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focused on compatibility with MPI (Message Parsing Interface), which is the current standard
for parallel computation. Reversibility is implemented in the Linux environment using
checkpoint and restore methods in userspace. This thesis gives an overview of checkpoint and
restoration software and options for this use case, and further develops the previous work of
Martens titled “Causally Consistent Reversible Debugger for MPI Applications”[1].
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1. Introduction

For software development, debugging remains an important part of ensuring the reliability

and efficiency of software systems. Regular debugging techniques have long been the

foundation of this process, allowing developers to identify and fix errors found in code.

However, as software systems become increasingly complicated, the need for more advanced

debugging tools becomes apparent.

A less common feature of debuggers is reversibility, which means having the ability to

reverse into a previous state of the program. Debuggers with this capability are called

reversible debuggers. Reversible debuggers also often include additional features allowing

execution backwards through the program, using commands such as reverse-step or

reverse-continue. Being able to reverse to a previous state in the program instead of

re-execution can save a lot of time with long-running programs.

Data from 2012 shows that developers allocate a significant portion of their programming

time to debugging, making up approximately half of their overall workload. This translates to

an estimated cost of $312 billion annually by the software industry solely on debugging. The

integration of reversible debuggers reduced the time spent debugging by 26%. This efficiency

translates to an estimated at $81.1 billion saved per year, thereby presenting a compelling

case for the development of such tools.[2]

Furthermore, more and more programs are being written to be executed concurrently. Writing

programs to be executed in parallel requires accounting for many more nuances than in the

case of serial programs. Some of the problems that might occur are for example race

conditions or deadlocks, which often happen intermittently. Debuggers are also of great help

in finding the source of such issues.

The debugger created here is focused on compatibility with MPI (Message Parsing Interface),

which is the current standard for parallel computation. This thesis gives an overview of

checkpoint and restoration software and options for this use case, and further develops the

previous work of Martens titled “Causally Consistent Reversible Debugger for MPI

Applications”[1]. Reversibility is implemented in the Linux environment using checkpoint

and restore methods in userspace. Included is an overview of known algorithms for reverse
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debugging commands, such as reverse-continue and reverse-step, and the implementation of

these techniques for a debugger of MPI programs.
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2. Theoretical overview

This chapter provides an overview of debuggers and related tools. It also includes an

overview of reversible debuggers, the theory behind reverse debugging commands, MPI and

checkpointing techniques.

2.1 Debuggers

Debuggers are often used to diagnose sources of errors when encountering faulty program

states. Debuggers allow users to control the workflow of a program, enabling, for example,

pausing the program at a certain point or continuing step-by-step. For programmers, this is

useful, as the tools often also provide features to help with analysing the program and finding

the root of existing errors.

2.1.1 Code execution control

Debuggers give developers control over how their code runs. They allow developers to move

directly to a line of code that they are interested in or through their code step by step, which

means they can look at one line of code at a time. This helps them find exactly where

problems are happening so they can fix them easily.

One of the most common debugging commands is “continue”. The "continue" function is a

command in debuggers that allows developers to resume the execution of their code after it

has been paused by a breakpoint or another debugging command. Essentially, when a

debugger encounters a breakpoint or pauses execution due to a debugging command, the

developer may want to continue running the code from that point onward to see how it

behaves further.

Another important debugging command is “step”. The "step" function, on the other hand,

allows developers to move through their code one line at a time during debugging. Unlike the

"continue" function, which skips over portions of code until the next breakpoint or until the

end of execution, the "step" function provides more granular control by executing each line

of code sequentially.

Besides step and continue, different debuggers implement different variations of these

commands, such as step over, which executes the next line of code without entering function
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calls. These numerous commands allow developers to navigate through code with ease,

helping them find and fix problems quickly.

2.1.2 Breakpoints

Debuggers can also pause the code at specific spots, called breakpoints. This is useful when

developers want to see what is happening at a particular moment in the program. Users

typically instruct the debugger to insert a breakpoint at a line, which they wish to arrive at.

After that, the user would issue the command “continue” and the program would continue

execution until it reaches the breakpoint.

Breakpoints are known as instructions, which, when executed, will stop the execution of the

program, and pass control back to the operating system or the debugger. Debuggers

implement setting breakpoints by changing memory regions of the program that is being

debugged. The original instruction at the line is swapped out with a trapping instruction. This

will cause the program to stop execution and return control to the debugger. Then the

debugger typically inserts the initial instruction back to the place it was swapped out of[3].

2.1.3 Inspecting memory

A very common method of debugging is inserting printing statements into the code to see if

the program reaches that state or what values certain variables have at that point. However,

this becomes very cumbersome if the location of the error or the cause is unknown. One of

the most important utilities of debuggers is that they use tools to allow the user to inspect the

memory of the target program. Using additional tools, it is possible to retrieve the

information at some place in the process’ memory. This allows the user to view and analyse

the state of variables that have been defined in the program. This way, there is no need to

explicitly select or print the variables that the user wants to display, as they can do it

interactively using the debugger.

2.2 ptrace

ptrace[4] plays an important role in the functionality of debuggers and their operations. It

allows a process (the tracer) to observe and control the execution of another process (the

tracee), enabling various debugging functionalities such as the previously mentioned code

execution control, breakpoints, and memory inspection.
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ptrace provides crucial tools with respect to code execution control. It enables the debugger

to gain control over the execution of the target program. It defines functions like

PTRACE_CONT, which instructs the program to continue execution, and

PTRACE_SINGLESTEP, which instructs the program to execute only the next instruction.

These calls are used directly by the debugger to carry out commands executed by the user.

Furthermore, ptrace is also the primary actor when interfacing with the memory and registers

of the target program. ptrace provides commands such as PTRACE_POKEDATA, which has

the parameters of data and address, and will write the given data to the address. Another

important command is PTRACE_PEEKDATA, which will return the information at the

supplied address. For example, when we are setting breakpoints, a system call

PTRACE_POKEDATA is used to write the interruption instruction into the memory address

of the initial instruction. Similarly, PTRACE_PEEKDATA will be used when retrieving the

values of variables from the program’s memory.

2.3 DWARF Debugging information

When we compile C and C++ programs, we have the option to tell the compiler to compile

with debugging information included. There are many formats of this information, but one of

the most common ones and the one used here is DWARF.

DWARF is a standardised format to store debugging information inside an executable file.

This information is used by debuggers to connect the compiled code back to the original

source code. This allows programmers to understand what the program is doing during

debugging sessions. It achieves this by describing the executable program in a tree structure.

This tree structure contains information about variables, functions, and their types. Debuggers

can use this information to display variable values, call stacks, and step through the program

line by line [5].

The information that is produced includes for example names, declaration lines and locations

of variables and functions. For example, in figure 1, we can see the DWARF data for a

function passMessages, which is declared in the file circle.c and the function declaration is at

line 12.

This information is essential to every debugging tool and working without it would be very

difficult if not impossible. Using only ptrace, we are able to modify the target’s memory, but
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we have no concrete information about the memory addresses of the variables or functions

that we are interested in. Using DWARF debugging information, we have the last component

we needed – lines of source code mapped to their corresponding memory addresses.

Combining this with ptrace, we have everything we need to execute the aforementioned steps

for setting a breakpoint and continuing execution to it.

2.4 Reversible debuggers

Reversible debuggers operate on a fundamentally different principle compared to traditional

debuggers. While regular debuggers allow developers to move forward through their code,

reversible debuggers introduce the ability to move both forward and backward in the

execution flow. This bidirectional navigation allows developers to rewind program execution,

inspect past states, and better locate the root cause of bugs.

In C, C++, FORTRAN and most other programming languages we are not able to actually

undo an operation or thus execute in reverse. This is due to information being destroyed

throughout the runtime of the program, for example when overwriting memory locations with

new values. To implement reversibility with this restriction in mind, there are 2 common

methods – recording and reconstruction[6].

2.4.1 Recording and reconstruction

In the case of recording, the program is executed once and all the necessary states are logged,

so that they can be displayed later. In this case, reverting to a past state simply means

displaying the state of the program at that position, which had been saved in the first

execution. The notable drawbacks of this method are the necessity to generate large amounts

of logs, which impact performance and memory requirements, and the fact that if the sought
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after error does not occur on the recorded execution, then it will not be able to be analysed

during debugging. This method is used in the Bachelor’s Thesis of Alar Leemet[7], which

reports memory usage increasing up to 30 times and execution time increasing up to 10 times

for Python programs.

In the case of reconstruction, we save enough information about the process at some point in

time, to be able to reconstruct it from that point later on. This way, the program is restored

and actually executed again, instead of just simulating execution by displaying saved states.

The procedure of saving information about the process will be referenced to as checkpointing

and reconstruction will be referenced to as restoration. This is the method that is used with

this debugger, and the methods that are depicted in the following chapters are also described

with this method of reversibility in mind.

2.4.2 Reverse-continue and reverse-step algorithms

When executing the "continue" command, the typical expectation is for the program to run

until encountering a breakpoint or reaching its termination point. Conversely, with

"reverse-continue," the objective is to proceed in reverse until reaching either the last

encountered breakpoint or returning to the program's initial state.

However, in the absence of logging, determining the program's current state becomes

challenging. To address this, various tracking solutions and algorithms for reverse commands

have been proposed, notably in the article "Efficient Algorithms for Bidirectional

Debugging"[8]. One solution suggested involves integrating a counter mechanism into the

compiled program. This mechanism increments at each program statement and compares

against a predefined stop value. Upon reaching the stop value, control is transferred back to

the debugger.
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Utilising the "stop" and "counter" values, a reverse-step operation can be implemented by

setting the stop value to one less than the counter value, restarting the program, and

progressing until the counter is equal to the stop value. However, while this approach gives

an idea of the program's current position, determining whether any of the current breakpoints

have been encountered presents a challenge. This necessitates two executions: the first to

identify which breakpoints will be encountered up to the current point, and the second to

proceed to the last recorded breakpoint.

The proposed algorithm is as follows:

1. Restore the program to some past checkpoint.

2. Insert breakpoints to the locations where the user has set them.

3. Execute the program. As the program runs, it encounters the inserted

breakpoints. When a breakpoint is hit, it should be reinserted, because it might

occur again later on. During this replay execution, the algorithm records every

breakpoint that is hit. This record essentially captures the sequence of

breakpoints encountered during this forward execution.
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4. Restore the program back to the chosen checkpoint. With the recorded

breakpoint sequence in hand, the program executes forward. Once all the

breakpoints of the first pass have been encountered, stop.

By following these steps, the algorithm effectively rewinds the program to the last breakpoint

that was hit during the initial forward run. Since the program was actually not executed in

reverse, it would be called a logical reverse.

2.5 Message Passing Interface

The Message Passing Interface (MPI) is a specification, which aims to standardise

message-passing programs. Some of the more popular MPI implementations are OpenMPI

and MPICH. These implementations most importantly provide libraries containing functions

for process management (creating an environment and processes capable of communication)

and message passing (sending and receiving data between processes in the created

environment)[9].

In general, MPI enables programmers to distribute a program's workload across multiple

processors or computers and facilitates communication inside the created environment. This

approach significantly reduces execution time for problems that can be efficiently divided

into independent subtasks.

Executing MPI programs starts with launching multiple processes. Each process runs a copy

of the same program code but maintains its own separate memory space. Processes are

distinguished by unique identifiers called ranks. These ranks are used for addressing specific

processes when sending or receiving messages.

The foundation of MPI communication rests on two core operations:

● Point-to-point communication: Processes can directly send and receive messages with

each other, specifying the source and destination ranks.

● Collective communication: All processes participate in operations like broadcasts

(sending data from one process to all others) or reductions (combining data from all

processes into a single value).
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Figure 4 showcases a sample MPI program using mpi4py, a Python binding for MPI[10].

This example demonstrates the core concept of rank-based communication for data exchange

between processes. Two processes (ranks 0 and 1) collaborate:

1. Rank 0 retrieves its rank and sends data to rank 1 using the rank information.

2. Rank 1 retrieves its rank and receives data from rank 0.

2.6 Checkpointing and restoring processes

In the context of reversible computing, checkpointing a process refers to capturing a snapshot

of its state at a specific point in time. This snapshot includes enough information to allow for

the process to be restarted, or restored, from that point later. Restoration can occur either after

the process terminates unexpectedly or even during its normal execution.

For distributed applications like those built with MPI (Message Passing Interface), there are

two main approaches to checkpointing:

1. Global Checkpointing: This involves saving the state of all launched MPI processes

simultaneously. This ensures a consistent global state across all processes when

restoring. However, it can be complex to coordinate and may introduce performance

overhead due to the need of synchronising all processes.

2. Independent Checkpointing: Checkpoints are taken of individual processes

independently. This approach is simpler to implement but requires additional

13



mechanisms to ensure consistency when restoring, especially if processes were

communicating or exchanging data at the time of the checkpoint.

One of the key challenges in implementing reversible debugging for MPI programs with

distributed checkpointing is causal consistency. In concurrent programs, certain actions by

one process can have consequences for other processes. Providing causal consistency means

ensuring that when rewinding the execution (restoring a checkpoint), the consequences of

these causal actions are also undone to maintain a valid program state[11].

For instance, in a scenario where process A sends data to process B, and B successfully

receives it, we can say that the "send" operation from process A causally precedes and results

in the "receive" operation on process B. When we want to restore process A to a state before

the send operation, causal consistency dictates that we must also revert the state of process B

to undo the "receive" operation. Otherwise, we would end up with an inconsistent state where

the "receive" has no corresponding "send" that caused it.

2.7 Checkpointing software

To make checkpointing different applications easier, there are software options that can be

used. Instead of having to implement checkpointing mechanisms and information collection,

it is possible to incorporate software that facilitates these operations. Checkpointing solutions

can exist either on the kernel, user or application level.

2.7.1 Checkpointing implementation levels

Kernel level checkpointing implies extended access to the kernel’s resources and more

extensive privileges. This allows the checkpointing to be transparent to the application,

meaning no modifications to the application have to be made. However, one of the drawbacks

of this is that it is not very portable. This means that you could not use the checkpointing

implementation on another Linux distribution or kernel version that doesn’t include the

required features. Berkeley Lab Checkpoint/Restart for Linux (BLCR) is one example of a

project that provides kernel level checkpointing and is tailored specifically for parallel

applications using MPI. However, work on the project seems to have stopped, since the last

listed update is from January 2013[12]. This means that the last supported kernel versions are

also from that time and not widely used. There are some alternative kernel level solutions,
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however, most of these suffer from the same drawback of a narrow selection of platforms or

having stopped development.

Application level checkpointing implies that the software itself includes a way to save its

state periodically or on command, so that it can be recovered later. Earlier versions of

OpenMPI had some fault tolerance methods and research into improving them. This included

features such as checkpoint and restart, message logging and network fault tolerance.

However, the development work for this has come to a stop, with all the mentioned features

being deprecated[13].

User level checkpointing works by using libraries to gather information about the process

without having direct access to the kernel’s information. For the purpose of this thesis,

checkpointing MPI applications, there are a few suitable software projects that are still being

actively developed. Due to the lack of good options for the kernel level checkpointing and

application level checkpointing development having stopped, this method was chosen.

2.7.2 Checkpoint/Restore In Userspace

Checkpoint/Restore In Userspace (CRIU)[14] is Linux software that can checkpoint and

restore containers and individual applications. During a checkpoint, data will be saved to

disk, and this can be used later to restore the process to the saved state. CRIU is primarily

used for facilitating process or container migration[15].

CRIU utilises ptrace to stop the work of the target process using PTRACE_SEIZE. It then

collects available information about the process from the filesystem, such as memory maps

and file descriptor information. After this, it inserts code in the target’s and makes it execute

it. The inserted code collects additional information about the memory of the process. This

process is also done for all the child processes of the target process, enabling these to be

restored too. During restoration, CRIU transforms itself into the target process. It does this by

re-creating as many processes as were checkpointed and modifying the processes to match

the information that was saved[16].

CRIU also allows for retaining process identifiers during restoration. Assigning process

identifiers in the Linux kernel involves using the file /proc/sys/kernel/ns_last_pid, from

which the last assigned identifier is read, incremented by one for the next program, and then

the file counter is incremented by one as well. Upon restoration from a checkpoint, CRIU
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locks this file, writes one less than the desired identifier to it, restores the process, and then

writes back the original number. However, this functionality of CRIU is also one of its most

notable drawbacks, since editing the mentioned file requires administrator privileges and

generally debugging tools are not expected to do so. Nevertheless, explicit root access is not

necessary if the user sets the capability of CAP_CHECKPOINT_RESTORE, which is

available after kernel version 5.9 and allows CRIU to edit the file

/proc/sys/kernel/ns_last_pid[17].

While CRIU is primarily known for its role in facilitating live migration of containers, there

have been instances where it has been employed for checkpointing MPI. In these instances, it

has been found that CRIU can be used to checkpoint MPI using native execution[18]. It has

also been shown that MPI can be checkpointed within containers. Tests showed that

checkpointing can span multiple nodes, but with a limited success rate[19].

2.7.3 Distributed MultiThreaded Checkpointing

Distributed MultiThreaded Checkpointing (DMTCP)[20] is another userspace tool for

checkpointing distributed applications for MPI, OpenMP, Python and more.

DMTCP uses a subcomponent MultiThreaded Checkpointing (MTCP), which is used for

checkpointing individual processes. For each created process, MTCP saves the wanted info

from the process side and DMTCP is then responsible for all the necessary components that

come with distributed applications, such as sockets. It uses a coordinated checkpointing

method, where all processes are stopped for the checkpoint and network data in transmission

is also saved, so that it is available during restoration.

Differently from CRIU, DMTCP uses a coordinator to launch the target process and follows

all the created child processes. It does this by using Linux functionalities to inject DMTCP

libraries into the runtime of the children processes. This way they execute the necessary

DMTCP code before starting their own execution. The inserted code creates a connection

between the coordinator and registers itself. This coordinator can later be used to checkpoint

all the processes related to it by sending a checkpoint signal through the created connection.

The process works similarly to CRIU, where memory regions, open files and their offsets,

network data and other necessary information is saved.
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DMTCP does not have the requirement of administrator rights and also supports distributed

checkpointing spanning multiple nodes. This makes it much more suitable for use on

computing clusters, since applications are often run on multiple nodes and generally

administrator privileges are not granted to the users.
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3. Previous work

In this chapter is given an overview of the results of the Martens’ thesis. It introduces the

architecture and features of the debugger, as well as some important implications they have.

3.1 Debugger architecture

Because concurrent programs involve several processes running independently, effectively

debugging them requires attaching a separate debugger to each process. This ensures each

process can be monitored and controlled individually.
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To manage these numerous debuggers and maintain control over the debugging process,

Martens introduced an orchestrator component. This orchestrator acts as a central controller

for user commands and communication to and from the debuggers.

When initiating the debugging session, the user specifies the number of processes (tasks) they

wish to debug. When the debugging session begins, the orchestrator is the first component to

launch. Based on the user's input, the orchestrator creates and launches the corresponding

number of debugger instances. It does in the same manner that multiple MPI processes are

launched. Each debugger instance is then responsible for launching a single instance of the

program that the user wants to debug, and attaching itself to the launched program. These

individual debuggers maintain communication with the central orchestrator using a TCP

connection. This connection allows for sending and receiving instructions. When a user wants

to instruct a debugger to perform an action (like pausing execution or setting a breakpoint),

they do not interact directly with the individual debuggers. Instead, the user communicates

their desired action to the orchestrator.

3.1 Basic commands

Martens’ application included both a graphical user interface and a command line interface.

The debugger was to be started from the command line and then used in combination with the

GUI in the debugging process.

The CLI provided a set of commands for navigating program execution within specific MPI

processes. Users could control execution flow using commands like "continue" and "step"

targeted towards specific ranks (processes) within the MPI program. The CLI also allowed

users to set breakpoints at desired locations in the code, enabling them to pause execution and

inspect program state at those points. Additionally, the CLI offered functionalities for

examining variable values within the running processes, providing insights into program

behaviour.

The GUI served as a visual representation of the program's execution history. It displayed all

the MPI operations (like sends and receives) that each process had executed, along with the

relationships between them. This visual representation in the GUI was particularly valuable

for users to locate specific locations in the program's execution flow. By analysing the

displayed communication patterns, users could identify the point to which they wanted to

rewind the program. The GUI further offered functionalities for initiating the restoration
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process at the chosen point. Users could select the desired checkpoint provided by the GUI

and trigger the restoration of the process.

3.2 Checkpoints and the user interface

Martens gives in his thesis an overview of the existing software solutions available for

checkpointing and restoring processes. While these solutions offer comprehensive

functionality, he opted to develop a custom approach with specific limitations. His

implementation focused solely on saving and restoring register values and related memory

regions. This approach, while functional, neglects other crucial aspects of a process state,

such as opened files, network connections (sockets), and their associated buffers. This lack of

comprehensive state capture could lead to inconsistencies or errors upon restoration.
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Martens' custom checkpointing approach used the distributed strategy, creating checkpoints

of individual processes at every MPI operation. This approach allows for restoration of

individual processes to a specific point in time, corresponding to the chosen MPI operation.

Martens used the GUI in this restoration process (as shown in Figure 7). In the example,

processes are initialised, followed by rank 0 sending a message to rank 1 (MPI_Send) and

rank 1 receiving it (MPI_Recv). The communication flow then reverses, with rank 1 sending

a message and rank 0 receiving.

The causal relationship between processes becomes particularly relevant in Martens'

implementation of distributed checkpointing, where individual process checkpoints are

captured frequently. Restoring a single process to an arbitrary checkpoint without considering

causal dependencies could easily lead to an invalid program state that would never occur

during normal execution.

Figure 7 visually demonstrates the concept of causal consistency in MPI checkpointing.

When the user has selected the "send" operation of rank 0 for restoration, the corresponding

"receive" operation of rank 1 is also highlighted. This signifies the need to restore both

processes together to maintain causal consistency and avoid program inconsistencies.
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The current utilisation of the distributed checkpointing method presents several significant

drawbacks. Firstly, it places the burden on programmers to implement algorithms capable of

determining all processes that must be rolled back to maintain causal consistency. This can be

a non-trivial task, especially for complex MPI programs. Moreover, MPI programs often rely

heavily on collective communication operations (like broadcasts or reductions) and frequent

message passing. This inherent parallelism makes it difficult to achieve truly independent

rollbacks by restoring a single process. In most cases, rollbacks will likely involve multiple

processes, essentially becoming semi-global operations. Furthermore, checkpointing at every

MPI operation can introduce significant performance overhead. The process of capturing and
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storing the state of each process so often can be resource-intensive, potentially impacting the

program's overall execution speed.

The GUI designed for visualising checkpoints proves valuable for understanding the

communication flow and restoring smaller MPI programs. However, its effectiveness

diminishes as program size increases.

Consider the example program: with just 7 tasks, the GUI can become cluttered with

information, making it difficult to navigate and interpret the visualised checkpoints. For

larger problems with numerous processes, the GUI's primary purpose of showcasing the

communication topology and structure becomes less relevant. The sheer volume of

information displayed could overwhelm the user and hinder comprehension.

Therefore, it might be worth it to consider the GUI as an optional component. While it offers

valuable insights for debugging smaller programs, for large-scale MPI applications,

alternative visualisation techniques or command-line interfaces might be more appropriate.

This approach allows users to focus on specific aspects of the program's execution and

checkpoints without being overloaded with excessive visual data.

3.3 Processor architecture

In the completed work, Martens notes that the debugger supports the x86 processor

architecture at the current state. Additionally, he also mentions that in this architecture, there

are 4 debugging registers available[1: 26]. However, on further inspection, it was found that

these registers are instead available in the x64 architecture, and the completed program was

compilable and executable in it. However, this is a useful error regarding the prospects of

using the program since the x86 instruction set is outdated compared to x64, and the latter

architecture is far more popular.

3.4 Compiler

One of the outputs of Martens' work was a compiler that ensured the existence of DWARF

data and inserted breakpoints next to MPI functions [1: 40]. To interpret the debugging data

from the compiler, a syntax analyser (parser) was also written, which divides them into

sections and tries to extract certain fields of information from the sections. The compiler

initially included a call to the MPI compiler. This command is made available by the installed
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MPI implementation in the system. However, it is also necessary to have a compiler capable

of compiling C, C++, and FORTRAN programs for installing any MPI implementation. One

of the most common compilers for this purpose is found in the GCC (GNU Compiler

Collection) software package. However, it was not mentioned in the thesis or in the program's

GitHub documentation which MPI implementation, its version, and also GCC version the

program should work with or has been tested with. Therefore, during the initial testing,

although the compiler worked as intended, an error message appeared when the debugger was

launched, indicating insufficient information. Upon investigating the DWARF data produced

by the compiler, it was found that the data the parser was looking for was not present there.

The issue was that the version of DWARF data produced depends on the compilers and their

versions. The author found that the syntax analyser worked with MPICH version 3.4.3 and

GCC version 9.2.0. This is due to the fact that with that combination of versions, the right

version of DWARF data was generated for the parser to be able to interpret it. The compiler

was instructed to generate debugging information according to the correct version of the

standard.
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4. Results

This chapter discusses relevant findings about the previously completed work of Ott-Kaarel

Martens titled "Causally Consistent Debugger for MPI Applications" [1], and then presents

the changes and additions to it. Throughout this thesis, the large language model

ChatGPT[21] was used to provide assistance with phrasing and structure of paragraphs.

4.1 General changes to the debugger

The debugger initially included commands for basic navigation through the program such as

continue, step and breakpoint. Additional options were added to make the experience better

for the user.

The commands used for navigation and setting breakpoints had to be used with a target

process. The user had to specify the index of the target process, on which the command

should be executed. An additional feature was added that makes it possible to execute the

same command on all processes at once. This way, instead of having to issue a continue

command individually on every process, the user could do it in one command.

At first, the step command entered functions that were not present in the source code. For

example, when issuing a step command before a standard print function, the code would step

into it. An additional step function was added, which would pass by all the lines in the print

function, and would end up on the next line of the source code. This is useful, since many of

the external functions can have thousands of steps and traversing these might not be useful

for the user.

The compiler was also adapted to include the counter mechanism previously described. The

adaptation was made by parsing the source code that the user provided and inserting function

calls before relevant statements. Before the user’s code, the function that is called and 2

global variables, counter and target, were also inserted. The function increments the counter

variable and compares it to the target. If the counter is equal to the target, the program passes

control back to the debugger.
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4.2 Checkpointing solution

CRIU was chosen as the checkpointing software for implementing checkpoint and restore in

this project. It showed to be faster and more intuitive to use than DMTCP. Furthermore,

CRIU is being developed more actively and has a much easier installation procedure.

However, CRIU does not allow preserving one feature of Martens' created program, which is

the reversibility of individual MPI processes. This limitation occurs due to the connection

between the central MPI runtime and the processes that it starts. When creating checkpoints,

UNIX socket states are also saved, but this can not be done from the perspective of only one

side. Thus, when creating a checkpoint, we need to checkpoint the root MPI process, which

in turn will save the states of all the spawned processes and both sides of these connections.

Therefore, the program's architecture needs to be adjusted so that checkpoints are created

from all processes simultaneously, instead of one process at a time. Since when launching the

initial MPI process, we are starting debuggers, which start the binaries that we are debugging,

we end up also checkpointing the debuggers.

Martens also highlights that both at the operating system kernel level and as a useful part of

his own reversibility implementation, it's possible to maintain a consistent environment upon

restoration, which is an important aspect for distributed processing tasks. CRIU allows

restoring process identifiers and maintaining a consistent environment, given the limitations

described earlier.

4.3 Integrating CRIU to work with the debugger

Despite its widespread adoption for process migration, there seems to be an absence of

precedents for its utilisation in the manner demonstrated here – as a core component of a

debugger. Consequently, integrating the software into this specific application posed

considerable challenges.

The first obstacle was that CRIU uses the system call ptrace for creating checkpoints, which

is also used by the debugger. ptrace establishes a relationship between the tracer and the

tracee, with only one of each allowed at maximum. The CRIU documentation states that it's

not possible to save programs attached to a debugger[22]. Thus, it's not possible to save the

state of the program that is being debugged immediately because CRIU attempts to
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checkpoint the program being debugged, but it cannot attach to it because the debugger has

taken the tracer position. Therefore, when creating checkpoints, the debugger needs to release

its position as the tracer, so that CRIU can create a checkpoint of it and later reattach itself to

the program that is being debugged.

Additionally, there were issues with using CRIU within a Go program. To make using CRIU

more convenient within Go programs, the Go software package go-criu[23] was created,

allowing CRIU commands to be used as function calls. While the go-criu library successfully

facilitates using CRIU functionalities within Go programs by offering function calls for

checkpointing, restoring programs internally presents a challenge.

The issue stems from how CRIU distinguishes between programs launched from the

command line and other processes. Command-line programs typically require a

teletypewriter (TTY) for interaction. However, when a Go program checkpoints a process,

the process itself is closed before restoration. This closure also terminates the associated

TTY, creating a problem during restoration.

To address the missing TTY issue, a workaround consisting of the following steps is

necessary:

1. Create a new teletypewriter. Instead of relying solely on go-criu function calls, the Go

program needs to create a new TTY independently.

2. Execute restoration command. The program then executes the same command it

would use for command-line restoration, but within the newly created TTY.

3. CRIU starts and restores. Upon executing the restoration command within the new

TTY, CRIU launches, associates itself with the newly created TTY, and transforms

itself into the program being restored. This allows the restored program to continue

execution without a missing TTY.

Due to the architecture of the debugger including a TCP connection between the node

debuggers and the orchestrator to facilitate communication, those would have to be saved

also. CRIU is able to detect and keep alive TCP connections if instructed to do so. It does this

by setting certain rules in the firewall that drop all the packages trying to close the connection

in question. This functionality, in combination with another that is used in this project, to

keep the process running instead of closing it after the checkpoint, have some when used in
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combination. The first being that the firewall rules created upon checkpoint are reverted if we

instruct CRIU to keep the program running, so that upon closing the program and later trying

to restore it, the TCP connection is gone, and the restore fails due to not finding the rules it

constructed while creating the checkpoint. A workaround for this was tested, which meant

recreating and reinserting the firewall rules that CRIU created just before restoring the

process from a previous point. Upon restoration, however, packet level errors occur when

trying to restore from any checkpoint before the last one that was created. This is likely due

to inconsistencies created by changing one side of the TCP connection. Due to this, the

orchestrator will not continue the communication with the node debuggers.

Since the issue is that the previous state of the TCP connection was not able to be restored,

we would have to construct a method to disconnect and reconnect upon checkpoints.

However, after closing the connection from the node debugger side to the orchestrator side,

there would be no way to send new instructions to the node debuggers. This means it would

also be impossible to instruct them to connect back to the orchestrator. Thus, to bypass this

connection issue, the checkpoint and restore method had to be implemented with a certain

trick. The trick depended mostly on the robustness and quickness of CRIU. When initiating a

checkpoint, we send a message to all the debuggers to disconnect from the orchestrator,

disconnect ptrace, sleep for a while, and finally reconnect to the orchestrator. At the same

time, we start the checkpoint process with CRIU from the orchestrator side. This way, when

the debuggers reach the sleep instruction, the checkpoint from CRIU will start and the

process will be saved in that state of executing the sleep instruction. Upon being restored, the

processes will finish the sleep instruction and immediately try to connect to the orchestrator.

Through trial and error, it was found that a sufficient time for the sleep instruction came out

to be 1.2 seconds, which was successful for up to 128 tasks.

4.4 Implementation of reverse debugging commands

It was intended to implement the opposites of the common commands continue and step -

reverse-continue and reverse-step. These commands were to be implemented to be targeted at

individual processes and also globally.
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4.4.1 Reverse-continue implementation

At first, the reverse-continue algorithm was not implemented using the algorithms described

in the theoretical overview. This was in an effort to eliminate the necessity for compiling the

program again and to use the resources available without the added counter.

The crucial information needed to implement a reverse-continue command is only which

point in the program we are at currently, or more precisely, how to reach it. This is due to the

nature of the algorithm being that we need to observe the breakpoint hits on the execution up

to the current location of the program. There is however no variable that the program keeps in

its memory or no way to deduce this from debugging information. For example, in the

example given in figure 9, if the program was currently at the print instruction of the function

randomfunction, you could use ptrace and debugging information to know that you are at line

2, but there would be no way to know whether it would be inside the function invocation at

line 6 or at line 7.

The initial solution was created with the goal to avoid the necessity for recompilation and

extra code injection. The idea of using traps was considered. Traps would be inserted at

statements to track execution flow. However, this method implies a significant performance

impact and was never pursued.

Another approach explored and implemented in this project involved recording the

commands issued by the user and associating them with checkpoints. By restoring the

program to a previous checkpoint and replaying the commands executed since the given
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checkpoint, the debugger would theoretically reach the desired state. However, analysing and

combining these commands for efficient execution proved challenging. Nevertheless, this

proved to be another viable solution for this task, for which the author found no precedent.

The approach of using user-executed commands to realise the reverse-continue command was

sufficient, but the counter method was adopted due to the reverse-step being infeasible

without an internal counter. The complete algorithm for reverse-continue is as follows:

1. Save the breakpoints currently set by the user and the value of the variable counter.

2. Select a previous checkpoint and revert to it.

3. Replace the breakpoints that are set at that checkpoint with the ones that were saved

in step 1. Also, adjust the internal variable target to the value of the counter variable

that was saved.

4. Continue the execution and record any encountered breakpoints. Additionally, after

encountering each breakpoint, set the breakpoint again because it might also appear

later on. Continue again until the counter variable's value within the program matches

the adjusted target value.

5. If the debugger doesn’t encounter any breakpoints, return to step 2 and select a

checkpoint further back in the execution. In the case that there are no breakpoints

encountered when starting from the beginning of the program, then stop after step 6.

6. Restore from the selected checkpoint

7. Continue the execution and record any encountered breakpoints. Reset encountered

breakpoints. Execution halts when the recorded sequence of breakpoints exactly

matches the sequence observed during the previous execution.

Since we are using a global checkpointing method, all processes are rolled back to some step.

If we want to execute reverse-continue on all processes simultaneously, we follow the

algorithm for all processes. If the command is targeted at a single process, then only that one

will execute the algorithm described. The other processes will save the counter value and,

after checkpoint, continue to that point by modifying the target.

4.4.2 Reverse-step implementation

If the reverse-continue function could be implemented using just the commands executed by

the user, for the reverse-step this is realistically not possible. Consider the simple case given

in figure 10.
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If the execution is stopped at line 8, it is impossible to determine whether reverse-step would

end up at line 5 or at line 4. This might be conceivable if the debugger included some way of

evaluating these statements during the run or by using the aforementioned trap based

debugging, but this would be significantly inferior in complexity and performance to the

counter based approach. Furthermore, this is a very simple example and the case gets much

worse if we consider more complicated statements and recursion, for example.

Using the counter based approach, the implementation became much simpler. When the

program is initially compiled, the target variable that we insert into the program is initialised

to a very high value that it will never naturally reach. For implementing reverse commands,

this value is used to mark stopping points within the program. To execute a reverse-step

command, we can use the following algorithm:

1. The current value of the counter variable is saved.

2. The program state is then reverted to a previous checkpoint.

3. Using ptrace, the value of the target variable is modified. This new value is set to 1

less than the previously saved value of the variable counter.

4. As the program re-executes from the checkpoint, it will now stop at the modified

target variable, one instruction short of the previous state. This effectively simulates a

"reverse-step."

5. The target variable is reset back to its original high value to avoid interfering with

future program execution.

Similarly to reverse-continue, we have to account for the execution of reverse-step for a

single process and all processes simultaneously. If we want to execute reverse-step on all
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processes, we follow the algorithm for all processes. If the command is targeted at a single

process, then only that one will execute the algorithm described. The other processes will

follow the algorithm also, but instead of setting the new target value to 1 less than the

counter, it is set to be the same as the counter. This way, only the selected process will be

reversed by 1 step, the others will end up at the same state they were before.

4.5 Graphical user interface adaptation to the changes

Martens’ project included a graphical user interface that displayed all the MPI operations that

the MPI processes had executed. The graphical user interface was adapted for the user to get

a better overview of the checkpoints that have been made.

The GUI used data about MPI operations that had been executed at that point in time. Using

this information, it created a mapping and displayed the relations of these operations. An
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addition was made to this, which made it possible to display the MPI operation mappings at

the global checkpoints that have been made, in addition to the current state.

For instance, in figure 11 are displayed 2 instances of the GUI with different states. On the

left side, the display shows the current message passing history and MPI initialization. On the

right side, checkpoint 1, which was issued by the user, has been selected to be displayed.

Checkpoint 1 was made after the initialization of MPI has been made, but no message passing

has been done. This way, the user can have a clear overview of the global checkpoints that

have been issued and an easier way of navigating them. Upon issuing a global restore, the tab

displaying the current state is updated. This allows the global checkpointing method to be

coupled with the individual rollback method.

4.6 CRIU performance analysis

The performance of the checkpointing tool used for a reversible debugger is a very important

factor. The checkpointing times and, more importantly, restoration times directly impact the

time required for commands executed in reverse, and the total time spent on debugging. If the

procedure for restoration would take 10 seconds, for example, then carrying out a

reverse-continue would require at least 20 seconds in addition to the time spent on actually

executing the program.

The performance of CRIU was examined for 3 aspects: time required for making a

checkpoint, time required for restoring the checkpoint, and the size of the created checkpoint.

Tests included three sample MPI programs, which can be found at LINK, executed with

process sizes of 2, 4, 8, 16 and 32. For each sample, the given aspects were measured at the

beginning, middle and end of the program execution and the results are visible on figure 12.

Both the checkpoint and restore durations include reconnection between the orchestrator and

the debuggers. The checkpoint time averages are represented by the blue bars in the graph.

The average checkpoint time increases from 1.206 seconds for 2 processes to 1.23 seconds

for 16 processes and 1.36 seconds for 32 processes. Most of this time, 1.2 seconds, is made

up by the sleep period in-between disconnect and reconnect.

The restoration time averages are represented by the orange bars in the graph. The average

restoration time increases from 40 milliseconds for 2 processes to 160 milliseconds for 16

processes and 550 milliseconds for 32 processes. The fast times can be explained by CRIU
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being very fast and the programs being restored at the very end of the sleep function. This

way they immediately reconnect to the orchestrator and work can be resumed. A span of 40

to 550 milliseconds for restoration is a good result, since this only infers an overhead of

roughly a second for up to 32 processes and almost none for 2 processes. Checkpoint and

restore times also had minimal differences when comparing the different programs they were

measured on.

While the checkpoint and restore durations show a remarkable increase only with 32

processes, the checkpoint sizes grow much more consistently. The checkpoint sizes

correspond to the green bars in the figure and grow from an average of 15.5MB for 2

processes, 33.6MB for 4 processes to 250MB for 32 processes. As expected, the checkpoint

sizes grow linearly, on average doubling for every test in which the process count was also

doubled. However, the program that is being executed and the point in the program execution
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that the checkpoint was made at impacted the size of the checkpoint directly. Checkpoints

were significantly smaller at the start of the program and for programs allocating less

memory throughout the execution. Checkpoint sizes at the beginning of the program imply

that the footprint of checkpointing the debuggers is roughly 2MB per process.
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5. Conclusion

The purpose of this thesis was to further develop the work done by Ott-Kaarel Martens in his

thesis titled “Causally Consistent Reversible Debugger for MPI Applications”[1]. The main

goals were to incorporate software providing a fully exhaustive checkpoint and restore, and to

implement commands that move backwards in the program execution.

In the thesis is given a brief overview of checkpointing methods and their drawbacks with

some software examples. Checkpoint and restore was incorporated using CRIU and the steps

to take that were described. In addition, it includes an analysis of CRIU as a tool for

checkpointing MPI applications and the suitability of the tool for the given purpose. CRIU

showed to be a suitable tool with minor drawbacks for integration into debuggers.

The thesis also includes an overview of debugging. Descriptions are given of common

debugging commands and their reverse execution counterparts – reverse-continue and

reverse-step. Furthermore, included are descriptions of the algorithms needed to carry out

these commands and modifications for use with parallel programs.
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5.1 Further work

Even though the current state of the software is sufficient to be used in personal computers, it

might not be suitable for shared environments such as computing clusters. To make the

debugger more flexible and open up possibilities for use in other environments, the following

ideas could be analysed:

● DMTCP has been used on computational clusters and does not require any additional

permissions. This software should also be tested to see whether it is possible to be

used in this case. It should also have the added benefit of not needing to checkpoint

the debuggers attached to the executables, and might also provide the ability to make

checkpoints of individual processes.

● Separating the GUI and CLI to both be standalone tools. Even though the CLI can

currently be used completely on its own, both of these have their strengths, and

improving the GUI would be beneficial for beginners learning MPI.

● Analysing the issue with CRIU and TCP connections. Finding a solution allowing the

TCP connection to be fixed would relieve the necessity for reconnection on

checkpoints and restores. This would reduce the duration of checkpointing by at least

a second and restoring by a fraction of a second.

● Adding automatic incremental checkpointing. Creating checkpoints automatically

with some interval would relieve the user of having to create them. It would also

make commands executed in reverse faster, since there would be less code needed to

re-execute after the restores.

● Improving the compiler. The compiler could be improved by allowing linking and

compilation of programs consisting of multiple files of source code. Incorporation of

the counter mechanism could also be improved and tested, since code injection is not

easy to do without any errors.
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Appendix

I. Source Code

The source code for the debugger with the changes described in this thesis is available at the

following GitHub repository: https://github.com/mihkeltiks/rev-mpi-deb.
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