning [63]. Some
users are tempted to select tasks with higher expected rewards [63]|. Yet, on average,
those users do not increase their chances of winning, and in some categories of tasks,
their chances actually decrease [63]. The authors have found that there is a very small
core of successful users who manage not only to win multiple tasks, but to increase
their win-to-submission ratio over time. This group of people proposes nearly 20% of
the winning solutions on the site [63].

Often it just comes to finding the right facts in the crowd. Community Question
Answering (example of this is Yahoo! Answers) requires effective answer retrieval.
Jiang Bian, Yandong Liu, Eugene Agichtein, and Hongyuan Zha present a general
ranking framework for factual information retrieval from social media [8]. They also

20

demonstrate that their method is highly effective at retrieving well-formed, factual an-
swers to questions, as evaluated on a standard factoid Question Answering benchmark
[8]. The authors provide result analysis to gain deeper understanding of which features
are significant for social media search and retrieval [8].

Tingxin Yan, Vikas Kumar, and Deepak Ganesan have developed CrowdSearch, an
accurate image search system for mobile phones. Their CrowdSearch combines auto-
mated image search with real-time human validation of search results [62]. Automated
image search is performed using a combination of local processing on mobile phones
and backend processing on remote servers [62]. Amazon Mechanical Turk (see 1.5.3) is
used for performing human validation. What makes their solution particularly useful,
is a novel predictive algorithm that determines which results need to be validated, and
when and how to validate them [62]. Thus, they were able to show that CrowdSearch
achieves over 95% precision across multiple image categories, provides responses within
minutes, and costs only a few cents [62].

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell have adopted active learning
and crowdsourcing techniques to machine translation. Their experiments with crowd-
sourcing on Amazon Mechanical Turk have shown that it is possible to create parallel
corpora using non-experts and with sufficient quality assurance, a translation system
that is trained using this corpus approaches expert quality [4]. They also proposed
Active Crowd Translation (ACT), a new paradigm where active learning and crowd-
sourcing come together to enable automatic translation for low-resource language pairs
4].

Harry Halpin, Daniel M. Herzig, Peter Mika, et al. discuss the retrieval of objects
in response to user formulated keyword queries — the ad-hoc object retrieval [22]. In
semantic search like in many other domains it is necessary to evaluate the relevancy of
search results but by this time there still is no good non-human evaluation of relevancy
of search results. Therefore the authors of this paper opted for crowdsourcing. They
posted near 600 HITs using Amazon Mechanical Turk (see 1.5.3) in 2 days and have
spent only $350 for conducting the whole experiment. Each HIT consisted of 12 query-
result pairs for relevance judgements. Their main findings from the crowdsourcing
experiment are that irrelevant results are the easiest to agree on, followed by perfect
results [22]. To see how this agreement compares to the more traditional setting of
using expert judges, they also used expert judges for the same tasks. Authors claim
that there is practically no difference between the two and three-point scales, meaning
that expert judges had much less trouble using the middle judgement (potentially
relevant results) [22]. All in all, the experiment was both fast and cost-effective [22].

1.5.3 Crowdsourcing platforms

Nowadays crowdsourcing is widely used as a means for solving complex scientific prob-
lems, producing new design and ideas, finding competent and motivated human re-
sources and freelancers, forecasting market trends, utilizing open innovation for new
initiatives. Here I introduce some of the biggest crowdsourcing platforms.

InnoCentive InnoCentive (http://www2.innocentive.com/) is a crowdsourcing plat-
form with a community of over 200,000 members. InnoCentive (see Figure 1.10) posts
a wide range of problems from organizations in areas such as engineering, computer
science, chemistry, life sciences and business [14]. They connect people interested

21

http://www2.innocentive.com/

INNOCENTIVE®

My IC Home What We Do For Seekers For Solvers Challenge Center

Where the world innovates

Tell me more » .

®
Welcome to InnoCentive . 9 o
; ®

Open Challenges LUV Newest Challenges > There are 31 open challenges | View All » LB S

Refer a Friend. Earn a Bonus.
'\'..f_ Oligodendrocyte Precursor Immortalized Cell Line $20,000 USD l Do you know someone who would

Deadline: 01/19/2011 | 14 active solvers make a great Solver? Refer them
and earn up to $1,500 the first
time they solve an InnoCentive

% Shelf Ready Display Cases (Packaging) $20,000 USD Challenge!
M Ceadine: 01/16/2011 | 298 active solvers

Referring is easy: click here to get
your referral link and find out how
it works.

% Processes for DNA Biosensor Manufacture varies

Deadline: 12/27/2010 | 54 active solvers

Start Referring Now!

Figure 1.10: InnoCentive connects seekers and solvers.

in solving critical and pressing problems (solvers) with organizations seeking answers
(seekers) [27|. As of November 2010, InnoCentive’s Web site features an award from
the non-profit Prize4Life foundation for $1 million for finding a biomarker that mea-
sures ALS disease progression [25]. Nature.com requests novel insecticidal proteins, or
genes encoding insecticidal proteins, for $1,250,000 USD |[26].

TopCoder TopCoder (http://www.topcoder.com/) is a crowdsourcing platform with
a community of nearly 270,000 members. TopCoder (see Figure 1.11) posts computer
programming problems from organizations in the form of competitions. The community
are then asked to design, develop, and test the software developed in the competitions
[14]. For example, TopCoder hosts 1) algorithms competitions in which competitors
are given a set of algorithmic problems and have 75 minutes to correctly solve as
many as they can; 2) design competitions where participants are given a set of user
requirements and attempt to convert them into a usable software design specification; 3)
development contests where people are given a set of design specification and attempt
to write software components that match those specification; 4) Marathon Matches
in which contestants are given a particularly difficult algorithmic problem and the
scoring is done by computer based on criteria specifically suited to the problem; 5)
studio contests where people are asked to show off their creative skills in a competitive
environment; 6) bug races, and more [59]. “The work in design and development
produces useful software which is licensed for profit by TopCoder. Competitors involved
in the creation of these components are paid royalties based on these sales. The software
resulting from algorithm competitions — and the less-frequent marathon matches — is
not usually directly useful, but sponsor companies sometimes provide money to pay
the victors |59]”.

Peer recognition is given via developer ratings which are publicly available. Top-
Coder provides this in the form of detailed ratings and performance metrics are kept
to track a developers standing within the community. This includes skill ratings and

22

http://www.topcoder.com/

Design Develop PressRoom Help ConfactUs REGISTER

The world's largest competitive software development community

The TopCoder Community is 272,639 strong.

What is TopCoder?

TopCaoder is Innovation.
TopCoder is revolutionizing the software design
and development process by tapping in to our

unlimited global community to work for you.

VWhat can we help you do today?

Get Started

Figure 1.11: TopCoder posts computer programming problems from organizations in
the form of competitions.

history of submissions. TopCoder also acts as a recruitment centre where companies
can find the best software developers regardless of their location [15].

Amazon Mechanical Turk Amazon Mechanical Turk (https://www.mturk.com/)
is a platform with a community of over 100,000 members (see Figure 1.12) [14]. The
name Mechanical Turk comes from “The Turk” — a chess-playing automaton of the
18th century made by Wolfgang von Kempelen. It toured Europe beating the likes
of Napoleon Bonaparte and Benjamin Franklin. It was later revealed that this “ma-
chine” was not an automaton at all but was in fact a chess master hidden in a special
compartment controlling its operations [55].

They give businesses and developers access to an on-demand scalable workforce
[3]. The platform co-ordinates the use of human intelligence to perform tasks which
computers are unable to do. The Requesters are able to pose tasks known as HITs
(Human Intelligence Tasks), such as finding the email address for the company and
Website, translating text across multiple languages, or assessing the relevance of the
given search results [3]. Workers (called Providers in Mechanical Turk’s Terms of
Service) can then browse among existing tasks and complete them for a monetary
payment set by the Requester.

To place HITs, the requesting programs use an open Application Programming
Interface (API), or the more limited Requester site. Requesters, typically corporations,
pay 10 percent over the price of successfully completed HITs to Amazon [55]. To the
application, the transaction looks similar to a remote procedure call: the application
sends the request, and the Web service returns the results |6, p. 171|. Because HITs are
typically simple repetitive tasks and users are paid often only a few cents to complete
them, some have criticized Amazon Mechanical Turk as a “virtual sweatshop” [55].

23

https://www.mturk.com/

amazonmechanical turk

Your Account HITs Qualifications
Introduction | Dashboard | Status | Account Settings
Mechanical Turk is a marketplace for work.

We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

123,177 HITs available. View them now.

Make Money Get Results
by working on HITs
HITs - Human Intelligence Tasks - are individual tasks that Ask workers to complete HITs - Human Intelligence Tasks - and
vou work on. Find HITs now. get results using Mechanical Turk. Register Now
As a Mechanical Turk Worker you: As a Mechanical Turk Requester you:
e Can work from home ® Have access to a global, on-demand, 24 x 7 workforce
¢ Choose your own work hours ¢ Get thousands of HITs completed in minutes
¢ Get paid for doing good work e Pay only when you're satisfied with the results
Find an Work Earn Fund your Load your Get
interesting task money account tasks results

S>® 0 &

Find HITs Now Get Started

Figure 1.12: Amazon Mechanical Turk allows anybody to post tasks that need to be
completed like writing product descriptions or finding broken links on a Website.

1.5.4 Practical scenarios for exploratory search

In this subsection, a few practical scenarios are envisioned to highlight the possible
benefits of incorporating crowdsourcing methodology to logging, annotating and eval-
uating exploratory search tasks. These scenarios are purely hypothetical and are not
implemented as discussed.

Pre-conditions Ann and Diana both have a similar information need. Ann and
Diana are going to use the search task repository to seek for existing search logs and
publish their own annotated ones. We will assume that they are both participating
in a user study and their computer systems are fully set up to log their Web activity.
Bruno and Colin are monitoring new HITs on Amazon Mechanical Turk. They do not
need to have the Search Logger installed and running.

Ann publishes a search log Ann wants to take dance classes in Tartu. First, she
searches from existing search logs in the search task repository. She happens to be
the first person to be looking for dance classes in Tartu. Thus, there are no relevant
search results. Next she starts up the Search Logger, describes her search task in the
pre-form, and starts searching as usual. She types “dance classes in Tartu” into Google
search box and finds two promising matches. Then she decides to refine her query a
few times to get more relevant results. Now she has pinpointed four classes in Tartu
area to check out in person. Happy with the results, she reports her findings in the
post-form and publishes her search logs.

Bruno and Colin validate Ann’s log Ann’s new search task has just appeared on
Amazon Mechanical Turk. They can see Ann’s search task description and are asked
to select the log parts which seem to be helpful for solving the initial problem as well
as the obviously irrelevant ones. In addition, Bruno and Colin also get to validate the

24

ultimate search result posted by Ann. That way both the proposed answer as well as
sections from the published search logs get either positive or negative feedback from
Bruno, Colin and others doing the evaluation. Bruno and Colin get $0.5 for their work.

Diana uses Ann’s log to speed up her search session Diana also wants to take
dance classes in Tartu. First, she searches from existing search logs in the search task
repository. She happens to be not the first person to be looking for dance classes in
Tartu. She stumbles upon Ann’s validated search logs. It is easy to interpret this
information because the most relevant Web pages visited by Ann as well the most
helpful parts in her proposed answer are in a much bigger font than the irrelevant
information. This was made possible by the crowd’s generalized feedback at Amazon
Mechanical Turk. Nevertheless, Diana wants to carry out some additional searching on
her own. All of her search activity is logged by the Search Logger, and at the end Diana
publishes her own logs with annotations, too. They become a new HIT on Amazon
Mechanical Turk.

1.6 Roundup

Here T gave a theoretical overview of what is already done in relation to my thesis.
This overview included giving and explaining important definitions in IR, related work
in exploratory search, Internet search behaviour and search task logging systems, a
crowdsourcing feasibility study, and more.

In essence, the exploratory search concepts of aggregation, discovery, and synthesis
are today the most time consuming activities, especially when fulfilling a complex
information need. Thus, we need to develop new search support systems targeted at
solving problems arising from these activities. Most of the current search task logging
research is focused on developing browser plug-ins, often requiring frequent updating
from developers among other annoyances. None of the studied search task logging
solutions was intrinsically operating system and browser independent. Also, they are
not linked to a search task repository to facilitate easy publishing and sharing of users’
search task stories. It was determined that crowdsourcing can be used to organize large
scale user studies in exploratory search.

25

Chapter 2

Implementation and evaluation

This chapter outlines the main architecture and design of my search task logging and
publishing software. It also gives practical scenarios to better understand how it works
from a human perspective. Last but not least, it describes the evolution of this project
throughout its history.

2.1 Practical scenarios

Here T give two main practical scenarios from the user’s perspective.

2.1.1 Publishing a search task

As a user of the search task logging and reporting solution, I can log, edit, annotate
and finally publish my own search tasks. Here I describe how publishing a search task
works in practice because it includes all the previously mentioned activities.

First, I make sure everything in my local machine is set up correctly (see 3.1).
Before deciding to publish a new search task I try to find a related search task that can
already be found on the Web site of the search task repository (see 2.1.2). If this does
not satisfy my information need, I open up my Web browser and go to the page of the
main Web interface. I am prompted to fill in the pre-form which I will do. After that
logging is automatically enabled by the software but I can temporarily turn it off for
any reason (such as doing something personal or taking up another topic). I conduct
my search task and after doing so fill-in the post-form. Now I can choose whether I
want to publish the generated and collected logs right away or edit them. If T choose to
edit and annotate my search logs, T can use the simple to use Search Task Log Editor
interface. Then I can publish my edited logs for the world to see and use.

The logs get uploaded to the search task repository. This completes my scenario.

2.1.2 Finding a search task

As a user of the search task logging and reporting solution, I can search and read
publicly available search stories without having to set up everything.

To begin with, I go to the Web site which contains all search logs published by all
the members of the community. I think of a way to phrase my information need into
a query. Then I press the “Go” or “Search” button to go to the results page matching
my query. I can choose to study some of the published logs, or I may also reformulate

26

my search query to get a better match. Once I have found the relevant search tasks, I
can use their synthesized knowledge to my advantage.

This completes my scenario. Alternatively, I may choose to publish my own search
report as described in 2.1.1.

2.2 Requirements analysis

The following section outlines the requirements that were set for my search task log-
ging, annotating and publishing solution. More information about the history of the
development process can be found in Section 2.6. In addition, since a fair share of the
requirements arose from the limitations of the existing browser plug-in based Search-
Logger, these are discussed in Section 2.4.

From the side of functional requirements, the following activities must be supported
by the solution:

e automatically logging at least two types of events
e logging starts and stops automatically during a search session
e logging can be easily turned on and off manually by the users

e crucial meta-information about the goals of the search task and their perceived
success rate must be collected from the users

e the users have to be able to describe and tag their search task

e the users must be able to edit and annotate all collected and automatically logged
information about their search session before publishing their search stories

e all published content must go to a public repository to enable sharing search
experience

e performing searches from published search stories
e filtering and browsing all published search task logs by tags
Additionally, the solution has to comply with these non-functional requirements:

e search task logging, editing, annotating and publishing is fully usable in a browser
window, no need to run anything from command line or use external text editors

e support multiple Web browsers (at least Google Chrome, Mozilla Firefox, and
Internet Explorer) by architecture

e support multiple operating systems (at least Linux, Windows, OS X, and Solaris)
by architecture

e logger set-up must be easy and have no more than five steps
e all common scenarios must be adequately documented

e use modular design to allow superior maintainability, extendibility and scalability

27

e none of the components may not cause any other running services and applica-
tions (i.e. Web browser) to behave abnormally and/or crash

e the solution has to be transparent enough to allow for authentic Web browsing
in most cases

e the chosen architecture can be easily configured to block irrelevant data such as
news and ads

e the chosen architecture can be modified to serve multiple clients in a Local Area
Network (LAN)

e all components must be tested internally and known problems reported

In retrospective, it were mainly the non-functional requirements that affected to ar-
chitectural decisions the most. The chosen proxy-based approach allowed me to offer
cross-platform compatibility while also being very stable, maintainable and extendible.
As for blocking irrelevant data such as news and ads, Privoxy is a powerful tool for
this purpose and can be configured to accomplish this.

2.3 Architecture and design

Right from the start, the proxy-based search task reporting system has been a com-
plex engineering challenge involving code written in multiple programming languages,
interactions planned across many software modules (some of which have already been
existing large projects themselves), and a Linux operating system configured to ease
the set-up process for the user. This was the decision process to make sure that this
solution is reliable, extendible and maintainable in the future.

The solution is comprised of two large units, which are the search task repository
and the search task logging and publishing unit. The search task repository is a remote
component, essentially a fairly simple WordPress blog, which enables search stories to
be published automatically over XML-RPC protocol, search queries to be served, and
search task logs to be displayed to the searcher. The logging system is much more
complex: it consists of three sub-components (Figure 2.1).

First of these is the Web interface that mediates all relevant actions between all
other components and the user. These are for example collecting explicit data from the
user about the search task, controlling the execution of the logger, serving an easy to
use log editing functionality, and eventually implementing the client side of XML-RPC
(MetaWeblog API for WordPress was used) to publish the edited and user-annotated
logs online. The Web interface is mainly written in PHP and HTML but also uses very
little CSS. The second sub-component, written in Python, is the logger itself which
listens to HT'TP requests from the visited JavaScript-injected Web sites.

The third sub-component is a third-party open-source Web proxy Privoxy. Ac-
cording to its developers, Privoxy is a non-caching Web proxy with advanced filtering
capabilities for enhancing privacy, modifying Web page data and HTTP headers, con-
trolling access, and removing ads and other unwanted Internet junk [41]. Privoxy has a
flexible configuration and can be customized to suit individual needs and tastes and it
has application for both stand-alone systems and multi-user networks [41]. T took the
challenge of making a working configuration for Privoxy to modify visited Web pages in

28

AN
Virtual Machine

Logger

Web Interface starting/stopping

Privoxy proxy server <>(\
N

sending[logging data

searchftask constructior/rnod'f-Ied content

reading search stories

original content

INTERNET

LN
Actor Search Task Repository

Figure 2.1: Architectural overview at a component level with interactions between
components

a way that they send out meta-information to the logger sub-component. A JavaScript
injection approach was chosen because it allows us to capture client-side information
at a fairly low level. Cwrrently only two types of events (page load and unload) are
supported but related studies [17] have proved that much more could be logged via this
approach (see section 4.2). In order to describe and enforce the JavaScript injection
rules, I had to do some Perl programming.

All these three sub-components within my search task logging system are made
to communicate with each other. The fact that certain settings are rather host sys-
tem specific also meant difficulties with setting up the solution on new systems. To
tackle this problem and to propagate the software on other computers besides my test
environment, I took a Linux (Debian) operating system and set everything up as a Vir-
tualBox image (see Figure 2.2). This way the users can benefit from a quick and easy
set-up process without complicated installation and configuration without a significant
trade-off in operating performance.

An interesting detail about this step is how I solved the networking problem between
the host and the guest machine while maintaining Internet connectivity. It appears to
be a common practice to define two network adapters: a NAT adapter for Internet and
a host-only adapter for communications between the host and the guest machine. Host-
only adapter is useful for creating private networks, where machines need access to one
another, but not necessarily outside this subnet [13]. VirtualBox also supports other
network adapter types, including a bridged adapter. This, however, was not a suitable
option for my scenario. The main reason is that a bridged adapter requires a second
IP-address for the bridge which might be tough to acquire in a WAN. Consequently,

29

ndled by console-setup).
.done.

@ B »

Mew Settings Show

T Search Environment
(‘._, = Running

determine the server's f

ame

...done.

Video Memory: 12 MB
Remote Desktop Server: Disabled

@ storage

IDE Controller

IDE Secondary Master (CD/DVD): Empty

SATA Controller

SATA Port 0: Search Environment.vdi
i~

(PR PP)

Figure 2.2: The solution for seamless distribution — a VirtualBox virtual machine

computers with direct Internet access (nowadays USB modems are widely used for
mobile broadband) may not be able to use bridged networking because of the absence
of a router |13].

Finally, the main activity conducted by the users using my solution needs to be
clarified again. It is the process of logging, editing and publishing a new search task
log to the search task repository (see Figure 2.3). At the beginning we have some users
with specific information needs that can be just lookup tasks, yet these are likely to be
related to exploratory or complex search tasks. Upon opening up the Web interface,
they fill in the pre-form where they define, describe and tag their upcoming search
task. My solution gives the users the possibility to express themselves relatively freely,
so they may find this small additional work useful for their personal needs as well
when they may want to come back to their already published search task to study how
they found the answer. Also, this helps them to better understand and structure their
intentions for the next step. Then, the logger is automatically enabled and the users
can satisfy their information need as usual. After that, the users complete a small post-
form to let the searching community know how successful they perceived themselves to
be. Now, they can either publish their search logs immediately or choose to edit any
information collected throughout this process (for example, removing some personal
data or annotating the logs). If they choose to use the search task log editor, they
can publish their search stories after performing some manual modifications. Now, the
search logs get published in the repository of all contributed search tasks.

2.4 Comparison with the original Search Logger

The idea of developing a proxy-based search task logging and publishing solution came
from out of necessity, because the existing logging solution [45] had significant prob-

30

A

(User fills in the pre—form) Gser edits and annotates the search task datED—

h
[logging is enabled] @
A v
(USEF conducts the SEMD [Edit] Gser publishes the search task
A
[logging is disabled]
Y [Publish]
[Publish or Edit?] ublis
Gser fills in the post-form) ,<>

Figure 2.3: Activity diagram with the main activity

lems with maintainability, literally meaning that it only worked on a Mozilla Firefox
browser with a certain version and tended to have a rather unpredictable behaviour
across different operating systems. At first, I tried to solve these issues but with no
avail. Then, T started looking at alternative options to achieve better cross-platform
compatibility. A new type of search task logging solution was born. Here I compare
the two approaches: browser plug-in and proxy based evaluation of exploratory search
tasks.

Both of the Search Logger tools can be used to carry out user studies for search
tasks independent of a laboratory environment. They collect implicit user information
by logging a number of significant user events. Explicit information is gathered via
user feedback in the form of questionnaires before and after each search task. While
the plug-in based approach has the advantage of catching more user generated events,
the proxy-based approach ensures platform and browser independence.

In case of the plug-in based approach, the Search Logger consists of a browser
plug-in for Firefox, a remote log storage database and an analysis environment. The
architecture of my proxy-based Search Logger is given in Section 2.3. Unlike its pre-
decessor, this solution does not currently have an analysis environment. Instead, it
provides a Web repository for uploading search task logs and conducting searches.

The plug-in can be distributed to the study participants by either publishing it on
a Web-page or by sending the plug-in as an email attachment. Once the plug-in is
received, it can be installed into an existing Firefox browser by dragging and dropping
the plug-in onto the browser. After the installation is finished, the browser needs to be
restarted. The users interact with Search Logger via a little icon that appears in the
status bar of the browser at bottom right. A click on this icon opens up a window. In
this window the user can start, stop and pause search tasks. Depending on the chosen
state, the icon in the browser status bar either blinks if in logging mode or shows a still
green logo indicating that logging is stopped. The questionnaires are implemented as
HTML pages and can be edited with a standard HTML editor.

The proxy version is a bit more difficult to set up. The user needs to start the
browser of choice, for example Firefox and then go to the “Options” menu. Under

31

’ ‘ proxy \ plug-in ‘

logging fewer events are logged (logging all user-triggered events are
behaviour many more events can be logged, but also irrelevant
implemented), but also less requests not directly triggered

irrelevant data such as news and by the user
ads (altering Privoxy settings can
block most of that as well)
installation slightly more complicated, but the | drag and drop
VirtualBox image takes most of
the hassle away from the users;
the trade-off is in larger download
size (a 225 MB archive)

stability very stable plug-in can cause trouble in
browser
compatibility | no compatibility issues as depending on actual browser
independent of browsers and release
operating systems
usability users do not notice the proxy some security measures could

not be turned off and create
unneeded clicks for the study
participants

Table 2.1: Comparison of the two ways for logging search tasks

the connection settings he can change the manual proxy settings to route all traffic
through the proxy. As outlined in Table 2.1, the proxy based as well as the plug-in
based solutions have their own advantages and disadvantages. While the plug-in based
solution can log more user events, and the installation is a bit easier than in case of
the proxy based solution, those advantages do not outweigh the disadvantages. As the
plug-in based solution is tightly connected to the browser structure, keeping the plug-
in compatible with the latest releases is a significant maintenance effort. In addition
the plug-in based version can occasionally create trouble by making the browser a bit
unstable. The plug-in based solution also has the disadvantage of logging too much
information as any access to the Internet also from other plug-ins or JavaScript mech-
anisms (like pulling RSS feeds, news, or advertisements) is logged. This significantly
clutters the results and complicates the evaluation.

Finally, an enhancement of proxy-based search task logging can potentially reduce
the organizer’s effort significantly in a lab environment where only one server is needed.
This requires some small technical changes to be made in my solution and is not yet
supported but T provide some insight into this modification in Future work (see Section
4.2).

2.5 Implementation details

In the following section, T will clarify some particular implementation details. This
list includes the mechanism for injecting JavaScript into HT'ML pages to make them
loggable, the inside of the search task logger, and details about how data is published

32

to the remote repository of user search stories. Finally, the WordPress platform choice
for the repository is explained.

2.5.1 Rewriting Web pages

The corresponding functionality of injecting JavaScript into all Web pages that pass
through the Privoxy proxy server had to be defined by Perl substitutions. Currently, I
can log two types of events: when a Web page is loaded and when it is unloaded. Due
to a lot of effort going to other areas of research, supporting more events was left as
a task for the future (more on this in Section 4.2). My first goal was to write these
commands in JavaScript:

<script type="text/javascript">

function loggerLoad () {
sendLogEntry ("pageload");

}

function loggerUnload () {
sendLogEntry ("pageunload") ;
}

function sendLogEntry (action) {
request = new ajaxRequest () ;
request .open ("GET", "http://192.168.56.101:3128 /7 data="
+ action + "|+0+|" + window.location +
"|+0+|" + document.referrer , true);
request.send (null); }
function ajaxRequest () {
try {
var request — new XMLHttpRequest () ;
} catch(el) {

try {
request = new ActiveXObject ("Msxml2 . XMLHTTP") ;

} catch(e2) {
try {
request = new ActiveXObject (" Microsoft . XMLHTTP") ;
} catch(e3) {
request = false;
}
}
}
return request;
}
</script >

This code defines the JavaScript functions which have to be placed somewhere
inside the <head></head> tags. Function calls are defined as parameters for the
<body> tag. For example, to achieve the effect of a message going to the logger
sub-component immediately after a page is loaded, we would need to have some
code defined inside the <head>< /head> tags as well as a function call like this:
<body onload="loggerLoad()">.

Things get more interesting when trying to achieve exactly this by defining our
desired behaviour with Perl substitution statements. Explaining each symbol in the
following code would take too long but in my case rewriting the <body> tag was
more difficult because this tag can have multiple properties and, what is even worse,
there may be existing function calls in what T am about to rewrite myself, i.e. <body
onload="some _function()" onunload="another_ function()">. In this case, I insert

33

my function calls to the beginning, followed by a semicolon, and then append what
was originally called. In practice, it looks like this:

s/(<body) (?(?=[" >]xonload=\"["\"]x\") ([* >]*) onload =\"(["\"[+)\"[([" >]*))/
$1$2 onload=\"loggerLoad ();$3\" $4/is

s/(<body) (?(?=[" >]*onunload =\"[~\"]*\") ([~ >]*)onunload =\" ([~ \ "]x*)
\"[([">]*))/%$182 onunload=\"loggerUnload () ;$3\" $4/is

s/(<head[” >]x>)/$1<script type=\"text\/javascript\"> function loggerLoad
() { sendLogEntry(\"pageload\"); } function loggerUnload() {
sendLogEntry (\"pageunload\"); } function sendLogEntry(action) {
request = new ajaxRequest(); request.open(\"GET\", \"http
:\/\/192.168.56.101:3128)\ /?data=\" + action + \"|\+0\+|\" + window.
location + \"|\+0\+|\" + document.referrer, true); request.send(null);
} function ajaxRequest() { try { var request = new XMLHttpRequest() ;
} catch(el) { try { request = new ActiveXObject (\"Msxml2 XMLHTTP\"); }
catch(e2) { try { request = new ActiveXObject (\" Microsoft . XMLHTTP\") ;
} catch(e3) { request = false; } } } return request; } <\/script>/is

To enable this configuration, I created a new filter configuration file called user.
filter in the configuration directory of Privoxy (its location on Linux is /etc/Privoxy).
This file needed to be enabled in the main configuration file, and its actions triggered
in the user.action file, all located in the same directory.

2.5.2 Search task logger

The purpose of my search logger is listening to incoming HTTP GET requests and
intercepting messages coming from modified Web pages. I have developed two simple
log creators capable of producing output for different purposes: one for “humans” and
another for “geeks”. Currently, only the “human” version is used. Here are two different
examples of automatically generated search logs.

e Log output for “humans™

At 2011-11-30 14:11:10 a user opened http://jobview.monster.com/Data
—Analyst—Position —Job—Orange—County—CA-US—104170607.aspx. The
user IP was 127.0.0.1. The user came from http://jobs.monster.com
/v—business —q—data—analyst—jobs.aspx.

It was 2011—-11-30 14:11:22 when the user from 127.0.0.1 moved away
from http://jobview .monster.com/Data—Analyst—Position —Job—Orange—
County—CA-US—104170607.aspx .

It was 2011-11-30 14:11:22 when the user from 127.0.0.1 moved away
from http://fast.monster.demdex.net/dest2.html.

At 2011-11-30 14:11:24 a user opened http://jobs.monster.com/v—
business —q—data—analyst —jobs.aspx. The user IP was 127.0.0.1. The

user came from http://www.google.ee/url?sa=t&rct=j&q=data%20
analyst%20career&source=web&cd=4&s qi=2&ved =0CDkQFjAD&url=http%3A
%2F%2Fjobs . monster .com%2Fv—business —q—data—analyst —jobs . aspx&ei=
pzjWTuCFKeT04QTS-03QAN usg=AFQjCNEyVah9vodPhMIbQWW Ur—2FaTFfA .

It was 2011—-11-30 14:11:27 when the user from 127.0.0.1 moved away
from http://fast.monster.demdex.net/dest2.html.

It was 2011-11-30 14:11:27 when the user from 127.0.0.1 moved away
from http://jobs.monster.com/v—business —q—data—analyst—jobs.aspx.

At 2011-11-30 14:11:28 a user opened http://a836.g.akamai.net
/7/836/35746/v0001 /manpower . download . akamai.com/35746/jobboards/
experis/experis_jbt banner v1.html. The user IP was 127.0.0.1.

34

The user came from http://jobview.monster.com/Business—Analyst—
Data—Analyst—Job—Columbus—OH-US—104148407.aspx .

At 2011-11-30 14:11:28 a user opened http://jobview.monster.com/
Business—Analyst—Data—Analyst —Job—Columbus—OH-US—104148407.aspx .
The user IP was 127.0.0.1. The user came from http://jobs.monster
.com/v—business —q—data—analyst—jobs.aspx.

e Log output for “geeks™

[2011-11-30 13:42:13°, ’127.0.0.1°, ’pageload’, ’http://www.find—me
—a—gift .co.uk/christmas—gifts /’, "http://www.google.com/url?sa=t&
rct=j&q=christmas%20present&source=web&cd=7&ved=0CE8QFjAG&url=
http%3A%2F%2Fwww . find —me—a—gift . co.uk%2Fchristmas—gifts %2F&ei=
qDLWTszcFY6ThQe750xP&usg=AFQjCNHtFu0X5axyZqEmUYWMCJIx0dYrHpA&cad=

rja’]
[’2011-11-30 13:43:00’, ’127.0.0.1°, ’pageunload’, ’http://www.find—
me—a—gift.co.uk/christmas—gifts/’, ’http://www.google.com/url?sa=

t&rct=j&q=christmas%20present&source=web&cd=7&ved=0CE8QFjAG&url=
http%3A%2F%2Fwww. find —me—a—gift . co.uk%2Fchristmas—gifts%2F&ei=
qDLWTszcFY6ThQe750xP&usg=AFQjCNHtFu0X5axyZqEmUYWMCJIx0dYrHpA&cad=

rja’]

[’2011—-11-30 13:43:02’, ’127.0.0.1°, ’pageload’, ’http://www.find—me
—a—gift.co.uk/modules/thawte logo.asp’, ’http://www.find —-me-a—
gift .co.uk/christmas—gifts /christmas—gifts —for—her.html’]

[2011—-11-30 13:43:03°, ’127.0.0.1°, ’pageload’, ’http://www.find—me

’

—a—gift.co.uk/christmas—gifts/christmas—gifts —for—her.html’,
http://www. find —me—a—gift .co.uk/christmas—gifts /’]

[’2011—-11-30 13:43:10°, ’127.0.0.1°, ’pageunload’, ’http://www.find—
me—a—gift.co.uk/christmas—gifts /christmas—gifts —for—her.html’, ~’
http://www. find —-me—a—gift .co.uk/christmas—gifts /’]

[2011-11-30 13:43:10°, ’127.0.0.1°, ’pageunload’, ’http://www.find—
me—a—gift .co.uk/modules/thawte logo.asp’, ’http://www.find —me—a—
gift .co.uk/christmas—gifts /christmas—gifts —for—her.html’]

['2011—-11-30 13:43:11’, ’127.0.0.1°, ’pageload’, ’http://www.find—me

—a—gift .co.uk/modules/thawte logo.asp’, ’http://www.find —me—a—
gift .co.uk/bath—underwater—light —show.html ’]
['2011—11-30 13:43:12°, ’127.0.0.1°, ’pageload’, ’http://platform.

twitter .com/widgets/tweet button.html’]

The logger itself is written in Python language and is fairly straightforward. In essence,
the logger is listening for incoming messages at a designated network interface and port.
Then it checks whether the message contains the query string parameter named “data”.
If it does, certain information is extracted and passed on to one of the log creators in
order to produce a nice formatted search log.

try:
class Logger (SimpleHTTPServer.SimpleHTTPRequestHandler):
def do GET(self):
field separator is [+0+]
time [+0+] client ip [+0+] action [+0+] url [+0+] referrer
if ’?data=’ in self.path:
client data = re.sub(r’.x/\?data=", ’’, self.path)
log (time.strftime ("%Y—%m-%d YH:%M:%S" , \
time . gmtime (time.time ())) + \
"|+0+4|" + str(self.client address|[0]) + \
"|+0+4+|" + client data)
wrong request
else:
print ’We should not be getting this:’, self.path
httpd = SocketServer.ForkingTCPServer((°192.168.56.101°, PORT), Logger)
print "Logger serving at port", PORT

35

httpd.serve forever ()
except KeyboardInterrupt:
print ’\n"C received , shutting down logging server
httpd.socket.close ()
print ’Bye!”’

)

2.5.3 XML-RPC data transfer

Another key aspect of my solution is the data transfer from the virtual machine to the
remote search task repository. This is achieved by incorporating a third-party library
from Incutio Limited. The Incutio XML-RPC library (IXR) incorporates both client
and server classes, and is designed to hide as much of the workings of XML-RPC from
the user as possible [24]. A key feature of the library is automatic type conversion
from PHP types to XML-RPC types and vice versa [24]. To clarify things further,
XML-RPC is a remote procedure call (RPC) protocol which uses XML to encode its
calls and HTTP as a transport mechanism. Remote procedure calls give developers a
mechanism for defining interfaces that can be called over a network |34, pp. 2-3|.

The following code effectively describes how to send search stories to the reposi-
tory. To get an IXR_Client instance, which is needed before any other actions can be
executed, run the function initXMLRPC(). Function sendPost($client, $user, $pass,
$title , $data, $categories, $tags) will perform the actual data transfer to the remote
server. The server part of XML-PRC is already implemented by WordPress and there
was no need for me to change that.

<?php
// include the library
include ("IXR Library.php");

// initialize the client

function initXMLRPC() {
$xmlrpc = ’http://searchtaskrepo.wordpress.com/xmlrpc.php’;
$client = new IXR_ Client($xmlrpc);
return $client;

}

// publish a new post
function sendPost{$client , $user, $pass, $title, $data, $categories, $tags) {
// define data array
$data = array(
‘title’ => S$title ,
"description’ => $data,
‘mt _allow comments’ => 0,
'mt _allow pings’ => 0,
'post _type’ => ’post’,
'mt _keywords’ => $tags,
‘categories’ => $categories
)3
// send it
if (!$client —query(’'metaWeblog.newPost’, ’’, $user, $pass, $data,
true)) {
die(’Error while creating a new post ’ . $client—>
getErrorCode() . " : " . 8client—>getErrorMessage());

id = $client —>getResponse();
/ return the post ID
if (8$id) {
return $id;
}

return null;

NS st

7>

36

2.5.4 WordPress search task repository

My initial goal was to find a development platform for the repository which would
let me see some quick results and concentrate on developing the core parts of the
solution instead of having to program user account management, search task post
management, key security and privacy issues on the server-side, remote procedure call
interfaces, basic search functionality. WordPress as a well-known and widely used
dynamic content management system (CMS) seemed like a logical choice for my needs.

A key factor in making this choice lies in the fact that WordPress is infinitely
extensible [60] and many plug-ins and themes are already made for it. In the context
of this project, this will mean that there is a good chance of replacing the current
search engine by a more customized one, hand-tailored for processing people’s search
stories (see 4.3). At the time of writing this thesis, the repository is still fairly basic.
In fact, not a single line of code was written by the author to get it to its current state
(see Figure 2.4). The current hosting choice (WordPress.com) may need to be changed

searchtaskrepo
Publishing search logs m

HOME ABOUT C 2 @ COMMENTS

TEST

Ginzburg-Landau theory

JUNE 20, 2012
Recent Posts

Search task description:

Explain me the Ginzburg-Landau theory in simple terms. Ginzburg-Landau theary

Largest armies

Studying machine engineering in Europe

Search task results from the user: Finding a dance class in Tartu

Mo idea.
What is crowdsourcing?

At 2012-06-20 10:15:17 a user opened hitp//www.google ee/. The user IP was 192.1658.56.101. Tags

The user came from hitp://192.168.56.101/index.php. 1500 EUR armed forces army countries crowdsourcing

twas 2012-06-20 10:15:22 when the user from 192.168.56.101 moved away from hitp:fwww.google eel.

dan lass definition demystification Europe explain

At 2012-06-20 10:15:27 a user opened hitpJ/fwwwneti ee/. The user IP was 192.1658.56.101

Ginzburg-Landau theory largest meaning mechanical

twas 2012-06-20 10:15:32 when the user from 192.168.56.101 moved away from hitp:fwww.neti.eel.

engineering military physics service men Tartu top

At 2012-06-20 10:15:33 a user opened hitpJ/www.neti ee/cgi-binfotsing?src=web&

university
query=Ginzburg+Landau+teooria. The user IP was 192.168.56.101
The user came from hitpfwww.neti.ee/
At2012-06-20 10:15:48 a user opened http:fet.wikipedia.org/wikiWilhelm_Conrad_R%C3%B6ntgen. The user IP Pages

Figure 2.4: Search stories on the search task repository

in the future as the project evolves, since it is debatable whether the repository fully
meets their Terms of Service.

2.6 Evolution of the solution

It was in June 2010 that I decided to undertake the challenge of engineering and
developing this search support solution. The actual work started in autumn that year.
Throughout this period the solution as well as my exact working tasks changed and
evolved many times. Here T will shed some light on the history of the project.

The actual development process can be roughly divided into four evolution phases:

37

® localhost/search_client.htm

Sisevesh = OIS Kontakt Sisukaart AAA EST ENG FIN RUS Otsing

S
i

we
u!!!_’ TARTU uLl I(OOL Teaduskonnad, kolledZid, asutused, Uksused |+

& Uudised >
Tartus kogunevad Euroopa
teadusraamatukogude tipud

27.-30. Juunil toimub Dorpati
konverentsikeskuses Euroopa
teadusraamatukogude Ohenduse LIBER 41.
aastakonverents, mis toob Tartusse ligi 340
teadusraamatukogude tippspetsialisti 34
riigist.

[Fh Tartu dlikoolis on IGpuaktuste
aeg

Kokku saab tanavu diplomi 3004 noort
inimest, neist 200 cum laude.

T T T
G el
e
L R R e e e

prlnRR R e s e ey

Figure 2.5: The SearchBar

Phase I: developing a reporting tool on top of the original Search Logger
Our research group had a functioning Search Logger tool [45] at our disposal. However,
it had to be integrated with a new component which would help us effectively conduct
large user studies about helping users with their complex exploratory search tasks. As
described in Section 2.4, this tool had its problems which needed to be solved first. For
example, every time a new version of Mozilla Firefox came out, the logging solution
as a plug-in was likely to be broken. What is more, I observed a different behaviour
under Linux and Windows operating systems. 1 soon abandoned the plug-in based
search task logging solution to start over from scratch.

Phase II: AJAX and PHP SearchBar I started my search task logging endeav-
our by something we later never needed nor used: having a bar on top of the browser
window for all Internet searches, the requested pages appearing below (see Figure 2.5).
In short, the page loading behaviour was implemented mainly in AJAX (Asynchronous
JavaScript and XML), whereas user activities were logged using PHP. The single main
disadvantage of this approach is forcing users to conduct their searches through my
search bar which would not constitute a normal search behaviour by any means. The
lessons learned from this phase led me to the proxy-based search task logging frame-
work.

Phase III: building my own Internet proxy server Initially, I did not think
that search task reporting at this scale would be possible with a purely proxy-based
solution, but the possibilities of JavaScript enable to capture relevant user behaviour.
The proxy server rewrites the HI'ML pages requested and amends them with special
JavaScript to capture similar events as the ones that were captured directly from the
Firefox plug-in. At first, I implemented a simple but working proxy server capable

38

of handling HTTP GET requests (but not much more) in Python which was able to
do just that. After some internal testing this approach (but not the idea of using a
proxy) was also dropped because it was vital to have a very stable yet versatile proxy
server for my search task logging solution. The latter would have required too much
developing and testing effort, and luckily there were better existing Internet proxies
already available.

Phase IV: Privoxy-based search task logging, editing and publishing Then
I did some research about existing Internet proxy servers. I discovered a variety of
existing Web proxies, in particular Apache’s mod proxy, Squid and Privoxy. Each
one of them has their own strengths in different real world scenarios. Ultimately, the
selection was narrowed down to one — Privoxy. It checked all the boxes for me for the
following reasons:

e frequently used (“in combination with Tor or the Vidalia project or Squid and
can be used to bypass Internet censorship” [58|) and known for its reliability;

e advanced existing filtering capabilities which can also be defined by user scripts;
e cross-platform;

e Free Software and licensed under the GNU GPL version 2 [41];

e a lot more complex than my own proxy — supports HI'TP and HT'TPS traffic.

As a result, I carried on with Privoxy as the proxy server and this approach serves as a
basis for the current architecture of my solution. More information about how exactly
pages are re-written can be found in Subsection 2.5.1.

2.7 Evaluation

The created solution allows research groups to carry out evaluation experiments for
exploratory search tasks and extend the evaluation scope from the query level to
the task level. Largely due to the fact that developing these tools took consider-
ably longer than initially hoped and expected, my proxy-based search task logger
and the search task repository have yet not been used in planning and conducting
such experiments. However, all parts of my solution are available for public testing
and academical use since mid-June 2012 from the search task repositories Web page
(http://searchtaskrepo.wordpress.com/). Our research group has already carried out
and published user studies using the Search-Logger plug-in version [45, 46| that has
many shared characteristics with this proposed system but is created not by myself.

A practical usability study was carried out in fall 2011 to test one of the key sub-
components presented in my thesis — the search task logger. To do that, I conducted a
number of exploratory search tasks and used my software to log the Web activity. In
essence, | sought an answer to the question “How to do a search report?”. The other
goal was to find, document and fix bugs in the existing logging and reporting software
and come up with ideas about new features. Many of these insufficiencies discovered
by this self-review have been fixed or redesigned since then.

The existing solution was tested on six exploratory search tasks such as finding a
foreign university on a budget where to study machine engineering, finding 5 clever

39

http://searchtaskrepo.wordpress.com/

Christmas present ideas for under 10 Euros per item, finding a ballroom dance school
in Tartu area. These tasks and how they worked out with my proposed software can be
found on my blog in more detail (http://searchtaskrepo.blogspot.com/). In addition,
I made then a short screencast for presentation purposes which is also linked to.
There is currently interest from researchers at University of Tartu as well as one
foreign university in Hamburg, Germany to use my presented solution for large user
studies about Internet search behaviour. In order to do that, some tweaks to the search
task logging and publishing solution might be desirable. They are looked at in Section
4.2. What is more, searchers from the general public can use my current solution for
their real world inspired problems due to the freedom to publish user-defined search
stories, and all this can bring forward new unforeseen opportunities for researchers.

2.8 Roundup

In this chapter, I explained the core features of my proposed search task logging, editing
and publishing solution both from a technical and a human point of view. Additionally,
I compared my proxy-based search logging method with the existing browser plug-in
based approach. A brief overview was given about how my search support tools have
been tested and how they can be used in upcoming academic user studies.

40

http://searchtaskrepo.blogspot.com/

Chapter 3

User manual

This chapter explains how to set up and use my search monitoring and supporting
systems. These instructions are purposefully explained in a detailed and clear way,
coupled with a number of illustrations to make the set-up process easy for new users.
In order to organize large scale classroom experiments, it would be feasible to set up
and run just one proxy server for all traffic in the Local Area Network (LAN). This
would necessitate some tweaks to my search support solution that are discussed in
Future work (see Section 4.2).

Connection Settings

Gener} Configure Proxies to Access the Internet
| ~) No proxy
7) Auto-detect proxy settings For this network
7 Use system proxy settings
Cach @ Manual proxy configuration:
Yo HTTP Proxy: | 192.168.56.101 Port: 8118 _ |

] Use this proxy server for all protocols

SSLProxy: | 192.168.56.101 Porkt: 8118 |

OFfli FTP Proxy: Port: 0=

vo SOCKS Host: Port: 0° .'

& 1) SOCKSv4 @ SOCKS v5 -

Th_ No Proxy for: | localhost, 127.0.0.1, 192.168.56.101

Example: .mozilla.org, .net.nz, 192.168.1.0/24
) Automatic proxy configuration URL:
| Help | | Cancel | OK
Help | Close

Figure 3.1: Correct browser configuration

41

3.1 Set-up tutorial

For using the repository of search tasks, just go to http://searchtaskrepo.wordpress.com/
and satisfy your information need. To make contributions to my repository, you will
need to follow these simple steps:

1. Make sure you have Oracle VM VirtualBox installed. “Presently, VirtualBox runs
on Windows, Linux, Macintosh, and Solaris hosts and supports a large number
of guest operating systems including but not limited to Windows (NT 4.0, 2000,
XP, Server 2003, Vista, Windows 7), DOS/Windows 3.x, Linux (2.4 and 2.6),
Solaris and OpenSolaris, OS/2, and OpenBSD” [40].

2. Download the 7-Zip archive from http://searchtaskrepo.wordpress.com /download-
our-search-logger/.

3. Unpack this archive to the virtual machines folder of your VirtualBox installation.

4. Before running any search tasks, you will want to configure your browser(s) to
use Privoxy as an HTTP and HTTPS (SSL) proxy. Correct settings are directing
HTTP and HTTPS traffic to 192.168.56.101:8118 as shown in Figure 3.1. Ad-
ditionally you may like to add 192.168.56.101 to the “no proxy” list if you do
not want see interactions between the search task logging portal and your local
computer being logged as well. This is the one configuration step that must be
done!

= Search Environment

Devices

« @ Home VirtualBoxVMs Search Environment - Q, search

_ System Reserved

Computer

I Home
K pesktop

Search
Environment.vbox-
prev

Search
Environment.vbox

I Documents
&3 Downloads
Il Music w
im Pictures Search

Environment.vdi
I videos

Z File System
T Rubbish Bin
| Network

IE Browse Network

Figure 3.2: Running the search task logging software

5. Upon starting VirtualBox a new virtual machine called “Search Environment”
shall be visible on the list of all VMs. Having selected the correct virtual machine,
click on the green “Start” button or just click on the Search Environment.vbox
file in the previously unpacked directory (see Figure 3.2). Wait until the the login
prompt appears and you are ready to go! NB! You do not have to log in but if
you want to, both the username and password are “peeter”. Please be warned
that making changes there may lead to a non-operable virtual system state.

42

http://searchtaskrepo.wordpress.com/
http://searchtaskrepo.wordpress.com/download-our-search-logger/
http://searchtaskrepo.wordpress.com/download-our-search-logger/

3.2 Recording and publishing a search task

First, it would make sense to verify that you have the search task reporting solution set
up as described previously. This tutorial will walk to though the process of compiling
and publishing a search task.

1. Type “192.168.56.10” into the address bar of your browser. This will bring up the
search task logging Web interface (see Figure 3.3). You can control all aspects
of the solution via this interface, including starting and stopping the logger, and
editing your search story to be published.

Sy R

| &= &y |1 192.168.56.101

| Welcome! First, please tell us what you want to search.

| Fillinthe pre-form
|

| Note: Our logging solution works automatically.
However, it can be turned on/off manually, should you need it.

Logger is currently not recording.
|

TURN IT ON! O

Figure 3.3: The Web interface of my search task logging software

2. Fill in the pre-form to define your upcoming search activity (see Figure 3.4). This
will help you as well because you will then have a better understanding of what
exactly you are looking for.

3. Start searching as you would normally do (Figure 3.5). While searching, use the
“resultspad” to keep track of your answers.

4. Fill in the post-form to give us feedback about how your search session went. This
feedback is important for offering better value for searches made at the search
task repository.

5. Now you can either publish your search task straight away or view, edit and
annotate your search logs as shown in Figures 3.6a and 3.6b.

6. Once you have published your search report, close the browser. If you have no
further search tasks to complete, either send a shut-down signal to the VirtualBox
image or save its state. Now you will also have to revert your browser proxy
settings back to normal to be able to browse the Web.

43

[3 search Task pre-form T ——

K @) [192.168.56.101/preform.hin

‘Before you start...

' Please choose a title for your search task.
|

| Finding a dance class in Tartu

Please describe your search task in one sentence.

I would like to find a place to learn dancing in Tartu.

Please describe your search task with tags.

‘ Tags:

1. |danceclass
2. |Tartu

‘ | Addanewtag || Submit

Figure 3.4: Filling in the pre-form

Y ICATII PR 1 <rowisourcng -Google ots. % L

| §= @ 3 www.google.ee/#hl=et&gs_nf=1&cp=108&gs_id=1t&xhr=t&g=crowdsourcing&pf=p&output=searché&sclient=; 7 v+ &

+Sina Otsing Plidid Gmall Télgl Blogger

| Goxfgle ‘ crowdsourcing| — | “

crowdsourcing

crowdsourcing volunteer

l Otsing crowdsourcing open source software
crowdsourcing platforms

l Kaik Crowdsourcing - Wikipedia. the free encyclopedia
o en.wikipedia.org/wiki/Crowdsourcing - Puhverdatud - Tolgi see leht
Pildid Crowdsourcing is a process that involves outsourcing tasks to a distributed group of
i Videod people. This process can occur both online and offline, and the difference ...
i
“+ Definitions - History - Modemn methods - Crowdsourcers
| Raamatud
Bloaid Crowdsourcing
g www.crowdsourcing.com/ - Puhverdatud - Tolgi see leht
veel 11 May 2010 — The White Paper Version: Crowdsourcing is the act of taking a job
traditionally performed by a designated agent (usually an employee) and ...
| Tallinn What is Crowdsourcing? - YouTube

www.youtube.com/watch?v=BuyubBvIG3Q

' 1 veeb. 2010 - 3 min - Laadis (les whatiscrowdsourcing
“) 9P What is Crowdsourcing? go to hitp://what-

N

Muuda asukohta

Otsl Veebist ArYX] 's-crowdsourcing.com and join the debate.
Otsi eesti lehti -
Tﬁ'ﬁzzd valismaised Rohkem videoid paringule crowdsourcing »

el

| Rohkem otsingu vahendeid Wired 14.06: The Rise of Crowdsourcing

‘ www.wired.com/wired/.../14.../crowds.html| - Puhverdatud - Tolgi see leht
|

|

Remember outsourcing? Sending jobs to India and China is so 2003. The new pool of
cheap labor: everyday people using their spare cycles to create content, ...

Figure 3.5: In the majority of cases the proxy-based search logging does not change
the usual search experience.

44

[Csearcntoskioordior R
| §= > [} 192.168.56.101/editor.php

|

| Search Task Log Editor

|
| Please choose a log to open:

| Description ;|
| Open |

| If you are done editing and annotating, please publish your search logs.
|

| Publishmylogs |

(a) Search task log editor gives you full control over what you publish.

{[:}SearchTaskLogEditor:Editin... _
| €= €y [192.168.56.101/editor.php

|

| Search Task Log Editor: Editing Search Logs

| |at 2012-06-20 09:29:00 a user opened http://www.google.ee/. The user IP was
192.168.56.101.

The user came from http://192.168.56.101/index.php.

| |at 2012-06-20 09:29:42 a user opened http://192,168.56.101/resultspad.html. The
user IP was 192,168.56.101.

The user came from http://192.168.56.101/index.php.

It was 2012-06-20 09:29:51 when the user from 192.168.56.101 moved away from

! |http://www.google.ee/.

| |At 2012-06-20 09:29:56 a user opened http://en.wikipedia.org
/wiki/Crowdsourcing, The user IP was 192.168,56.101.

The user came from http://www.google.ee/url?sa=t&rct=j&g=crowdsourcing&
source=web&cd=1&sq1=2&ved=0CFAQF]AAGUrl=http%3A%2F
%2Fen.wikipedia.org%2Fwiki%2FCrowdsourcing&ei=6pfhT8260YnAtAbDopxwé&
usg=AFQ]CNEZGSeM_Z2okBOZoedOxEvyplaaM3A.

| It was 2012-06-20 09:30:01 when the user from 192.168.56.101 moved away from
http://en.wikipedia.org/wiki/Crowdsourcing.

It was 2012-06-20 09:30:07 when the user from 192.168.56.101 moved away from
http://www.google ee/.

At 2012-06-20 09:30:15 a user opened http://www.crowdsourcing.com/. The user IP
| |was 192.168.56.101.

The user came from http://www.google.ee/url?sa=t&rct=j&q=crowdsourcing&
source=web&cd=2&sqi=2&ved=0CFgQFj AB&Url=http%3A%2Fs2Fwww. crowdsourcing . coms2F&
ei=65ThT9rwCYS7hAfsovzQAwEUSg=AFQ] CNFY_ykPiZX0UNIRZnywIxzE7rryTw.

It was 2012-06-20 09:30:18 when the user from 192.168.56.101 moved away from
http: //www.typepad.com/services
/toolbar?blog_id=6a00d8341c4cdfS3efO0e55071e64488348asset_1d=8atype=index&
to=http%3A%2F%2Fwww . crowdsourcing . com%2Fcs%2F&autofollowed=0&
safe_to_modify_body=0.

‘ It was 2012-06-20 09:30:18 when the user from 192,168.56.101 moved away from

http://www.crowdsourcing.com/. >
It was 2012-06-20 09:30:23 when the user from 192.168.56.101 moved away from

‘ | Save Changes |

(b) Machine-generated logs can be annotated manually.

Figure 3.6: Search Task Log Editor

45

Chapter 4

Future work

In this chapter, I take a look at the future: how can search logs make solving exploratory
search tasks easier, and what are the features I would like to add to my search logger
and search task repository. I also envision the broader benefits of my search support
system to our society.

4.1 Vision for search log aided search

To my mind, this solution for supporting complex search tasks has the potential of being
the joint platform for bringing together people from different fields of expertise in the
society. While it would still primarily be the means for the academic community to
conduct information retrieval experiments, and especially those studying more complex
and less pre-defined information needs, I do not believe that search logs have no other
ground. By giving people the freedom of freely defining and expressing their own search
tasks, we could be gaining more trust from other target groups as well, be it a project
manager in a large enterprise conducting market research or a housewife looking for a
new hobby. As an indirect outcome of letting searchers truly express themselves and
their information needs, the academic community could have a working platform which
contains large amounts of representative search data to study further. T would call this
enabling symbiosis between researchers in IR and the society.

Let us take a look at this practical scenario. Marcus has a complex search problem
which could take hours or even days to complete. Instead of sacrificing that much
time, he first decides to visit the search task repository to see if people have been there
before. Given the popularity of this Web site he gets lots of relevant search stories with
answers from the community as well as well-annotated search logs, helping Marcus to
clearly see how the proposed answers were synthesized. This gives him new ideas for
areas he wants to explore himself in more detail. Knowing more in advance about the
dimensionality of the search space helps him save valuable time. Now, Marcus enables
logging of his search behaviour and spends some time exploring the unknown aspects of
this problem. During all that time he does not have to rely on his memory and can note
down his personal answers while he is searching. At the end, Marcus chooses to publish
his search log for his own future reference as well as for the searching community. Not
only has he benefited from my solution, so did researchers who can use this data for
Internet search behaviour analysis, and fellow explorers who may save time from the
time-consuming activities of aggregation, discovery and synthesis. Even businesses may

46

|Experiment Machine |
Logger
r\ »| session 1 session 2 session 3

. 4 A

]

\\
.

N

Web Interface Privoxy proxy server

Actor 2 g

=]
1111

Y i

Search Task Repository

INTERNET

Actor 3

Figure 4.1: The modified architecture for classroom experiments

benefit if they find a way to use this publicly available resource about their potential
customers to their advantage.

4.2 Improving proxy-based search logging

One of the suggested future additions to the search task logging framework would
be adapting it for classroom experiments. This is already possible by the currently
proposed set-up but the idea is not having to install VirtualBox virtual machines on
every computer. The following modified architecture (Figure 4.1) achieves just that
by having one central experiment machine which then serves computers in its Local
Area Network (LAN). I removed interaction labels to get a less congested picture, the
labels from Figure 2.1 can be used for reference since they are essentially the same.
Shared connections are between the Web interface and the remote repository, and the
outgoing connection from Privoxy.

Having studied the inner workings of Privoxy configurations, it is easy to configure
different Web page re-writing rules for individual computers or subnets in an LAN.
With some additional programming, this can be even done dynamically. However, this
problem does not need even that. Probably the simplest solution to implement would
allocate each participant a unique sub-directory in the experiment machine in which
both the search logger and the Web interface sub-components can save their logs.
Although totally enough for a lab experiment, this approach is subject to a simple

47

malicious attack condition from someone in the LAN falsifying their IP, since these
folders would be created and accessed according to each client’s sent information about
their own IP. A more sound way would also create unique directories for all participants
but would additionally let each participant enter their WordPress credentials for the
search task repository at the beginning of the experiment. This data could be stored
locally during the experiment as a cookie, and only sent out in an encrypted form over
the LAN to uniquely identify the participant.

Another previously mentioned future need is adding support for a greater number of
programmatically loggable events. Some researchers [17] have already practically shown
that JavaScript injection enables to logs much more than my search logging solution is
currently capable of. For instance, they also logged mouse movement and scrolling as
well as pages clicked. T would add detecting currently active browser tabs to this list
by logging window.onfocus and window.onblur events. However, this method may not
always be reliable [31]. As a means for site developers to programmatically determine
the current visibility state of the page in order to develop power and processor efficient
web applications, World Wide Web Consortium (W3C) along with leading Internet
browser developers are currently working on the Page Visibility standard [61]. Logging
these events might be a more reliable alternative to the previously discussed window.
onfocus and window.onblur events.

There are a few known recurring bugs and annoying usability issues at the time of
writing this thesis which have been unsolved:

1. Error while creating a new post —32700 : parse error. not
well formed

This error may occur when the user is trying to publish the search log to the
WordPress repository of search tasks. I did some research about this problem:
it seems to be a common issue with the Incutio XML-RPC library version 1.7.4
which I am using, and is allegedly related to an ill-formed remote procedure
call response message. However, the solution is not known to me. If this error
occurs, users are encouraged to press the “Back” button on the browser and try
to publish again. I have also observed that this error is more likely to occur if the
search story contains non-ASCII letters which in turn would imply an encoding
problem. Nothing is confirmed yet.

2. File "./logger.py", line 48, in do GET
"0+ + str(self.client address[0]) + "[+0+|" +
client data)
File "./logger.py", line 35, in log write human(g, fields)
File "./logger.py", line 18, in write human
if information [4]: IndexError: list index out of range

This is a known exception from the search task logging module but it remains
concealed from the end user because the user does not run this component and
will not see the error messages from the Python interpreter. As it seemed not
to be affecting the overall performance of my solution over a long testing cycle,
I decided not to fix it in the presence of more urgent development matters.

3. Regrettably, I was unable to ensure that the logging solution would always exactly
replicate the same search experience as if there were no proxy present. Most

48

Teisipdev 19. juuni 2012 |Tee Postimees avaleheks | Postimees+ | Ha pycckoM | Saada Inglismaa-Ulcraina um
Inglismaa 7 ja Ukraina 3 punkti

Prantsusmaa-Rootsi mu
Prantsusmaa 4 ja Rootsi 3 punkti
Inglismaa ja Prantsusmaa edasi?

I UUDISED [:N:40F N 10k SPORT ILM VALISMAA NAINE24 ELU24 TV KAVA SISUKORD

Eesti Krimi Kultuur Tallinn Tartu Pdrnu Viljandi Rakvere Paide Valga Koomiks Sudoku Pilt.postimees.ee

% Telli Kuuluta
Postimees 'f'l Postimehe
endale koju paberlehes

o VIIMASED UUDISED

2 TEISIPAEV, 19. JUUNI: fannid pakkusid
méangust suurema elamuse (79)

23:07TV3: kvaliteedikontroll ndeb Tartu Ulikooli
dpetajakoolituses puudujadke

2 Ibrahimovic viis Rootsi Prantsusmaa vastu
juhtima (10)

22:56Quito: Wikileaksi asutaja Assange taotleb
Ecuadorilt asiiili

22:36Deniss Karpak laheb liidrina MK-etapi
medalisditu

Figure 4.2: Some Web sites do not display correctly when logging is enabled in Privoxy.

tested sites functioned impeccably with the proxy and logging enabled, however,
there are exceptions (see Figure 4.2). Disfigured Web sites often make extensive
use of JavaScript scripts which in some very rare occasions may not function after
my own JavaScript injections to make proxy-based search task logging possible.
This remains on top of the efforts to make proxy-based logging less intrusive but
it has to be said that different Web sites may require different measures.

4. Another slight inconvenience is that some “noise” gets logged as well. In the cur-
rent development phase, all JavaScript events, which are received, are also logged
by my solution. For instance, it is quite common to see loading and unloading
records of Facebook plug-ins published in search stories unless the user edits this
information out manually. Privoxy provides sophisticated methods for filtering
and blocking ads, pop-ups, and other kinds of generally unwanted components
seen on many of the current Web sites. In favour of providing maximally au-
thentic search experience, I decided to disable these measures. However, these
can be easily re-enabled from Privoxy configuration files by interested users. A
more promising option is to design and implement some sort of more intelligent
customized filtering in my logger. This will remain a task for the future.

4.3 Improving search task repository
My repository for search tasks is currently fairly basic. The most important features

to come should in my opinion be related to the way searches are performed in it. My
solution can already collect quite a lot of structured data about each search task: search

49

task title, user description, tags and categories associated with the search task, results
and feedback from the user, machine-generated search logs.

At present I use standard WordPress search capability to produce results for search
queries. However, it is possible to invent a better way for indexing this textual infor-
mation to reflect the peculiarities of the data collected and published. On top of that,
we would need a new algorithm for ranking search stories to yield more relevant results.
This would deem some properties of a search task log more important than the others.
For example, if the author of the search story admitted that she did not find what she
was looking for, then her published search logs should probably appear lower at the
results page. There are very many factors to ranking search logs. For example, the
up-to-dateness of a search task log has a role to play as well, illustrating the dynamic
nature of ranking search stories and constructing answer sets.

Once the repository has a larger user base and more search tasks published, one
very promising option is evaluation based on the analysis of clickthrough data, which
can be obtained by observing how frequently the users click on a given search task log
when it is shown in the answer set for a given query. There are existing algorithms for
collecting unbiased clickthrough data so that there exists a connection between user
clickthrough data and relevance of the proposed answers to the users [6, pp. 172-173|.

Alternatively, a crowdsourcing approach could be used to cross-validate the search
task logs by users themselves. One problem with this as far as Amazon Mechanical Turk
is concerned, is the fact that “turkers” are not very keen on downloading and installing
software [17]. One theoretical scenario which would work without them having to do
more than read and think, is proposed in subsection 1.5.4. As discussed in subsection
1.5.2, crowdsourcing for relevance evaluation can produce quick results at a low cost
with good flexibility and high quality [2].

Another promising idea for making the search task repository a more useful resource
for fulfilling an information need would be running different clustering techniques and
algorithms on user-entered tag data to automatically group posts based on their topic.
At present, all posts share the “test” category. One could ideally develop a successful
recommender system on top of this extracted information of connections to suggest
potentially relevant or at least interesting search stories on a similar area.

Having WordPress as a target platform provides a great opportunity to make full
use of users’ profile information. This opportunity is currently not used at all. The
repository has just two accounts: one for the administrator and one for all authors
of the search tasks. This way I am losing interesting behavioural and social data
about the actions of different searchers and an opportunity to cluster users based on
their interests, topics of their contributions to the repository, physical location. Using
this opportunity would help us tackle the challenges related to a user’s location. For
instance, it is quite obvious that when someone is looking for gyms, they are unlikely
to be interested in search stories from people who are thousands of kilometres away.
Harvesting profile (or even social profile) information can help us customize the search
to individual needs.

Finally, giving so much freedom to the search task publishers can backfire, leading
to a repository mixed with purposeful search reports and unwanted content such as
advertisements, spam and other types of indiscreet material. To avoid that, it may
be necessary to invite dedicated volunteers for moderation tasks similarly how existing
collaboratively edited Web sites (e.g. Wikipedia) tackle this problem. Due to the
structured nature of search logs, simple but automatic content checking scripts could

20

be created and enforced to flag potentially unrelated submissions. Alternatively, it
would be possible to enable user voting which could serve two purposes: helping to
identify useful search task stories to rank higher, and spotting unwanted content to
remove from the repository.

4.4 Roundup

In this chapter, I looked into the future: how can my search task logging solution along
with the repository cope with a greater number of users? What features is it currently
missing and what are the known bugs? Here I presented my own vision concerning the
role annotated search task reports can play in the search market of tomorrow.

ol

Conclusion

The main research problem of my thesis was engineering a new type of search task
logging and publishing framework which would provide a better alternative for existing
browser plug-in based methods. Right from the start, the proxy-based search task
reporting system has been a complex engineering challenge involving code written in
multiple programming languages, interactions planned across many software modules
(some of which have already been existing large projects themselves), and a Linux
operating system configured to ease the set-up process for the user. This was the
decision process to make sure that this solution is reliable, extendible and maintainable
in the future. My research goal was completed successfully.

In my thesis, I proposed a proxy-based method for logging user search behaviour
across different browsers and operating systems. I also compared it with an existing
plug-in based Search Logger for Mozilla Firefox and other similar solutions. The idea
of developing a proxy-based search task logging and publishing solution came from
out of necessity, because the existing logging solution had significant problems with
maintainability. The logs created by my solution are subsequently annotated by the
user and made publicly available on a dedicated Internet blog called the Search Task
Repository. Users can search against the already annotated and published Internet
search logs. Ideally this would mean reduced complexity of search tasks for the users
which in turn saves time. User studies to confirm this are still pending but there is
confirmed interest from Tartu researchers as well as from one foreign university to use
my solution in their search experiments.

The proposed solution is comprised of two large units, which are the search task
repository and the search task logging and publishing unit. The search task repository
is a remote component, essentially a fairly simple WordPress blog, which enables search
stories to be published automatically over XML-RPC protocol, search queries to be
served, and search task logs to be displayed to the searcher. My logging system is
configured as a VirtualBox virtual machine. Tt is much more complex, consisting of
three sub-components: the main Web interface, the search task logger, and the Privoxy
Web proxy specially configured for my needs. Logging can be started and stopped at
a user’s will in the main Web interface. What is more, this sub-component also gives
them absolute control over what gets published online by providing an editing and
annotating functionality for all search task data, both implicitly and explicitly logged.

A comprehensive theoretical overview was given in my thesis about the state of
the art, explaining basic related concepts in Information Retrieval and recent devel-
opments in Exploratory Search and search task logging systems. In contrast with
existing browser plug-in based search task logging methods, my proposed proxy-based
approach ensures platform and browser independence while also being very stable. By
giving searcher’s the opportunity to freely define and annotate their own search tasks,
my search support solution is setting a new standard.

02

In the final chapter, I conducted a thorough analysis about future work and pre-
sented my own vision about the future opportunities for this search support methodol-
ogy. A modified architecture for more convenient laboratory experiments was outlined
as an important task for the future. In conclusion, my proxy-based search task log-
ging, editing and publishing framework can be extended further to log more JavaScript
events. The search task repository is a large open area with lots of opportunities for
future extensions.

23

Internetiotsingu toetamine
otsingulogide jagamise meetodil

Peeter Jurviste
Magistrit6o (30 EAP)

Sisukokkuvote

Antud viitekiri on osa jatkuvast kollektiivsest uurimistodst, laiema eesmirgiga eeskatt
parandada Internetiotsingu tuge keeruliste ja aeganoudvate ning tihti uurimusliku
loomuga otsinguiilesannete kiiremaks ja efektiivsemaks ldbiviimiseks. T66 peamine
uurimisprobleem on uut tiilipi otsinguiilesannete logimise ja Internetis jagamise
raamistiku viljatootamine, olles alternatiiviks brauseri pistikprogrammide pohistele
olemasolevatele meetoditele. Tegu oli keerulise insenertehnilise iilesandega, mille kii-
gus tuli autoril tdita mitmesuguseid programmeerimise, planeerimise, stisteemi kompo-
nentide integreerimise ja konfigureerimisega seotud iilesandeid. Piistitatud eesméark sai
edukalt téidetud.

Viitekirjas pakuti vélja proksipohine meetod kasutajate otsingukditumise
logimiseks, mis on iihtlasi lihtsasti kohaldatav erinevatele veebilehitsejatele ning
operatsioonisiisteemidele. Lahendust vorreldi varasemate sarnaste siisteemidega. Mee-
tod silindis reaalsest vajadusest leida kergemalt hallatav ning porditav asendus varem
valjatootatud tarkvarale, mis kujutas endast pistikprogrammi Mozilla Firefox veebile-
hitsejale, kuid mida tuli parandada pérast iga uue brauseri versiooni véljatulekut.

Teostus koosneb kahest suuremast komponendist, millest esimene ja tehniliselt
keerulisem, otsinguiilesannete logide koostamise ja jagamise siisteem, paikneb Virtual-
Box’i virtuaalses masinas. Teine on WordPress’il pohinev otsingulogide repositoorium,
voimaldades lisaks kasutaja poolt annoteeritud logide avaldamise ka neist lihtsamaid
otsinguid teostada. Siisteeme on pohjalikult testitud, kuid neid pole veel rakendatud
Internetiotsinguga seotud kasutajauurimustesse. Autorile on teada, et selline huvi on
olemas nii Tartu Ulikooli sees kui ka iihe vilismaise partneriilikooli poolt.

Lokaalselt paiknev otsinguiilesannete koostamise ja jagamise siisteem koosneb
kolmest vordselt tdhtsast alamkomponendist. Nendeks on Python’i keeles realiseeritud
otsinguiilesande logija; peamiselt PHP’d ja HTML’i kasutav veebiliides, mis muuhul-
gas voimaldab kasutajal eelpoolmainitud logijat sisse ja vélja liilitada, aga ka koiki
otsinguiilesandega seotud andmeid késitsi muuta ja tdiendada; ja antud iilesandeks
spetsiaalselt konfigureeritud Privoxy veebiproksi server.

T66s antakse pohjalik {ilevaade olemasolevast tarkvarast, teaduspublikatsioonidest
ja teoreetilistest alustest seoses viitekirja uurimisprobleemiga. Vorreldes olemasole-

o4

vate meetoditega eristub autori pakutud proksipohine otsinguiilesannete logimise ja
jagamise raamistik peamiselt kahel pohjusel. Esiteks, meetod tagab platvormist ja
brauserist soltumatuse, olles iihtlasi viga stabiilne. Teiseks, kasutajatele antav vabadus
oma otsinguiilesannet vabalt defineerida ning annoteerida on oluliseks uueks tihiseks.

Viitekirja viimases peatiikis késitletakse tooga seotud tulevikuviljavaateid ja
avatud probleeme. Uks neist on viljapakutavaga vorreldes muudetud arhitektuur, mis
voimaldaks korraldada viiksema vaeva ja ajakuluga laborieksperimente. Internetiotsin-
gu logimise siisteemi saab edasi arendada, lisades tuge enamatele JavaScript’i siind-
mustele. Otsingulogide repositoorium, olles veel iisna algeline, pakub hulgaliselt voi-
malusi tdiendusteks tulevikuks.

%)

Bibliography

[1] O. Alonso and S. Mizzaro. Can we get rid of TREC assessors? using mechanical
turk for relevance assessment. In Proceedings of the SIGIR 2009 Workshop on the
Future of IR Evaluation, page 15-16, 2009.

[2] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance evaluation.
SIGIR Forum, 42(2):9-15, November 2008. Available from: http://doi.acm.
org/10.1145/1480506.1480508, doi:10.1145/1480506.1480508.

[3] Amazon. Amazon Mechanical Turk. June 2012. Available from: https://www.
mturk.com/.

[4] V. Ambati, S. Vogel, and J. Carbonell. Active learning and crowd-sourcing for
machine translation. Language Resources and Evaluation (LREC), 2010.

[5] A. Aula and D. M. Russell. Complex and exploratory web search. In Information
Seeking Support Systems Workshop (1SSS 2008), Chapel Hill, NC, USA, 2008.

|6] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval: the concepts
and technology behind search, Harlow. Addison-Wesley, Pearson, 2nd edition,
2011.

[7] C. Beard. CoScripter. March 2012. Available from: http://mozillalabs.com/
blog/2007/09/coscripter/.

|8] J. Bian, Y. Liu, E. Agichtein, and H. Zha. Finding the right facts in the crowd: fac-
toid question answering over social media. In Proceeding of the 17th international
conference on World Wide Web, page 467-476, 2008.

[9] D. C. Brabham. Moving the crowd at iStockphoto: the composition of the crowd

and motivations for participation in a crowdsourcing application. First Monday,
13(6):1-22, 2008.

[10] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3-10, September
2002. Available from: http://doi.acm.org/10.1145/7925650.792552, doi:10.
1145/792550.792552.

[11] R. Capra. HCI browser: A tool for studying web search behavior. Proceed-
ings of the American Society for Information Science and Technology, 47(1):1-2,
2010. Available from: http://onlinelibrary.wiley.com/doi/10.1002/meet.
14504701444 /abstract, doi:10.1002/meet . 14504701444.

26

http://doi.acm.org/10.1145/1480506.1480508
http://doi.acm.org/10.1145/1480506.1480508
http://dx.doi.org/10.1145/1480506.1480508
https://www.mturk.com/
https://www.mturk.com/
http://mozillalabs.com/blog/2007/09/coscripter/
http://mozillalabs.com/blog/2007/09/coscripter/
http://doi.acm.org/10.1145/792550.792552
http://dx.doi.org/10.1145/792550.792552
http://dx.doi.org/10.1145/792550.792552
http://onlinelibrary.wiley.com/doi/10.1002/meet.14504701444/abstract
http://onlinelibrary.wiley.com/doi/10.1002/meet.14504701444/abstract
http://dx.doi.org/10.1002/meet.14504701444

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21

[22]

M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. In
Proceedings of the 6th international conference on Intelligent user interfaces, TUI
01, page 33-40, New York, NY, USA, 2001. ACM. Available from: http://doi.
acm.org/10.1145/359784.359836, doi:10.1145/359784.359836.

Dedoimedo.com. Network & sharing in VirtualBox - full tutorial.
http: //www.dedoimedo.com /computers/virtualbox-network-sharing.html,

June 2012. Available from: http://www.dedoimedo.com/computers/
virtualbox-network-sharing.html.

S. Dhansay. Crowdsourcing Platform. November 2010. Available from: http:
//www.opentechnologist.com/2010/05/03/crowdsourcing-platform/.

S. Dhansay. People Participation in Crowdsourcing Platforms. Novem-
ber 2010. Available from: http://www.opentechnologist.com/2009/05/15/
people-participation-in-crowdsourcing-platforms/.

B. M. Evans and E. H. Chi. Towards a model of understanding social search. In
Proceedings of the 2008 ACM conference on Computer supported cooperative work,
CSCW 08, page 485494, New York, NY, USA, 2008. ACM. Available from: http:
//doi.acm.org/10.1145/1460563.1460641, doi:10.1145/1460563.1460641.

H. Feild, R. Jones, R. C. Miller, R. Nayak, E. F. Churchill, and E. Velipasaoglu.
Logging the search self-efficacy of amazon mechanical turkers. In Proceedings of
the ACM SIGIR 2010 Workshop on Crowdsourcing for Search Evaluation (CSE
2010), page 27-30, 2010. Available from: http://ciir.cs.umass.edu/ hfeild/
publications/feild20101ss.pdf.

H. A. Feild, J. Allan, and J. Glatt. CrowdLogging: distributed, private, and
anonymous search logging. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, SIGIR 11,
page 375-384, New York, NY, USA, 2011. ACM. Available from: http://doi.
acm.org/10.1145/2009916.2009969, doi:10.1145/2009916.2009969.

S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit
measures to improve web search. ACM Trans. Inf. Syst., 23(2):147-168, April
2005. Available from: http://doi.acm.org/10.1145/1059981.1059982, doi:
10.1145/1059981.1059982.

O. Gassmann, M. Daiber, and L. Muhdi. Der crowdsourcing prozess. Gassmann
(Edt.): Crowdsourcing-Innovationsmanagement mit Schwarmintelligenz. Carl
Hanser Verlag Miinchen, page 31-55, 2010.

L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior
in WWW search. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR 04, page
478-479, New York, NY, USA, 2004. ACM. Available from: http://doi.acm.
org/10.1145/1008992.1009079, doi:10.1145/1008992.1009079.

H. Halpin, D. M. Herzig, P. Mika, R. Blanco, J. Pound, H. S. Thompson, and
D. T. Tran. Evaluating ad-hoc object retrieval. Proceedings of IWEST, 2010.

o7

http://doi.acm.org/10.1145/359784.359836
http://doi.acm.org/10.1145/359784.359836
http://dx.doi.org/10.1145/359784.359836
http://www.dedoimedo.com/computers/virtualbox-network-sharing.html
http://www.dedoimedo.com/computers/virtualbox-network-sharing.html
http://www.opentechnologist.com/2010/05/03/crowdsourcing-platform/
http://www.opentechnologist.com/2010/05/03/crowdsourcing-platform/
http://www.opentechnologist.com/2009/05/15/people-participation-in-crowdsourcing-platforms/
http://www.opentechnologist.com/2009/05/15/people-participation-in-crowdsourcing-platforms/
http://doi.acm.org/10.1145/1460563.1460641
http://doi.acm.org/10.1145/1460563.1460641
http://dx.doi.org/10.1145/1460563.1460641
http://ciir.cs.umass.edu/~hfeild/publications/feild2010lss.pdf
http://ciir.cs.umass.edu/~hfeild/publications/feild2010lss.pdf
http://doi.acm.org/10.1145/2009916.2009969
http://doi.acm.org/10.1145/2009916.2009969
http://dx.doi.org/10.1145/2009916.2009969
http://doi.acm.org/10.1145/1059981.1059982
http://dx.doi.org/10.1145/1059981.1059982
http://dx.doi.org/10.1145/1059981.1059982
http://doi.acm.org/10.1145/1008992.1009079
http://doi.acm.org/10.1145/1008992.1009079
http://dx.doi.org/10.1145/1008992.1009079

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32|

33]

[34]

[35]

[36]

37]

38

IBM Research. CoScripter. http://coscripter.researchlabs.ibm.com/coscripter,

June 2012. Available from: http://coscripter.researchlabs.ibm.com/
coscripter.
Incutio Limited. The incutio XML-RPC library for PHP.

http://scripts.incutio.com /xmlrpc/, June 2012. Available from: http:
//scripts.incutio.com/xmlrpc/.

InnoCentive. ALS Biomarker. November 2010. Available from: https://gw.
innocentive.com/ar/challenge/8305421.

InnoCentive. Identifying € Sourcing Novel Insecticidal Proteins. November 2010.
Available from: https://gw.innocentive.com/ar/challenge/9582167.

InnoCentive. What We Do. November 2010. Available from: http://www2.
innocentive.com/about-innocentive.

B. J. Jansen, R. Ramadoss, M. Zhang, and N. Zang. Wrapper: An application for
evaluating exploratory searching outside of the lab. EESS 2006, page 14, 2006.

B. J. Jansen and A. Spink. How are we searching the world wide web? a compari-

son of nine search engine transaction logs. Information Processing € Management,
42(1):248-263, 2006.

B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. Defining a session on web
search engines: Research articles. J. Am. Soc. Inf. Sci. Technol., 58(6):862-871,
April 2007. Available from: http://dx.doi.org/10.1002/asi.v58:6, doi:10.
1002/asi.vb8:6.

Kantor, I. Focus/blur methods and events. http://javascript.info/tutorial /focus,
June 2012. Available from: http://javascript.info/tutorial/focus.

M. T. Keane, M. O’Brien, and B. Smyth. Are people biased in their use of search
engines? Commun. ACM, 51(2):49-52, February 2008. Available from: http:
//doi.acm.org/10.1145/1314215.1314224, doi:10.1145/1314215.1314224.

M. Konchady. Text Mining Application Programming (Programming Series).
Charles River Media, Inc., 2006.

S. S. Laurent, J. Johnston, and E. Dumbill. Programming Web Services With
XML-RPC. O’Reilly Media, Inc., 2001.

D. Lewandowski. Query types and search topics of german web search engine
users. Information Services and Use, 26(4):261-269, 2006.

D. Lewandowski. Search engine user behaviour: How can users be guided to
quality content? Information Services and Use, 28(3):261-268, 2008.

C. D. Manning, P. Raghavan, and H. Schutze. Introduction to information re-
trieval, volume 1. Cambridge University Press Cambridge, 2008.

G. Marchionini. Exploratory search: from finding to understanding. Communica-
tions of the ACM, 49(4):41-46, 2006.

28

http://coscripter.researchlabs.ibm.com/coscripter
http://coscripter.researchlabs.ibm.com/coscripter
http://scripts.incutio.com/xmlrpc/
http://scripts.incutio.com/xmlrpc/
https://gw.innocentive.com/ar/challenge/8305421
https://gw.innocentive.com/ar/challenge/8305421
https://gw.innocentive.com/ar/challenge/9582167
http://www2.innocentive.com/about-innocentive
http://www2.innocentive.com/about-innocentive
http://dx.doi.org/10.1002/asi.v58:6
http://dx.doi.org/10.1002/asi.v58:6
http://dx.doi.org/10.1002/asi.v58:6
http://javascript.info/tutorial/focus
http://doi.acm.org/10.1145/1314215.1314224
http://doi.acm.org/10.1145/1314215.1314224
http://dx.doi.org/10.1145/1314215.1314224

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

P. Morville and J. Callender. Search Patterns: Design for Discovery. O’Reilly
Media, Inc., 1st edition, 2010.

Oracle. Oracle VM VirtualBox. https://www.virtualbox.org/, June 2012. Avail-
able from: https://www.virtualbox.org/.

Privoxy Developers. Privoxy - home page. http://www.privoxy.org/, June 2012.
Available from: http://www.privoxy.org/.

R. W. Reeder, P. Pirolli, and S. K. Card. WebEyeMapper and WebLogger: tools
for analyzing eye tracking data collected in web-use studies. In CHI 01 extended
abstracts on Human factors in computing systems, CHI EA ’01, page 19-20, New
York, NY, USA, 2001. ACM. Available from: http://doi.acm.org/10.1145/
634067 .634082, doi:10.1145/634067.634082.

G. Singer. Web Search Engines and Compler Information Needs. Ph.D. thesis,
University of Tartu, Estonia, 2012.

G Singer, D Danilov, and U Norbisrath. Complex search: aggregation, discovery,
and synthesis. Proceedings of the Estonian Academy of Sciences, 61(2):89, 2012.
Available from: http://www.kirj.ee/7id=20506&tpl=1061&c_tpl=1064, doi:
10.3176/proc.2012.2.02.

G. Singer, U. Norbisrath, E. Vainikko, H. Kikkas, and D. Lewandowski. Search-
logger analyzing exploratory search tasks. In Proceedings of the 2011 ACM Sym-
posium on Applied Computing, SAC ’11, page 751-756, New York, NY, USA,
2011. ACM. Available from: http://doi.acm.org/10.1145/1982185.1982350,
d0i:10.1145/1982185.1982350.

Georg Singer, Ulrich Norbisrath, and Dirk Lewandowski. Ordinary search engine
users carrying out complex search tasks. arXiw:1206.1492, June 2012. Available
from: http://arxiv.org/abs/1206.1492.

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language tasks. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, EMNLP
08, page 254-263, Stroudsburg, PA, USA, 2008. Association for Computational
Linguistics. Available from: http://dl.acm.org/citation.cfm?id=1613715.
1613751.

A. Spink and B. J. Jansen. Web Search: Public Searching On The Web. Springer,
July 2004.

K. Stanoevska-Slabeva. Enabled innovation: Instruments and methods of internet-
based collaborative innovation. 2011.

Stsenov, G. Measuring mobile search tasks on Android platform. B.Sc. thesis,
University of Tartu, Estonia, 2011.

M. Tatham. Google received 72 percent of U.S. searches in january 2009. Technical
report, Hitwise, New York, February 2009. Available from: http://image.exct.
net/1ib/fefc1774726706/d/1/SearchEngines_Jan09.pdf.

29

https://www.virtualbox.org/
http://www.privoxy.org/
http://doi.acm.org/10.1145/634067.634082
http://doi.acm.org/10.1145/634067.634082
http://dx.doi.org/10.1145/634067.634082
http://www.kirj.ee/?id=20506&tpl=1061&c_tpl=1064
http://dx.doi.org/10.3176/proc.2012.2.02
http://dx.doi.org/10.3176/proc.2012.2.02
http://doi.acm.org/10.1145/1982185.1982350
http://dx.doi.org/10.1145/1982185.1982350
http://arxiv.org/abs/1206.1492
http://dl.acm.org/citation.cfm?id=1613715.1613751
http://dl.acm.org/citation.cfm?id=1613715.1613751
http://image.exct.net/lib/fefc1774726706/d/1/SearchEngines_Jan09.pdf
http://image.exct.net/lib/fefc1774726706/d/1/SearchEngines_Jan09.pdf

52|

[53]

[54]

[55]

[56]

[57]

58]

[59]

[60]

[61]

62]

[63]

[64]

The Lemur Project. Lemur project components: Query log toolbar.
http://www.lemurproject.org/toolbar.php, June 2012. Available from: http:
//www.lemurproject.org/toolbar.php.

TREC organisers. TREC Tracks. June 2012. Available from: http://trec.nist.
gov/tracks.html.

R. W. White and R. A. Roth. Exploratory search: Beyond the query-response
paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services,
1(1):1-98, 2009.

Wikipedia contributors. Amazon Mechanical Turk. Wikimedia Foundation, Inc.,
June 2012. Page Version ID: 497448764. Available from: http://en.wikipedia.
org/w/index.php?title=Amazon_Mechanical_Turk&oldid=497448764.

Wikipedia contributors. CoScripter, January 2012. Page Version ID:
392861139. Available from: http://en.wikipedia.org/w/index.php?title=
CoScripter&oldid=392861139.

Wikipedia contributors. Precision and recall. Wikimedia Foundation, Inc., June
2012. Page Version ID: 497112923. Available from: http://en.wikipedia.org/
w/index.php?title=Precision_and_recall&oldid=497112923.

Wikipedia contributors. Privoxy, June 2012. Page Version ID: 457510113. Avail-
able from: http://en.wikipedia.org/w/index.php?title=Privoxy&oldid=
457510113.

Wikipedia contributors. TopCoder. Wikimedia Foundation, Inc., June 2012. Page
Version ID: 495297360. Available from: http://en.wikipedia.org/w/index.
php?title=TopCoder&oldid=495297360.

WordPress.org. Extend WordPress. http://wordpress.org/extend/, June 2012.
Available from: http://wordpress.org/extend/.

World Wide Web Consortium. Page visibility draft.
http://www.w3.org/TR/2011/WD-page-visibility-20110602/, June 2012. Avail-
able from: http://www.w3.0rg/TR/2011/WD-page-visibility-20110602/.

T. Yan, V. Kumar, and D. Ganesan. CrowdSearch: exploiting crowds for accurate
real-time image search on mobile phones. 2010.

J. Yang, L. A. Adamic, and M. S. Ackerman. Crowdsourcing and knowledge shar-
ing: strategic user behavior on tasken. In Proceedings of the 9th ACM conference
on Electronic commerce, page 246-255, 2008.

K. P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image
search and browsing. In Proceedings of the SIGCHI conference on Human factors
in computing systems, page 401-408, 2003.

60

http://www.lemurproject.org/toolbar.php
http://www.lemurproject.org/toolbar.php
http://trec.nist.gov/tracks.html
http://trec.nist.gov/tracks.html
http://en.wikipedia.org/w/index.php?title=Amazon_Mechanical_Turk&oldid=497448764
http://en.wikipedia.org/w/index.php?title=Amazon_Mechanical_Turk&oldid=497448764
http://en.wikipedia.org/w/index.php?title=CoScripter&oldid=392861139
http://en.wikipedia.org/w/index.php?title=CoScripter&oldid=392861139
http://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=497112923
http://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=497112923
http://en.wikipedia.org/w/index.php?title=Privoxy&oldid=457510113
http://en.wikipedia.org/w/index.php?title=Privoxy&oldid=457510113
http://en.wikipedia.org/w/index.php?title=TopCoder&oldid=495297360
http://en.wikipedia.org/w/index.php?title=TopCoder&oldid=495297360
http://wordpress.org/extend/
http://www.w3.org/TR/2011/WD-page-visibility-20110602/

Appendix A

Resources

The search task repository described in my thesis is available for public use and scrutiny
at http://searchtaskrepo.wordpress.com/. The proxy-based logging solution can be
downloaded from http://searchtaskrepo.wordpress.com/download-our-search-logger/.
It is set up on a Debian operating system and requires Oracle VM VirtualBox to oper-
ate. The latter can be downloaded from https://www.virtualbox.org/wiki/Downloads.
A lot of useful information about the development process of this software can be found
at my blog dedicated to this research area: http://searchtaskrepo.blogspot.com/.

61

http://searchtaskrepo.wordpress.com/
http://searchtaskrepo.wordpress.com/download-our-search-logger/
https://www.virtualbox.org/wiki/Downloads
http://searchtaskrepo.blogspot.com/

	Acknowledgements
	Introduction
	Theoretical background and related work
	Important definitions and concepts
	Web search taxonomies
	Search engine user behaviour
	Related work in exploratory search and search task logging systems
	Crowdsourcing feasibility study
	Motivation
	Crowdsourcing in academia
	Crowdsourcing platforms
	Practical scenarios for exploratory search

	Roundup

	Implementation and evaluation
	Practical scenarios
	Publishing a search task
	Finding a search task

	Requirements analysis
	Architecture and design
	Comparison with the original Search Logger
	Implementation details
	Rewriting Web pages
	Search task logger
	XML-RPC data transfer
	WordPress search task repository

	Evolution of the solution
	Evaluation
	Roundup

	User manual
	Set-up tutorial
	Recording and publishing a search task

	Future work
	Vision for search log aided search
	Improving proxy-based search logging
	Improving search task repository
	Roundup

	Conclusion
	Summary (in Estonian)
	Bibliography
	Resources

