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Abstract:
This thesis compares deterministic Datalog-based and modern deep learning-based
methodologies for Resource Description Framework Schema (RDFS) materialization.
The research process was meticulously divided into distinct stages. The central focus
was to examine the performance of the two methods regarding efficiency and
effectiveness. The results indicated that while deep learning approaches, particularly
Graph Neural Networks, demonstrated the capability to handle complex
graph-structured data, they were considerably slower than their Datalog
counterparts. These findings illuminate both methodologies' strengths and
limitations, providing crucial insights for future exploration in this domain.
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Deterministlike ja Graaf-Närvivõrgu Põhiste RDFS-i
Materialiseerimismeetodite Võrdlev Analüüs

Lühikokkuvõte:
Käesolev lõputöö võrdleb deterministlikke Datalogi põhiseid ja kaasaegseid
süvaõppe-põhiseid meetodeid Resource Description Framework Schema (RDFS)
materialiseerimiseks. Uurimisprotsess jagati hoolikalt eraldi etappideks. Keskne
fookus oli uurida kahe meetodi efektiivsust ja tõhusust. Tulemused näitasid, et kuigi
süvaõppe meetodid, eriti graaf-närvivõrkude meetodid, demonstreerisid võimet
käsitleda keerukat graafistruktuuriga andmeid, olid nad oluliselt aeglasemad kui
Datalogi meetodid. Antud tulemused valgustavad mõlema metoodika tugevusi ja
piiranguid, pakkudes olulisi teadmisi tulevaseks uurimistööks selles valdkonnas.

Võtmesõnad: RDF, RDFS, Graafnärvivõrgud, Närvivõrk, Masinõpe
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Methodology

Various advanced Artificial Intelligence based tools were utilized in the
development process of this thesis. Firstly to enhance the quality and readability of
the text. One such tool was ChatGPT, a state-of-the-art language model developed by
OpenAI, which was instrumental in several aspects of the paper's preparation.
Grammarly, an AI-powered writing assistant, was another essential tool to enhance
the text's grammatical correctness and overall readability. It provided real-time
grammar and spelling checks, enabling the author to refine the language and
structure of the paper.

ChatGPT was also used to generate snippets of code, such as the code
necessary for generating LaTeX graphs from a set of triples. It was also utilized to
explain and comment on complex sections of code. For code writing and
comprehension, GitHub Copilot was leveraged. GitHub Copilot is an AI-powered
code completion tool that assists in writing code and understanding the logic behind
existing code snippets.

Additionally, the auto-suggestion features of Google Docs were employed to
streamline the writing process, making it faster and more efficient. The combined use
of these tools significantly contributed to the quality and clarity of the research
paper, ensuring that it was technically sound and accessible, and engaging for the
reader.

The primary programming language employed in this research was Python,
owing to its versatility and robustness in handling data analysis and machine
learning tasks. PyCharm, an integrated development environment (IDE) by JetBrains,
was utilized for the development environment. This IDE offers a comprehensive
toolkit for Python programming, supporting various libraries and frameworks,
making it a good choice for this topic. Importantly, the University of Tartu
generously provided a student license for PyCharm, facilitating the use of this
sophisticated tool and thereby contributing to the efficacy of the research process.

In addition to the resources above, this study sought to leverage the
High-Performance Computing Centre (UTHPC) provided by the University of Tartu.
Unfortunately, UTHPC utilization for experiments did not yield the anticipated
productive outcomes. Despite this, the availability and potential of such a resource
underscores the opportunities for future research and exploration in similar domains.
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Introduction

RDFS (RDF Schema) materialization is the process of computing the complete
RDFS closure or inferences of an RDF graph. This process includes applying the
RDFS rules, such as subclass and property inheritance, inferring new triples (subject -
predicate - object statements) that are logically implied by the schema and input
graph [1], [2]. Materialization is a core aspect of RDF and RDFS reasoning -
completing the graph and making it consistent - enabling more expressive and
efficient querying.

Since RDF and RDFS are foundational technologies for the Semantic Web,
materialization as a technique unlocks the full potential of linked data, enabling
functional reasoning capabilities over large and interconnected datasets [2].
Precomputing the relevant inferences facilitates more efficient data integration,
knowledge discovery, and interoperability [3]. There are several methods for
performing materialization, each with strengths and weaknesses. Comparing
available approaches will provide valuable insight into their relative performance,
scalability, and applicability. The methods compared in this thesis use Datalog and a
graph-based deep learning method [2].

For example, for given assertions for a generated sub-graph from the Lehigh
University Benchmark (LUBM) [4] ontology:

G = <h�p://www.Department0.University0.edu/AssistantProfessor0/Publication1>

An N-triple representation of the graph G is:

Subject: <h�p://www.Department0.University0.edu/AssistantProfessor0/Publication1>
Predicate: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type>
Object: <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Publication> .

Subject: <h�p://www.Department0.University0.edu/AssistantProfessor0/Publication1>
Predicate: <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#publicationAuthor>
Object: <h�p://www.Department0.University0.edu/AssistantProfessor0> .

Subject: <h�p://www.Department0.University0.edu/AssistantProfessor0/Publication1>
Predicate: <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#name>
Object: "Publication1" .
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This graph G can also be represented visually.

Figure 1: Visual representation of sub-graph G.

This information could be interpreted as follows: A publication, denoted as
'Publication1', has been authored by an entity titled 'AssistantProfessor0'. While
materializing the graph by applying ontology-specific terminological rules, it is
revealed that 'Publication1' also falls under the RDFS classification of 'Resource'.
Similarly, 'AssistantProfessor0' is identified as an entity of the 'Resource' type and,
additionally, of the 'Person' type. This underlines the capacity of semantic rules to
infer and materialize unseen yet logical relationships within the data structure.

The N-triple representation is:
Subject: <h�p://www.Department0.University0.edu/AssistantProfessor0/Publication1>
Predicate: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type>
Object: <h�p://www.w3.org/2000/01/rdf-schema#Resource> .

Subject: <h�p://www.Department0.University0.edu/AssistantProfessor0>
Predicate: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type>
Object: <h�p://www.w3.org/2000/01/rdf-schema#Resource> .

Subject: <h�p://www.Department0.University0.edu/AssistantProfessor0>
Predicate: <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type>
Object: <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Person> .

10



This sub-graph can now be considered materialized, as inferred information
has been added. The graph can be represented visually.

Figure 2. Visual representation of materialized sub-graph G.

Applying the logic rules across the entire ontology and saving all the inferred
information in a database concludes the process of materialization, and any queries
run on the database can use this already existing information.

Datalog is a declarative query language based on symbolic reasoning [5],
offering several advantages in materialization [6]. It can naturally represent RDFS
vocabulary and semantics as Datalog predicates and clauses, allowing for efficient
reasoning over RDF data. The available methods are highly expressive. This enables
formulation of complex rules and constraints and a declarative and human-readable
representation. [5]

Machine learning methods, specifically those based on graph neural networks
(GNNs), are an alternative method for RDFS materialization. These methods can
learn from graph-structured data, capturing local and global information from the
graph [7], [8]. Machine learning methods can adapt to the specific characteristics of a
given RDF graph and RDFS schema, potentially leading to be�er performance and
generalization across diverse datasets [9]. Machine learning methods can also utilize
advances in hardware and software, such as GPU acceleration and distributed
computing, to scale up materialization tasks for large and dynamic graphs [7].
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A comparison between these methods aims to determine the strengths and
weaknesses of each approach and provide insights into their suitability for different
use cases, domains, and datasets, contributing to developing more efficient, scalable,
and expressive techniques for RDFS materialization. This objective has been stated as
two research questions:

1. How do the Datalog-based and machine learning-based methods perform
regarding the materialized RDF graphs' accuracy, completeness, and
consistency [10]?

2. How do the Datalog-based and machine learning-based methods compare
regarding computational efficiency, memory requirements, and scalability [7]?

This thesis addresses these two questions, guiding the choice of appropriate
methods for RDFS reasoning techniques in the Semantic Web. As there are many
possible variations and implementations of these methods, the research will focus on
representative techniques that showcase the key characteristics of both approaches.
This limitation is imposed due to the vast array of techniques available in both
Datalog-based and machine learning-based methods [6]–[9], which makes it
infeasible to compare every possible combination.

The comparison of Datalog-based and machine learning-based methods will
be conducted using a set of benchmark datasets - The Lehigh University Benchmark
(LUBM) [4] and evaluation metrics (accuracy, precision, confusion matrices). These
benchmarks and metrics will not cover all possible scenarios, domains, or use cases.
Still, they will be chosen to represent a range of RDF graphs and schemas. The results
obtained using these benchmarks and metrics may not be directly generalizable to
other datasets or scenarios due to the inherent noise because the Web of data is
inherently noisy [2].

Another limitation of the scope of this thesis is using hybrid approaches - not
materializing the whole graph in a specific method but using it where it is most
efficient. Instead, the research will focus on identifying the strengths of both methods
and addressing their limitations, paving the way for future work in this area. This
thesis aims to contribute to a be�er understanding of the qualities and shortcomings,
assisting in choosing a suitable strategy for different RDF and RDFS reasoning
assignments.
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1. Background

1.1. Reasoning

1.1.1. Datalog

Datalog, a query language derived from Prolog, is grounded in first-order
logic and Horn clauses. Originating from the inception of logic programming, it is
commonly utilized to describe systems or construct domain models. This flexible
language can query data from various systems, model relational data, and generate
new data models with minimal code [11] [5].

Datalog is compatible with the Extensible Data Notation (edn), a data format
used in programming languages like Clojure, and has been implemented in XTDB
and datascript. It can query data from various sources, including relational
structures, graphs, XML files, text files, and in-memory data structures. Notably,
Datalog serves as the primary query language for the Datomic database [11].

Datalog's unique combination of simplicity and expressiveness renders it
particularly well-suited for tackling complex queries and recursive rules on large
datasets. This has contributed to its widespread adoption and popularity across
various applications [12]. Its efficiency and optimization capabilities have increased
usage in various se�ings, from database management systems and knowledge
representation to deductive databases and artificial intelligence [11], [12].

Datalog has proven to be an invaluable tool in the context of database
management systems. It empowers users to express complex queries, constraints,
and views on relational data, enabling greater understanding and control over the
data. Moreover, deductive databases have also reaped the benefits of Datalog's
expressiveness by employing it for rule-based reasoning and query optimization.
This has resulted in more efficient and effective operations within these databases,
showcasing the versatility and strength of Datalog as a language. [11]

As a knowledge representation tool, Datalog has demonstrated its capacity to
define ontologies, rules, and axioms that accurately capture the semantics of various
domains. This is particularly beneficial in the domain of the Semantic Web, where
Datalog has been utilized for reasoning about RDF (Resource Description
Framework), RDFS (RDF Schema), and OWL data [13].

Datalog's compatibility with large datasets and ability to express complex
queries and recursive rules have contributed to its popularity. It has become the
go-to choice for various applications, including database management systems,
knowledge representation in artificial intelligence, and the Semantic Web. Its unique
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simplicity and expressiveness have allowed users to easily tackle complex problems,
resulting in more efficient and effective solutions [14].

Based on first-order logic, Datalog employs predicates, variables, and
constants to express rules and facts. A Datalog program consists of a finite set of
rules and facts, where each rule is defined as a clause containing a head and a body.
The head consists of a single positive literal, while the body is a conjunction of
positive or negative literals [11].

In Datalog, uppercase le�ers represent variables, while lowercase le�ers or
numbers signify constants. A fact is a ground atom devoid of variables, and a query
is a conjunction of literals containing at least one variable. The semantics of a Datalog
program is delineated by its minimal Herbrand model, representing the complete set
of ground atoms that can be derived from the program's rules and facts [15].

The simplicity and expressiveness of Datalog's syntax make it a powerful tool
for knowledge representation and querying in various domains. Rules and facts in
Datalog can be easily defined and combined to create complex queries and recursive
relationships [11]. This enables users to efficiently represent and manipulate large
datasets, improving understanding and control over the data. Furthermore, the
minimal Herbrand model provides clear and concise semantics for Datalog
programs, allowing for efficient evaluation and optimization of queries [15].

One of its most significant advantages is the ability to express complex
relationships and constraints using Datalog's syntax. It allows users to define
complex queries, constraints, and views on relational data, enabling a higher level of
understanding and control over the data. [15] This is particularly beneficial in the
domain of the Semantic Web, where Datalog has been utilized for reasoning about
RDF (Resource Description Framework) and RDFS (RDF Schema) data [16].

By leveraging Datalog's powerful capabilities, researchers and practitioners in
the field of artificial intelligence have been able to model complex relationships and
structures, thereby enhancing their understanding of the underlying data.

Datalog's syntax supports both positive and negative literals in the body of a
rule, enabling users to express what is true and what is false or unknown. This
feature is crucial for handling incomplete or noisy data, often encountered in
real-world applications. [14], [16]

By providing a flexible and expressive syntax for knowledge representation,
Datalog allows users to model various relationships, constraints, and uncertainties,
making it a versatile and powerful tool for a wide range of applications [15] [16]. As a
result, Datalog has emerged as an integral tool for processing and understanding
semantic information within web-based resources. Datalog also finds applications in

14

https://sciwheel.com/work/citation?ids=14816030&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816013&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816035&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816013&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816035&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816035&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816044&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816044,14816030&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14816035&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14816044&pre=&suf=&sa=0


program analysis, encompassing static analysis, model checking, and compiler
optimization [17]. This efficient reasoning allows for an improved understanding of
program behavior and aids in developing more robust, optimized software.

In addition to the domains mentioned earlier, Datalog is employed in network
management, access control, and configuration management to express policies,
rules, and constraints concisely and declaratively [18]. Network management uses a
declarative networking language called Network Datalog (NDlog) to define routing
policies, security rules, and performance constraints, enabling efficient and effective
management of complex network infrastructure. In access control, Datalog specifies
and enforces security policies, ensuring that only authorized users have access to
sensitive resources [18].

1.1.2. Inference

Inference is a fundamental concept in both formal logic and computational
reasoning systems. It refers to the process of deriving new propositions logically
implied by a given set of propositions [19]. Inference is guided by rules or axioms
defining the logical relations between different propositions. These rules form the
basis of a formal inference system, which can be used to systematically generate all
logically valid inferences from a given set of input propositions [19], [20].

A classic example of inference comes from propositional logic, where an
inference rule called modus ponens allows us to derive a proposition p from the
propositions p→ q and q.

This can be formalized as follows:

[19].

Another example comes from first-order logic, where the universal
instantiation rule allows us to derive a proposition P(a) from the universal
proposition∀x.P(x). This can be formalized as:

[19].
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Finally, in the context of RDF and RDFS, an inference rule might allow us to
derive a triple (a, rdf : type, y) from the triples (a, rdf:type, x) and (x, rdfs:subClassOf, y).
This corresponds to the subclass inheritance rule in RDFS and can be formalized as:

[20].

These examples illustrate the principle of inference in different logical
systems. Despite their differences, all these systems share the goal of deriving new
information logically consistent with the given input information. In this way,
inference is the foundation of logical reasoning and knowledge discovery from
formal proofs and theorem proving to data analysis and machine learning. [20] [19]

1.1.3. Materialization

Materialization is a powerful reasoning technique that involves the

computation and explicit storage of all possible inferences derived from a set of facts

and rules. This method contrasts query-driven reasoning, where inferences are

generated dynamically during query processing [11], [21].

Given a set of facts and rules represented as Datalog predicates and clauses:

1. Facts: Parent(John, Jim), Parent(John, Ann).

2. Rule: Sibling(X, Y)← Parent(Z, X), Parent(Z, Y) [21].

Materialization would involve computing all instances of the Sibling predicate

based on the Parent facts and storing them in the database, resulting in Sibling(Jim,

Ann) and Sibling(Ann, Jim).

Materialization provides numerous benefits, including simplifying query
processing by precomputing all pertinent inferences, resulting in faster query
response times. However, materialization also necessitates considerable
computational resources and storage capacity from the outset, as all inferred facts
must be calculated and stored prior to the commencement of query processing [16].

The overhead associated with materialization can pose challenges in domains
characterized by large datasets or frequent updates. Nevertheless, the advantages of
materialization frequently surpass the drawbacks in situations where swift query
response times are paramount [16]. By precomputing and storing all inferred facts,
materialization reduces the complexity of query processing, enabling systems to
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access relevant facts without directly needing on-the-fly reasoning [17]. This
characteristic streamlines the process and allows for more efficient use of
computational resources, making it an a�ractive option for many applications.

The ability to fully exploit the range of inferences contributes to the data's
overall value. It can potentially unlock new insights and opportunities that might
remain hidden[17]. However, materialization also presents several challenges that
must be considered. Another challenge associated with materialization is its
suitability for highly dynamic datasets. In cases where updates are frequent, the
constant recomputation and storage of inferred facts can become a resource-intensive
process, potentially negating the benefits offered by materialization [17], [18]. In such
scenarios, alternative reasoning techniques or hybrid approaches may be more
suitable to balance the trade-offs between materialization and query-driven
reasoning[18].

Despite these challenges, materialization remains an essential technique for
various reasoning tasks, providing valuable benefits for various applications. By
carefully considering each application's specific requirements and constraints, it is
possible to make informed decisions about the appropriate use of materialization and
its potential advantages [20].

Materialization enhances the expressiveness of queries over RDF and RDFS
data and streamlines query processing by precomputing and storing inferences. This
precomputation leads to faster query response times, as relevant inferred facts can be
directly accessed without needing on-the-fly reasoning. Consequently,
materialization helps improve the overall efficiency and effectiveness of RDF and
RDFS-based systems, making them be�er equipped to handle the demands of
large-scale data processing and reasoning tasks [17].

The process can be computationally intensive, especially for large datasets
with complex schemas. Generating and storing all inferred triples may require
significant processing power and storage capacity, which can be a constraint for
systems with limited resources [16]. Additionally, materialization may not be
well-suited for highly dynamic datasets, as frequent updates to the data could
necessitate constant recomputation and storage of inferred facts, potentially negating
the benefits offered by materialization [17]. Despite these challenges, materialization
remains vital in RDF and RDFS reasoning.

In many cases, materialization can significantly improve the performance of
RDF and RDFS-based systems, enabling more powerful and expressive querying of
the underlying data [15] [16]. As the Semantic Web continues to evolve and grow,
materialization will undoubtedly play a crucial role in realizing its full potential,
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supporting advanced reasoning capabilities over vast, interconnected datasets, and
facilitating a more intelligent, data-driven web experience.

As the Semantic Web evolves, materialization will be critical in realizing its
full potential. Materialization enables advanced reasoning capabilities over large,
interconnected datasets by providing a more complete and consistent representation
of RDF and RDFS data [16]. In turn, this facilitates more intelligent, data-driven web
experiences and supports data integration, sharing, and querying across
heterogeneous sources.

1.2. Semantic Technologies

1.2.1. RDF

1.2.1.1. Overview of RDF

The Resource Description Framework (RDF) is an essential technology that
underpins the Semantic Web, offering a standard graph-based data model for
representing and exchanging data on the Internet. As a core component of the
Semantic Web, RDF plays a crucial role in enabling the encoding, integration, and
sharing of structured and semi-structured data from various sources [22]. This ability
to bring together data from various domains fosters interoperability, making it
possible for disparate systems and applications to communicate and understand one
another more effectively. In doing so, RDF paves the way for the creation of vast
linked data networks, which can be leveraged to enhance information sharing and
facilitate the discovery of new insights across the web [22].

RDF's graph-based data model represents data as a collection of
subject-predicate-object statements, known as triples. Each triple in the RDF graph
describes a specific relationship between two resources or a resource and a constant
value, establishing a directed, labeled graph that captures the complex connections
and dependencies between various pieces of information [22]. RDF relies on Uniform
Resource Identifiers (URIs) to ensure uniqueness and universality in representing
resources within the graph. At the same time, blank nodes are used in cases where a
unique identifier is unnecessary. Constant values such as strings or numbers are
represented using literals [22].

This flexible and extensible data model allows RDF to accommodate a broad
range of data types and structures. It is well-suited for the Semantic Web's diverse
and dynamic information landscape. By providing a common framework for
representing data from multiple sources, RDF makes it possible to integrate and

18

https://sciwheel.com/work/citation?ids=14816044&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14823550&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14823550&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14823550&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14823550&pre=&suf=&sa=0


consolidate information in previously una�ainable ways [23] [22]. This integration
capability is precious in the age of Big Data, where the sheer volume, variety, and
velocity of information pose significant challenges for traditional data management
and processing techniques [13], [16], [23].

RDF's standardized data model also simplifies the process of exchanging data
between systems and applications, eliminating many of the complexities associated
with data conversion and translation [20]. By adhering to a universally recognized
representation format, RDF enables seamless data exchange across different
platforms, fostering greater collaboration and information sharing among various
stakeholders on the web. This, in turn, contributes to the development of more robust
and interconnected data networks that can be harnessed for a wide range of
purposes, from scientific research and business intelligence to social networking and
digital humanities [9]. Its graph-based data model, combined with its capacity to
encode, integrate, and share data from diverse sources, has laid the foundation for
the creation of extensive linked data networks that transcend traditional boundaries
and enable novel forms of collaboration, discovery, and innovation [19], [22]. As the
Semantic Web continues to evolve and expand, RDF's role as a unifying force for data
representation and exchange will remain as critical as ever, paving the way for new
opportunities and advancements in the digital realm.

1.2.1.2. RDF Data Model and Syntax

The Resource Description Framework (RDF) data model is built around
triples, composed of subject-predicate-object statements. These triples serve as the
building blocks for constructing a directed, labeled graph that represents
relationships between various resources in a structured and easily understandable
manner [20], [22]. In this graph, resources, which can be subjects or objects, are
connected by properties, also known as predicates. This design represents complex
connections and dependencies between different pieces of information, providing a
powerful tool for encoding, integrating, and sharing structured and semi-structured
data from various sources [22].
The core data model can be precisely delineated as follows [24]:

1. There is a set of Nodes, denoted as N.
2. A subset of N, referred to as PropertyTypes, is denoted as P.
3. A set of 3-tuples, named T, is present. These elements are informally regarded

as properties. Each tuple's first item is an element of P, the second belongs to
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N, and the third can be an element of N or an atomic value, such as a Unicode
string [24].

Within this data model, the resources being characterized and the values
describing them serve as nodes in a directed labeled graph. Interestingly, values can
also be resources. The arcs connecting node pairs correspond to the property type
names [24]. This can be visually represented.

Figure 3. Relation of Resource R to Value V. [24]

This can be interpreted as "V is the value of the property P for resource R" or
in a left-to-right fashion, "R has property P with value V."

To illustrate, consider the straightforward statement:

"Ora Lassila" is the "author" of the webpage

"http://www.w3.org/People/Lassila"[24]
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This statement can be depicted in the following manner:

Figure 4. Relation of Ora Lassila as an author of h�p://www.w3.org/People/Lassila.
[24]

Here, the notation [URI] signifies the instance of the resource identified by
URI, and "..." indicates a simple Unicode string. [24] Following the formal definition,
the property "author", i.e., the arc labeled "author" along with its source and target
nodes, constitutes the triple (3-tuple):

{author, [http://www.w3.org/People/Lassila], "Ora Lassila"}

In this context, "author" represents a node used for labeling this arc. This
model formulation is conducive to reification, implying that the relationship
expressed by the arc can be transformed into a concrete node that can be referenced,
as shown below [24]:

Figure 5. Relationship between the concrete node, its PropName, PropObj, and
PropValue. [24]
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This implies the addition of a node X and three new triples:

{PropName, X, author}

{PropObj, X, [http://www.w3.org/People/Lassila]}

{PropValue, X, "Ora Lassila"} [24]

It is subsequently demonstrated that reification enables the expression of
modalities (such as beliefs about statements) or simply the a�achment of any
properties to other properties [24].

A set of triples sharing the same second item is an assertion. Assertions are
particularly beneficial when enumerating several properties of the same resource.
Assertions are diagrammed as follows:

Figure 6. An assertion showing Resource R as a property of Values Vp1 and
Vp2 [24].

An RDF assertion can be a resource and, therefore, be described by properties;
in other words, an assertion can serve as the source node of an arc [24].

Assertions may be associated with the resource they describe in one of the
following four ways [24]:

1. The assertion may be embedded within the resource.
2. The assertion may be external to the resource but provided by the transfer

mechanism in the same retrieval transaction as the one returning the resource
(referred to as "along-with").

3. The assertion may be retrieved independently from the resource, potentially
from a different source (referred to as "service bureau").

4. The assertion may encapsulate the resource [24].
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To ensure uniqueness and universality within the RDF graph, resources are
typically represented using Uniform Resource Identifiers (URIs) [25]. URIs serve as
globally unique identifiers that reference and distinguish resources across different
systems and applications, promoting interoperability and facilitating data exchange
across diverse platforms. In cases where a unique identifier is not necessary or
applicable, RDF allows using blank nodes, which serve as placeholders for resources
without explicitly identifying them [23] [22].

On the other hand, constant values such as strings, numbers, or dates are
represented in RDF graphs using literals. Literals provide a standardized way of
encoding these values, ensuring they can be consistently interpreted and processed
by various systems and applications that work with RDF data. By adopting a
uniform representation for constant values, RDF simplifies data integration and
exchange, allowing for more efficient and effective communication between different
components of the Semantic Web [23].

With its subject-predicate-object triple-based design, the RDF graph's structure
provides a high degree of flexibility and extensibility. This versatile data model can
accommodate various data types and structures, making it particularly well-suited
for the diverse and dynamic landscape of the Semantic Web [22]. RDF enables the
integration and consolidation of information in previously una�ainable ways by
offering a common framework for representing data from multiple sources. This
capability is precious in the age of Big Data, where traditional data management and
processing techniques struggle to cope with the vast volume, variety, and velocity of
information being generated and exchanged [22].

1.2.1.3. RDF Serialization Formats

Resource Description Framework (RDF) data can be serialized into various
formats to cater to different requirements and preferences [22]. These formats,
including RDF/XML, Turtle, N-Triples, and JSON-LD, provide distinct benefits
regarding readability, compactness, and compatibility with other web technologies.
Each serialization format addresses specific use cases and caters to the diverse needs
of developers, data practitioners, and researchers working with RDF data [23].

RDF/XML is one of the earliest and most widely supported serialization
formats for RDF data [26]. It leverages the ubiquity and versatility of XML, a markup
language widely used for data exchange on the web. While RDF/XML is powerful
and comprehensive, its verbose nature and complex syntax can make it harder to
read and understand, especially for human users[26]. This verbosity can also increase
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data size, impacting performance when working with large RDF datasets or
transmi�ing data over networks[26].

Example 1. A RDF triple in XML format.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:ex="http://example.com/stuff/1.0/">

<rdf:Description

rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">

<dc:title>RDF/XML Syntax Specification (Revised)</dc:title>

<ex:editor>

<rdf:Description ex:homePage

rdf:resource="http://purl.org/net/dajobe/"/>

</ex:editor>

</rdf:Description>

</rdf:RDF>

Turtle (Terse RDF Triple Language) is an alternative serialization format that
offers a more human-readable and compact representation of RDF data[27].
Designed as a more concise counterpart to RDF/XML, Turtle uses a simplified,
text-based syntax that is easier to read and write. By eliminating the verbosity and
complexity associated with RDF/XML, Turtle enables users to work with RDF data
more efficiently and effectively, making it a popular choice for developers and data
practitioners seeking a more user-friendly option [27].

Example 2. A RDF triple in Turtle format.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.com/stuff/1.0/> .

<http://www.w3.org/TR/rdf-syntax-grammar>

dc:title "RDF/XML Syntax Specification (Revised)" ;

ex:editor [

ex:homePage <http://purl.org/net/dajobe/>

] .

N-Triples is another RDF serialization format emphasizing simplicity and ease
of use [28]. Like Turtle, N-Triples is a text-based format that provides an
unambiguous representation of RDF triples. However, N-Triples is even more
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minimalistic than Turtle, offering a line-based, plain text format well-suited for
processing large datasets and working with RDF data in automated environments.
N-Triples are often used for tasks that require robustness and reliability, such as data
validation, testing, or data exchange between systems [28].

Example 3. A RDF triple in N-triple format.

<http://www.w3.org/TR/rdf-syntax-grammar>

<http://purl.org/dc/elements/1.1/title>

"RDF/XML Syntax Specification (Revised)" .

<http://www.w3.org/TR/rdf-syntax-grammar>

<http://example.com/stuff/1.0/editor>

_:bnode .

_:bnode

<http://example.com/stuff/1.0/homePage>

<http://purl.org/net/dajobe/> .

JSON-LD (JSON for Linked Data) is a more recent RDF serialization format
that builds upon the widely used JSON data interchange format. By combining the
simplicity and accessibility of JSON with the expressiveness of RDF, JSON-LD offers
a highly compatible and easily consumable representation of RDF data [29].
JSON-LD is particularly well-suited for web developers and applications that
leverage JavaScript and other web technologies, making it an a�ractive option for
those looking to incorporate RDF data into modern web-based environments [29].

Example 4. A RDF triple in JSON-LD format.

{

"@context": {

"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

"dc": "http://purl.org/dc/elements/1.1/",

"ex": "http://example.com/stuff/1.0/"

},

"@id": "http://www.w3.org/TR/rdf-syntax-grammar",

"dc:title": "RDF/XML Syntax Specification (Revised)",

"ex:editor": {

"ex:homePage": {"@id": "http://purl.org/net/dajobe/"}

} }
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1.2.1.4. Querying RDF Data with SPARQL

SPARQL, the SPARQL Protocol, and RDF Query Language is a universal and
standardized query language designed for RDF data. It enables users to retrieve,
manipulate, and transform information stored in RDF graphs, unlocking the full
potential of RDF data and facilitating more powerful, expressive querying
capabilities [30] [31]. SPARQL's extensive features and support for various query
pa�erns make it an indispensable tool for data practitioners, researchers, and
developers working with RDF and the Semantic Web

One of the key strengths of SPARQL is its ability to support a wide range of
query pa�erns. Basic graph pa�ern matching lies at the core of SPARQL queries,
allowing users to specify pa�erns of interest in the form of subject-predicate-object
triples[30]. By matching these pa�erns against the RDF graph, SPARQL can
efficiently retrieve and return the relevant information in a structured format. This
feature empowers users to ask sophisticated questions about the data and uncover
insights that may not be immediately apparent through simpler query
mechanisms[30].

Example 5. A simple SPARQL query retrieves all triples from an RDF graph [30].

SELECT ?subject ?predicate ?object

WHERE {

?subject ?predicate ?object .

}

This query uses variables (?subject, ?predicate, and ?object) to represent each triple's
subject, predicate, and object in the graph. The WHERE clause specifies the pa�ern to
match against the graph, and the SELECT clause indicates which variables' values to
return in the query results[30].

In addition to basic graph pa�ern matching, SPARQL supports more
advanced query constructs, such as optional and alternative pa�erns. Optional
pa�erns enable users to request additional information that may or may not be
present in the RDF graph without affecting the overall query results. This flexibility
allows for more comprehensive querying and the extraction of richer information
from the data[30]. Alternatively, alternative pa�erns allow users to specify multiple
pa�erns that could satisfy the query, increasing the chances of retrieving relevant
information even when some of the requested data is missing or incomplete[30].
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Another powerful feature of SPARQL is its support for complex filters and
aggregations[31]. Filters enable users to refine query results based on specific criteria,
such as value ranges, string pa�erns, or mathematical expressions. By applying filters
to query results, users can hone in on the most relevant and meaningful data,
eliminating noise and improving the overall quality of the results[31]. Conversely,
aggregations allow users to group and summarize data, computing metrics such as
counts, averages, or sums. Aggregations are particularly useful for analyzing large
datasets and identifying trends, pa�erns, or relationships within the data[31].

Example 6. A SPARQL query with a filter condition.

SELECT ?name ?email

WHERE {

?person a foaf:Person .

?person foaf:name ?name .

OPTIONAL { ?person foaf:mbox ?email . }

FILTER (!BOUND(?email))

}

In this query, the OPTIONAL clause is used to specify an optional pa�ern that
matches a person's email address. The FILTER clause is then used to filter out any
results where the email address is absent (i.e., the ?email variable is not bound to a
value)[31].

Federated querying is a unique capability of SPARQL that sets it apart from
many other query languages. It enables users to query data from multiple RDF
sources simultaneously, seamlessly integrating information from disparate sources
and facilitating more comprehensive querying and data analysis [32].

Example 7. A SPARQL query that uses federated querying to retrieve data from
multiple sources.

SELECT ?name ?birthPlace

WHERE {

?person dbpedia-owl:birthPlace ?birthPlace .

SERVICE <http://example.org/sparql> {

?person foaf:name ?name .

}

}
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In this query, the SERVICE clause is used to specify a remote SPARQL endpoint from
which to retrieve additional data. This allows the query to combine data from the
local RDF graph (i.e., the person's birthplace) with data from the remote endpoint
(i.e., the person's name). [32] This feature is especially important in the context of the
Semantic Web, where data is often distributed across numerous interconnected
repositories. By allowing users to access and combine data from multiple sources,
federated querying helps overcome the limitations imposed by data silos. It promotes
a more holistic approach to data analysis and knowledge discovery [32].

1.2.2. RDFS

1.2.2.1. Introduction to RDFS

RDF Schema (RDFS) is a lightweight ontology language designed to extend
the Resource Description Framework (RDF), providing a standardized set of
vocabulary and semantics for describing classes, properties, and constraints on RDF
data [33], [34]. As a cornerstone for more expressive ontology languages like the Web
Ontology Language (OWL), RDFS offers foundational reasoning capabilities over
RDF graphs, enriching the expressiveness of RDF data and paving the way for more
advanced knowledge representation and reasoning on the Semantic Web [33].

The primary goal of RDFS is to supply a means of defining the structure and
semantics of RDF data, thereby enhancing its interpretability and facilitating more
meaningful querying and data manipulation[33]. RDFS achieves this by introducing
a basic vocabulary and a set of modeling constructs for defining classes, properties,
and their relationships. This enables users to create hierarchies of classes and
properties, define domain and range constraints, and specify additional metadata
about resources in the RDF graph[33].

Classes in RDFS represent sets of resources that share common characteristics,
and they can be organized hierarchically using the rdfs:subClassOf property. This
hierarchical structure allows for the inheritance of properties and constraints from
parent classes to child classes, promoting consistency and reusability of the schema.
Properties in RDFS, on the other hand, are used to describe relationships between
resources and can also be organized hierarchically using the rdfs:subPropertyOf
property. This enables inheriting characteristics and constraints from parent to child
properties[33]–[35].
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Example 8. Defining a class "Person" in RDFS.

<rdfs:Class rdf:ID="Person" />

This line of RDF code defines a new class named "Person" using the rdfs:Class
construct. The ability to define domain and range constraints for properties is
another important feature of RDFS. Domain constraints specify the class of resources
a property can use, while range constraints define the class of resources or literals
that can target a property. These constraints help ensure the consistency of RDF data
by enforcing the proper use of properties and relationships, and they provide
valuable information for reasoning and querying processes [34].

Example 9. Using rdfs:subClassOf for creating class hierarchies.

<rdfs:Class rdf:ID="Employee">

<rdfs:subClassOf rdf:resource="#Person" />

</rdfs:Class>

This code specifies that "Employee" is a subclass of "Person", meaning that every
"Employee" is also a "Person".

Example 10. Defining properties and their constraints.

<rdf:Property rdf:ID="hasName">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range

rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

</rdf:Property>

Here, rdfs:domain specifies that the "hasName" property can be used with
instances of the "Person" class. In contrast, rdfs:range specifies that the values of this
property should be strings.

In addition to its modeling constructs, RDFS introduces a set of built-in classes
and properties for describing metadata and additional semantics about resources,
classes, and properties. For example, rdfs:label and rdfs:comment can be used to a�ach
human-readable labels and descriptions to resources, while rdfs:seeAlso and
rdfs:isDefinedBy can be employed to link resources to additional documentation or
definitions. These built-in vocabulary elements enrich the expressiveness of RDF data
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and facilitate more effective communication and knowledge sharing among data
consumers [34].

Example 11. Defining properties and their constraints.

<rdfs:Class rdf:ID="Person">

<rdfs:label>Person</rdfs:label>

<rdfs:comment>A class representing persons.</rdfs:comment>

</rdfs:Class>

By enabling users to define classes, properties, and constraints on RDF data,
RDFS enhances the interpretability and usefulness of RDF graphs, laying the
groundwork for more sophisticated knowledge representation, querying, and
reasoning on the Semantic Web [35] [33].

1.2.2.2. RDFS Vocabulary and Semantics

RDFS, or RDF Schema, is a lightweight ontology language that provides a
predefined vocabulary for defining classes, properties, and their relationships within
an RDF graph[34]. The primary goal of RDFS is to facilitate the structuring and
organization of RDF data, making it more interpretable, meaningful, and easier to
query. The RDFS vocabulary includes a set of foundational terms, such as rdfs:Class,
rdfs:subClassOf, rdf:Property, rdfs:domain, and rdfs:range, that form the building blocks
for creating hierarchies of classes and properties, as well as defining domain and
range constraints [34].

The rdfs:Class term defines a class or a set of resources with common
characteristics. Classes can be organized hierarchically using the rdfs:subClassOf
property, which allows child classes to inherit properties and constraints from their
parent classes. This inheritance mechanism promotes reusability and consistency
throughout the schema[34]. The rdf:Property term defines properties that describe
relationships between resources in an RDF graph. Like classes, properties can also be
organized hierarchically using the rdfs:subPropertyOf property. This property enables
child properties to inherit characteristics and constraints from their parent properties,
ensuring a coherent structure within the schema[34].

Domain and range constraints play a vital role in RDFS, as they help to
enforce the proper use of properties and relationships within an RDF graph. The
rdfs:domain property is used to specify the class of resources with which a particular
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property can be associated. In contrast, the rdfs:range property defines the class of
resources or literals that can be the target of a property[34]. These constraints
contribute to the consistency and coherence of RDF data by providing guidelines for
property usage and facilitating more precise querying and reasoning[34].

RDFS semantics are built on inference rules that describe the logical
implications of using the RDFS vocabulary within an RDF graph[34]. These rules
outline how new facts can be derived from existing data based on the relationships
and constraints defined by the RDFS vocabulary. For instance, if a resource is an
instance of class A and class A is a subclass of class B, the resource can also be
inferred to be an instance of class B. Similarly, suppose property P1 is a sub-property
of property P2, and a resource R1 has a relationship with resource R2 using property
P1. In that case, it can be inferred that R1 also has a relationship with R2 using
property P2[34].

Example 12. Using RDFS inference rules.

Given the following data:

<rdf:Description rdf:about="#HarryPotter">

<hasAuthor rdf:resource="#JKRowling" />

</rdf:Description>

<rdfs:Class rdf:ID="FictionBook">

<rdfs:subClassOf rdf:resource="#Book" />

</rdfs:Class>

<rdf:Description rdf:about="#HarryPotter">

<rdf:type rdf:resource="#FictionBook" />

</rdf:Description>

If it is established that "FictionBook" is a subclass of "Book," it can be logically
inferred that "HarryPo�er", being an instance of "FictionBook," is also an instance of
"Book." Such deductive rules empower RDFS reasoners to conduct elementary
inference and materialization operations, thereby amplifying the expressiveness and
applicability of RDF data [34].

1.2.2.3. RDFS Inference and Reasoning

RDFS inference is a fundamental process in the Semantic Web that deals with
deriving new triples from an RDF graph by utilizing the RDFS schema and its
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underlying semantics[34]. This process is essential for harnessing the full potential of
RDF and RDFS as it enables the discovery of implicit knowledge and relationships
within the data, enriching the graph and enhancing its consistency and
expressiveness. RDFS reasoning is the core mechanism of this inference, as it
employs a set of well-defined inference rules based on the RDFS vocabulary and
semantics[34].

Subclass and property inheritance are two prominent RDFS inference rules
crucial in reasoning. Subclass inheritance pertains to the hierarchical organization of
classes in RDFS, where a child class is considered a subset of its parent class[34]. The
RDFS denotes this relationship:subClassOf property. When an RDF graph contains
an instance of a particular class, RDFS reasoning can infer that the instance also
belongs to any superclass of that class. This inference allows for more comprehensive
and accurate querying, as it captures the implicit relationships between instances and
classes in the RDF graph[34].

On the other hand, property inheritance deals with the hierarchical
organization of properties in RDFS. Like classes, properties can be organized into a
hierarchy using the rdfs:subPropertyOf property[34]. Property inheritance enables
properties to inherit characteristics and constraints from their parent properties,
which helps maintain a consistent and coherent structure within the RDF graph[34].
When an RDF graph contains a triple with a specific property, RDFS reasoning can
infer additional triples with the same subject and object but using a super property of
the original property. This inference enriches the RDF graph by identifying implicit
relationships between resources based on their property hierarchy[34].

In addition to subclass and property inheritance, RDFS reasoning also
considers domain and range constraints associated with properties. These
constraints, denoted by rdfs:domain and rdfs:range properties, help enforce the
proper use of properties and relationships within an RDF graph. RDFS reasoning can
derive new facts based on these constraints, further enhancing the completeness and
consistency of the RDF graph[34].

1.2.2.4. RDFS as a Set of Datalog Rules

Integrating RDFS with Datalog provides a powerful and efficient method for
reasoning over RDF data. By representing RDFS as a set of Datalog rules, the RDFS
vocabulary and semantics can be effectively translated into Datalog predicates and
clauses [17]. This representation allows for efficient RDFS reasoning using
Datalog-based engines and facilitates seamless integration with other Datalog-based
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systems and applications, expanding the scope and utility of both RDFS and Datalog
in the context of the Semantic Web [36].

As a declarative logic programming language, Datalog is well-suited for
expressing complex queries and recursive rules over large datasets. By transforming
RDFS into Datalog rules, the inference capabilities of RDFS can be harnessed by
Datalog-based systems to reason about RDF data efficiently. This transformation
bridges the gap between the two paradigms, allowing for a unified approach to
knowledge representation and reasoning that combines both technologies' strengths
[36].

Example 13. Translating RDFS axioms into Datalog rules:

rdfs2(X, Y) :- rdf(X, rdf:type, Y).

rdfs3(X, Y) :- rdf(X, rdfs:subClassOf, Y).

rdfs5(X, Y) :- rdf(X, rdfs:subPropertyOf, Y).

rdfs6(X, Y) :- rdf(X, rdfs:domain, Y).

rdfs7(X, Y) :- rdf(X, rdfs:range, Y).

rdfs9(X, Y) :- rdfs2(X, Z), rdfs3(Z, Y).

rdfs10(X, Y) :- rdf(X, Z, Y), rdfs5(Z, W).

rdfs11(X, Y) :- rdf(X, Z, _), rdfs6(Z, Y).

rdfs12(X, Y) :- rdf(_, Z, X), rdfs7(Z, Y).

In this example, the RDFS axioms are represented as Datalog rules where X, Y, and Z
are variables, rdf(X, rdf:type, Y), rdf(X, rdfs:subClassOf, Y), etc., are RDF triples and
rdfs2, rdfs3, etc., are RDFS inferences. One significant advantage of representing RDFS
as Datalog rules are the optimization potential Datalog engines offer. These engines
employ various optimization techniques to process complex queries and rules
efficiently. By leveraging these optimizations, RDFS reasoning over large RDF graphs
can be performed more effectively, addressing some scalability challenges associated
with RDF and RDFS technologies. [17]
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1.3. Link Prediction

1.3.1. Definition and Importance

Link prediction (LP), a crucial problem in graph analytics and network
science, focuses on determining the probability of connections between nodes in a
graph by analyzing its structure and properties. [37] This process involves predicting
the missing entity in a relational triple, either in the form of 〈h, r, ?〉 (known as tail
prediction) or 〈?, r, t〉 (known as head prediction). To simplify, the known entity in
the prediction is referred to as the source entity, while the entity to be predicted is
termed the target entity. [37]

Over time, many strategies have been proposed to solve the LP task. Some of
these methods are based on observable features and use techniques like Rule Mining
or the Path Ranking Algorithm to identify missing relationships (or triples) in the
graph [37]. Recently, as Machine Learning techniques have advanced, there has been
an interest in discovering latent features in the graph by creating vectorized
representations, also known as embeddings, of the graph's components. In broad
terms, embeddings are vectors containing numerical values that can represent
different types of elements (for example, words, individuals, products, and so on,
depending on the specific domain) [2], [37].

These embeddings are automatically learned based on how the respective
elements appear and interact with each other in representative real-world datasets. In
social network analysis, link prediction predicts friendships, interactions, or other
relationships between individuals in a network. By analyzing the network structure
and properties, link prediction can determine the likelihood of future connections or
uncover existing connections that may have been previously unknown [2]. This can
be particularly useful in understanding the dynamics of online social networks,
facilitating targeted marketing campaigns, or aiding in community detection and
analysis [37].

Recommender systems are another area where link prediction has significant
applications. These systems aim to provide users with personalized products,
content, or service recommendations based on their preferences and behavior. Link
prediction can help identify potential connections between users and items,
suggesting more likely relevant and interesting recommendations. In e-commerce
platforms, for example, link prediction can recommend products likely to be
purchased together or suggest content that users with similar preferences have
enjoyed [38].
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1.3.2. Traditional link prediction Techniques

Statistical methods for link prediction constitute a widely used approach to
infer potential connections between nodes in a graph [39] [40]. These methods
primarily focus on determining node similarity scores by examining their properties,
a�ributes, or neighborhood structures. The underlying assumption is that a higher
similarity between nodes increases the likelihood of an edge existing between them
[40].

One commonly employed statistical measure for link prediction is the Jaccard
coefficient [41]. This metric calculates the similarity between two nodes by
considering the ratio of their shared neighbors to the total number of distinct
neighbors. In other words, it measures the overlap between the sets of neighbors for
two nodes, giving a score between 0 and 1. A higher Jaccard coefficient indicates a
higher degree of similarity between the nodes, suggesting a greater likelihood of a
connection [41].

Cosine similarity is another widely used measure for link prediction in graph
analytics. This approach computes the similarity between two nodes by measuring
the cosine of the angle between their a�ribute vectors. The resulting score ranges
from -1 to 1, with 1 representing perfect similarity, 0 indicating no similarity, and -1
suggesting a completely different relationship. Cosine similarity is beneficial when
dealing with high-dimensional data, as it is less sensitive to the magnitude of the
a�ribute vectors and focuses more on the directional relationship between them [42].

The Pearson correlation coefficient is an additional statistical method utilized
for link prediction. This measure assesses the linear relationship between the
a�ributes of two nodes by calculating the correlation between their a�ribute vectors.
Pearson correlation coefficient values range from -1 to 1, where 1 indicates a strong
positive correlation, -1 implies a strong negative correlation, and 0 suggests no
correlation between the nodes' a�ributes. A high positive correlation may indicate a
higher likelihood of a connection between the nodes, while a high negative
correlation might suggest a lower probability of an edge [43].

1.3.3. Machine Learning-Based link prediction

In supervised machine learning techniques for link prediction, models are
trained using labeled examples of node pairs and information about whether a
connection exists between them. Based on these examples, the models learn to
predict the presence or absence of connections, which can then be generalized to
make predictions on previously unseen node pairs [44].
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In the research study "Link Prediction Based on Graph Neural Networks" by
Zhang and Chen (2018), supervised learning was used to address link prediction in
citation networks[44]. The researchers employed Graph Convolutional Networks
(GCNs) to capture local and global graph structures and node features. The model
was trained on labeled pairs of nodes, and the results demonstrated strong predictive
performance, outperforming several traditional methods[44]. Supervised techniques
have demonstrated impressive accuracy and predictive performance in various link
prediction tasks, often surpassing the capabilities of traditional statistical and
graph-based methods[44].

On the other hand, unsupervised machine learning techniques focus on
discovering pa�erns and structures within the graph without relying on explicit
labels. Instead, they seek to learn meaningful representations of nodes and their
relationships that can be used to estimate the likelihood of connections [45]. Ou, Jin,
and Yang (2016) used an unsupervised machine learning approach in the study
"Asymmetric Transitivity Preserving Graph Embedding." They leveraged a graph
embedding technique to learn latent representations of nodes in an unsupervised
manner [45]. These representations were then used to predict missing links in the
graph. The method performed superior over several baselines in various link
prediction tasks, especially when explicit labels were not readily available[45].

In the research paper "Semi-Supervised Classification with Graph
Convolutional Networks" by Kipf and Welling (2016), a semi-supervised learning
approach was used for link prediction where labeled data was limited. The authors
utilized Graph Convolutional Networks (GCNs) that combined the strengths of both
supervised and unsupervised learning methods. The model was trained on a small
set of labeled node pairs; the rest were unlabeled[46]. The results showed that the
model could effectively generalize from the limited labeled data to predict the
unlabeled node pairs.

These techniques often involve clustering or dimensionality reduction
methods that can uncover latent structures and communities within the graph.
Unsupervised methods have also succeeded in link prediction tasks, especially in
cases where labeled training data is scarce or unavailable[46].

1.3.4. Graph Neural Networks

GNNs have risen as a potent class of machine learning models expressly
crafted for graph-structured data. GNNs decipher intricate pa�erns and relationships
between nodes by fusing local and global information from the graph [47]. They
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employ iterative message-passing mechanisms to disseminate information among
neighboring nodes and update their embeddings or features, ultimately creating
node representations that encapsulate local and global graph structures [47]. GNNs
have showcased outstanding performance in various link prediction tasks, often
surpassing traditional techniques and machine learning methods [47]. Their ability to
learn comprehensive and expressive representations of nodes and their relationships
makes them especially well-suited for link prediction challenges. In these problems,
the graph's underlying structure is pivotal in determining the probability of
connections between nodes.

While machine learning-based link prediction techniques have shown great
promise, they also come with challenges and opportunities. One key challenge is the
scalability of these methods, particularly for large-scale graphs with millions or
billions of nodes and edges [46] [48]. Developing efficient and scalable algorithms
that can handle such massive graphs remains an active area of research.

Additionally, the interpretability of machine learning models, intense learning
models like GNNs, is another challenge that needs to be addressed. Understanding
the rationale behind the predictions made by these models is crucial for building
trust and ensuring their applicability in real-world scenarios for understanding
complex networks and their underlying structures [47].

1.4. Summary

Reasoning, Semantic Technologies, and link prediction are critical components
in the field of knowledge representation and the Semantic Web [33], [34], [48]. The
Resource Description Framework (RDF) and RDF Schema (RDFS) are fundamental
technologies that enable the encoding, integration, and sharing of structured and
semi-structured data from diverse sources. They facilitate interoperability and the
creation of linked data networks, enabling advanced reasoning capabilities over
large, interconnected datasets [44] [43]. One essential technique for unlocking the full
potential of linked data is materialization, generating and storing all possible
inferences from a given RDF graph based on the RDFS schema [36].

Link prediction, a crucial problem in graph analytics and network science,
involves inferring the likelihood of connections between nodes based on the graph's
structure and properties. It has many applications, including social network analysis,
recommender systems, bioinformatics, and fraud detection. Traditional link
prediction techniques, such as statistical methods and graph-based approaches,
exploit properties, a�ributes, or neighborhood structures of nodes, as well as
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topological properties of the graph, to estimate the likelihood of connections between
nodes [48] [36], [44]. However, RDF data's rapidly growing scale and complexity
necessitate more advanced techniques for reasoning and link prediction [2].

Deep learning-based methods, particularly Graph Neural Networks (GNNs),
have emerged as powerful tools for addressing these challenges. GNNs are machine
learning models specifically designed for graph-structured data [48] [46]. They can
learn complex pa�erns and relationships between nodes by combining local and
global information from the graph. GNNs use iterative message-passing mechanisms
to propagate information between neighboring nodes, updating their embeddings or
features and generating node representations that capture local and global graph
structures [47].

Applying GNNs to RDFS materialization, a deep learning-based approach,
can significantly improve the efficiency and effectiveness of reasoning and link
prediction tasks. GNNs have demonstrated excellent performance in various link
prediction tasks, often outperforming traditional methods and machine learning
techniques. Their ability to learn rich and expressive representations of nodes and
their relationships makes them particularly well-suited for tasks where the
underlying graph structure is crucial in determining the likelihood of connections
between nodes [44].

A deep learning-based RDFS materialization approach can potentially address
several challenges associated with traditional methods, such as increased
computational and storage requirements, handling noisy or incomplete data, and
scalability[2]. By leveraging the power of GNNs, it is possible to develop more robust
and efficient techniques for RDFS materialization that can handle large, complex, and
dynamic datasets[2]. Furthermore, the use of supervised and unsupervised learning
techniques in conjunction with GNNs offers promising avenues for improving the
accuracy, completeness, and consistency of materialized RDF graphs [2] [47] [48].
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2. Materialization with Deep Learning

2.1. Deep learning for noise-tolerant RDFS reasoning

The primary motivation for noise-tolerant RDFS reasoning is that the Semantic
Web (SW) and the Web of data are inherently noisy. Traditional SW reasoning
focuses on soundness and completeness, assuming that the input data is accurate
[24], [49] [36]. However, this assumption does not hold in real-world scenarios,
where data is often incomplete, inconsistent, or contradictory [2], [7]. Noise-tolerant
reasoning is essential to address these challenges and enable more accurate and
reliable RDFS materialization[2].

Bassem Makni and James Hendler's paper, "Deep learning for noise-tolerant
RDFS reasoning," presents a novel approach that extends noise-tolerance in the SW
to full RDFS reasoning[2]. The proposed method adapts Knowledge Graph (KG)
embedding techniques to RDFS reasoning by layering RDF graphs and encoding
them as 3D adjacency matrices. These matrices form "graph words" and sequences
representing the input graph and its entailments. RDFS inference is then formulated
as a translation of these graph word sequences, achieved through neural machine
translation. This deep learning-based approach demonstrates noise tolerance that is
not available with traditional rule-based reasoners [2], [9], [11].

The primary goal of the noise-tolerant RDFS reasoning approach is to enable
full RDFS reasoning capable of handling noisy and incomplete data. By addressing
these challenges, the approach provides more accurate and reliable materialization
results, making it a promising alternative to traditional reasoning methods that
assume perfect input data[2], [9]. To achieve this, the RDF graphs are organized into
layers, each representing a specific aspect or property of the graph[2].

This layered structure is essential for efficiently encoding the graph data as 3D
adjacency matrices, which serve as a compact graph representation and facilitate
further processing[2]. The layered RDF graphs are then represented as 3D adjacency
matrices, with each layer forming a "graph word." This compact representation
reduces the storage requirements for the RDF graph data and allows for efficient
manipulation and processing, paving the way for advanced reasoning techniques.
Graph words and sequences are crucial in this approach[2].

Each input graph and its entailments are represented as sequences of graph
words, which serve as the input and output for the neural machine translation
process[2]. This representation enables a more straightforward and efficient
translation between different graph structures and their corresponding entailments.
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This approach employs neural machine translation, a deep learning technique, for
RDFS inference [2]. By translating the sequences of graph words, neural machine
translation effectively captures the relationships and entailments in the RDF graph,
resulting in more accurate and noise-tolerant RDFS reasoning[2].

2.2. Comparison with logic-based and traditional methods

2.2.1. Limitations of Traditional RDFS Reasoners

Traditional RDFS reasoners have been designed to focus on soundness and
completeness, assuming that the input data is accurate and without noise. However,
this assumption often does not hold in real-world scenarios, where data can be
incomplete, inconsistent, or contradictory [10]. These reasoners struggle to handle
such noisy data, leading to inaccurate or incomplete materialization results. The
challenge lies in developing reasoning methods that can effectively cope with the
inherent noise in web data without sacrificing soundness and completeness [2], [9].

The Web of data is inherently noisy due to various factors, such as data entry
errors, inconsistencies in data sources, and the dynamic nature of web data. This
noise poses significant challenges for traditional RDFS reasoning methods designed
to operate using accurate input data [2], [3]. The presence of noise can lead to
incorrect inferences, impacting the overall quality and reliability of the
materialization process. Addressing this challenge requires developing noise-tolerant
reasoning techniques that can handle incomplete and inconsistent data while
maintaining the desired level of soundness and completeness [2].

2.2.2. Adapting KG Embedding Techniques for RDFS Reasoning

Knowledge Graph (KG) embedding techniques have been widely used for link
prediction but have not been directly applied to RDFS reasoning[2]. The problem
se�ing in RDFS reasoning differs from link prediction, making it challenging to
adapt these techniques for RDFS materialization. A key challenge is to develop a
tailored approach that can effectively represent RDF graph structures and their
entailments while capturing the specific constraints and relationships defined in the
RDFS schema[2]. This requires a thorough understanding of the differences between
link prediction and RDFS reasoning, as well as the development of novel embedding
techniques and deep learning models that can handle the unique challenges of RDFS
materialization [2], [6], [7].
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2.2.3. Scalability and Performance Issues

Scalability and performance are critical concerns in RDFS reasoning, especially
when dealing with large and complex RDF graphs [2]. Traditional rule-based
reasoners can struggle with performance bo�lenecks and high memory
requirements, making them unsuitable for large-scale materialization tasks.
Adapting deep learning techniques for RDFS reasoning introduces additional
challenges, such as the computational complexity of neural network models and the
need for specialized hardware resources like GPUs[2]. Addressing these scalability
and performance issues requires the development of efficient algorithms, data
structures, and deep-learning architectures that can handle the demands of
large-scale RDFS materialization while maintaining acceptable noise-tolerance and
reasoning accuracy.

2.2.4. Soundness and Completeness of Reasoners

Deterministic solutions, such as rule-based reasoners, primarily focus on
soundness and completeness. Soundness ensures that any inferences drawn from the
input data are valid, while completeness guarantees that all possible valid inferences
can be derived. While these properties are essential for RDFS reasoning[2], [11],
deterministic solutions often assume that input data is accurate and noise-free. This
assumption may not hold in real-world scenarios, leading to potential inaccuracies
and incomplete materialization results. Comparatively, noise-tolerant approaches
like deep learning-based methods can be�er handle the inherent noise in web data
while still aiming to maintain soundness and completeness[2].

2.2.5. Noise-Tolerant Reasoning in Type Inference vs. Full RDFS Reasoning

Noise-tolerant reasoning in type inference focuses on inferring the types of
resources in RDF graphs despite noise [2]. While this is an essential step in RDFS
reasoning, it does not cover the full scope of RDFS materialization, which involves
reasoning over classes, properties, and their relationships [11]. In contrast, full RDFS
reasoning, as explored in the deep learning-based approach, extends noise tolerance
to handle type inference and other aspects of RDFS materialization[2]. This broader
scope enables a more comprehensive understanding of the RDF graph structure and
its entailments, providing a more effective solution to address noisy web data[2].

Rule-based reasoners are a popular deterministic solution for RDFS
materialization[2], [9]. They rely on a predefined set of rules to infer new information
from the RDF graph. While these reasoners are typically sound and complete, they
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may struggle to effectively handle noisy or incomplete data. Additionally, rule-based
reasoners can suffer from scalability and performance issues, especially when
processing large and complex RDF graphs. These limitations make it challenging for
rule-based reasoners to handle real-world web data's dynamic and noisy nature [2],
[5].

2.2.6. Advantages and Disadvantages of Deep Learning-Based Approach

The deep learning-based approach to RDFS materialization offers several
advantages over deterministic solutions, such as handling noisy and incomplete data
more effectively[2]. By leveraging advanced techniques like neural machine
translation and graph embeddings, deep learning-based methods can capture
complex relationships and constraints in RDF graphs, leading to more accurate and
reliable materialization results [2]. Additionally, given the right hardware resources
and optimized algorithms, deep learning models can potentially scale be�er than
rule-based reasoners [2].

The computational complexity of deep learning models can be a significant
challenge, as they often require specialized hardware and significant computational
resources. Moreover, deep learning models may be more difficult to interpret and
understand than rule-based reasoners, making it harder to diagnose errors or explain
the reasoning process [2].

2.3. Visual Representation of the Approach

2.3.1. Iteration Algorithm

This algorithm is the main driving force of the entire RDF graph processing
procedure. The algorithm iterates over all triples (subject, predicate, object) in the
RDF graph, sorted by the property. For each triple, it checks if the predicate is in the
properties dictionary. If it is not, the algorithm skips to the next triple. If the
predicate is in the properties dictionary but not the functional properties dictionary,
it is added to the functional properties dictionary. Then, the algorithm proceeds to
add the subject and object resources related to the predicate, look up the IDs of the
subject and object, and append these to the sparse encoding. The algorithm continues
this iterative process until it has processed all triples in the RDF graph[2].
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Figure 7. Visual representation of the iteration algorithm.

2.3.2. ADD_RESOURCE Algorithm

The ADD_RESOURCE function is a critical component of the RDF graph
processing procedure, which is designed to keep track of and assign unique
identifiers to resources (subjects or objects) in the RDF graph. The function accepts a
resource and a property as input. The property is used to determine the property
group. An ID is assigned if the resource is already in the global or local resources
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dictionary. If not, it is added to the local resources dictionary and assigned an ID.
The function ensures that all resources have unique IDs, whether globally or locally
scoped[2].

Figure 8. Visual representation of the ADD_RESOURCE function.
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2.3.4. LOOKUP_RESOURCE Algorithm

The LOOKUP_RESOURCE function retrieves a specific resource's unique
identifier in the RDF graph. Given a resource and a property, the function determines
the property group based on the property. Then, it checks if the resource is in the
usable global resources dictionary. If it is, the function returns the ID of the resource
from the usable global resources dictionary. If not, it checks if the resource is in the
local resources dictionary for the property group. If it is, the function returns the ID
of the resource from the local resources dictionary. The function raises an error and
exits if the resource is not found in either dictionary. This function ensures that each
resource in the RDF graph can be correctly and consistently identified during the
graph processing procedure[2].

Figure 9. Visual representation of the LOOKUP_RESOURCE algorithm.
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2.3.5. Layering RDF Graphs and Encoding as 3D Adjacency Matrices

The first step in the visual representation of the deep learning-based approach
involves layering RDF graphs and encoding them as 3D adjacency matrices [2]. This
process is crucial for efficiently representing the graph structure and simplifying the
subsequent reasoning process. Each graph layer corresponds to a specific aspect or
property, which is then encoded in a 3D adjacency matrix [2]. The layers can be
visualized as stacked 2D matrices, with each cell representing the relationship
between a pair of nodes in the graph.

Figure 10. 3D Adjacency matrix (tensor) excerpt. [2]

2.3.6. Graph Word Formation and Sequences

Once the RDF graph has been layered and encoded as a 3D adjacency matrix,
the next step is to form graph words and sequences. Graph words are formed by
extracting substructures from the adjacency matrices, which can then be arranged
into sequences representing the input graph and its entailments. These sequences
serve as the input and output for the neural machine translation process and are
crucial for understanding the relationships and entailments within the RDF graph.

46

https://sciwheel.com/work/citation?ids=14815202&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14815202&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14815202&pre=&suf=&sa=0


Figure 11. Converting the 3D adjacency matrix to a sentence of graph words [2].

2.3.7. RDFS Inference as Neural Machine Translation of Graph Word Sequences

The RDFS inference process in the deep learning-based approach can be
visualized as the neural machine translation of graph word sequences[2]. The neural
machine translation model takes the sequences of graph words as input and
generates new sequences that represent the inferred relationships and entailments
within the RDF graph. This translation process can be depicted as a series of
transformations applied to the graph word sequences, ultimately leading to a more
complete and accurate representation of the RDF graph[2].
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Figure 12. A visual representation of the RDFS inference process as neural machine
translation of graph word sequences [2].
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Figure 12. The stages of the deep learning-based RDFS materialization process.

2.4. Replication of the Deep Learning Paper

2.4.1. Goals and motivation

One of the objectives of this thesis is to deepen the understanding of the
original research, verify its findings, and potentially discover avenues for process
optimization. Another goal of the replication is to minimize the overall runtime of
the process. It is posited that a significant fraction of the time complexity in the
original study stems from the caching of intermediate data to disk. Such I/O
operations can significantly hinder performance, mainly when dealing with large
datasets [30], [36]. To mitigate this issue, a modification to the original algorithm is
proposed whereby all data is retained in memory, thereby eliminating the need for
disk caching. This adjustment, however, necessitates a thorough evaluation of the
memory footprint and possible trade-offs in terms of computational efficiency [2],
[16], [36].

The second goal of this replication is to gain an exhaustive understanding of
the process. The intention is to dissect each step of the original study, critically
examine the assumptions made, and thoroughly comprehend the mechanics of the
algorithm. This comprehensive exploration is not only expected to enable a more

49

https://sciwheel.com/work/citation?ids=14823929,14823813&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14823929,14816044,14815202&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=14823929,14816044,14815202&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0


accurate replication of the study, but it may also yield insights that could contribute
to improving the process or its application to related problems [7].

The third goal of the replication is to understand the encoding system
employed in the original research. Encoding is a fundamental component of
numerous data processing tasks, transforming raw data into a format more amenable
to specific analyses [2]. By scrutinizing the encoding system, the intention is to
understand its design, efficacy, and potential limitations. This understanding could
prompt suggestions for improvements or alternative encoding strategies.

2.4.2. Problems

In replicating the study, several unexpected challenges surfaced that added
complexity to the replication process while providing significant learning
opportunities. This section delineates the principal issues encountered and the
strategies implemented to address them.

The encoding system utilized in the original research was intricate and had
substantial implications for the study results [2]. However, it was observed that the
system documentation needed more clarity and comprehensiveness. This lack
impeded a complete understanding and accurate replication of the encoding
processes. Extensive time and effort were invested in interpreting the available
instances, and educated assumptions about the authors' intentions had to be made.

A considerable challenge was the discrepancy between the algorithm outlined
in the academic paper[2] and the implementation provided in the corresponding
GitHub repository [50]. This inconsistency bred confusion as a�empts were made to
reconcile the theoretical approach with the practical application. Often, it remained
ambiguous as to which version of the algorithm was the intended, necessitating
judgments based on an understanding of the overarching research objectives. An
illustrative example of this issue is the implementation of the encoding algorithm
from the repository.
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Figure 13. Process flow for the author’s implementation of the ADD_RESOURCE
algorithm. [50]

An additional obstacle emerged in relation to SPARQL queries, which were
employed for graph generation and inference in the original study. Documentation
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for these queries was scant, making comprehension of their structure and function
reliant on an in-depth knowledge of the SPARQL query language and the specific
dataset in use. Significant effort was expended in mastering SPARQL and
experimenting with diverse queries to understand their impact on graph generation
and inference processes.

Further complications arose due to system-dependent functions, such as the
SPARQL DESCRIBE function [30] and the file structure. These elements of the
original code were tailored to the specific system on which the initial research was
conducted, resulting in compatibility issues with the replication system. To resolve
this, the code had to be altered to fit the configuration of the replication system,
necessitating a comprehensive understanding of both the original and the replication
systems.

Finally, discrepancies were identified between the TBOX and ABOX utilized
by the original author and those available from the LUBM dataset. These differences
affected the thesis’ outcomes, and reconciling these inconsistencies proved
challenging. Time had to be invested in examining the LUBM dataset and the
author's unique application of it to comprehend the implications of these variances.

2.4.3. Results

Initial a�empts to replicate the encoding classes outlined in the original study
were unsuccessful, primarily due to insufficient documentation and disparities
between the research paper and its corresponding GitHub repository [30]. Rather
than a�empting to reconstruct the precise encoding classes, the decision was made to
utilize those already in existence, despite their differences. This course of action
allowed for a greater focus on the overarching principles of encoding and their
implications on the results of this thesis.

The replication of the graph inference algorithm presented notable challenges.
The paper did not document the algorithm, necessitating exploring alternative
methods for understanding and implementation. Initial efforts centered on manually
stating the logic based on available information. While this provided some insight, it
did not yield the anticipated results due to the algorithm's complexity and the
scarcity of detail. Subsequent efforts involved the Jena inference engine, briefly
referenced in the original paper [30].

While the Jena engine facilitated some degree of inference, it fell short of fully
replicating the original algorithm. The discrepancies observed in the results
underscored the intricate nature of the inference process and the influence of various
factors on the outcomes.
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Example 14: Triples from the <h�p://www.Department0.University0.edu
/AssistantProfessor0/Publication0> graph, provided in the GitHub repository by the
study’s author.

For convenient reading the prefixes have been replaced as follows:

http://www.Department0.University0.edu as "Uni0Dep0"
http://www.w3.org/2000/01/rdf-schema as "rdfs:"
http://www.w3.org/1999/02/22-rdf-syntax-ns as "rdf:"
http://www.Department0.University0.edu" as "Uni0Dep0"
http://swat.cse.lehigh.edu/onto/univ-bench.owl#" as "ub:"
AssistantProfessor as “AProf”
GraduateStudent as “GrStud”

<Uni0Dep0/AProf.0/Publication0> <ub:publicationAuthor> <Uni0Dep0/GStud.113>

<Uni0Dep0/AProf.0/Publication0> <rdf:type> <ub:Publication>

<Uni0Dep0/AProf.0/Publication0> <ub:publicationAuthor> <Uni0Dep0/AProf.0>

<Uni0Dep0/AProf.0/Publication0> <ub:publicationAuthor> <Uni0Dep0/GStud.44>

<Uni0Dep0/AProf.0/Publication0> <ub:name> "Publication0"

These graph triples were supplied in the GitHub repository by the original
author of the paper [30]. The generation process of these triples was described as
utilizing the SPARQL DESCRIBE function, which is contingent upon the system and
RDF store in use. This process was successfully replicated using Python’s RDF
library and Apache Jena Fuseki SPARQL graph database engine[2]. The initial
approach entailed searching for triples where the graph name was present in the
"subject" or "object" fields. Subsequently, the replication in SPARQL involved
generating the immediate 1-hop neighborhood via a specific query.
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Example 15: SPARQL query for finding the 1-hop neighborhood:

CONSTRUCT {

?s ?p ?o .

}

WHERE {

{ <URI> ?p ?o . BIND(<URI> AS ?s) }

UNION

{ ?s ?p <URI> . BIND(<URI> AS ?o) }

}

The resulting set of triples can be represented visually as a graph. This
representation is beneficial in visually discerning the relationships and linkages
between the different entities in the graph.

Figure 14. Visual graph representation of the un-materialized Publication0 graph.

The collection of triples, as inferred by the original author of the paper, forms
another key component of the study. These inferred triples shed light on the RDF
graph's implicit information and underlying structure, demonstrating the power and
utility of semantic reasoning in knowledge extraction.

Figure 15. Visual graph representation of the inferred triples of the Publication0
graph.
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By combining the original input graph with the graph of inferred triples, a
materialized graph is produced. This graph encompasses all potential inferences, thus
rendering all relationships within the dataset explicit. A materialized graph provides
a comprehensive perspective of the dataset's interconnectedness. This fully
materialized graph augments the efficiency of querying and analysis procedures by
transforming all implicit knowledge into explicit representations.

Figure 16. Visual graph representation of the materialized Publication0 graph.

The final materialized graph, as provided by the original study's author,
comprises 13 triples. However, replication of the same proved to be unsuccessful.
The 2-hop neighborhood within the un-materialized ABOX and TBOX comprised 44
triples (A visualization of the graph is presented in Appendix A.), and this number
rose to 52 triples in the fully materialized ABOX and TBOX. Another methodology
a�empted involved retaining the highest level RDFS descriptions (i.e., those not a
subclass of any other Class apart from RDFS base classes). This method also did not
yield success, as the author's inference did not consistently refer to the topmost Class
node but frequently to the second or third [30].

The initial paper does not explain the materialization process in-depth, merely
stating that the Java Jena inference engine was employed [2]. The replication study
successfully executed the encoding and decoding on the extant dataset. This
operation served as an affirmation that the fundamental comprehension of the
encoding and decoding procedures was essentially accurate, irrespective of the
inability to replicate the precise classes accurately.

The final phase of the replication was dedicated to the training and inference
of data based on the existing dataset. The results revealed that both the training and
inference processes functioned effectively, further substantiating the understanding
of the encoding and the graph inference processes. These findings were promising,
demonstrating that meaningful outcomes could still be achieved.
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3. Evaluation

3.1. Evaluation Metrics and Methodology

Evaluation metrics and methodology form the cornerstone of any research or
experiment that necessitates a comparative analysis of distinct techniques or
methodologies. In contrasting Datalog-based and machine learning-based strategies
for RDFS materialization and link prediction assignments, selecting relevant
evaluation metrics and a solid methodology is critical for ensuring the credibility and
dependability of the outcomes. Several evaluation metrics can be utilized [51] to
assess the effectiveness of Datalog-based and machine learning-based approaches.
Accuracy is the ratio of accurately inferred edges to the total edges considered; this
metric assesses the methods' proficiency in predicting the correct linkages amongst
nodes in the RDF graph [2].

[2]

Another method is comparing the ratio of True Positives (TP), True Negatives(TN),
False Positives(FP), and False Negatives(FP).

[2]

Completeness is the metric that signifies the ratio of inferred edges to the total
possible edges in the RDF graph, reflecting the methods' capacity to generate all
potential inferences based on the RDFS schema.

[2]

Consistency refers to the degree of conformity of the materialized RDF graph to the
RDFS schema and its constraints, thus evaluating the methods' capability to generate
logically consistent inferences.
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By denoting V as the total number of inferences in the materialized RDF
graph, C as the number of these inferences that conform to the RDFS schema and its
constraints :

[2]

For measuring computational efficiency, the processing time needed to
materialize the RDF graph, measurable in terms of CPU time or wall-clock time,
serves as a metric to contrast the methods' performance relative to processing speed.
A possible metric for this would be dividing the number of inferences (N) in the
materialized RDF graph over the total processing time (T).

[51]

For the deep learning method, an even more detailed approach was
employed. Each phase of the process was individually timed, from the initial
encoding stage, through the generation of three-dimensional graph layers, to the
production of graph words, and finally to the training stage. This approach
facilitated a thorough examination of the time requirements at each stage, thereby
providing a complete picture of the overall computational efficiency of the deep
learning method.

The memory usage of the Datalog-based method was assessed as a whole
during the materialization process. This method's memory requirements provided a
benchmark for comparison, shedding light on the relative efficiency of the two
methods to memory utilization.

3.2. Dataset and Experimental Setup

Selecting a suitable dataset and an appropriate experimental setup constitute
key steps in comparing the performance of Datalog-based and machine
learning-based strategies for RDFS materialization. In this regard, the Lehigh
University Benchmark (LUBM) ontologies are a fi�ing choice given their detailed
design for evaluating semantic web technologies [4].

LUBM provides a variety of datasets, such as LUBM1, LUBM2, LUBM5, and
LUBM10, each signifying distinct sizes and complexities of RDF graphs. These
datasets encompass synthetic data about universities, departments, students, and
courses, among other related entities. These are generated in line with a predefined
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ontology and schema. By employing these datasets, researchers are empowered to
probe the scalability and efficiency of the Datalog-based and machine learning-based
methodologies across a spectrum of data volumes and complexities.

3.2.1. Preprocessing

Ensuring the RDF graphs encapsulated within the LUBM datasets were
correctly forma�ed and compatible with both the Datalog-based and machine
learning-based methods was most important. A discrepancy was noted during the
thesis between the URI prefixes in the initial TBOX and those in the subsequently
generated one. This difference posed a potential issue for consistency and
comparability of results across different process stages. It underscored the
importance of maintaining uniform naming conventions and consistent identifiers
throughout the lifecycle of the dataset. Careful a�ention to such details is crucial for
the reproducibility and robustness of the analysis, as discrepancies in URI prefixes
can influence the interpretation of results and the ability to draw accurate
conclusions.

3.2.2. Parameter tuning:

To replicate the original study as closely as possible, the initial parameters
were consistent with the original experiment's. This decision was premised on the
objective of ensuring a high degree of fidelity in the replication process[2]. Therefore,
no hyperparameter optimization was undertaken, despite its potential for enhancing
performance. This is because the primary goal was not to surpass the initial results
but to understand and validate the original findings. Thus, any modifications to the
initial parameters, such as hyperparameter optimization, were considered outside
the scope of this thesis.

3.2.3. Hardware and software configurations

The initial experiment used a Unix filesystem as the base for the original
study[2]. However, this codebase proved incompatible with a Windows 10 computer
without employing Linux subsystems. Initially, an a�empt was made to execute the
experiment on a Windows 10 platform, but it eventually became necessary to switch
to Ubuntu due to these compatibility issues. Regre�ably, some unforeseen memory
issues caused the Ubuntu operating system to fail. As a result, a transition to a Linux
Mint operating system was necessitated, and the experiment was successfully
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conducted. This transition illustrates the critical role that hardware and software
configurations can play in conducting and replicating computational experiments.

The system information was as follows:

Operating System: Linux Mint 21.1 Vera, based on Ubuntu 22.04 jammy, with Kernel
version 5.15.0-56-generic for 64-bit architecture.
Desktop Environment: Cinnamon 5.6.5, with GTK 3.24.33 and Window Manager
Muffin.
Machine: A Desktop with a Micro-Star B450 PLUS MAX (MS-7B86) motherboard,
UEFI by American Megatrends LLC. (version H.G0).
CPU: AMD Ryzen 7 2700X, an 8-core processor with 64-bit architecture, a Zen+
architecture, and a speed varying between 1887 MHz and 2719 MHz.
Graphics: NVIDIA GeForce GTX 1070, powered by a Micro-Star MSI driver. The
display was managed by X.Org v1.21.1.3 with a loaded NVIDIA driver.
Network: Realtek RTL8111/8168/8411 PCI Express Gigabit Ethernet.
Drives: Kingston SA400S37240G (223.57 GiB) and a Samsung SSD 860 EVO 500GB
(465.76 GiB).
Partition: The main partition (/) was 218.51 GiB, out of which 196.07 GiB was used.
Repos: The system had 2585 packages, 2574 from apt and 11 from flatpak.

During the experimental studies, the evaluation and comparison of memory
costs and runtime between the Datalog-based and machine learning-based methods
were deemed imperative. Memory costs were assessed by continuously monitoring
memory usage throughout the materialization process, while runtime was evaluated
by measuring the period required to materialize the RDF graphs. By examining the
memory costs and runtime across the ontologies (datasets) LUBM1, LUBM2, LUBM5,
and LUBM10, it was possible to gain an understanding of the scalability and
efficiency of the Datalog-based and machine learning-based methods within the
confines of RDFS materialization and link prediction tasks. This analysis pinpointed
each method's potential advantages and constraints, providing a foundation for
further exploration.

3.3. Memory Costs and Runtime for Datalog

To evaluate the performance of the deep learning method, the first step was to
evaluate the materialization performance of a traditional reasoner using Datalog and
compare it with the deep learning approach. This was executed to determine the two
methodologies' relative efficiencies and operational effectiveness.
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The results demonstrated the efficacy of a reasoner, chibi when executed on
diverse datasets (lubm1, lubm2, lubm5, lubm10, lubm20, lubm50) in a parallel
computing environment. Each dataset was subjected to a sequence of processing
phases: initial materialization, positive and negative updates. The preliminary
materialization phase entailed deriving new triples from pre-existing ones. In
contrast, positive updates implied the augmentation of inferred triples, and negative
updates signified the elimination of no longer valid triples.

The batch size, indicative of the count of triples processed concurrently,
escalated in conjunction with the dataset size, as was mirrored in the inference time.
The number of triples processed and the inference time, quantified in seconds,
exhibited a direct relationship with the batch size and the number of triples,
suggesting that the process duration extended with the enlargement of the dataset.
Interestingly, despite the escalation in triples and inference time across datasets, the
number of triples retained consistency across different phases within a singular
dataset. This insinuated that neither were new triples inferred nor were any triples
discarded during the positive and negative update stages.
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Table 1. Materialization results using a Datalog reasoner on various
LUBM datasets.

Dataset Batch Size Inference Time (s) Number of Triples Memory Used (KB)

lubm1 103391 0.87 145051 368448

lubm2 237461 2.09 329221 855412

lubm5 645974 5.91 889929 2251048

lubm10 1316657 12.74 1811142 4638192

lubm20 2781677 28.83 3823801 9779320

lubm50 6889057 79.53 9464860 23894516

The analysis revealed an intriguing pa�ern regarding dataset size, the
quantity of inferred triples, and memory utilization. Despite the dataset size
demonstrating a near-linear escalation (approximately 2 to 2.5 times) and the inferred
triples also presenting a small growth (approximately 1.3 times the input), the
memory consumption illustrated an exponential surge across the datasets.

Figure 17. Memory usage over datasets.

It was also observed that memory usage correlated linearly with inference
time. This suggests that as the dataset size and the inference complexity grow, the
memory requirements disproportionately amplify, resulting in an exponential
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memory footprint. This raises significant concerns about scalability and performance,
especially when dealing with larger datasets and more complex inferences.

Figure 18. inference time compared to the memory used.
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3.4. Memory Costs and Runtime for Deep Learning

To ensure the generalizability of the findings, the entire process was replicated
ten times, except for training the model trained on both the CPU and GPU just once.
This strategy facilitated mitigating anomalous results that could distort the outcome
due to chance variables. Therefore, the performance measures obtained from each
run were averaged, providing a more representative and reliable estimate of the
metrics.

The model training for the materialization of the RDF graph was partitioned
into ten progressive phases to monitor the distinct stages of the operation. The first
stage involved loading the data from the un-materialized ABOX and TBOX files and
preparing it for further processing. The graph creation took approximately 5.04
seconds and used 140.56 MiB of memory. Filtering BNodes consumed about 1.99
seconds and 83.46 MiB of memory.

Generating 1-hop sub-graphs required 1.88 seconds and 54.09 MiB of memory,
while processing the ABOX dataframe took 5.47 seconds and used 33.86 MiB. The
total time taken for this step was approximately 14.38 seconds, and the memory used
was approximately 1379.74 MiB. In the second step, dictionaries were created.
Creating the properties dictionary took 0.15 seconds and used 0.14 MiB of memory.
Meanwhile, the resources dictionary was created in 0.02 seconds without significant
memory usage, and the sub-properties dictionary was created in 0.09 seconds, using
0.05 MiB of memory.
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Table 2. Mean time and memory usage for data preparation and model creation.

Step Task
Time Taken
(seconds)

Memory Used
(MiB)

1 Graph Creation 5.04 140.56

1 Filtering Bnodes 1.99 83.46

1 Generating 1-hop Sub-graphs 1.88 54.09

1 Processing the Whole ABOX Dataframe 5.47 33.86

2 Creating Properties Dictionary 0.15 0.14

2 Creating Resources Dictionary 0.02 0

2 Creating Subproperties Dictionary 0.09 0.05

3 Creating Graph Catalogue 19.05 538.40

4 Encoding the Graph 11.34 39.28

5 Creating Graph Words 0.29 8.77

6 Creating Matrix Embedding 18.91 89.11

7 Training-Test Split 0.05 0.32

8 Creating Graph Words Encoder, Graphs, and Model 3.14 7730.86

9 Training the Model (CPU) 5549.03 19892.32

9 Training the Model (GPU) 2193.40 -

10 Evaluating the Model 94.16 1038.75

The third step involved creating a catalog, where the graph words encoder
was created, and graphs were generated from the read files. This process took about
19.05 seconds and used 538.40 MiB of memory. The fourth step involved encoding
the graph, which took approximately 11.34 seconds and used 39.28 MiB of memory.

In the fifth step, the graph words were created in 0.29 seconds, and the
memory used for this process was 8.77 MiB. The sixth step was to create matrix
embeddings, which took about 18.91 seconds and used 89.11 MiB of memory. In the
seventh step, the dataset was split into training, validation, and test sets in the ratio
of 60:20:20, respectively. The process took 0.05 seconds and used 0.32 MiB of
memory. The eighth step was to create the graph words encoder, graphs, and model.
This step took approximately 3.14 seconds and used a significantly larger memory
chunk of 7730.86 MiB. The ninth step involved training the model for 200 epochs
with a batch size of 128. The model training took a considerable amount of time,
approximately 5549.03 seconds. The final step was to evaluate the model on the test
set, which took about 94.16 seconds and used 1038.75 MiB of memory. The model
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achieved a test set accuracy of 0.9881, indicating that the model was able to correctly
predict the class of the instances about 99% of the time.

The table illustrates a significant improvement in speed from Step 1 (graph
creation) to Step 3 (creating graph words encoder and graphs). While the graph
creation process in Step 1 took around 5.04 seconds, the process in Step 3 was
approximately four times faster, taking about 19.05 seconds. This speed increase
could improve overall system efficiency and throughput.

A high memory usage was observed during the creation of the Graph Words
Encoder, Graphs, and Model in Step 8, consuming approximately 7730.86 MiB. This
step is significantly more memory-intensive than others, which may require more
efficient memory management or higher capacity hardware for large-scale
applications. The model training process (Step 9) is the most time-consuming, taking
about 5549.03 seconds or 1.5 hours. Training the model on the GPU was around 2.52
times faster or around 2193.40 seconds. This indicates that while other steps have
been optimized for speed, model training remains a computationally intensive
process that may benefit from additional optimization efforts. The model evaluation
in Step 10 is also quite time-consuming, taking 94.16 seconds. This is a critical step to
measure the model's performance, and this time might increase with the model's
complexity and the test dataset's size.

The model achieved an accuracy of approximately 0.9881 on the test set. While
this is a good result, there may be room for further model improvement or tuning to
achieve higher accuracy. While the results show a promising speed increase in graph
creation and processing, the lack of documented inference during these steps limits
the full utilization of these methods. Future work should focus on improving the
transparency and traceability of the processes to leverage their potential fully.

The evaluation of the inference process for a single graph revealed a period
ranging from 1 to 30 seconds, which, while seemingly inconsequential in isolation,
amplifies significantly when dealing with larger data sets. For instance, in a scenario
with over 20,000 graphs, this time consumption rapidly escalates, rendering the
process untenably slow. Consequently, in terms of efficiency, the graph reasoner falls
markedly short compared to its Datalog counterpart. The differential efficiency
between the two underlines the challenges that persist in optimizing the performance
of graph reasoners for extensive, complex datasets and emphasizes the ongoing
relevance of traditional Datalog reasoning methods in specific contexts.
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4. Conclusion

Graph Neural Networks (GNNs), a branch of deep learning methods
explicitly designed for graph-structured data, have arisen as potent instruments for
addressing the challenges inherent in the scalability of machine learning-based link
prediction techniques, especially for large-scale graphs[2], [48]. GNNs can discern
complex pa�erns and relationships between nodes by integrating local and global
information, using iterative message-passing mechanisms to update node
embeddings and generate representations encapsulating local and global graph
structures. However, these methods have challenges, including the interpretability of
models like GNNs. Discerning the reasoning behind these models' predictions is vital
for building trust and ensuring their applicability in real-world scenarios. Despite
this, a deep learning-based approach for RDFS materialization could potentially
overcome various issues associated with traditional methods, such as computational
and storage demands, handling of noisy or incomplete data handling, and
scalability[2]. By leveraging GNNs, more robust and efficient techniques for RDFS
materialization could be developed, capable of managing large, complex, and
dynamic datasets.

Traditional RDFS reasoners emphasize soundness and completeness,
presuming that the incoming data is precise and devoid of discrepancies. However,
this presumption often fails to align with real-world situations where data might be
partial, inconsistent, or contradictory [9]. These reasoners typically need help with
such unclean data, resulting in imprecise or incomplete materialization outcomes.
The task, therefore, is to devise reasoning methodologies that can effectively deal
with the inherent discrepancies in web data without compromising soundness and
completeness [2], [8]. The Web of data is intrinsically fraught with discrepancies due
to various factors like data entry mistakes, inconsistencies in data sources, and the
volatile nature of web data. This noise presents significant hurdles for traditional
RDFS reasoning techniques, which are constructed to function based on the premise
of accurate input data [2], [3]. The existence of noise can precipitate incorrect
inferences, affecting the overall quality and dependability of the materialization
process. Overcoming this challenge calls for the evolution of noise-resilient reasoning
techniques to manage incomplete and inconsistent data while preserving the
required degree of soundness and completeness [2].

In assessing the inference process, a single graph took between 1 to 30
seconds, a timeframe that becomes problematic when handling larger datasets of
over 20,000 graphs. The graph reasoner, therefore, lagged significantly in efficiency
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compared to its Datalog counterpart. This highlights the optimization challenges for
graph reasoners with extensive datasets and underscores the continued relevance of
traditional Datalog methods in specific scenarios.

The research also highlighted the importance of clear and comprehensive
documentation of the encoding system used in the study, which was found to be
lacking, inhibiting complete understanding and accurate replication of the encoding
processes. Additionally, inconsistencies between the algorithm detailed in the
academic paper and the implementation provided in the corresponding GitHub
repository further complicated the replication process, often leaving the intended
version of the algorithm unclear. The replication of the graph inference algorithm
presented significant challenges due to its complexity and the need for more detailed
documentation. Despite efforts to manually state the logic and use the Jena inference
engine, the results fell short of fully replicating the original algorithm, highlighting
the intricacies of the inference process and the influential role of various factors in
achieving the outcomes.
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