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The demand for higher precision and speed of computer vision models is increasing in
autonomous driving, robotics, smart city and numerous other applications. In that con-
text, machine learning is gaining increasing attention as it enables a more comprehensive
understanding of the environment. More reliable and accurate imaging sensors are needed
to maximise the performance of machine learning models. One example of a new sensor
is LightCode Photonics’ 3D camera.

The thesis presents a study to evaluate the performance of machine learning-based object
recognition in an urban environment using a relatively low spatial resolution 3D camera.
As the angular resolution of the camera is smaller than in commonly used 3D imaging sen-
sors, using the camera output with already published object recognition models makes the
thesis unique and valuable for the company, providing feedback for LightCode Photonics’
current camera specifications for machine learning tasks. Furthermore, the knowledge
and materials could be used to develop the company’s object recognition pipeline.

During the thesis, a new dataset is generated in CARLA Simulator and annotated, repre-
senting the 3D camera in a smart city application. Changes to CARLA Simulator source
code were implemented to represent the actual camera closely. The thesis is finished
with experiments where PointNet semantic segmentation and PointPillars object detec-
tion models are applied to the generated dataset. The generated dataset contained 4599
frames, of which 2816 were decided to use in this thesis. PointNet model applied to the
dataset could predict the semantically segmented scene with similar accuracy as in the
original paper. A mean accuracy of 44.15% was achieved with PointNet model. On the
other hand, PointPillars model was unable to perform on the new dataset.
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Objektituvastus kasutades hajusat 3D-kaamera punktipilve

Timo Tiirats

Autonoomsete sõidukite, robootika, targa linna ja paljude sarnaste rakenduste areng
suurendab nõudlust täpsemate ja kiiremate raalnägemismudelite järele. Mainitud rak-
enduste puhul pälvib masinõpe üha enam tähelepanu, võimaldades ümbritsevat keskkonda
terviklikumalt mõista. Masinõppemudelite efektiivsuse maksimeerimise eelduseks on töö-
kindlate ja täpsete sensorite olemasolu, mille näitena võib tuua ettevõtte LightCode Pho-
tonics’i 3D-kaamera.

Magistritöös hinnatakse masinõppepõhise objektituvastuse võimekust linnakeskkonnas
kasutades suhteliselt madala ruumilise eraldusvõimega 3D-kaamera andmeid. Töös käsit-
letud kaamera nurklahutusvõime on väiksem kui paljudel teistel laialdaselt kasutatavatel
3D-sensoritel, mistõttu on varem välja töötatud objektituvastusmudelite rakendamine
kaamera andmetel unikaalne ja ettevõttele väärtuslik. Magistritöö põhjal on võimalik
järeldada, kui hästi sobib LightCode Photonics’i praeguste spetsifikatsioonidega kaamera
masinõppel põhinevatele rakendustele. Lisaks võimaldavad saadud kogemus ning koost-
atud materjalid edasi arendada ettevõtte objektituvastuse algoritme.

Lõputöö käigus genereeriti CARLA simulaatoris ja annoteeriti uus andmestik, mis ku-
jutab 3D-kaamerat targa linna kasutusjuhul. CARLA simulaatori lähtekoodi muudeti, et
tagada võimalikult suur ühtivus simuleeritud ja tegeliku kaamera vahel. Magistritöö vi-
imane osa sisaldab eksperimentide analüüsi genereeritud andmestikule rakendatud Point-
Net’i semantilise segmenteerimise ja PointPillars’i objektituvastuse mudelite kohta. Loo-
dud andmestik sisaldas 4599 kaadrit, millest 2816 otsustati käesolevas lõputöös kasutada.
Andmestikule rakendatud PointNet’i mudeli ennustustäpsus semantiliselt segmenteeri-
tud stseeni puhul sarnanes teiste autorite varasematele tulemustele. PointNet’i mudeliga
saavutati keskmine täpsus 44.15%. Seevastu, PointPillars’i mudel uue andmestiku puhul
oodatult ei töötanud.

CERCS: T111 Pilditehnika; T120 Süsteemitehnoloogia, arvutitehnoloogia; T181 Kaug-
seire; P176 Tehisintellekt

Märksõnad: 3D-kuva; 3D-sensorid; objektituvastus; masinõpe; Carla Simulator; Point-
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Introduction

Machine learning-based computer vision solutions for object recognition have been gain-
ing more and more attention over the last decade, enabling an increasingly comprehensive
understanding of the observed environment together with precise localisation and track-
ing. It is possible to find computer vision tasks in numerous areas, including autonomous
driving, robotics, visual surveillance and smart city [1]. Object recognition can be based
on 2D data, for example, colour or grayscale images and 3D images containing distance
data. While 2D-based machine learning (ML) models have been studied thoroughly, 3D-
based models are still evolving and improving as more 3D data is becoming available
through public datasets [2, 3], and each 3D sensor has unique characteristics. On the
other hand, 3D data could improve the precision and reliability of ML models, especially
in autonomous vehicles, to plan their movements or interactions and avoidance of objects
to maximise efficiency and improve safety. In addition, reduce the number of edge case
scenarios, severely deteriorating the performance of solely 2D-based ML models.

Therefore, 3D cameras and light detection and ranging (LiDAR) sensors are becoming
increasingly important for environment perception [3], as they give a more accurate three-
dimensional representation of an object or a scene, allowing for improved performance
in diverse environments. As the system’s, for example, a computer vision-based robot’s,
surrounding environments can be dynamic and have changes in illumination and weather
conditions, then the efficiency of the system is highly dependable on the accuracy it can
comprehend its surroundings [1]. Hence, many 3D vision companies, like Intel, Ouster,
and Velodyne, constantly try to improve existing sensors and invent new technologies
with competitive pricing, allowing to enhance the computer vision-based algorithms as
more 3D data is available.

In this thesis, we use the existing object recognition ML models to conduct a performance
analysis of a 3D camera based on a novel technology.

Aim of the Thesis

The main goal of this thesis is to evaluate the performance of machine learning-based
object detection and semantic segmentation using a relatively low spatial resolution 3D
camera in an urban environment. The LightCode Photonics camera is based on the novel
design of computational ghost imaging (CGI). While the angular resolution of the 3D
camera, and therefore its resolving power, i.e. its ability to reproduce object detail, is
lower than in many other 3D imaging devices, the hypothesis is that using the camera
point cloud for object recognition will yield comparable accuracy achieved in the original
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Introduction 2

papers. Two previously published object recognition models are applied to a new dataset,
which is created and annotated to validate the hypothesis.

The work is valuable for LightCode Photonics as it can be used for assessing the current
camera capabilities and specifications for machine learning tasks. Additionally, a base
algorithm and knowledge are created for future work to fuse 2D RGB and 3D point clouds
or multiple 3D point clouds to improve the performance of object recognition algorithms.
Last but not least, the resulting algorithm can be used as an input to LightCode Photonics
customers to decrease the time-to-market.

Overview of the Thesis

The thesis is divided into three main chapters. The first chapter describes the thesis’s
theoretical aspects, giving background information related to 3D imaging and machine
learning. Firstly, a comparative analysis of 3D imaging technologies is presented. Fol-
lowed by machine learning-based object detection and semantic segmentation theoretical
overview, including data representation format descriptions. Finally, an overview of the
LightCode Photonics 3D camera is given.

The second chapter described the methodology used in the thesis. Firstly, an overview of
the system setup on which the ML models were trained and tested is given. Furthermore,
the data acquisition and preprocessing steps, including data annotating, are described.
The second chapter is concluded with an overview of chosen object detection and semantic
segmentation algorithms with an explanation of changes made to the original code.

In the last chapter, the results of object recognition models are evaluated. Firstly, an
overview of the generated dataset is given. Secondly, the performance of ML models
is described, including the accuracy and computational complexity metrics. The thesis
closes with an outlook and a conclusion.



1 Background

In this chapter, the theoretical background of this thesis is given on previously published
materials incorporated with thesis author assessments. Firstly, an overview of different
3D imaging technologies, including depth and lateral resolution finding categorisation,
is given. In addition, LightCode Photonics 3D camera parameters and capabilities are
specified. Secondly, the theoretical aspects of machine learning are discussed, focusing
on the object recognition task on the 3D sensor point cloud. The section also introduces
3D imaging output data representation formats to support understanding each format’s
characteristics.

1.1 Overview of 3D imaging Technologies

3D imaging enables extracting semantics in many applications, including consumer, auto-
motive, and industrial fields, for example, robotics, self-driving cars, AR/VR and security
[4–6]. 3D imaging enhances the understanding of the world compared to 2D imaging as
depth information is added. For example, a painted ball on a wall and a physical ball
look the same in a 2D image [7].

3D-imaging technologies could be divided into categories based on multiple criteria. The
first option is to classify them based on distance or range-finding technology. The second
method divides them based on the method of obtaining lateral resolution. In the following
sections, an overview of different distance-finding methods and will be followed by lateral
resolution categorisation.

1.1.1 Distance-Finding Methods

There are multiple ways of acquiring depth information from the scene. The most com-
mon methods currently used are stereo vision, structured light, and time-of-flight (ToF)
technologies [2, 4]. Both stereo vision and structured light use triangulation to estimate
distances in the scene therefore, it can be computationally relatively expensive, and the
accuracy depends on the imaging resolution and the distance between the bistatic imag-
ing cameras. [2, 8]. On the other hand, time-of-flight technology measures the time it
takes for the light to travel to the object and back to the camera [2]. Time-of-flight can
be measured directly or indirectly, and the following two paragraphs give an overview of
both techniques.

Direct time-of-flight (dToF) sensors typically use a sub-nanosecond electronic stopwatch,
a pulsed light emission and measure the time it takes for the light to make a round-trip

3



1. Background 4

to the object and back to the sensors [4, 5, 9]. Using that time, the distance to the object
can be found with the following formula:

D =
τRc

2
, (1.1)

where D is the object distance, τR is the measured flight time and c is the speed of
flight [9]. In some cases, the back-scattered pulse is converted to an analog signal, for
example, photocurrent [7, 8], which is then amplified, compared and linked to the flight
time [5, 10]. More complex dToF sensors acquire a photon timing histogram for each pixel,
showing how many photons the receiver collected in time, also known as time-correlated
single-photon counting (TCSPC) [5, 6, 8]. Therefore using the dToF sensor for distance
measuring enables simple discrimination of multipath echoes [5], which means that it is
possible to measure the distance to multiple objects in the same pixel (Figure 1.1). At the
same time, it allows seeing through (semi)transparent objects, for example, plexiglass.
dToF is suitable for applications requiring long ranges, possibly up to kilometres, even
while exposed to ambient light [4, 8].
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Figure 1.1: dToF sensor emits a short light pulse, synchronised to an electronic
stopwatch. Emitted light pulse scatters on different objects on the scene and reflects
back to the receiver side of the sensor. While doing so, it can take multiple different
paths. A dToF receiver can differentiate return pulses from many different objects in
its field-of-view (FoV) as long as the temporal resolution of the system is sufficient and
an adequate amount of light is reflected from objects [5]. For simplification, the second

reflection from the transparent object is not shown.

Indirect time-of-flight (iToF) sensors typically use amplitude or frequency-modulated con-
tinuous waves to measure the distance to objects [8, 11]. Of 3D imaging devices operating
at optical frequencies, the currently most used iToF 3D sensors are amplitude-modulated
continuous wave (AMCW) cameras [7]. The optical waves are periodic and have well-
controlled fundamental frequencies, but the shape of the waveform may vary [7, 12]. To
calculate distance, the AMCW sensor uses a homodyne photomodulator pixel structure
to measure the phase difference between emitted and received optical signals (Figure 1.2)
[5, 8, 9]. iToF sensors can operate at relatively fast frame rates with relatively high
resolution while still having modest power consumption [5]. iToF technology’s working
range is usually up to tens of meters, limited due to the modulation frequency [8]. In
addition, it cannot separate multiple reflections in the same pixel FoV as the multipath
superimposes optical waves on each other [5, 7]. Therefore, there is a higher probability of
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erroneous distance measurements occurring, and in certain systems, an average distance
value of these two reflections will be measured [13].

Figure 1.2: In an AMCW iToF measurement device amplitude modulated waveform
is created. The optical signal is passed to the emitter of the device and to the correlation
block as a local oscillator for the heterodyne demodulation of the return signal. The
back-scattered signal is collected by the receiver and mixed with the local oscillator.
The phase difference is outputted, which can be used for distance calculations [8, 12].

The phase delay is calculated using the following formula:

∆Φ = arctan(
Q3 −Q4

Q1 −Q2

), (1.2)

where Q1−Q4 is an analog-to-digital converter (ADC) sampled received signal intensities
in four equally spaced points (Figure 1.3) [8, 9].

Figure 1.3: To determine the phase delay in iToF cameras, four equally spaced points
are probed on the received signal by ADC continuously [8, 9, 12].
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Using the calculated phase delay ∆Φ, the distance in the iToF AMCW sensor can be
found in the following way:

D =
c

4πflaser
∗∆Φ, (1.3)

where c is the speed of light and flaser is the frequecy of the laser [8].

1.1.2 Lateral resolution

Lateral resolution is defined as the imaging resolution perpendicular to the laser beam.
Multiple technologies are available, including beam steering and focal-plane array (FPA)
based imaging, which can be an active LiDAR sensor or rely on passive stereo vision. All
mentioned technologies have advantages and disadvantages, and their characteristics will
be discussed from the machine learning point of view. Subsequently, an overview of three
different working principles is given.

Beam Steering Imaging

Beam steering-based 3D imagers are popular as they provide high-precision range infor-
mation and usually have electro-optical architectures that achieve good signal-to-noise
ratios enabling long-range operation [8, 11, 14]. In the case of beam steering, a single
or relatively small number of detectors and laser emitters are usually used [14]. To en-
large the total FoV of the system comprising of singular or a small number of narrow
FoV optical emitter-detector pairs, a mechanical system or optical beam steering is used
[4, 8, 11]. Therefore all beam steering systems behave similarly to rolling shutter cam-
eras, as they do not acquire data from their observable FoV simultaneously. The beam
steering mechanisms can be divided into four categories: Opto-mechanical, electrome-
chanical, micro-electromechanical (MEMS), and solid-state scanning systems. The first
three mentioned technologies will be discussed, as the solid-state scanning methods are
not mature enough to be used in real-world use cases [15]. All considered principles use
the dToF method for measuring object distances in the scene [4].

Opto-mechanical systems use mirrors and prisms to change the direction of the emitted
and back-scattered beam (Figure 1.4). For that, mostly galvanometer and gyroscopic
mirrors or Risley prims are used. Alternating the optical beam angle using this method
allows the system to be more lightweight at the cost of limited FoV. Decreasing the
weight of moving parts in the scanner allows for reduced vibrations and lowers the torque
specifications for the electrical motor moving the mirrors. Opto-mechanical systems could
provide 2D and 3D information about the scene, but the difference is that for 2D, only
one mirror is needed, and for 3D, two mirrors or prism are required [15].
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Figure 1.4: Opto-mechanically driven 3D imaging sensor that directs one laser beam
towards the object in the scene using two orthogonally mounted mirrors. One mirror
controls the elevation, and the second the azimuthal angle of the directed beam. One

pixel-sized receiver is used to capture the ToF of the back-scattered light [8, 15].

Electromechanical systems are rather similar to opto-mechanical devices, but they use an
electric motor to rotate the whole optical configuration, including linear detector arrays,
around the mechanical axis [11, 15]. Therefore they could add one additional dimension
to the original sensor, for example, enhancing 2D sensors to provide 3D data [15]. Their
one major advantage is that they can perform 3D 360-degree scans of the environment on
the azimuthal axis [11, 15]. In addition, they produce straight and parallel scan lines with
a uniform scanning speed over the whole FoV, which makes them one of the most popular
commercially available sensors available [11]. On the other hand, to achieve 360-degree
FoV coverage, a complex design must be used as the data and power cables cannot be
directly connected to the emitter-detector assembly [15], thus increasing the price of the
device.

Micro-electromechanical scanning systems use small MEMS mirrors to control the direc-
tion of the laser beam. The mirrors are actuated by applying a stimulus, for example,
voltage. They can be controlled in both azimuth and elevation axis, allowing for a whole
scene scan with one mirror [11]. The size of the mirrors is only a few mm, for example,
4 mm x 4.5 mm x 1.6 mm and weighs 16 mg [11, 16]. Using smaller and fewer me-
chanical components makes the system compact and lightweight, which is favourable for
many autonomous and robotics-related applications. [11, 15]. In addition, due to smaller
mirrors, the resonance frequency is much larger than possible vibrations occurring in au-
tonomous vehicles or robots [11]. On the contrary, MEMS-based sensors have relatively
limited FoV due to not having rotating parts and might not be suitable for all 3D imaging
tasks. Moreover, using a dual-axis mirror could potentially introduce unwanted crosstalk
between the two-axis control signals, decreasing the control stability of the mirror [11, 15].
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In conclusion, all the discussed systems in this section use direct time-of-flight technology,
therefore, can separate multipath returns, which otherwise could introduce false positive
distance measurements in the results. At the same time, they are rolling shutter imaging
devices, which means that moving the sensor or targets in the scene could create the
same object appearing in multiple places. As abnormal shapes could form, false objects
or their distances can negatively impact machine learning algorithms. Electromechanical
sensor result differs from opto-mechanical and micro-electromechanical sensors data as it
performs uniform acquisition over the scene, while others scan back and forth through
the scene. In the case of beam steering, the acquisition speed and framerate are nega-
tively impacted by the desired angular resolution [8]. Lastly, electromechanical do not
allow changing scanning patterns, while opto-mechanical and MEMS sensors allow for
changeable patterns [11].

Focal-Plane Array Based Imaging

Focal-plane array sensor uses a linear array or a matrix of detectors to capture spatial
information from the whole scene from a single or a series of acquisition periods without
scanning [8, 11, 14]. Scanning is unnecessary, as each pixel in the detector is responsible
for a certain subsection in the scene [8, 11] and the angular resolution is tied to the number
of pixels and FoV of the sensor [8]. FPA-based imaging sensors are fully solid-state and
could be used with a global shutter detector array. Usually, a solid-state operation is
considered desirable as it reduces the sensor’s size, weight and power consumption. Also,
it requires less stabilisation as no moving part could be affected by resonance frequency
[14]. The illumination schemes used with FPA arrays could be pulsed or continuous [11],
depending on which distance measurement methods are used. In the context of this work,
the most important ones are flash dToF and AMCW iToF sensors.

Flash dToF (Figure 1.5) sensor uses relatively short laser pulses to flood illuminate the
scene [11]. This allows for very high framerates, but higher peak-illumination laser power
is needed to gather enough back-scattered light from the scene. At the same time, it is
constrained by eye-safety limits [8, 14]. Overall, the depth and angular resolution of flash
dToF sensors are comparable to beam steering sensors. However, adding more pixels to
the flash dToF sensor is complicated, as more sensitive detectors are needed compared to
single-pixel scanning, thus increasing the size and cost of the focal-plane array [11, 14].
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Figure 1.5: In the FPA flash dToF sensor, the FoV of the detector array is closely
matched with the illumination area, usually using an optical system to shape the light
beam and detector’s FoV suitably. This allows to flood illuminate the whole scene
with uniform pulsed lighting. Then, the light pulse is back-scattered from objects and
collected by the 2D detector array, where each pixel collects the returning light. The

distance to objects is calculated directly using the dToF method [11].

AMCW sensor continuously emits modulated light and measures the distances in the scene
using the iToF method. The iToF technology-based sensors are mainly for short-distance
measurements, because of the periodicity of the modulated light [11]. Compared to dToF
flash sensors, the detectors used in AMCW sensors are based on well-known and frequent
complementary metal-oxide semiconductor (CMOS) technology, allowing the detector to
be small and low-cost. Each pixel or group of pixels in the AMCW detector incorporates
its own phase delay measuring electronics, meaning there is a manufacturing limitation
on the final number of pixels in the detector, similar to the dToF flash sensor [7, 11].

Overall, FPA sensors use both iToF and dToF distance measuring methods. iToF technol-
ogy is susceptible to erroneous distance measurements due to the inability to distinguish
multipath returns. At the same time, dToF has the potential to detect multipath returns
and possibly could enhance the data and machine learning algorithms as more data is
available. Compared to the beam steering approach, FPA-based imaging could be done
using global shutter sensors, which allows for capturing the full scene with a single shot.
This possibly allows for fewer errors in the final image due to moving targets or cameras.
On the other hand, beam steering approaches apply spatial filtering intrinsically, thus
improving the signal-to-noise ratio, allowing improved range with fewer captured frames
[8].
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Stereo vision

Stereo vision exploits the disparity between two monocular cameras for object distance
calculations, similar to human vision (Figure 1.6) [12, 17–19]. Stereo vision usually uses
standard CMOS imaging detectors, which makes the quality of the disparity map depend
on image noise, lighting conditions and other uncertainties [18, 20]. In addition, low-
textured materials harm the system’s stability [17], and the disparity calculations are
computationally expensive [8]. Therefore stereo vision can often achieve only a limited
frame rate with an operating distance of a few meters [8]. On the positive side, stereo
imaging can achieve high resolution [8] and denser data than compared to LiDAR sensors
[17].

Figure 1.6: Stereo vision needs two cameras in a bistatic configuration that must
be horizontally well aligned, and the baseline between the two cameras must be fixed
[18]. Changing the baseline between cameras increases or decreases the sensor distance
calculation range [8]. Stereo vision has multiple regions in its FoV. Firstly, the blue
background shows where both cameras’ FoVs match and triangulation can be done to
find the object distance. Objects in the yellow area are present in different camera
images, and disparity mapping is impossible. Lastly, the orange area shows the blind

area in front of the sensor, where neither of the cameras sees the object [21].

Firstly, machine learning algorithms could benefit from stereo vision’s denser data com-
pared to previously discussed sensors as more data points are available due to the in-
trinsically higher native resolution of the two cameras. Secondly, as stereo imaging uses
ordinary CMOS imaging detectors to create 3D data, it will provide 2D images simulta-
neously with 3D data. On the contrary, the dependency on ambient lighting makes the
stereo camera output unstable under changing lighting conditions, which could affect ML
model results.

1.1.3 LightCode Photonics Camera

For the practical part of the thesis, LightCode Photonics camera was chosen as the
imaging sensor because the author worked as a Hardware Application Engineer in the
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company. In addition, the company was interested in the capability study of the camera
related to machine learning applications. The table 1.1 shows the most relevant camera
specifications. As the current camera specifications were relatively low compared to
commonly used iToF or stereo sensors, testing and comparing the machine learning results
were valuable to find the best application and setup for the camera.

Table 1.1: Overview of LightCode Photonics camera specifications

Attribute Value

Field-of-view (◦) 80× 15
Resolution (px) 96× 16
Angular resolution (◦/px) 0.83× 0.94
Refresh rate (Hz) 5
Range with 10% reflectivity target (m) 10

LightCode Photonics 3D camera uses a low-resolution FPA receiver in the camera’s core
to detect the back-scattered signal and enhances the lateral resolution using the CGI
principle. Currently, the camera works as a near solid state sensor without any macro-
scopic moving parts, for example, larger than 1 mm pitch MEMS mirrors or prisms, to
capture the image. In the near future, the technology has the potential to work as a fully
solid-state system. The flash dToF measuring method is used for depth data, which gives
the camera many capabilities compared to competing imaging sensors. It can acquire
multiple returns from one pixel FoV, which could improve the effective resolution on the
object’s edges or with transparent objects. In addition, point cloud, depth image and
intensity image are provided as output options. In the future, the hardware solution en-
ables defining dynamic resolution with software, allowing to change the lateral resolution
of the camera on the fly. The company believes that these features can improve machine
learning-based operations.

1.2 Overview of Object Recognition

Object recognition, including object detection and semantic segmentation, is a common
computer vision research topic [1, 22]. It is used in various applications, including au-
tonomous driving, robotics, medical diagnosis, fashion, etc., and it aims to extract all
the objects of interest in the scene, identify them and determine their locations, there-
fore improving the understanding of the scene [1, 22–24]. For object detection tasks, the
number of objects in the scene is not fixed and, therefore, could vary from zero to many.
In addition, the objects might be partially hidden or vary in scale [1]. Object detection
using ML algorithms has been developing rapidly in recent years, allowing the detection
of objects based on 2D and 3D data. However, 2D object detection methods are much
more mature at this time [1, 23]. 2D and 3D object detection methods work on the same
principles, but 3D object detection estimates the object positions in the 3-dimensional
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scene. In contrast, the 2D method estimates the object locations on the image plane.
Furthermore, it is possible to use 2D camera images for 3D object detection to estimate
the object’s exact position in 3D space. Still, as the 2D images lack depth information,
the efficiency of these methods is low [1].

Different input data formats could be used for object recognition, and some of those
will be discussed in the next section. This is followed by an overview of two object
recognition methods: object detection with bounding boxes and semantic segmentation.
The third section covers the description of two specific object recognition algorithms.
Lastly, semantic segmentation and object detection evaluation metrics are discussed.

1.2.1 Input Data Representations

3D imaging sensors are can output different data in multiple formats. In addition to
distance information, some sensors can output intensity images, raw histograms, velocity
maps, and other data types. One of the most common formats to represent data is using
point clouds [23], where each point marks the contact position of the laser beam and
the object surface. The point is described with three coordinates (X, Y, Z) [25], with
respect to the sensor [1]. The downside with point clouds is that they are unordered,
sparse and irregularly distributed in the world space [2, 23, 26], therefore they cannot be
efficiently processed by a convolutional neural network (CNN) machine learning models
[1]. Usually, preprocessing is applied to make the data more structured and suitable for
machine learning models [1]. Still, these methods may ineluctably ignore information in
one dimension, for example, projecting the point cloud to birds-eye-view (BEV) [2, 23].
Overall, the methods could be divided into three categories of how the point cloud data is
used in machine learning object detection tasks. Firstly, point-based methods use point
cloud 3D representation directly, without applying previous conversions, to learn the
geometrical relationships between points in 3D space [1, 23, 26, 27]. Secondly, projection-
based methods, which create different point cloud projections, for example, a BEV image,
to make the data more structured, which would allow the use of the same concepts and
operators as for 2D object detection machine learning models [1, 23, 26]. Lastly, voxel-
based methods, sometimes referenced as grid-based methods, divide the point cloud into
predefined-size volumetric voxels that include the information about all the points inside
the volume to improve the irregularity of raw point cloud data [1, 26]. This means that
the precision of voxel-based methods depends on the sampling density of the grid [26].

In addition to the 3D point cloud, LiDAR sensors can capture the reflectivity of the
targets in the scene [1, 4, 25], which can be measured with an active pulse or in some
cases using ambient light present in the imaging spectrum [4, 28]. The reflectivity, also
known as return intensity, is evaluated based on the strength of the returning pulse from
the diffusely reflected signal (Figure 1.1) [4]. Intensity values can be added to the point
cloud directly as a fourth parameter [25] or used to generate separate 2D intensity images,
where each pixel is coloured based on the object’s intensity in pixels FoV [4]. In the
latter case, the intensity images can be used similarly to other 2D coloured images used
for object detection; for example, in You Only Look Once (YOLO) algorithms [4, 25, 29].



1. Background 14

It is worth noting that the intensity image’s quality depends on the level of contrast in
colour and textures between objects and the background [4].

Similarly to intensity, depth could also be represented as a 2D image, where each pixel
colour value represents the distance to a point in the 3D scene. This allows it to be used
with popular 2D object detection neural networks [1]. On the other hand, the depth
images alone may not supply enough features for object detection due to sparse sensor
data [25] and the depth resolution depends on the number of bits used for describing
each pixel. The same two problems could be present when using intensity images. Also,
in the depth image, objects that are side-by-side at the same distance could be merged,
lowering the possibility of correct predictions.

More complex dToF sensors can produce raw time histograms (Figure 1.1), which could
also be used for object detection. Time histograms for the whole image frame could be
presented as a 3D cube withX∗Y ∗time dimensions. It has been tested that in some cases,
using histogram data for object detection outperforms object detection using intensity or
depth images, even if the images have the same or a higher lateral resolution. The higher
performance is due to multipath return discrimination and the time histogram’s ability
to capture salient details in the scene [4].

Some 3D imaging sensors can measure the object velocity in the pixel FoV relative to
the camera, for example, frequency-modulated continuous wave (FMCW) LiDARs. They
can measure the Doppler shift generated by object motion [8], based on what the velocity
image could be generated. Velocity image could help to improve the object detection
performance [30], as it is easier to differentiate between different moving or/and static
objects. For example, at longer distances, the shape of pedestrians and telephone poles
is similar [24], but having the velocity information supports the understanding that the
moving object cannot be a telephone pole.

3D object detection performance could be enhanced with sensor fusion, merging different
types of sensor data [1, 24, 26], usually giving up processing speed [1]. One option is to
improve the sparsity and relatively low resolution of 3D sensor data, with the 2D RGB
imaging sensor, as their data is well structured, relatively high resolution and gives more
contextual information. At the same time, RGB sensors lack depth information, which
3D sensors have [24–26].

1.2.2 Object Detection and Semantic Segmentation

Object detection and semantic segmentation are strongly related visual recognition tasks,
and all previously discussed machine learning aspects relate to both methods. Object
detection is a task to predict a minimum bounding box around every object of interest in
the scene with a predicted class. Optionally a confidence factor may be provided for each
predicted object. Semantic segmentation is defined as pixel-level object detection, where
the class is predicted for each pixel in the image or point in the point cloud, including the
background (Figure 1.7) [1, 22, 31, 32]. Semantic segmentation is particularly suitable
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for robotic or autonomous driving use cases, as it incorporates object detection, shape
recognition and classification tasks. It is important to note that semantic segmentation
does not distinguish two objects in the scene of the same class, while object detection
predicts a bounding box for each object in the scene. Therefore object detection could
be useful for object counting and tracking [1, 33].

Figure 1.7: a) In the case of object detection, a minimum bounding box is predicted
for all classified objects. The bounding boxes may overlap, for example, between a
pedestrian and a car or between two cars, as shown in the figure. In addition, object
detection cannot provide essential attributes about the object, for example, shape. b)
Conversely, the predicted semantic segmentation areas cannot overlap as each point
in a scene is classified individually [1, 22]. Therefore providing additional information

about objects and the scene.

Object classification deep learning models, which are a part of the object detection
pipeline, use CNN architecture having only downsampling layers and ending with fully
connected layers for predictions [1]. On the other hand, semantic segmentation uses a
fully convolutional network (FCN) which usually does not contain any fully connected
layers. FCN consists of two sets of layers, downsampling and upsampling, and is used
for dense predictions. The input data is encoded into smaller feature maps during down-
sampling to capture deep contextual information corresponding to the semantics [1, 33].
To save spatial location information during downsampling layers, strides can be used in
exchange for max pooling layers [33]. Upsampling decomposes the low-resolution feature
maps into high-resolution data, recovering the spatial information and enabling precise
localisation. This denotes that the output prediction has the same shape as the input
data, allowing every input data point to have a classification output [1, 33].

3D semantic segmentation and object detection deep learning models could use raw point
clouds as input, but the label format for training and testing varies. For the semantic
segmentation model, a point class must be provided for each point in the point cloud, and
the class could be described with one-hot or integer encoding [27, 33]. On the contrary,
object detection needs a list of object bounding boxes in the current scene. The bounding
box structure commonly includes bounding box class, centre coordinate, size and rotation
around the vertical axis, as it is considered that objects in the scene are parallel to the
ground [1].
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1.2.3 PointNet

PointNet is a pioneer in point-based 3D object classification and semantic segmentation
architectures, which can directly consume point clouds [2, 27, 34]. The model supports
object classification, part segmentation and scene segmentation tasks (Figure 1.8). With-
out modifications, the model can consume points described with X, Y and Z coordinates,
but additional dimensions could be added, for example, point intensities or normals [27].
PointNet model is invariant to point cloud permutation, i.e. data feeding order and geo-
metric transformations or rotations [27], but it cannot capture the local structure induced
by the metric [34]. In addition, PointNet model can resist small corruption, such as out-
liers or missing data, in the input point cloud and summarise the object’s shape based
on a sparse set of key points [27].

Figure 1.8: PointNet model architecture. The classification network is used for object
classification tasks, and the intermediate result of the network is also utilised in the
upsampling part of the segmentation network. The segmentation network can be used

both for part and scene segmentation tasks [27].

In a board term, PointNet architecture (Figure 1.8) learns the spatial encoding of each
point and aggregates them with max pooling symmetric function to form a global point
cloud signature [27, 34] while saving the reason for selecting each point [27]. PointNet
uses T-Nets to capture the affine transformations of the input points. T-Net is a special
network which consists of basic modules for feature extraction, max pooling, batch nor-
malisation and fully connected layers [27, 35]. Inside PointNet model, T-Nets are applied
two times: first, to make the point cloud invariant to transformations and second, to align
the features from different point clouds. It is followed by a max pooling layer aggregating
the local features from the T-Net to extract global features. Between T-Nets, multi-layer
perception (MLP) layers are used. In the case of semantic segmentations, the network
can predict per-point scores based on local and global information, as the local features
are concatenated with global features to generate a combined point feature map for each
point. For semantic segmentation, the model will output n × m scores, where n is the
number of points and m is the number of the predicted semantic classes. Based on the
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evaluations conducted by the PointNet paper authors, PointNet can process more than a
million points per second and therefore have the potential to work in real-time application
[27].

1.2.4 PointPillars

PointPillars is a novel real-time 3D object detection model that uses point clouds as input
and generates vertical pillars based on the BEV of the input cloud, which enables to use
standard 2D convolutional architectures. The model inputs 4-dimensional point cloud
points, including X, Y, and Z coordinates and intensity values. The PointPillars model
(Figure 1.9) consists of three main stages. Firstly, Pillar Feature Network, where the
input point cloud is divided into evenly spaced vertical pillars (columns) in the x-y plane
and then encoded to a sparse pseudo image by simplified PointNet architecture. The
pseudo image can then be processed with 2D-convolutional layers. Each point, added to
the pillar, is extended to a 9-dimensional vector, including the point’s original position,
intensity and five parameters describing the point’s position relative to the pillar. Also,
the maximum point count for each pillar is fixed, and in case of more points, they will
be randomly sampled to fit the pillar. If the pillar is empty, zero padding is applied
to keep the tensor size. Secondly, the Backbone stage uses the pseudo image and 2D
convolutional layers to produce a high-level input representation. The 2D convolutional
operations are extremely efficient on GPU, enabling low inference time compared to
models using 3D convolutional layers. Thirdly, a Single Shot Detector (SSD) predicts the
final 3D bounding boxes. In addition, it is possible to use the PointPillars network for
semantic segmentation tasks if the SSD detection head is changed to the appropriate one
[36].

Figure 1.9: PointPillars model architecture [36].

Three losses are measured during the model training and validation: the model’s locali-
sation, heading and classification error. In addition, the model performance is measured
with BEV and 3D mAP metric, where BEV shows that the bounding boxes IoU is eval-
uated in the 2D space, while with 3D mAP, the IoU is evaluated in the 3D space. It
is shown that data augmentation is important for good performance, therefore, three



1. Background 18

types of augmentations are added to input data. Firstly, random insertion of previously
saved bounding boxes with corresponding points included in the bounding box. Secondly,
adding rotations and translations to all bounding boxes and lastly, global augmentations,
including mirroring, rotation, scaling and translation, are applied to both point clouds
and bounding boxes. In some cases, the more the pedestrians’ bounding boxes are aug-
mented, the lower the accuracy. It is mentioned that detecting pedestrians and cyclists is
challenging as they might be confused between each other, and pedestrians can be simi-
lar to poles or tree trunks. On the other hand, detecting cars should be rather accurate.
The model has shown running speeds up to 62 Hz with the normal-sized model and 105
Hz with the simplified version. Lastly, PointPillar authors claim the model should not
require hand-tuning with multiple lidar or radar point clouds [36].

1.2.5 Evaluation metrics

Evaluation metrics measure the ML model’s performance in generalisation and optimi-
sation. The performance metrics of the ML model can be divided into two categories:
accuracy metrics, measuring the model’s effectiveness and computational complexity met-
rics, measuring the model’s scalability for deploying in resource-limited systems [1]. In the
following two sections overview of multiple metrics is discussed, starting with accuracy
and ending with computational complexity metrics.

Accuracy metrics

To measure the effectiveness of the object detection and semantic segmentation model,
localisation and classification accuracy should be evaluated [1]. There is no perfect metric;
therefore, multiple metrics can be combined to improve the understanding of the model’s
generalisation power. The following abbreviations are used for the number of true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) predictions in one
frame. In the case of object detection, the bounding boxes, where the area or volume
between ground truth and the predicted bounding box is above the localisation threshold,
are classified as TP predictions. All incorrectly positioned bounding boxes are counted as
FP and undetected ground truth boxes make up FN predictions, while TN predictions are
not counted in the context of object detection [37]. In semantic segmentation, separate
pixels are divided into TP, TN, FP and FN predictions [1]. To apply binary classification
metrics to a multi-class problem, as usually object detection and semantic segmentation
are, metrics for each class can be calculated separately and then averaged together, also
known as a macro-averaged result [38]. This allows the treatment of each class as a
binary classification problem, and therefore the TP, TN, FP and FN confusion matrix
can be found. This section describes numerous metrics for evaluating object detection
and semantic segmentation models, including binary and multi-class classification metrics
formulas.

One of the most intuitive ways to evaluate the model performance is to use binary accu-
racy (A), which calculates the ratio between correct predictions and the total number of
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predictions [1]. The accuracy only measures the classification aspect of the model without
considering the localisation performance. The accuracy can be calculated in the following
way:

A =
number of correct predictions

total number of predictions
=

TP + TN

TP + TN + FP + FN
[1, 38] (1.4)

One of the biggest drawbacks of accuracy is that it may falsely indicate the model’s work
if the input data set has imbalanced classes; for example, 90% of data points belong to
class 0 and 10% to class 1. In the given example accuracy of 90% is achieved by predicting
all objects to class 0. In this case, and with a multi-class problem, it is advisable to use
mean, also known as a macro, accuracy (mA), which calculates the accuracy for each class
separately and then averages over all classes [1]. The mean accuracy can be calculated
in the following way:

mA =
1

n
∗

n∑
i=1

Ai, (1.5)

where Ai is the accuracy for i’th class and n is the total number of classes [1].

The next widely used option is the intersection over union (IoU) metric, which evalu-
ates the overlap between ground truth and prediction boundaries or regions, showing
the model’s localisation performance. The IoU is actively used in object detection and
semantic segmentation deep learning models [1, 4]. In the case of object detection, the
IoU is calculated based on the area between predicted and ground truth bounding boxes
as:

IoU =
predicted ∩ truth

predicted ∪ truth
[1, 4] (1.6)

In the case of semantic segmentation, the IoU is calculated in the following way based on
the number of TP, FP and FN classified pixels:

IoU =
TP

TP + FP + FN
[1] (1.7)

Similarly to accuracy, there is an option to use mean IoU (mIoU) with a multi-class
problem [1]. The mIoU can be calculated as:

mIoU =
1

n
∗

n∑
i=1

IoUi, (1.8)

where IoUi is the IoU for i’th class and n is the total number of classes1.

The last accuracy metrics discussed in this section are precision, recall and F-score.
Precision and recall make up a Precision-Recall Curve (PRC) which can be used to
discriminate between FP and FN predictions, an opportunity that classification accuracy

1https://www.tensorflow.org/api_docs/python/tf/keras/metrics/MeanIoU

https://www.tensorflow.org/api_docs/python/tf/keras/metrics/MeanIoU
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and IoU lack [1]. Similarly to previous metrics, a macro-averaged result can be found in
a multi-class problem. Precision (P) can be calculated as:

P =
true positives samples

positive samples
=

TP

TP + FP
[1, 38, 39] (1.9)

Recall (R) can be computed as:

R =
true positives samples

relevant samples
=

TP

TP + FN
[1, 38, 39] (1.10)

In addition, PRC enables the evaluation of one of the most used single-value metrics in
object detection or semantic segmentation tasks, called average precision (AP). The area
under the PRC curve defines the value of average precision. In the case of a multi-class
problem, mean average precision (mAP) is used [1].

Lastly, F-score measures the harmonic mean between ground truth and predictions by
combining precision and recall. Also, it is possible to measure the mean F-score similarly
to the previously mentioned metrics [39]. The following formula is used to calculate the
F-score:

F-score = 2 ∗ precision * recall

presicion + recall
= 2 ∗ P ∗R

P +R
[4, 39] (1.11)

Computational complexity metrics

Multiple metrics are available for evaluating the computational complexity of the ML
model. In the scope of this work, the most important metric is the inference speed, eval-
uated in frames per second (FPS). Evaluating the inference speed is especially important
if the model is meant to work in real-time, for example, for autonomous driving vehicles.
In addition, there are metrics for memory usage and for calculating floating point opera-
tions, which the model does during the operation [1]. They will become more important if
the system resources limit the memory capacity and computational speed. For example,
if the model is deployed on a microcontroller.



2 Methods

This chapter describes the work conducted in the practical part of this thesis. Firstly,
system setups used to run machine learning models and data acquisition software are
described. A description of the data generation and annotation process follows it. Lastly,
a chosen semantic segmentation and object detection algorithms are discussed, including
the changes made to be compatible with the author’s generated data.

2.1 System Setup

In the course of this thesis, two computer systems were used due to the ease of access
in different working locations and the difference in computing power. The first system
(system A) was used for data generation and annotation, and the other (system B) for
training and testing the machine learning model. The system A parameters were the
following:

• Operating system: Ubuntu 20.04.5 LTS

• CPU: Intel Core i5-11400F @ 2.60GHz

• GPU: NVIDIA GeForce RTX 3060 Ti 8 GB

• RAM capacity: Kingston 16 GB @ 3200 MHz

• Storage: WD Green SSD SN350 1 TB

The system B parameters were the following:

• Operating system: Ubuntu 20.04.5 LTS

• CPU: Intel Core i9-11900K @ 5.0 GHz

• GPU: MSI GeForce RTX 3090 SUPRIM X 24 GB

• RAM capacity: G.Skill Trident Z Neo 64 GB @ 3600 MHz

• Storage: Kingston SSD SNV2S 500 GB

21



2. Methods 22

The most noticeable differences were in the CPU and GPU memory capacity, which
can significantly affect the machine learning model training speed. On the other hand,
system A, which had lower specifications, suited its data generation and annotation tasks
competently.

While writing the thesis, Grammarly1 was used to verify the correctness of spelling and
to improve the text comprehensibility. The educational subscription was provided by the
University of Tartu, and British English was chosen as the base language.

2.2 Data Acquisition

The data acquisition pipeline consisted of multiple steps: generation, annotation and
filtering. All mentioned steps will be discussed in the following few sections. Due to the
camera’s technological readiness level during the writing of the thesis, it was preferable
to use simulated data to conduct the rest of the practical work. It was essential that
simulation software allowed the creation of a relevant environment and represented the
actual camera use case and data format as close as possible to LightCode Photonics
camera.

CARLA Simulator version 0.9.132, based on Unreal Engine 4, was selected as the simu-
lation software, an open-source simulator mainly for autonomous driving applications. It
already provides free premade assets, including standard sensors, maps, cars, etc., with
the flexibility to add or modify current assets. In addition, it supports pedestrian and
traffic managers, traffic rules, and intersections that make the simulator mimic the real-
world as close as possible. Lastly, CARLA Simulator can provide bounding boxes for
all dynamic assets in the environment, simplifying and accelerating the data generation
process [40].

Using simulated data compared to real-world data has multiple advantages and disad-
vantages. The negative side of using simulated sensor data is that it does not support
the multiple returns feature, which could increase the effective resolution of the sensor
in some cases. Furthermore, premade camera sensors do not output the reflectivity of
objects in the scene, and the range limit is abrupt, i.e. does not depend on the targets’
reflectivity. Lastly, the horizontal and vertical angular resolutions have to be equal but
might differ in LightCode Photonics 3D camera case. On the positive side, simulated data
can be less noisy and less affected by environmental conditions, e.g. sunlight intensity or
direct reflections, that might otherwise blind the sensor. In addition, the environment,
including weather, pedestrians, traffic, etc., is highly controllable.

CARLA Simulator is developed as a server-client system, meaning the server side is
responsible for rendering the scene and running the simulator environment. The Client-
side is responsible for interacting between the client application and the server, creating

1https://www.grammarly.com/
2https://carla.org/2021/11/16/release-0.9.13/

https://www.grammarly.com/
https://carla.org/2021/11/16/release-0.9.13/
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sensors and managing the returned sensor data. The server-client system allows the client
to run on different machines than the server, as communication between the server and
client happens through sockets. Also, the server supports multiple clients at the same
time [40]. In the scope of this thesis, CARLA Simulator server and client-side were on
the system A (Section 2.1) setup.

2.2.1 Server-Side

In CARLA Simulator, available assets are named blueprints, each having its input and
output attributes. By default, the simulator supports 14 different types of sensor blue-
prints3, including RGB camera, LiDAR sensor and depth camera. None of the available
sensors directly represents LightCode Photonics camera output and data acquisition type.
The closest ones are the depth camera and LiDAR sensor. The depth camera returns
a 2D array of distances that should be converted to a point cloud but does not include
reflectivity values nor have the option to set the maximum working range. On the other
hand, the LiDAR sensor outputs a point cloud with reflectivity values and allows to
set the operating range, but it represents 360-degree scanning LiDAR acquisition format
that differs compared to LightCode Photonics camera-like acquisition. Therefore, it was
decided that to use LightCode Photonics camera in CARLA Simulator conveniently, it
should be implemented in the server as an available blueprint. In addition, it helps to have
cleaner code in the client and share the camera blueprint with customers using CARLA
Simulator.

To add LightCode Photonics camera blueprint to CARLA Simulator source code, it was
forked from the original GitHub repository [41] and modified accordingly to CARLA Sim-
ulator documentation4. The blueprint was set up similarly to a depth camera, requesting
a depth BGRA image array from the underlying Unreal Engine and converting it to a 2D
distance array. All distances over the maximum operating range were discarded, and the
distance array was converted to a point cloud using the pseudocode shown in listing 2.1.
All the modified server-side code is accessible through appendix A.

1 int hRes = horizontal_resolution_pixels

2 int vRes = veritcal_resolution_pixels

3 float FoV = field_of_view_degrees

4
5 # Camera intrinsic parameters .

6 int cx = hRes / 2

7 int cy = vRes / 2

8 float fx = hRes / (2.0 * tan(FoV * PI / 360))

9 float fy = fx

10
11 # Row and Column values represent the pixel position on the image.

12 # Calculate the 3D coordinate for each distance measurement in the array.

13 for row , column , distance in distances_2d_array:

14 float x_coordinate = distance

15 float z_coordinate = ((cy - row) / fy) * x_coordinate

16 float y_coordinate = -((cx - column) / fx) * x_coordinate

Listing 2.1: Pseudocode of converting distances to 3D points

3https://carla.readthedocs.io/en/0.9.13/ref_sensors/
4https://carla.readthedocs.io/en/0.9.13/tuto_D_create_sensor/

https://carla.readthedocs.io/en/0.9.13/ref_sensors/
https://carla.readthedocs.io/en/0.9.13/tuto_D_create_sensor/
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The table 2.1 shows the camera blueprint’s basic attributes and is accessible to clients with
path sensor.camera.lightcode. In addition, it is possible to set camera lens distortion
attributes similar to depth or RGB cameras.

Table 2.1: LightCode Photonics camera blueprint input attributes

Blueprint
attribute

Type Description

image size x int Image width in pixels.
image size y int Image height in pixels.
fov float Horizontal field-of-view in degrees.
range float Maximum operating range in meters.
sensor tick float Simulation seconds between sensor captures.

The LightCode Photonics camera blueprint outputs data shown in the table 2.2.

Table 2.2: LightCode Photonics camera blueprint output attributes

Output
attribute

Type Description

frame int Frame number of the measurement.
timestamp double Simulation time during measurement in seconds.
transform carla.Transform Location and rotation in world coordinates.
width int Image width in pixels.
height int Image height in pixels.
fov float Horizontal field-of-view in degrees.
range float Maximum operating range in meters.
raw data bytes Left-handed array of 3-dimensional points.

The raw data returned by the camera blueprint can be converted to a 3D Numpy array
with the Python code in listing 2.2. It is important to note that the point cloud is
left-handed, meaning the Y-axis must be inverted to convert it to the right-hand rule.

1 xyz_coordinates = np.ndarray(shape =(( lightcode_image.width * lightcode_image.height),

2 3), dtype=np.float32 , buffer=lightcode_image.raw_data)

Listing 2.2: Python code to convert raw data to array of 3D points

CARLA Simulator must be built from the source using the forked repo code to use the
created LightCode Photonics camera blueprint. After which, the blueprint functions and
parameters are accessible through CARLA Simulator Python application programming
interface (API) to set up the environment and sensors.
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2.2.2 Client-Side

On the client-side, users can choose the simulation environment, set up suitable traffic,
interact with autonomous agents, spawn and use specific sensors. It was decided that this
thesis focuses on testing the camera capabilities in the urban environment for detecting
different road users, like cars, pedestrians, bicycles, etc. Different intersections were
chosen to generate data using a statically placed LightCode Photonics cameras. The
simulator was configured to run in synchronous mode with a fixed refresh rate of 20
Hz. From the available premade maps in CARLA Simulator Town10HD was selected
as it has the most background details available. The automatically generated traffic
consisted of different category cars, motorcycles, bicycles and pedestrians and all of them
used automatic path planning. For deterministic behaviour, a random seed was used for
the traffic manager during multiple runs. It was observed that the CARLA Simulator’s
different runs do not always behave deterministically and are not repeatable, even if
all the conditions based on the documentation were fulfilled. The thesis author also
reported an issue to the official CARLA Simulator GitHub repository about this bug5.
The default weather settings were not altered, as different conditions would not interfere
with LightCode Photonics blueprint behaviour in the simulator. The client code was
written using Python API, and figure 2.1 shows a high-level view of the code. All the
client-side code is available in the appendix C.

5https://github.com/carla-simulator/carla/issues/5360

https://github.com/carla-simulator/carla/issues/5360
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Figure 2.1: High-level graph of the client Python code. Firstly, a connection to the
server and traffic manager is established. Followed by choosing a suitable environment
and applying world settings. Thirdly, all actors are spawned into the environment,
including pedestrians, sensors, and cars. Lastly, a simulator loop is started, where each

received frame’ bounding boxes and point clouds are saved.

In the client code, LightCode Photonics cameras were spawned together with RGB cam-
eras to have an additional reference to the point cloud data. The RGB images improve
the annotation process quality and speed, making checking the bounding box boundaries
and object type more precise. Spawned camera parameters are given in the table 2.3. As
the simulator cannot run at a low refresh rate due to physics substepping6 limits, then
to achieve a 5 Hz refresh rate for cameras, the intermediate frames had to be filtered out
by client code. Another option would be to use sensor tick camera attribute, but then it
was noted that the synchronisation between server and client was not stable enough for
data collection. LightCode Photonics camera increased range compared to the original
specification shown in table 1.1 is due to the desire to test the increased range advantages

6https://carla.readthedocs.io/en/0.9.13/adv_synchrony_timestep/

https://carla.readthedocs.io/en/0.9.13/adv_synchrony_timestep/
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in the smart city use case and also due to the strict limit of the range in the generated
data. In addition, the FoV of LightCode Photonics camera is 80 × 13.3 degrees, as the
horizontal and vertical axis angular resolutions must match.

Table 2.3: Spawned LightCode Photonics and RGB camera specifications

Attribute LightCode Photonics camera RGB camera

Field-of-view (◦) 80× 13.3 80× 13.3
Resolution (px) 96× 16 800× 134
Angular resolution (◦/px) 0.83 0.1
Refresh rate (Hz) 5 5
Range (m) 35 unlimited

In a total of 6 cameras, 3 from both categories were placed in the same location in the
world with different rotations. The cameras’ FoVs were aligned in the horizontal plane,
covering 240-degree FoV. To mimic the possible position in the real-world use case, the
cameras were placed on a virtual post with a height of 2 meters. Figure 2.2 shows one
possible positioning of LightCode Photonics and RGB cameras.

Figure 2.2: Top view of an example intersection showing the possible positioning of
cameras. The cameras’ position is shown with a red dot and FoV boundaries with
blue lines. Each LightCode Photonics camera covers horizontally 80-degree FoV and is

accompanied by an RGB camera with the same location and rotation.

The data was generated in two parts. The first time the automatic annotation process
was not used, all frames were annotated manually. Before the second time, an automatic
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annotation7 code was added to the client to improve its speed. It was observed that
the automatic annotation process does not entirely remove the hand correction step, as
some bounding boxes were still slightly off compared to generated point clouds (Figure
2.3). In addition, CARLA Simulator had two large actor groups, vehicles and walkers,
i.e. pedestrians, which meant the bicycle and motorcycle object types must be manually
changed afterwards. The server and client applications had to be well synchronised for
the automatic annotation process to work. Otherwise, offsets between camera images and
bounding boxes occurred. Also, the version of CARLA Simulator did not allow to filter
out bounding boxes that were hidden behind other obstacles. For example, a bounding
box for a small car was still returned even if it was completely hidden behind a large
truck. Lastly, the distance between the camera transforms, and the actors’ bounding
boxes were calculated and compared to select bounding boxes close to the cameras.

Figure 2.3: Perspective view of a point cloud in the annotation tool showing an
automatically generated bounding box for a car. Points included in the car’ bounding
box are marked green, and background points are shown as white. A few green points
are included in the bounding box, shown with a red ellipse, which are incorrect and

should be excluded.

In order to be compatible with the chosen data annotation tool, the client code had to
output four types of data in each simulator frame:

• Three RGB images, i.e. each RGB camera output was saved to separate .jpg image
file

• Three LightCode Photonics camera point clouds, i.e. each camera’ generated output
was saved to separate .pcd file

7https://carla.readthedocs.io/en/0.9.14/tuto_G_bounding_boxes/

https://carla.readthedocs.io/en/0.9.14/tuto_G_bounding_boxes/
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• One point cloud .pcd file, where all LightCode Photonics cameras’ point clouds have
been merged.

• One .json file containing automatic annotations for all cameras.

The need for a separate point cloud file containing merged camera point clouds was specific
to the annotation tool, as it expected one .pcd point cloud and one .json annotation
file for each frame. In addition, keeping the point clouds together allowed tracking the
object through multiple cameras FoV, improving the overall annotation speed. Lastly,
for seamless workflow, it was important that the output format of CARLA Simulator
annotations must match the annotation tool format.

2.2.3 Data Processing Pipeline

After being generated by the client code, the data is processed in multiple steps to prepare
the data for object detection and semantic segmentation models. They can be divided into
the annotation, separation, filtration and adding intensity phases. The overall pipeline
is shown in figure 2.4. The following paragraphs will describe the pipeline parts more
comprehensively.



2. Methods 30

Bounding boxes for
merged point clouds

Annotating with
SUSTechPOINTS

Merged point cloudsRGB camera images
Calibration between
RGB cameras and

point clouds

CARLA Simulator
client code

Separate point
clouds with added

point class

Separate bounding
boxes

Filtered point clouds
for semantic
segmentation

Separate point clouds

Filtered bounding
boxes

Filtered point clouds
for object detection

Semantic
segmentation model

Object detection
model

Using
SeparateAndRotate.py 

script 

Using  
FilterFrames.py 

script 

Using  
GenerateIntensityValues.py 

script 

Automatic
annotations

a) Annotating

b) Separating

c) Filtering

d) Adding  
intensity

Figure 2.4: The data processing pipeline starts with gathering data from CARLA
Simulator. a) The next step is data annotation which can be done manually or assisted
by automatic annotations from CARLA Simulator. b) The improved and still merged
annotations, i.e. bounding boxes, are then separated into different files that can be
linked to each camera’s point cloud and used to add a semantic class for each point. c)
It is followed by filtering out the frames containing no objects. d) Lastly, an intensity
field is added to the point cloud as it is one of the requirements of the selected object

detection algorithm.
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Data annotation (Figure 2.4, part a) was done with SUSTechPOINTS open-source tool
[42, 43]. It is a semi-automatic 3D point cloud annotation tool with RGB camera image
support that, for each frame, generates a list of bounding boxes to a .json file with the
layout shown in listing 2.3. In addition to point clouds and RGB images, the tool needs
calibration files that determine the RGB cameras’ extrinsic and intrinsic parameters to
match the bounding boxes between RGB images and point clouds. The calibration files
were calculated and generated manually. The tool also supported automatic annotating
using a pre-trained ML model for new point clouds, but it was not working stable enough
with the generated data, therefore mostly interpolation between two fixed bounding boxes
was used. It was suspected that it might be due to the lower resolution point cloud com-
pared to what the model is trained on. The road users were divided into four categories:
car, pedestrian, bicycle and motorcycle, where the car category included trucks, vans and
passenger cars.

1 {

2 "obj_id": "1",

3 "obj_type": "Car",

4 "psr": {

5 "position": {

6 "x": -7.627991017406543 ,

7 "y": 21.434290470313428 ,

8 "z": -1.0838902804892578

9 },

10 "rotation": {

11 "x": 0,

12 "y": 0,

13 "z": -3.115412714809878

14 },

15 "scale": {

16 "x": 4.174792711505839 ,

17 "y": 1.7091842164074056 ,

18 "z": 1.408580385606108

19 }

20 }

21 }

Listing 2.3: Annotated object in .json file. SUSTechPOINTS enables to use of 9
Degrees of Freedom bounding boxes.

The separation phase (Figure 2.4, part b) used the bounding boxes from SUSTechPOINTS
annotation tool and separate point clouds generated by CARLA Simulator. The phase
aimed to divide the bounding boxes between three separate point clouds and discard
bounding boxes with too few points. The minimum number of points the bounding box
must contain to be saved is 12 for car and 6 for pedestrian, bicycle and motorcycle classes.
During the separation, the bounding box might be present in the middle of the separation
line and, therefore, was saved in both separated bounding box output files. An example
based on one frame is shown in figure 2.5. The phase outputted three .json files containing
bounding boxes in each camera point cloud and three point cloud .txt files, where a class
number was added as a fourth parameter to a point, resulting in point format: X, Y, Z,
class. For semantic segmentation, an additional background class was added, as all the
points must be classified. A custom-made script was used to process the bounding boxes
and point clouds, called SeparateAndRotate.py, available in appendix C.
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Figure 2.5: The figure shows a top view of the annotation tool output. In the
separation phase, the output is divided into three sections, corresponding to the right,
centre and left camera. In this case, the right camera annotation file contains three,
centre one and left four bounding boxes after the separation, as the car 7 bounding

box is in the right and centre point clouds.

Additional data filtering (Figure 2.4, part c) was applied to the generated data to remove
empty frames, i.e. frames without any object. Leaving these frames into the input
dataset might lead to quicker ML model overfit, therefore, lower generalisation power.
The filtering was done using a custom-made FilterFrames.py (Appendix C) Python script
that scanned through point clouds and annotations, saving only appropriate files. The
outputted point cloud files were directly usable with a semantic segmentation model.

Lastly, point clouds were required to contain intensity values in the data to use the selected
object detection model (Figure 2.4, part d). As the defined LightCode Photonics camera
in CARLA Simulator could not output intensity values, the class parameter in the point
cloud files was replaced with zeros indicating the absence of that variable. Therefore
the point cloud files for object detection resulted in a point format: X, Y, Z, 0. The
processing was done using the GenerateIntensityValues.py (Appendix C) script.

2.3 Semantic Segmentation and Object Detection

Models

In the practical part of this thesis, two different object recognition models were considered.
Firstly, PointNet [27] semantic segmentation model and secondly, PointPillars [36] object
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detection model. The two architectures were chosen as they both can run in real-time
applications and allow the evaluation of both object detection and semantic segmentation
task capability. In the longer term, LightCode Photonics must offer a solution that can
be used in real-time, as it is crucial for robotic applications. In addition, to the thesis
author’s knowledge, these models have not been tested with very sparse point clouds, as
the output of LightCode Photonics camera was. These models were trained and tested
on system B (Section 2.1). The following two sections will describe the changes made to
the models’ implementations to get the models working with previously generated data,
starting with PointNet, followed by PointPillars.

2.3.1 PointNet

The PointNet model was trained and tested using the Jupyter Notebook file from the
available Keras implementation [35]. The Keras version was chosen as it offers a more
user-friendly API than the original TensorFlow framework. The Keras API enables faster
and more convenient code testing and modifying while still allowing to use more advanced
features, for example, defining custom metrics. The following paragraphs will overview
the most significant changes to the original code. All the changes described in the fol-
lowing paragraphs are visible in the appendix C.

Firstly, the input data reading code (Listing 2.4) was modified to parse point clouds and
ground truth labels correctly. The labels were saved as a fourth parameter for each point
in the generated data, therefore was no need to read additional files. In addition, the
original code discarded all the point clouds that did not meet the minimum required
point count. The mentioned section was replaced with data padding, allowing to use
point clouds with variable sizes. In order to do so, the point cloud size was fixed to 1536,
which comes from the LightCode Photonics camera resolution, which was 96× 16 pixels
(Table 1.1). Repeated data was used from the original point cloud to standardise the
point count, i.e. already existing points were duplicated to increase the point count. The
solution was proposed by one of the authors of the PointNet [27] paper under this GitHub
issue8.

1
2 LABELS = ["Car", "Pedestrian", "Bicycle", "Motorcycle", "Background"]

3 NUM_SAMPLE_POINTS = 1536

4 points_dir = "InputData/lidar_semantic /*.txt"

5
6 point_clouds = []

7 labels = []

8 labels_str = []

9
10 # Read point cloud files and separate them to point cloud and label arrays

11 for point_file in tqdm(glob(points_dir )):

12
13 point_cloud_with_label = np.loadtxt(point_file , dtype=np.float32)

14
15 point_cloud_points = point_cloud_with_label.shape [0]

16 if point_cloud_points < NUM_SAMPLE_POINTS:

17

8https://github.com/charlesq34/pointnet/issues/161

https://github.com/charlesq34/pointnet/issues/161
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18 # Padding the point cloud with repeated data.

19 # According to this: https :// github.com/ charlesq34 /pointnet/issues /161

20 missing_point_count = NUM_SAMPLE_POINTS - point_cloud_points

21 point_cloud_with_label = np.append(point_cloud_with_label ,

22 point_cloud_with_label [: missing_point_count], axis =0)

23
24 label_column = np.array(point_cloud_with_label [:,[3]], dtype=np.int64)

25
26 # String array for labels

27 label_map = ["none"] * len(label_column)

28 for i, label in enumerate(label_column ):

29 label_map[i] = LABELS[label [0]]

30
31 point_clouds.append(point_cloud_with_label [: ,:3])

32 labels.append(label_column)

33 labels_str.append(label_map)

Listing 2.4: Python code to read from the generated data and extract point clouds
and ground truth labels. In addition, point cloud padding is done to align the point
count in all the point clouds. The code outputs three arrays containing: point clouds,

labels and labels in string form for better visualisation.

Also, due to data padding, there was no need to discard points over the point count thresh-
old, previously done in the preprocessing step to standardise the point clouds. Therefore,
no points were lost from the original point cloud after the data padding implementa-
tion. Before generating database objects, the only pre-processing step was normalising
the point cloud to make them range and position invariant [33].

Secondly, two custom metrics were added: mean accuracy and mean F1-score, to evaluate
the accuracy performance of the single-label categorical classification model, as neither
is implemented in the Keras API. The calculation of the mean accuracy metric is shown
in the listing 2.5. In the case of mean F1-score, TensorFlow Addon API binary F1-score9

was used as a base metric and the custom metric class was responsible for formatting the
inputs and returning the mean value. The mean F1-score metric implementation can be
found in appendix C. The original PointNet paper [27] uses mean IoU and binary accuracy
to evaluate the model’s performance; therefore, it was essential to include mentioned
metrics as well to be able to compare the thesis author’s model performance to the
original model.

1 class MacroAccuracy(tf.keras.metrics.Metric ):

2 def __init__(self , num_classes , ** kwargs ):

3 super (). __init__(name="macroaccuracy", ** kwargs)

4 self.num_classes = num_classes

5 self.correct_positives = self.add_weight(name="correct_positives",

6 shape=[self.num_classes],

7 initializer="zeros",

8 dtype=tf.float32)

9 self.total_predictions = self.add_weight(name="total_predictions",

10 shape=[self.num_classes],

11 initializer="zeros",

12 dtype=tf.float32)

13
14 def update_state(self , y_true , y_pred , sample_weight=None):

15 y_true_one_hot = tf.one_hot(y_true , depth=tf.shape(y_pred )[2])

16 y_true_reshaped = tf.reshape(tf.cast(y_true_one_hot , dtype=tf.float32),

9https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score

https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score
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17 [-1, self.num_classes ])

18 y_pred_reshaped = tf.reshape(tf.cast(y_pred , dtype=tf.float32),

19 [-1, self.num_classes ])

20 y_pred_one_hot = tf.one_hot(tf.argmax(y_pred_reshaped , axis=-1),

21 depth=self.num_classes)

22
23 self.correct_positives.assign_add(tf.reduce_sum(y_true_reshaped *

24 y_pred_one_hot , axis =0))

25 self.total_predictions.assign_add(tf.reduce_sum(y_true_reshaped , axis =0))

26
27 def result(self):

28 return tf.reduce_mean(tf.math.divide_no_nan(self.correct_positives ,

29 self.total_predictions ))

30
31 def reset_state(self):

32 reset_value = tf.zeros ([self.num_classes], dtype=tf.float32)

33 self.correct_positives.assign(reset_value)

34 self.total_predictions.assign(reset_value)

Listing 2.5: Custom Keras metric class to calculate the mean accuracy. The metric
was updated after each batch in the update state() function, and the mean value was
returned in the result() function. The labels must be converted to a one-hot format to
reduce the true positive calculations to AND function between ground truth labels and
predictions. Before that, an argmax() function is used on predictions to get the highest

confidence label.

Thirdly, implementing the K-fold cross-validation strategy to evaluate model performance
was one of the most significant changes to the original code. The K-fold was chosen as
it enables to use a smaller dataset for model performance evaluation and helps to reduce
errors related to the dataset splitting. The implementation was done based on the book
[33]. The code of K-fold implementation is visible in the appendix C, and the figure
2.6 shows how the data was divided during the model training and evaluation. Data
shuffling happens after diving into the testing, training and validation datasets, not the
whole dataset, as the consecutive frames were strongly correlated in the point cloud data.
The shuffling of whole data would increase the accuracy performance of the model but
does not show the generalisation power of the model on new data. Shuffling the training
data reduces the possibility that the model will start to overfit after the first samples.
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Figure 2.6: The whole dataset is divided into five splits, shown with blue boxes. At
each fold, different splits are chosen to form the testing, training and validation dataset,
shown with yellow boxes. One of the splits is always chosen as the testing dataset, which
is used to evaluate the model after training. The training and validation datasets are
used during model training and formed based on the other four splits, with a ratio of

80:20.

Lastly, an option to run one point cloud inference at a time was added to measure the
computational complexity of the model during deployment. Therefore, one previously
trained model was chosen to generate predictions and measure the inference time with
Python time.time ns() function that has a resolution of 84 ns on the Linux operating
system10.

2.3.2 PointPillars

The tested PointPillars model uses the TensorFlow implementation from Open3D-ML
repository [44], which is an extension to the popular Open3D library for 3D data pro-
cessing [45]. One of the main reasons for using Open3D-ML implementation is that the
package already includes tools for point cloud and bounding box visualisation, simpli-
fying the process of checking the bounding boxes of input and output data from the
model. In addition, the Open3D-ML package includes other object recognition model
implementations, allowing validation of data in multiple models in the future. The fol-
lowing paragraphs will overview the most notable changes to the Open3D-ML repository
code. In this section, all mentioned file paths are shown from the repository root folder,
and the fully modified code is available in the appendix B.

A new dataset class, BBLightCode, was added to support SUSTechPOINTS annotation
tool bounding boxes and the generated point cloud files. The class was implemented in

10https://peps.python.org/pep-0564/#annex-clocks-resolution-in-python

https://peps.python.org/pep-0564/#annex-clocks-resolution-in-python
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the fileml3d/datasets/bblightcode.py, and for correct implementation, a provided template
and KITTI [46] dataset examples were used. The BBLightCode class was used for loading
and saving the predicted bounding boxes, as well as using the bounding boxes and point
clouds for visualisation and training. The default Open3D-ML allows to read in and use
bounding boxes defined in a different coordinate system than point clouds. For example,
KITTI dataset 3D bounding boxes have been defined in the RGB camera coordinate
system. In the implemented class, the calibrations were replaced with an identity rotation
matrix to reflect that no rotations are needed in the point cloud and bounding box
coordinate systems. The KITTI dataset label format is findable in the object development
kit in their project webpage11.

The Open3D-ML pipeline has been built so that model functions, for example, loss and
forward pass, have been implemented in a Python script, and the model configuration is
loaded from a separate .yml file. This allows to use different configurations and datasets
without modifying the model’s source code. The object detection training pipeline for the
generated dataset was started using scripts/train scripts/pointpillars lightcode.sh script
(Listing 2.6). As with PointNet, the K-fold cross-validation was used with the PointPillars
model, and the generated data was split as shown in figure 2.6. On the other hand, in
the case of PointPillars model, the K-fold splits were manually separated and copied to
the correct folders.

1 #!/ bin/bash

2 #SBATCH -p gpu

3 #SBATCH -c 4

4 #SBATCH --gres=gpu :1

5
6 cd ../..

7 python scripts/run_pipeline.py tf -c ml3d/configs/pointpillars_lightcode.yml \

8 --dataset_path /home/timo/Open3D/LightCode_Dataset --pipeline ObjectDetection

Listing 2.6: Listing shows the content of the scripts/-
train scripts/pointpilars lightcode.sh script that starts the TensorFlow object detection
training pipeline with LightCode Photonics configuration and dataset. In case of

testing, an additional --split test command-line argument was added to line 8

The configuration file allows changing all the parameters relating to model training, val-
idating or testing, including the model’s hyperparameters. In the case of the PointPillar
model, the most important ones were related to detectable object properties and point
cloud size. Followingly, some noteworthy discoveries are given about the configuration
found during the training and testing process:

• The point cloud range and voxel size parameters are strongly connected as the
voxel size is used to divide the point cloud into equal-sized pillars. Therefore the
point cloud range array elements must be multiples of the voxel size elements. In
addition, the voxel size third element value must equal the point cloud height12.

11https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
12https://github.com/isl-org/Open3D-ML/issues/473,

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://github.com/isl-org/Open3D-ML/issues/473
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• The anchors minimum and maximum z-axis values describing the allowed object
ranges in the model head configuration should be the same and preferably have an
average value of all the objects in the dataset13.

• A separate pickle (.pkl) file must be generated to use the ObjectSample() augmen-
tation function, which randomly places objects from the dataset to the point cloud
to increase the variety in the training data. The pickle file can be generated with
provided Python script, called scripts/collect bboxes.py14.

The default testing pipeline provided in the Open3D-ML Tensorflow implementation,
in file ml3d/tf/pipelines/object detection.py, was modified to calculate model evaluation
metrics using the testing dataset. Previously, the validation split was used to evaluate the
model performance metrics and testing split only for predictions. The modification allows
a more accurate overview of the model’s generalisation power as the metrics are calculated
on data that has never been revealed to the model. In addition to testing sequence
modifications, it was essential to make the bounding boxes available on the testing data,
as before they were discarded. Therefore two additional keywords to retrieve the dataset
split were added testing with bb and test with bb, allowing the testing split ground truth
data to be used. The support for these keywords was added to the BBLightCode dataset
class and PointPillars model file, ml3d/tf/models/point pillars.py. Lastly, the predicted
bounding box saving code was finished, which makes it possible to save the bounding
boxes with the point cloud corresponding name. This enables the prediction comparison
with ground truth data in the Open3D-ML built-in visualiser.

13See footnote 12.
14http://www.open3d.org/docs/0.14.1/python_api/open3d.ml.torch.datasets.augment.

ObjdetAugmentation.html

http://www.open3d.org/docs/0.14.1/python_api/open3d.ml.torch.datasets.augment.ObjdetAugmentation.html
http://www.open3d.org/docs/0.14.1/python_api/open3d.ml.torch.datasets.augment.ObjdetAugmentation.html


3 Results

This chapter gives an overview of the thesis results, including a discussion of the formed
hypothesis. The analysis is based on applying two object recognition ML models on
the newly generated dataset. Firstly, a section describing the dataset statistics is pre-
sented. Secondly, an overview of PointNet model performance is given, and the chapter
is concluded with a discussion of PointPillars model.

3.1 Dataset

The dataset was generated in CARLA Simulator in two parts. The first time, a total of
1851 frames, i.e. 617 frames for each camera and three cameras on one intersection, were
generated and hand-annotated. An additional 2748 frames with automatic annotation
were generated on a different intersection to increase the initial data variety and count.
That makes a total of 4599 frames, and after data filtering (Figure 2.4, part c) 2816
frames remained, forming the final dataset for object detection and semantic segmentation
models. As the first batch of data was only hand-annotated, and automatic annotation
with hand reviewing was used with the second batch, the size and position of bounding
boxes might differ slightly relative to an annotated object.

The point cloud points were divided into five classes for semantic segmentation (Table
3.1). As the class distribution was rather unbalanced, the background class made up
approximately 92% of all the points, while bicycle and motorcycle classes remained lower
than 0.5%, a mean accuracy metrics were included in the model evaluation. On the
generated dataset, a dummy code without any ML that predicted all the points to the
background class would achieve an accuracy of 92.3%. In the case of mean accuracy, the
metric would be 18.46%, as the binary accuracy for all other classes would be 0%.

Table 3.1: The point distribution to semantic classes in the filtered dataset.

Class Count Percentage

Car 214 243 5.97
Pedestrian 51 301 1.43
Bicycle 5 626 0.16
Motorcycle 4 955 0.14
Background 3 311 871 92.30
TOTAL 3 587 996 100.00

39
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The filtered dataset contains 5451 bounding boxes in different object classes (Table 3.2).
As with semantic segmentation, the lowest number of bounding boxes is for bicycle and
motorcycle objects, which might affect the predicting accuracy for these classes. On
average, 1.9 objects are present in one frame, while a car is present in each frame, and
every second frame contains a pedestrian-class object. In comparison, KITTI dataset for
3D object detection and tracking contains an average of 5.4 objects per frame, which is
relatively higher and therefore has many more training examples with the same number
of frames 1.

Table 3.2: Bounding boxes count per object class in the filtered dataset.

Class Count

Car 3 169
Pedestrian 1 540
Bicycle 435
Motorcycle 307
TOTAL 5451

The raw generated and filtered datasets are available in appendix C. Publishing the raw
dataset enables processing and filtering the data differently, for example, by changing the
minimum point count required for each class, as the annotations in the raw dataset have
been done with fewer required points. Therefore, providing the basis for finding the best
model on the generated data.

3.2 PointNet

The model training and evaluation consisted of creating five models, each with 7.36M
trainable parameters and training to 150 epochs. No changes to the learning rate, batch
size or model hyperparameters were made to preserve the model as close to the original
implementation as possible. The batch consisted of 32 point clouds and labels during
training, so the epoch contained 71 batches. Each model’s best weights were saved,
which produced the highest validation mean IoU, and during the evaluation, the best
weights were loaded for testing the model on the testing data split.

The average model (Figure 3.1) started to overfit the training data from around 20 epochs,
at the point where the training curve started to grow much faster than the validation
curve. The validation curve showed a slight average improvement until it stabilises in
approximately 115 epochs. With the validation dataset, the average mean accuracy with
the best models was around 42-48%, which matches the evaluation results with testing
data afterwards.

1https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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Figure 3.1: PointNet model training and validation mean accuracy curves averaged
over five cross-validation folds. Based on the figure, the model can potentially have
even higher mean accuracy and generalisation power, as the validation curve is much

lower than training, referring to overfitting.

The five models were evaluated with mean accuracy, mean IoU and mean F1-score metrics.
The mean accuracy results for each fold are given in figure 3.2. It is possible to see that
the evaluation results fluctuate in relatively large intervals, between 32.69% and 59.89%.
This might suggest that the generated dataset has unevenly spread classes in addition
to an uneven representation of classes (Table 3.1), therefore some dataset splits had
easier scenes, producing higher accuracy. For example, the bicycle and motorcycle class
objects can be present in some scenes in the centre of the dataset but not on the edges.
Therefore might not be selected for training and vice versa. This ensures that the decision
to implement the K-fold strategy was correct for the model accuracy evaluation.

The mean accuracy value over all five evaluations was 44.15%, which expresses that the
model performs significantly better than the dummy model, only predicting background
class with a mean accuracy of 18.46%. This shows the model can generalise on the
generated dataset, at least to some extent. The original PointNet paper [27] does use
accuracy and mean IoU to represent the evaluation results. The accuracy metric is not
directly comparable, as in the generated dataset, the classes were highly biased towards
the background class. However, the paper results reveal that the original model was able
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to achieve 78.62% for accuracy, while the model running on the generated dataset achieved
an accuracy of 93.89% averaged over five folds. This surpasses the PointNet paper’s
accuracy by a significant margin. The IoU metric results were much more comparable
and close as well. With the generated dataset, the average mean IoU was 41.87% and in
the original paper, it was 47.71%. The average mean F1-score for the models was 43.38%,
which evaluates the combined score of the model’s precision and recall.
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Figure 3.2: PointNet model evaluation mean accuracy for each cross-validation fold.
The biggest mean accuracy difference is between folds 3 and 4, a total of 27.2%. The
average value suggests the model performance when trained on the whole data and then

deployed to a similar environment.

The model’s fold training time was 20 minutes and 6 seconds with 8.04 seconds per
epoch. The model inference speed was evaluated with the 0-fold model, which used the
first 563 samples from the generated dataset as the testing data. All the rest was used
for training and validation beforehand. The inference time (Figure 3.3) was measured
with Python time module and directly before and after the model.predict() function call,
as it replicates the real-world use case most accurately. On the other hand, the measured
time might depend slightly on what the computer is doing in the background. Still, all
other applications besides the Jupyter Notebook server were closed to minimise the risk.
Based on the experiment, an average inference time of 30.03 milliseconds was measured,
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which makes the model run at 33.3 FPS. This can already be considered to be a real-
time model for LightCode Photonics 3D camera, as it exceeds the currently expected
maximum framerate of the camera. Furthermore, the model median inference time was
29.33 milliseconds, and the first inference time was 343.36 milliseconds. It was noted
that the GPU usage during the inference was around 15% and power usage 120 W, which
suggests that GPU computing capacity is not the bottleneck for the model inference speed.
On the other hand, during training, PointNet was able to maximise the computing power
of GPU by an average of 98% without significant fluctuations.
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Figure 3.3: PointNet model inference time for 562 frames as the first inference time
containing model warmup is excluded from the figure. Interestingly, there is a small
peak in the inference time after approximately every eight predictions, even if the point
clouds were predicted one at a time. It is suspected to represent some kind of context

change in the GPU or Python garbage collection.

In conclusion, as the model is overfitting to the generated dataset and the mean accuracy
could be increased even more, the next task would be to decrease the model size or
add more regularisation to make it more generic. Another way to increase the model
accuracy would be to train the model with class weight, depending on the class frequency
of occurrence. The PointNet original paper [27] suggested that their model is capable
of real-time operations, which was confirmed during the experiments with the generated
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dataset. In general, the PointNet model seems to be a promising semantic segmentation
model to use with sparse point clouds on the actual 3D camera.

3.3 PointPillars

The model training consisted of training five new models on different data splits, while
each model had 4.8M parameters to 61 epochs. The configuration file was taken from the
KITTI dataset example and modified accordingly to the point cloud range and position
of the bounding boxes to determine the area where the point cloud is converted to pillars.
As this thesis aimed to evaluate the capability to run unchanged models on the generated
dataset, as few parameters were changed as possible. The configuration file is in the
appendix B.

The models’ average bounding box training and validation loss curves are shown in figure
3.4, while the other two losses, directional loss and classification loss, behaved similarly.
From the figure, it is possible to see that the model training loss is stably decreasing
while the validation loss is relatively constant in time, confirming a significant overfit
right from the start. The models were trained with a batch size of 6 and with 5000
steps per epoch, which means during one epoch, all the training data was processed 2.8
times by the model. This allows the insertion of more augmented bounding boxes into
the training data, increasing the number of augmented samples and the effectiveness of
the augmentation. The downside is that a large number of steps per epoch may increase
the risk of model overfitting. To rule out the possibility that the step count caused
the overfit, the 0-fold model was tested with two configurations, firstly with 5000 and
secondly with 1802 steps. The experiment containing fewer steps per epoch produced
more moderate training loss curves while having similar validation losses and, in some
cases, even lower validation mAP. Therefore, it was decided to leave the parameter to its
default configuration.
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Figure 3.4: Averaged training and validation bounding box loss curves over five
models. At the end of the training, the training loss is around 0.1, while the validation
loss is approximately 1.7, which makes the validation loss 17 times larger than the

training loss, referring to overfit.

As the model was heavily overfitting to the generated data, several techniques were tested
to increase the model’s performance. The hypothesis was that adding regularisation or
changing the model size should make the model more generic and less prone to overfit
the training data. The regularisation was added with a weight decay parameter passed
to the optimiser. In the Tensorflow Open3D-ML implementation, it was essential to
uncomment a section in the ml3d/tf/models/point pillars.py (Appendix B) file in function
get optimizer() to make the weight decay parameter usable. In all the cases, the difference
between training and validation loss stayed approximately in the same position. Therefore
the thesis does not include an analysis of those experiments.

At this point, it was confirmed that the model works and can produce predictions with
the KITTI 3D object detection dataset2. It achieved similar results described in the
Open3D-ML GitHub [44] and the original paper [36]. This allows to believe that the
selected implementation does not cause the overfitting problem but is tied to the generated
dataset.

2https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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The validation BEV and 3D mAP (Figure 3.5) showed an increasing trend during the
training. The growth of BEV mAP slowed down approximately at epoch 30, while the
same happened to 3D mAP around epoch 16. One of the possible reasons why the 3D
mAP stabilised earlier is that the metric needed more precise bounding boxes, as the
IoU evaluation also used the height and placement of the bounding box in the z-axis,
suggesting that further learning would not reduce the error, as the model has exhausted
its learning capacity on the dataset. The figure shows that both BEV and 3D mAP lines
are fluctuating, which might indicate too few samples are available, therefore change in
one prediction affects the mAP result significantly.

0 10 20 30 40 50 60

Epoch

5

10

15

20

25

m
A

P

BEV

3D

Figure 3.5: The validation BEV and 3D mAP, averaged over five models.

The model checkpoint, which produced the highest validation BEV mAP score, was
chosen as the model to evaluate the accuracy performance of that fold. The evaluation
results for five models are shown in figure 3.6. The average BEV and 3D mAP scores
for detecting pedestrians were 30.54% and 26.0%, respectively, while mAPs for cars were
17.76% and 8.41%. The evaluation mAP scores for the pedestrian class were more stable
than for the car class. One proposed hypothesis is that from the top view, the pedestrian
bounding boxes are square-shaped, but the car class bounding boxes are rectangular,
therefore, are more affected by the direction of the bounding box while evaluating the IoU.
In addition, in a few cases, the BEV and 3D mAP were not correlating or had significant
differences. For example, fold 3 car class BEV mAP is around 50% and 3D 25%, which
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is likely caused by having too few objects in the dataset, which aligns with the discovery
made based on the validation data. Therefore, the change in one prediction affects the
result in greater amplitude. Compared to KITTI dataset, the generated dataset had
2.8 times fewer objects per scene (Section 3.1). Furthermore, it was noted that in some
cases, for example, fold 1 pedestrian scores, the BEV mAP score is lower than 3D mAP,
which raised suspicions, as the IoU value for the bounding box in the 3D cannot be larger
than in the BEV view, therefore no additional TP bounding boxes are present in the
scene. Further investigation discovered that it directly comes from the mAP calculations,
as different bounding box confidence levels are used for BEV and 3D average precision
calculations. Lastly, the overall average score, including bicycle and motorcycle classes,
is 13.61% for BEV and 8.6% for 3D mAP.

0

10

20

30

40

50

m
A

P

BEV 3D BEV 3D BEV 3D BEV 3D BEV 3D

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Car

Pedestrian

Figure 3.6: The evaluation BEV and 3D mAP for car and pedestrian classes for each
fold. The missing columns represent a zero mAP value for that class. The bicycle and
motorcycle classes are excluded from the figure as they produced close to zero mAP

values in all folds.

The model’s fold training time was 11 hours, 59 minutes and 53 seconds, which makes 11
minutes and 48 seconds for one epoch. As with PointNet, the 0-fold model was used to
test the inference speed (Figure 3.7). The average inference time was 68.78 milliseconds,
i.e. 14.5 FPS, significantly lower than the original PoitnPillars paper stated using Nvidia
GTX 1080Ti for evaluations [36]. That might come down to the Open3D-ML PointPillars
implementation, including post-processing steps, for example, non-maximum-suppression
and how the code measures the time. Still, four times lower FPS was not expected while
predicting bounding boxes, and further investigation must be conducted to validate the
bottleneck for future use.

It was observed that during training, the model did not produce a constant load to the
GPU, and the utilisation varied between 5-52%, which correlated with the training batch
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change. Therefore, suspected to be related to the small batch size. The GPU utilisation
during inference was 21%, requiring 145 watts, therefore the computing power of the
GPU was not the bottleneck for the model’s low inference speed.
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Figure 3.7: The inference times for 562 frames with the 0-fold model with an average
value of 68.78 and median value of 68.38 milliseconds. The first frame inference time

of 1.58 seconds has been excluded as it includes model warmup time.

It was suspected but not fully proven that during model training, a similar issue already
reported3 in the GitHub issues section appeared. The issue states that point clouds
having an x-coordinate smaller than zero can produce false positive results randomly
in the scene. Therefore additional steps were added to the data processing pipeline file
SeparateAndRotate.py, discussed in section 2.2.3 to rotate the point clouds and transform
their position.

In conclusion, the PointPillar model could not perform as expected, with a few possi-
ble reasons, such as too sparse data, missing intensity values or low object count. The
data sparsity problem is relevant, as discussed in the PointPillars paper [36], the model
sometimes cannot differentiate between pedestrians and other narrow vertical features,
leading to false positive detections. The model can be further tested with new data con-
taining intensity values with increased object count to decrease the overfitting problem.

3https://github.com/isl-org/Open3D-ML/issues/551

https://github.com/isl-org/Open3D-ML/issues/551
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In addition, the inference time is much lower than reflected in the PointPillars paper [36],
even if the system B (Section 2.1) parameters exceed the original setup by a significant
margin. Lastly, one possible reason why PointNet model provided higher accuracy than
PointPillars model with sparse data is that in semantic segmentation, the loss is calcu-
lated for each point, therefore yielding a higher training signal. On the other hand, in
object detection, the loss is calculated for each object, but as the object count is smaller
than the point count, the training signal is lower, decreasing the learning capacity with
sparse data.



Outlook

The results of this thesis will be used in the two following projects in LightCode Pho-
tonics company. Firstly, to apply the same 3D object recognition models, PointNet and
PointPillars, to LightCode Photonics camera-generated point cloud in a warehouse envi-
ronment. A new dataset is being gathered to test models’ performances in the mentioned
environment, which allows to include additional features that were missing from the sim-
ulated data due to technical reasons, for example, intensity values, multiple returns and
velocity map. Therefore, a performance increase is expected, especially with PointPillars
model, as it was unable to show stable results on the simulated data.

Secondly, the created dataset could already be used for proof-of-concept 2D RGB and
3D point cloud fusion tasks, as it contains both point clouds and RGB images. The
project objective would be to test the accuracy increase, as the RGB camera offers more
semantic information compared to the point cloud. On the other hand, LightCode Pho-
tonics camera point cloud contains depth information and is more resilient to lighting
conditions.
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Conclusion

The importance of object recognition is increasing in the modern world, with numerous
applications ranging from robotics to medical imaging; therefore, being one of the core
visual research topics. Furthermore, imaging sensor manufacturers must continuously
improve the data quality and compatibility with existing and future machine learning
pipelines to improve the overall user experience, safety and application performance.
This leads to the release of new imaging sensors, tested with existing state-of-the-art
models to be competitive in the market.

The aim of the thesis was to evaluate the performance of machine learning-based object
detection and semantic segmentation using a relatively low spatial resolution 3D camera
in an urban environment. A hypothesis was formulated that using the camera-generated
point for object recognition would produce at least similar accuracy to previously pub-
lished original results. In addition, the thesis aimed to improve the company’s under-
standing of its camera’s capability for machine learning-based object recognition using
only 3D point clouds and, with it, create a basis for future product development decisions.

In the theoretical part of the thesis, an overview of different 3D imaging sensor technolo-
gies was given, including their categorisation in depth and lateral resolution measurement,
followed by an overview of object recognition-related subjects. To verify the hypothesis,
a new dataset was generated in CARLA Simulator, compared to the data from the actual
camera, due to the current technological state of the 3D camera. This required additional
changes to CARLA Simulator source code to incorporate LightCode Photonics camera
blueprint into the default sensor list, which also enables the use of the camera by other
companies. The generated dataset was annotated with SUSTechPOINTS annotation tool
and processed to prepare the data for object recognition models. Finally, PointNet se-
mantic segmentation and PointPillars object detection models were modified according
to the data layout and applied to the dataset. Furthermore, a k-fold cross-validation code
was added to PointNet model together with evaluation pipeline changes in PointPillars
model.

After the experiments with object recognition models, it was concluded that PointNet
semantic segmentation model, which was applied to the generated dataset, could perform
with similar accuracy to the original model. On the other hand, PointPillars model
was not able to produce stable predictions with the dataset. It was suspected that the
instability might come from a low number of training samples, data sparsity or the lack
of correct intensity values. Furthermore, both models did overfit the dataset, allowing to
believe that improvements to the accuracy can still be made. During testing PointNet
model achieved an inference speed of 33.3 FPS, while PointPillars only produced 14.5
FPS.
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The LightCode Photonics 3D camera is a promising future imaging technology, and most
likely, many of its applications will be tied to machine learning and object recognition. At
the time of writing, the future specifications of the camera have changed, already using
some of the knowledge and feedback from this thesis. The work on improving the object
recognition models continues. Furthermore, due to the sparsity of data, incorporating
2D RGB with 3D point clouds is a promising architecture to improve the overall object
recognition performance.
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Appendix A – Modified CARLA Simulator
Server Code

The code is in GitHub repository: https://github.com/TimoTiirats/carla_lightcode/
tree/lightcode
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Appendix B – Modified Open3D-ML Point-
Pillars Code

The code is in the GitHub repository: https://github.com/TimoTiirats/Open3D-ML/
tree/lightcode
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Appendix C – Python Codes and Dataset

Python and generated dataset files are attached to this thesis in a AppendixC.zip file with
the following layout:

• Carla/ - includes Carla Simulator client code

– CarlaClient.py

• Processing/ - includes data processing pipeline Python files

– SeparateAndRotate.py

– FilterFrames.py

– GenerateIntensityValues.py

• PointNet/ - includes the PointNet model files

– PointNet K-Fold.ipynb

– metadata.json

• Dataset.zip - includes the generated raw and processed datasets
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