
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Illia Tsiporenko

Going Beyond U-Net: Assessing Vision
Transformers for Semantic Segmentation

in Microscopy Image Analysis

Master’s Thesis (30 ECTS)

Supervisor(s): Dmytro Fishman, PhD

Pavel Chizhov, MSc

Tartu 2024

Going Beyond U-Net: Assessing Vision Transformers for Semantic
Segmentation in Microscopy Image Analysis

Abstract:
Segmentation is one of the crucial steps in biomedical image analysis. Many approaches
were developed over the past decade to segment biomedical images, ranging from classi-
cal segmentation algorithms to advanced deep learning models, with U-Net being one
of the most prominent. Recently, a new class of models has appeared — transformers,
which promise to enhance the segmentation process of biomedical images. We explore
the efficacy of the well-established U-Net model and newer transformer-based models,
including UNETR, Segment Anything Model, and Swin Transformer, across various
image modalities such as electron microscopy, brightfield, histopathology, and phase-
contrast. Additionally, we identified several limitations in the original Swin Transformer
architecture and addressed those via custom modifications to the original model to opti-
mise its performance. Our results indicate that these modifications improve segmentation
performance compared to the classical U-Net model as well as to the original unmod-
ified Swin. While results show that transformer models hold promise, especially in
handling complex image structures, our practical experience shows that deploying these
models can be difficult. This work compares popular transformer-based models against
U-Net and shows that with thoughtful modifications, the efficiency and applicability of
transformer models can be enhanced, paving the way for their future integration into
microscopy image analysis tools.

Keywords:
Deep learning, Neural networks, Image segmentation

CERCS: T111, P176

2

U-Netist Edasi: Masinnägemise Transformerite Semantilise Segemen-
teerimise Hindamine Mikroskoopia Pildianalüüsis
Lühikokkuvõte:
Segmenteerimine on biomeditsiinilise piltdiagnostika üks olulisemaid osi. Viimase küm-
nendi jooksul on biomeditsiiniliste piltide segmenteerimiseks välja töötatud palju lähe-
nemisviise, alates klassikalistest segmenteerimisalgoritmidest kuni täiustatud süvaõppe
mudeliteni nagu näiteks U-Net. Hiljuti on välja tuldud uue mudeliklassiga – transfor-
meritega, mis lubavad suurendada biomeditsiiniliste piltide segmenteerimistäpsust. Ma-
gistritöös uuritakse U-Neti mudeli ja uuemate transformeripõhiste mudelite, sealhulgas
UNETR, Segment Anything Model ja Swin Transformer, täpsust erinevate biomeditsiini-
liste piltide modaalsuste puhul nagu elektron-, helevälja- ja faaskontrastimikroskoopia
ning histopatoloogia. Lisaks tuvastatakse algses Swin Transformeri arhitektuuris mitmeid
piiranguid ning pakutakse välja muudatusi mudelis selle täpsuse parandamiseks. Töö
tulemused näitavad, et need modifikatsioonid parandavad segmenteerimistäpsust nii klas-
sikalise U-Neti mudeli kui ka algse Swin mudeliga võrreldes. Kuigi tulemustest ilmneb,
et transformerid on paljutõotavad, seda eriti keerukate pildistruktuuride käsitlemisel, näi-
tab meie praktiline kogemus, et nende mudelite kasutuselevõtt võib-olla keeruline. Selles
töös võrreldakse populaarseid transformeripõhiseid mudeleid U-Netiga ja näidatakse, et
läbimõeldud muudatustega saab transformerite täpsust ja rakendatavust suurendada, mis
sillutab teed nende integreerimiseks mikroskoopia pildianalüüsi meetoditesse.

Võtmesõnad:
Süvaõpe, närvivõrgud, pildi segmenteerimine

CERCS: T111, P176

3

Contents
1 Introduction 6

2 Background 7
2.1 Segmentation . 7
2.2 Classical segmentation algorithms . 7
2.3 Deep Learning . 8
2.4 Multilayer Perceptron . 9
2.5 Convolutional Neural Networks . 10

2.5.1 U-Net . 12
2.5.2 UperNet . 13

2.6 Attention-based Neural Networks . 15
2.6.1 Vision Transformers . 18
2.6.2 Segment Anything . 21

2.7 Metrics . 22
2.8 Loss functions . 23
2.9 Optimisers . 23
2.10 Scheduler . 24

3 Method 26
3.1 Datasets . 26
3.2 Segmentation models . 27

3.2.1 U-Net . 29
3.2.2 UNETR . 29
3.2.3 SAM . 29
3.2.4 Swin Transformer . 29
3.2.5 Swin Modifications . 31
3.2.6 Additional modifications of Swin-TB 32

3.3 Training pipeline . 34
3.3.1 Data Preparation and Augmentation 34
3.3.2 Training Details . 35
3.3.3 Evaluation metrics and Testing 35
3.3.4 Computational resources . 35

3.4 Writing aid . 36

4 Experimental Results 37
4.1 Comparison of Transformer Models 37
4.2 Comaprison of Swin Modifications . 38

4

5 Discussion 43
5.1 Limitations . 43

6 Conclusion 44

7 Acknowledgements 45

References 50

Appendix 51
I. Complexity . 51
II. Licence . 52

5

1 Introduction
Identifying objects in microscopy images is one of the first steps for biological and
medical studies [14]. The shift towards digital microscopy has considerably increased
the volume of image data, creating a demand for tools capable of swiftly and accurately
processing these images [3]. As the volume of digital images grows, manual analysis
becomes impractical, highlighting the importance of automated approaches.

Given the need for automated tools due to the increase in digital image data, this
study aims to compare traditional segmentation methods, notably Convolutional Neural
Networks (CNNs), against transformer-based approaches. While CNNs have established
themselves as solid and robust approaches for medical image segmentation [39], their
limitations in capturing long-range dependencies and complex spatial relationships in
images push us to explore alternative methods. To address these challenges, we turn to
transformer-based models characterised by their use of attention mechanisms [48]. These
mechanisms allow transformers to weigh the importance of different parts of an image,
potentially improving their ability to understand complex patterns and relationships.

In this study, we examine and assess a selection of models to understand their
performance in digital medical image segmentation. Among the traditional approaches,
U-Net, a CNN known for its utility in medical image segmentation, serves as our baseline.

Transitioning to transformer-based models, we explore the Swin Transformer [34].
This model introduces a hierarchical structure, enabling efficient processing of images at
varying scales, which is key for detailed feature capture within microscopy images.

Additionally, we assess UNETR [17], which is explicitly adapted for 2D segmentation
in our work. UNETR uniquely merges the practical and well-known aspects of U-Net
with the advanced capabilities of transformer architectures for segmentation tasks.

Furthermore, our study evaluates Segment Anything (SAM) [27], a foundational
model tested in its default configuration. As suggested by its name, SAM is designed
to segment a diverse range of objects, demonstrating its potential applicability across
various segmentation tasks without fine-tuning.

By studying these models, we aim to reveal the advantages and challenges of both
traditional and modern segmentation methods, particularly for analysing the images
found in digital medical microscopy.

6

2 Background
Image segmentation is one of the key aspects when working with medical images, as
it helps to outline important parts of the image. Effective segmentation methods and
techniques provide accurate and fast results compared to manual techniques. In this
section, we give an overview of concepts of image segmentation, ranging from classical
algorithms to advanced deep learning methods.

2.1 Segmentation
In computer vision, image segmentation is a process of assigning a label to every pixel in
an image. Simply put, this process involves partitioning an image into multiple segments,
or sets of pixels, typically to identify objects or boundaries — "segments" within images.
Segmentation can be classified into three categories:

• Semantic segmentation aims to categorise each pixel in an image without differ-
entiating between separate objects of the same class. For instance, in an image with
multiple cars, all cars would be labelled with the same class without distinguishing
between individual cars.

• Instance segmentation aims to categorise each pixel in an image, as well as
differentiate between individual objects of the same class. Following the previous
example, each car would be assigned a unique identifier, allowing for individual
recognition and analysis.

• Panoptic segmentation takes this process a step further combining the principles
of semantic and instance segmentation to provide a comprehensive image analysis.
It assigns a unique label to every pixel in an image, categorising them into broad
classes while distinguishing between individual instances within the same class.

2.2 Classical segmentation algorithms
Classical segmentation algorithms are foundational techniques in image processing and
computer vision that partition images into segments based on predefined criteria such as
pixel intensity, colour, or texture. Before deep learning, classical segmentation algorithms
were popular methods for categorising images into parts. Examples include Thresholding
[37], which splits an image by brightness, and Region growth [1], which groups similar
pixels. These techniques help identify and separate objects or areas in an image.

One of the most straightforward segmentation techniques is Thresholding. It involves
segmenting an image based on the intensity values of the pixels. By selecting a threshold
value, the image is divided into foreground and background, where pixels above the
threshold are assigned to one segment, and those below are assigned to another. This

7

method works well for images with high contrast between the segments but struggles
with more complex scenes.

Region-based segmentation methods, such as Region Growing, focus on grouping
pixels that satisfy a predefined similarity criterion. For example, the Region Grow-
ing algorithm starts with a set of seed points and expands these seeds by including
neighbouring pixels with similar attributes (e.g., intensity or texture). This method is
particularly effective for identifying objects within an image with a clear distinction in
pixel characteristics.

Clustering Algorithms, like K-means [25], are unsupervised learning methods that
group pixels into clusters based on their feature similarity without prior knowledge of the
segment number or type. These algorithms analyse the entire image’s pixel distribution
and allocate each pixel to the nearest cluster centre based on colour, intensity, or texture
features.

Another notable classical segmentation technique is the Watershed Algorithm [49],
which can separate touching objects within an image. Conceptually, the algorithm
visualises an image as a topographic landscape, with the brightness of pixels representing
elevation. The process begins by identifying markers in the image, which act as seeds
for future segments. These markers can be chosen based on intensity minima or through
manual selection, representing the starting points of different segments.

As the algorithm simulates flooding this landscape from the markers, it constructs
"dams" whenever "water" from different "basins" is about to merge, effectively delineat-
ing the boundaries between distinct regions. This flood simulation continues until the
entire landscape is "submerged", with the resulting "dams" forming the watershed lines
that segment the image.

2.3 Deep Learning
Even though classical segmentation methods are easy to apply and work well for basic
tasks, Artificial Neural Networks (ANNs) take things to the next level by better handling
complicated images [53]. In this work, we will explore ANNs and how they bring more
advanced solutions to image segmentation. ANNs are models that mimic the behaviour
of actual biological neural networks found in human and animal brains.

At the core of deep learning is an ANN model, which is a function that takes inputs,
such as images or text and gives outputs, e.g. classifications or predictions. This model
is defined by parameters — called weights that the learning algorithm adjusts to improve
the model’s performance. Adjusting these parameters is guided by a loss function, which
quantifies how far the model’s predictions are from the actual values.

A deep learning model can be thought of as a complex mathematical function
F dependent on a set of parameters W that takes inputs x and produces outputs y.
Mathematically, the model can be expressed as:

8

y = F(x|W) (1)

The loss function L measures the difference between the outputs ŷ of the model
and the actual targets y. This function is critical for evaluating the model’s perfor-
mance, guiding the optimisation process to improve its performance by minimising these
discrepancies. A general formula for the loss function can be expressed as:

L(y, ŷ) =
n∑

i=1

L(yi, ŷi) (2)

This formula represents the loss function L which calculates the sum of the discrep-
ancies measured by L between the predicted outputs ŷ and the actual targets y, across all
n samples in the dataset.

Deep learning algorithms adjust the model parameters W to minimise the loss
function L This adjustment is done using the gradient of the loss function concerning
each weight and bias, a computation efficiently performed through the calculus chain
rule. One of the common algorithms used to update the network parameters is Stochastic
Gradient Descent(SGD) [41]. The update rule can be expressed as follows:

∆w = −η∇wL (3)

where ∆w is the change applied to the weight w, η is the learning rate (a small,
positive parameter that controls the step size of the update), and ∂L

∂w
is the partial derivative

of the loss function L with respect to the weight w.

2.4 Multilayer Perceptron
One of the first types of ANNs developed was the Multilayer Perceptron (MLP), also
known as a Feedforward Neural Network (FFN) [42]. This model is rooted in the concept
of the perceptron [40] and the way the animal brain functions. MLPs consist of layers of
these perceptrons, or artificial neurons, where each neuron is connected to others through
edges, mimicking synapses and neurons in a biological brain. Each neuron receives
signals from the neurons in the previous layer, processes these signals internally, and
transmits the output to subsequent neurons (see Figure 1). The connection strength, also
known as the weight between neurons, can enhance or inhibit the signal transmitted
between them.

Activation functions are present in the model to learn complex patterns in the data,
introducing non-linearity. The output of each neuron in an MLP is passed through a
non-linear activation function. The most common ones are Rectified Linear Unit(ReLU)
in eq. (4), Tanh in eq. (5) and Sigmoid in eq. (6) functions. Among all of them, ReLU

9

Figure 1. Example of Feed-Forward Artificial Neural Network. Circles represent artificial
neurons, which are connected to each other. Green one — is an input to the network,
blue ones — are the neurons in the hidden layers of the network, and the red ones — are
the output of the network

usually leads to faster convergence of the loss and thus is broadly used as a common
activation function in different ANN architectures [28].

ReLU(x) = max(0, x) (4)

σ(x) =
1

1 + e−x
(5)

tanh(x) =
ex − e−x

ex + e−x
(6)

The behaviour of an individual neuron within an MLP layer is mathematically
described as follows:

y = f

(
n∑

i=1

wixi + b

)
(7)

where xi are the inputs to the neuron, wi are the weights associated with each input, b is
the bias, f is the activation function, and y is the output of the neuron.

2.5 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are designed to efficiently process images by
mimicking how we see things [31]. They apply convolutional filters [31] across an image
to pick up basic patterns like lines and curves at the start. As the image data moves
deeper into the network, these basic patterns are combined to recognise more complex

10

Figure 2. Example of Convolutional Neural Network. The input image is passed to
the network and processed by convolutional layers, which produce feature maps. Max
pooling is applied to reduce the dimensionality and keep relevant features. Afterwards,
the feature maps are flattened and passed into MLP layers and the final prediction is
obtained in the end

features, such as shapes or objects relevant to the task, like identifying what’s in a picture
(see Figure 2).

These filters create feature maps, essentially new versions of the image highlighting
specific features. As we go deeper into the network, the number of feature maps increases,
capturing more details, but their size gets smaller due to the downsampling process [31].
This process makes the network faster and helps it focus on the most essential parts of
the image.

When figuring out what’s in an image (classification), the CNN ends with a layer
that takes all it has learned from the feature maps to make a final guess. For tasks
where the network needs to output an image of the same size as the input, like in image
segmentation, there are particular ways to resize the feature maps back to the original
image size, like bilinear interpolation.

Training CNNs often results in gradient vanishing [5], where the value of the gradient
of a loss function diminishes with each layer during backpropagation, leading to minimal
or no updates in the weights of the earlier layers. This issue can drastically slow down
the learning process or result in the network failing to converge. One clever solution is
using residual blocks, as seen in the ResNet [28] (see Figure 3) architecture.

These blocks help the training process by allowing the initial input to skip some
layers and be added back into the output of later layers. This helps the network to learn
better and faster [28].

Besides that, it is a common thing to use the normalisation function in a network
to stabilise and accelerate the training of neural networks. Among these, Batch Nor-
malization [23] and Instance Normalization [46] are commonly used in many CNN
architectures.

Batch Normalization (Batch Norm) operates across the batch dimension, normalizing

11

Figure 3. Example of Residual Block [28]

the output of a previous activation layer by subtracting the batch mean and dividing by
the batch standard deviation. Additionally, it introduces two trainable parameters, scale
and shift, to enhance the network’s representational ability. This process helps to mitigate
the issue of internal covariate shift, where the distribution of network activations changes
during training, thus speeding up convergence and enabling the use of higher learning
rates.

Instance Normalization (Instance Norm), on the other hand, is primarily used in style
transfer applications. It normalises the data across each channel in each training example
independently. By doing this, Instance Norm can preserve the contrast of each image,
making it particularly effective for tasks where the relative distribution of features within
an instance matters more than across the batch.

Both normalization techniques adjust the data in different ways to suit various types
of neural network applications. Batch Norm is more universally applicable and beneficial
in deep learning models for tasks like image classification. In contrast, Instance Norm
finds its niche in style transfer and tasks emphasising per-instance data processing.

2.5.1 U-Net

Transitioning from general CNN architectures, it becomes apparent that traditional ap-
proaches may not fully meet the image segmentation tasks. Image segmentation requires
not only identifying objects within an image but also precisely outlining their shapes.
To address this, architectures like U-Net [39] have been developed for segmentation,
offering a structured way to maintain the global context and fine details necessary for
accurate segmentation.

U-Net is a CNN that was initially developed for biomedical image segmentation tasks.
While traditional CNNs excel in identifying and classifying entire images into distinct
categories, the process involves reducing the image size through its layers. However,
segmentation tasks demand the network to generate an output — a segmentation mask,
that maintains the original dimensions of the input image. U-net provides an elegant
solution introducing encoder-decoder type architecture (see Figure 4).

12

Figure 4. Representation of U-Net architecture [39]. The model consists of the encoder
(blue blocks), which extracts necessary features from the input image by applying
convolutional operations and max pooling (blue arrows), and the decoder (orange blocks),
which applies transposed convolution operations (yellow arrows) to decrease the feature
dimensionality and scale them up to original size of the input image. Black arrows
represent skip connections.

The encoder part consists of convolutional blocks, which contain convolutional
layers, normalisation layers, and activation function. This is followed by max pooling
that contracts the image, essentially producing feature maps with a greater number
of channels. The decoder part is symmetrical to the encoder. It consists of the same
convolutional blocks, but a transposed convolutional layer is used instead of max pooling
to upsample the feature maps produced by the encoder, decreasing the number of channels
and increasing the resolution. Feature maps from the encoder concatenated with the ones
from the decoder via skip connections, bringing local information to the model‘s output.

2.5.2 UperNet

UperNet [50] is designed as a decoder module for segmentation tasks, which handles
hierarchical and multi-scale image features derived from any hierarchical encoder. This
model is particularly adept at integrating features across different scales due to its
comprehensive architecture, which includes the Pyramid Pooling Module (PPM) [18]
and a Feature Pyramid Network(FPN) [32] — series of up-sampling and convolutional
layers that refine the segmentation outputs (see Figure 5).

UperNet begins by processing the multi-scale feature maps generated by the encoder
using FPN. These features range from high-resolution details to coarser, contextual
information, which is crucial for capturing both precise edges and broader textural
patterns within an image. The core of UperNet’s functionality lies in its ability to fuse
these diverse scale features effectively. This fusion process not only preserves the high-

13

Figure 5. UperNet architecture [50]. The model consists of a hierarchical backbone and
Feature Network Pyramid and Pyramid Pooling Module. FPN and PPM effectively utilise
the features produced by the backbone to produce feature maps with a rich representation
of the input image. These feature maps are passed to separate heads, each one designed
to handle a specific task.

resolution details but also enhances the model’s sensitivity to various spatial hierarchies
present in the input data.

Following the feature fusion, UperNet employs the PPM, a module designed to
aggregate contextual information at multiple scales. The PPM works by dividing the
feature map into varying-sized regions, thereby creating a ’pyramid’ of pooled features.
Each level of this pyramid:

1. Processes its designated region through pooling operations such as average or
max pooling, which summarizes the essential features within each area, thereby
reducing spatial complexity while retaining critical information.

2. The pooling operation at each pyramid level helps to compress the spatial informa-
tion, which emphasizes the most relevant attributes by focusing on broad to fine
details, thus ensuring that all levels of context from the image are captured.

The pooled features from each level of the pyramid are then up-sampled to match
the highest resolution level within the feature map. This step is crucial as it allows the
integration of detailed textural information with the broader, contextual information that
the lower levels of the pyramid capture. The up-sampling process ensures that the global
context captured at various scales is uniformly integrated, maintaining the integrity of
spatial details.

14

Figure 6. Dot-product self-attention
[48] Figure 7. Multi-head self-attention [48]

Finally, the outputs from the PPM and the initially fused feature maps are combined.
This combination leverages both the detailed local information and the global contextual
information, which is essential for producing a coherent and finely segmented output. The
combined feature map then undergoes further processing through additional convolutional
layers and up-sampling steps. These layers refine the feature integration, enhancing the
model’s ability to delineate precise object boundaries and improve the overall accuracy
of the segmentation task.

2.6 Attention-based Neural Networks
While U-Net efficiently captures spatial hierarchies and contextual information through
convolutional operations and skip connections, recently developed attention mechanisms
offer a complementary approach by explicitly modelling relationships between all parts
of the input data, regardless of their spatial distance. This ability to focus on specific
features across the entire image allows attention-based networks to handle complex
patterns and dependencies.

Attention-based Neural Networks utilise an attention mechanism [4] at its core,
mimicking human and animal cognitive attention. This mechanism can focus on specific
and relevant parts of the input, ignoring less valuable parts of it. These networks have
considerably improved the efficiency and accuracy of models in interpreting complex
data patterns.

The core idea of attention mechanisms in neural networks is to allow the model
to allocate its focus variably across different segments of the input data. For image
segmentation tasks, the network can concentrate on specific areas of an image that

15

Figure 8. Transformer architecture, consisting of encoder and decoder parts [48].

are more relevant to the segmentation task at hand, enhancing the precision of the
segmentation.

One of the most influential architectures incorporating attention mechanisms is the
Transformer model (see Figure 8), introduced by Vaswani et. al. [48]. Initially designed
for language processing tasks, its core idea has been adapted for use in various image
processing tasks.

At its core, the Transformer model uses scaled dot-product self-attention (see Figure
6), allowing it to assess the importance of different parts of the input data [48]. The
transformer consists of an encoder and decoder stacked N times and operates on a
sequence of tokens. In the encoder part, the input sequence is linearly projected into
queries Q, keys K of dimensionality dk, and values V of dimensionality dv. The next
step is calculating attention: the dot-product between keys and queries is calculated,

16

Figure 9. Vision Transformer architecture [11]. The input image is split into non-
overlapping patches of the same size, which are then linearly projected and passed into
the transformer encoder. The output of encoder is passed to MLP head to obtain final
predictions

representing the similarity between each query and key (attention weights). To prevent
the values of the dot product from becoming excessively large, attention weights are
divided by the square root of dimensionality dv. The final step is applying the softmax
function to produce the probability distribution over the whole sequence and compute
the weighted sum of the value vectors, producing the output representing the focus of
attention within the sequence. The attention can be expressed as follows:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (8)

After computing the attention, the output passed through the normalisation layer
and feed-forward network, followed by the final normalisation layer. For the model to
be able to distinguish between the tokens‘ positions in a sequence, positional encoding
is introduced in the model‘s architecture. Each input token is mapped to a positional
encoding vector, added to the input afterwards, before linear projecting. There are
multiple ways to create positional encodings [16]; the authors chose sine and cosine
functions of different frequencies. These functions can model cyclical patterns, enabling
the Transformer to capture and learn these repetitions quickly.

The decoder operates on similar principles, employing the exact attention mechanism
with a key difference: a mask is incorporated to prevent the decoder from accessing
future tokens, ensuring that predictions are made based on available information only.

17

Figure 10. SETR Architecture. The input image is partitioned into non-overlapping
patches, linearly projected and processed by the ViT encoder. The features produced by
the encoder is upscaled through the decoder part of the network [54].

Inputs to the decoder’s (MHSA) include outputs from the encoder. Generating the output
sequentially, one token at a time, the decoder references the encoder’s output at each step
to construct a representation of the input token sequence. This representation guides the
generation of subsequent tokens in the output sequence, continuing until the complete
sequence is formed.

The authors of the paper discovered that projecting the queries, keys, and values into
h distinct linear spaces and then calculating attention separately in each space in parallel
proved beneficial [48]. Afterwards, each output is concatenated back, resulting in the
final output values (see Figure 7).

2.6.1 Vision Transformers

Initially designed for handling sequential data like text, the Transformer model has found
a new application in image analysis through Vision Transformers (ViT) introduced by
Dosovitskiy et. al. [11], showing that its core principles are practical across different data
types. By applying attention mechanisms to visual content, ViT offers a novel approach
to understanding images, highlighting the potential for cross-domain applications of
Transformer architectures.

The first Vision Transformer (ViT) (see Figure 9) was designed for image classifi-

18

Figure 11. UNETR architecture[17]. The model consists of twelve stacked transformer
encoders, serving as a backbone and the U-Net-like decoder that processes features
generated by the backbone via transposed convolutions and convolution blocks.

cation tasks and demonstrated state-of-art results [11]. The core mechanisms that we
have described above were adopted for vision tasks. Instead of processing the full image,
as in CNNs, Vision Transformer splits the input image into non-overlapping patches,
which are then linearly projected and, essentially, can be treated as just a sequence of
tokens. Alongside, projected patches are summed up with trainable positional encodings
and extra learnable class embedding. ViT utilises the exact N times stacked transformer
encoder architecture as the original Transformer described in the previous section. The
final output from the encoder is then passed through a fully connected classification layer
to obtain the final predictions.

Based on the idea of ViT, the SETR model was introduced by Sixiao Zheng et.
al. [54]. SETR segments the input image into non-overlapping patches, treating them
as sequences and employing a ViT encoder to capture long-range dependencies and
contextual information within the image. The decoder of the network consists of convo-
lutional layers that process the feature produced by the encoder and bilinear interpolation
operations to upscale the feature maps to the original dimensions of the input image (see
Figure 10).

UNETR model, introduced by Hatamizadeh et. al. [17], is another model that utilises
ViT as an encoder. It was developed for 3D segmentation tasks in the biomedical domain.
The architecture of UNETR follows principles similar to those of U-Net (see Figure 11).
It consists of the encoder part, a ViT with twelve stacked transformer encoders (stages),

19

Figure 12. Hierarchical structure of
Swin Transformer compared to ViT [34]

Figure 13. Combination of two Swin
Transformer blocks, one with window
MHSA, followed by the second block
with shifted window MHSA [34]

Figure 14. Swin Transformer architecture. It consists of four stages. Each one
consists of Swin Transformer Blocks that utilise window MHSA and shifted
window MHSA, followed by patch merging operation. The input image is
partitioned into patches, linearly projected and passed into the transformer [34].

and the decoder part, which incorporates transposed convolution layers and convolutional
blocks described previously. The output from each third stage of ViT is passed through
convolutional blocks and concatenated with corresponding feature maps in the decoder.

Even though ViT and its modification showed commendable performance in various
vision tasks back in the day, limitations in a big patch size of 16× 16 and the concept of
patch embeddings restricting the model from operating on various image sizes pushed
researchers to find new approaches in applying transformers in computer vision tasks.

Addressing the limitations encountered with Vision Transformers (ViT) in tasks
requiring finer local details, the Swin Transformer model introduced by Liu et. al. [34]
provides an innovative approach that enhances the model’s applicability to segmentation
and detection tasks and is a universal encoder for computer vision tasks. The model‘s
architecture consists of stages built of Swin Transformer Blocks and Patch Merging
operations (see Figure 13 and Figure 14).

Central to its design is hierarchical representation, achieved through smaller, non-

20

Figure 15. Segment Anything architecture.

overlapping patches and a novel window-based self-attention mechanism. The input
image is split into non-overlapping small patches, usually of size 4× 4, which allows the
model to learn local information. Afterwards, the attention between patches is computed
within windows. To maintain the relationship and context between the pixels within the
different windows, the shifting window operation was introduced[figure]. The windows
are shifted each second Swin Transformer block diagonally. To capture a local and global
representation of the image, the Patch Merging operation was introduced. Patch Merging
essentially merges small patches into bigger ones in a hierarchical style (see Figure 12).
Passing the input through the Swin Transformer blocks and applying Patch merging for
N stages results in the final encoded representation of an input image that can be used
for various computer vision tasks.

The original approach for segmentation with Swin Transformer utilises UperNet
[50] as a decoder part of the network. The input image is passed through the Swin
Transformer, which produces the encoded representation, which is fed into the decoder
to obtain the final prediction. Though the UperNet itself is a separate model designed for
segmentation and scene understanding, only part of its architecture, consisting of PPM
[18] and FPN [32], is used in the segmentation process.

2.6.2 Segment Anything

Segment Anything Model (SAM) [27] has recently emerged as a noteworthy advancement
in image segmentation. SAM’s robust training on the extensive SA-1B [27] dataset that
contains 1 billion masks across 11 million images showcases a substantial effort towards
enhancing and uniforming segmentation techniques in computer vision. The model has a
heavyweight image encoder, which outputs dense image embeddings. These embeddings
are further passed into the mask decoder module alongside encoded prompts, which can
be either points or bounding boxes (see Figure 15). SAM operates in a portable mode,
facilitating a user-centric approach and enabling segmentation tasks with various prompts
like foreground/background points and rough boxes. The input image is passed into the
model alongside the bounding box prompts or point pormpts highlighting the object of
interest. Another option that SAM provides for segmentation is an automatic mode. The
process functions by creating a grid of points overlaying the input image. From each

21

point, SAM can generate multiple masks. The duplicates are removed via non-maximal
suppression [20]. Further enhancements to both the quality and quantity of the masks can
be achieved by employing additional techniques, such as making predictions on various
cropped sections of the image or refining the masks post-prediction to eliminate small,
isolated areas and fill in gaps.

2.7 Metrics
In the field of semantic segmentation, two commonly used metrics for evaluating model
performance are the F1 score and the Intersection over Union (IoU) score. Both metrics
provide insights into the accuracy and precision of the segmentation results.

The F1 score is a statistical measure used to evaluate the accuracy of a test. It
represents the harmonic mean of precision (p) and recall (r), incorporating both measures
into a single score. Precision refers to the proportion of positive identifications that
were correct, such as accurately segmented cells in a microscopy image, divided by the
total number of elements labelled as positive. On the other hand, Recall measures the
proportion of correct positives that were correctly identified, showing how many actual
positives were captured by the test. The F1 score provides a balanced view contribution
of recall and precision to the accuracy of the model. The F1 score can be mathematically
expressed as follows:

F1 = 2 · p · r
p+ r

(9)

The Intersection over Union (IoU) score, also known as the Jaccard index, evaluates
the accuracy of a segmentation model. It measures the overlap between the predicted
areas and the actual areas by dividing the area where both predictions and true values
overlap by the total area covered by both.

For example, if a model predicts the boundaries of cells in a microscopic image, IoU
would be calculated by taking the area where the predicted cell boundaries overlap with
the actual cell boundaries and dividing it by the area covered by both the predicted and
actual cell boundaries combined. This score helps determine how closely the model’s
predictions match the true data. The IoU can be mathematically expressed as follows:

IoU =
Area of Overlap
Area of Union

(10)

Both the F1 and IoU scores are crucial for evaluating the performance of semantic
segmentation models, as they provide complementary information. The F1 score focuses
on the balance between precision and recall, helpful in assessing the model’s accuracy.
In contrast, the IoU score evaluates how well the predicted segmentation aligns with the
actual boundaries of objects, which is crucial for understanding the model’s ability to
delineate objects precisely.

22

2.8 Loss functions
In semantic segmentation, accurately quantifying the difference between the predicted
segmentation maps and the ground truth is crucial for training robust models. Two
common loss functions used in segmentation tasks are Dice Loss [44] and Focal Loss
[33], each addressing specific challenges in segmentation tasks.

Dice Loss is designed to optimise the F1 score, making it particularly effective for
data with imbalanced class distributions. It measures the similarity between the predicted
segmentation and the ground truth, focusing on the overlap. The Dice Loss is formulated
as:

Ldice = 1− 2× |Y ∩ Ŷ |
|Y |+ |Ŷ |

(11)

Here, Y represents the ground truth and Ŷ the predicted segmentation. By max-
imising the overlap between Y andŶ , Dice Loss effectively minimises the segmentation
error.

Focal Loss, on the other hand, is designed to address the issue of class imbalance
by modifying the cross-entropy [9] loss so that it places more focus on hard-to-classify
examples. It reduces the relative loss for well-classified examples, directing the model’s
attention toward complex cases. The Focal Loss is given by:

Lfocal = −αt(1− pt)
γ log(pt) (12)

Here, pt is the model’s estimated probability for each class being correct, αt is a
weighting factor to balance class importance, and γ is a focusing parameter that adjusts
the rate at which easy examples are down-weighted.

2.9 Optimisers
Optimisers serve as the primary tools for the process of weight optimisation during the
training of the models. Adam [26], AdamW [35], and Lion [8] are commonly used
optimisers for solving segmentation tasks.

Adam is a highly popular optimizer renowned for its effectiveness in managing sparse
gradients in noisy scenarios [26]. It merges the benefits of two other stochastic gradient
descent extensions: Adaptive Gradient Algorithm (AdaGrad) [12] and Root Mean Square
Propagation (RMSProp) [45].

Adam computes an exponential moving average of both the gradient and its squared
values. The parameters, beta1 and beta2, control the decay rates of these averages. This
feature allows Adam to adjust the learning rate for each model weight individually,
based on the estimated first and second moments of the gradients. Consequently, Adam

23

Figure 16. OneCycle learning rate schedule over epochs with peak learning rate of 2e-5
on the twenty-fifth epoch [2].

often surpasses other stochastic optimization techniques in a variety of deep-learning
applications [26].

AdamW is an extension of the Adam optimiser, known for its adaptive learning
rate capabilities [35]. It addresses an issue where Adam’s adaptive learning rates could
interfere with regular weight decay, leading to suboptimal regularisation. By reformulat-
ing weight decay to directly adjust the weights independently of the adaptive learning
rate mechanism of the optimiser, AdamW enhances training stability and performance,
particularly in complex models.

Lion, on the other hand, is a newer optimizer that aims to combine the strengths of
adaptive learning rate optimizers [8] like Adam with those of momentum-based methods.
It introduces a dynamic learning rate adjustment strategy based on the model’s training
phase, potentially improving convergence speed and model performance.

2.10 Scheduler
The learning rate scheduler is a learning rate management strategy designed to optimise
the training process of deep learning models. It operates by varying the learning rate
in a pre-defined cyclical pattern that spans a single cycle across the total number of
training epochs. This cycle typically starts with a low learning rate, gradually increases
to a maximum, and then decreases back to the minimum. This method aims to quickly
converge to a reasonable solution initially when the learning rate is increasing and then
refine the solution during the decreasing phase, potentially leading to better overall
performance and faster convergence. One of the popular learning rate schedulers is

24

OneCycleLR [43] (see Figure 16).
The essential advantage of the OneCycleLR scheduler lies in its ability to prevent

the model from getting stuck in local minima, a common issue in training deep neural
networks. By strategically increasing the learning rate, it allows the model to explore
a broader range of solutions. Then, decreasing the learning rate ensures the model can
settle into a more optimal solution.

25

3 Method
In the previous section, we described various methods and techniques developed over
the past decade for solving segmentation problems ranging from classical algorithms to
advanced attention-based networks. Our work focuses on drawing a thorough comparison
between U-Net, which is recognised for its effectiveness in medical image segmentation
and notable transformer-based models: UNETR, SAM, and Swin Transformer. In this
section, we will describe the configuration of those models, the training and evaluation
approaches, and the datasets.

3.1 Datasets
For our study, we’ve assembled a diverse set of datasets, each representing different
microscopy image modalities and offering unique segmentation challenges (see Figure 17
for more details). These modalities include electron microscopy, brightfield, histopathol-
ogy, and phase-contrast. The LIVECell [13] dataset includes 5,239 images, focusing on
phase contrast. The Seven Cell Lines [15] dataset consists 3027 brightfield images. The
original MoNuSeg [29] [30] dataset includes 30 histopathology images, which we tiled
into smaller images of size 512× 512. The Electron Microscopy [52] dataset contains
465 images, focusing on electron microscopy type of images. Each dataset in our study is
partitioned into predefined training and validation splits. This comprehensive collection
allows us to thoroughly evaluate the segmentation capabilities of chosen models across
various real-world scenarios, ensuring a broad and in-depth assessment.

Table 1. Overview of datasets used in the study

Attribute LIVECell Seven Cell
Lines

MoNuSeg Electron
Microscopy

Modality Phase Contrast Brightfield Histopathology Electron
Microscopy

Target Object Individual
cells

Nuclei of cells Nuclei of tissue
cells

Various
objects

Channels 1 1 3 3

Images 5239 3023 140 465

Resolution 768× 512 1080× 1080 512× 512 Varies

26

Figure 17. Example image for each of the datasets. From left to right, from top to
bottom: histopathology image from MoNuSeg dataset [29] [30], brightfield image from
Seven Cell Lines dataset [15], electron microscopy image from Electron Microscopy
dataset [52], and phase-contrast image from LIVECell dataset [13].

3.2 Segmentation models
To effectively compare CNNs and transformers in microscopy image segmentation, we
selected specific models for our research. U-Net is a well-established CNN architecture
known for its robust performance in the microscopy domain [39]. Its architecture,
designed specifically for medical image segmentation [39], features a symmetric encoder-
decoder structure that effectively captures spatial hierarchies in the image.

We chose UNETR, SAM, and Swin Transformer for the transformer-based models.
UNETR is particularly interesting as it incorporates the efficient attention mechanisms
of transformers in its encoder, combined with a U-Net-like decoder, making it promising
for detailed image analysis [17]. We excluded SETR from our study for two reasons:
despite its architectural similarities to UNETR, the latter is specifically designed for
biomedical image segmentation, making it more suitable for our needs [17]. Additionally,
the Swin Transformer has demonstrated superior performance over SETR in handling
varying image scales and resolutions, due to its hierarchical visual features and shifted
windows mechanism, essential for processing the multi-scale structures commonly found
in microscopy images [34], making it a suitable choice for our study.

Lastly, SAM, trained on huge SA-1B dataset [27], introduces a unique segmentation
approach using user-generated prompts, such as bounding boxes or points, potentially

27

Figure 18. Swin-Conv modification. Here, we changed bilinear interpolation in the
decoder part of the network with the series of transposed convolutions and convolutional
blocks (Conv Module). The convolutional block consists of a convolutional layer, batch
normalisation and ReLU activation function. We also added a skip connection from the
input image right to the top layers of the decoder part of the network, passing the input
image through the convolutional block and concatenating it with the feature maps from
the decoder.

guiding the model towards generating more accurate and precise segmentation masks.
This feature makes it a valuable addition to our comparative study, potentially enhancing
the model’s performance in complex segmentation tasks.

28

3.2.1 U-Net

In this work, we chose U-net as our baseline model. We utilised the Segmentation
Models Pytorch framework (SMP) [21] to build it. ResNet34 [19], pre-trained on the
ImageNet [10] dataset, was used as the backbone for the network. We followed the
default parameters for the U-Net in the SMP framework and kept the number of stages in
the encoder part of the network set to 5. Each stage generates feature maps that are two
times smaller in spatial dimensions than the previous one.

3.2.2 UNETR

We have adapted the original UNETR model designed for 3D medical image segmenta-
tion to handle 2D images. We followed the original architectural design of the model
presented in the "UNETR: Transformers for 3D Medical Image Segmentation" paper [17]
with slight adjustments to make it work with 2D images - all of the Conv3D layers in the
decoder part of the network were replaced with Conv2D. As for the encoder part, we
utilised the base version of ViT (ViT-base) with a patch size of 16× 16 pre-trained on
the ImageNet [10] dataset.

3.2.3 SAM

We used a pre-trained SAM model, which utilises a ViT-base encoder, trained on the SA-
1B [27] dataset. We explored all three ways to segment images using SAM: activating
automatic segmentation, prompting it with points and providing bounding boxes as
prompts. Bounding box prompts represent the highest degree of interaction with a model
compared to point prompts and automatic segmentation modes. The model expects
bounding boxes as input in the [B × 4] format, where B represents the number of output
masks. Similarly, the input format for point prompts is [B × N × 2], where B is the
number of output masks, and N represents the number of points per object. Automatic
segmentation, conversely, involves segmenting all possible objects and requires only
the input image. The image and corresponding point or box prompts must be supplied
to obtain the segmentation mask. To accurately assess the performance of the model,
we used the OpenCV [24] framework to generate relevant box and point prompts from
binary ground-truth masks. We created corresponding bounding boxes and point prompts
for each detected object in the binary mask. These prompts and the input image were
then fed into the model to obtain the final result.

3.2.4 Swin Transformer

In this work, we used a small version of Swin Transformer (Swin-small). The architecture
consists of Swin Transformer, which serves as the encoder part of the network, and the
UperNet decoder head, which processes the features Swin produces and outputs the

29

Figure 19. Swin-TB modification. Here we introduce an additional Swin stage. We
changed the patch size to 2×2 and kept the idea from the previous experiment — bilinear
interpolation is replaced with convolutional operations in the decoder part of the network.
We also kept the skip connection from the input image to the convolutional part of the
network in the decoder.

30

segmentation mask. We used a pre-trained model on the ImageNet dataset. The default
configuration of Swin utilises a patch size of 4× 4 with a window size of 7 (for more
details, see Table 3).

While exploring the Swin Transformer architecture, we identified several issues
inherent in the default network. Table 2 provides a detailed overview of these issues.

Table 2. Architectural Improvements. In this table, we describe the problems that
we found in the architecture of Swin Transformer and provide the way to solve them
alongside with explanations.

Limitations of the model Our Improvements Explanation
Patch size Decreased patches from 4×4

to 2× 2
Smaller patches increase the
resolution at which features
are processed, allowing the
model to capture more de-
tailed information crucial for
accurate segmentation.

Bilinear Interpolation in de-
coder

Replaced bilinear interpola-
tion with deconvolutions

Deconvolutions introduce
learnability to the upsampling
steps, aiming to preserve
more detailed information.

Lack of low-level textural in-
formation

Added skip connections Skip connections convolve
the input image and concate-
nate it with the output from
the decoder, helping in pre-
serving global context and
edge details crucial for high-
quality segmentation.

Limited Depth and Feature
Extraction

Integrated additional trans-
former stages

More stages allow the model
to learn richer and more
abstract representations of
the input data, enhancing
the model’s ability to aggre-
gate and synthesize features
across various scales.

3.2.5 Swin Modifications

In addressing the issues identified in the default Swin Transformer configuration, we
developed several architectural and configurational improvements. These modifications
are aimed at potentially enhancing the performance and adaptability of the model. Below,
we detail each variant and the changes implemented:

31

Swin-PS2 In this variant, we modified the patch size to 2× 2, focusing on refining the
ability of the model to capture finer details. All other parameters remained unchanged to
isolate the effect of this adjustment on the model’s performance.

Swin-Conv In this adaptation, we replaced bilinear interpolation after the feature fusion
of the decoder with transposed convolutions, followed by sequential convolutional blocks.
Each block comprises Conv2D layers with a kernel size of 3, padding of 1, a BatchNorm
layer, and ReLU activation. The transposed convolutions are set with a kernel size of
2, zero padding, and a stride of 2. We further enhanced the model by integrating a skip
connection, which processes the input image through a convolutional block and then
merges these feature maps with those generated by the decoder, as detailed in Figure 18.
This change is designed to improve the precision and clarity of the segmentation output.

Swin-TB In this modification, we first expanded the architecture by adding an extra
stage at the beginning of the backbone, which includes two Swin Transformer blocks
(see Figure 19). This addition aims to increase the ability of the model to process
complex features. A patch size of 2× 2 introduced even more local context to the model.
We also retained the changes made in previous experiments, such as replacing bilinear
interpolation with convolutional blocks and keeping skip connection. These adjustments
enhance the detail and the overall effectiveness of the segmentation process.

Swin-Pyramid Building on previous concepts, we changed the patch size to 1× 1 and
extended the model by adding two more stages, altering the embedding dimension to
24, in order to align with the desired embedding dimension of the default stages of Swin
and keeping the pre-trained weights of the backbone. The architecture was adjusted so
that outputs from the two additional stages are processed by an FPN as well, yielding
an output mask with the same width and height as the input image without the need for
additional convolutional or interpolation operations (see Figure 20).

3.2.6 Additional modifications of Swin-TB

In this section, we explore the further ways to enhance the Swin-TB modification. We
chose to modify this architecture specifically as we thought that it was a promising
combination of all our architectural improvements and ideas, described in Table 2.

Our first idea was to remove the skip connection on top of the network and keep
the rest of the parameters and layers the same. We wanted to see how skip connection
contributes to the ability of the model to produce accurate segmentation masks.

The other idea was to extend the model even more — adding two more stages and
changing the patch size to 1× 1 to get rich feature representation and capture even more
local information from the image. We modified the patch merging operation for these

32

Figure 20. Swin-Pyramid modification. Here, we changed the patch size to 1× 1 and
added two additional Swin Transformer stages with patch merging operation. The output
from these stages is passed right away to the FPN in the decoder part of the network.

33

two stages to keep the embedding dimension the same across added stages. The reason
behind this is to align the output dimensions from these two stages with the desired input
dimension to the pre-trained part of the network to keep the pre-trained weights. We
followed this idea by conducting another experiment, where we kept the original patch
merging operation and changed the initial embedding dimension to 24. In this case, after
two patch merging operations, the embedding dimension increases to 96 and perfectly
aligns with the rest of the network, keeping the pre-trained weights of the network

Table 3. Detailed overview of parameters of the small version of Swin Transformer
model (Swin-small).

Parameter Value

Patch size 4× 4
Embedding dimension 96
Window size 7
Depth of transformer 2, 2, 18, 2
Number of heads in each stage 3, 6, 12, 24
Hidden size in MLP layer 768

3.3 Training pipeline
Our training pipeline is designed to efficiently train the deep learning models described
above for microscopy image segmentation. This pipeline is implemented in Python,
utilising the PyTorch [38] library alongside various utilities to enhance the training
process and model performance.

The pipeline employs Hydra [51] for flexible configuration management, allowing
easy experimentation with different model architectures and training settings. The
Weights and Biases [6] framework was used to track, log, and compare experimental
results for this research.

3.3.1 Data Preparation and Augmentation

We initiate our pipeline by setting a deterministic seed to ensure reproducibility. Input
data is normalised and transformed using Albumentations [7]. We apply horizontal and
vertical flips and a random rotation to the input image. The choice of these augmentations
specifically aims to enhance the ability of the model to generalise across different
orientations and scales of the input images.

Horizontal and Vertical Flips help the model learn to recognise objects irrespective
of their orientation, which is especially important in medical imaging and microscopy,

34

where the orientation of samples can highly vary. Random rotations introduce rotational
variance, simulating different angles from which samples might be viewed, further
helping the model maintain accuracy regardless of rotational changes.

We also used random cropping of size 224 × 224. One of the reasons is to avoid
unnecessary padding in the Swin Transformer model. If the image dimensions were not a
multiple of the product of window sizes and scaling factors through the network’s layers,
the model would need to apply padding to process the data. This padding can introduce
artefacts and affect the model’s performance. Another key advantage of using random
crops is that it accelerates the training process and decreases its computational costs.

3.3.2 Training Details

Each model, along with its modifications, was trained for 150 epochs, a duration chosen
as optimal for convergence. We used a batch size of 16, the maximum that could fit into
our GPU memory. Throughout the training process, we sampled 500 random images
from the dataset for each epoch, providing diverse examples to enhance model robustness
and generalisation. We chose the combination of Dice Loss and Focal Loss to train our
models. We compute it as follows:

Ltotal = α× Ldice(Y, Ŷ) + β × Lfocal(Y, Ŷ) (13)

where Y is ground truth, Ŷ is the predicted mask, and α and β are the weight
coefficients set to 0.9 and 0.1, respectively, as it serves as the standard ratio.

We use a 0.9 coefficient for Dice loss to prioritize segmentation accuracy and manage
class imbalances effectively, while a 0.1 coefficient for Focal loss helps focus training on
challenging cases, ensuring a balanced approach to model specificity and generalisation.

3.3.3 Evaluation metrics and Testing

We used the F1 score and Intersection over Union (IoU) metrics to assess model per-
formance. These metrics help quantify the accuracy and precision of the segmentation
results. The evaluation of the models was done on a separate test set. We evaluated the
models using full-size images. As for the U-Net34 and UNETR, we applied a tiling
algorithm, partitioning the input image into overlapping tiles, predicting the mask for
each tile separately and then merging overlapping tiles with pyramidal weights back into
the final predicted mask.

3.3.4 Computational resources

All of the models were trained on the High-Performance Computer Cluster of the
University of Tartu, which contains Nvidia Tesla V100 GPU with 32 gigabytes of VRAM
and Nvidia Tesla A100 GPU with 40 and 80 gigabytes of VRAM [47].

35

3.4 Writing aid
We employed ChatGPT [36] and Grammarly [22] for assistance with text structuring
and generating LaTeX code for complex tables and figures, enhancing our document’s
efficiency and presentation.

36

4 Experimental Results
In this section, we will detail each experiment conducted and present the results for
each model, including their modifications, across various datasets. These experiments
aimed to thoroughly compare the efficacy of conventional U-Net and transformer-based
segmentation models across diverse microscopy image datasets, aiming to understand
their strengths and limitations in real-world applications. We will offer a comprehensive
comparison of U-Net34 against the transformer models. Additionally, we will analyse
our custom modifications to the Swin Transformer, comparing them to the baseline
Swin-small and U-Net models.

4.1 Comparison of Transformer Models

Table 4. Performance of transformer models compared to U-Net across datasets. Each
row represents the model, while each column represents the obtained F1 and IoU values
on each of the datasets. The best scores are highlighted in bold, and the second best
scores are underlined.

Model LIVECell Seven
Cell Lines MoNuSeg Electron

Microscopy
F1 IoU F1 IoU F1 IoU F1 IoU

U-Net 0.92 0.86 0.81 0.70 0.80 0.68 0.92 0.88
UNETR 0.93 0.87 0.80 0.68 0.82 0.70 0.83 0.75
Swin-small 0.90 0.84 0.79 0.66 0.82 0.71 0.91 0.85
SAM (Bounding Box) 0.86 0.76 0.78 0.64 0.88 0.79 0.87 0.80
SAM (Point Prompts) 0.57 0.46 0.27 0.16 0.71 0.57 0.61 0.52
SAM (Automatic Mode) 0.46 0.35 0.17 0.10 0.66 0.50 0.77 0.67

We fine-tuned U-Net, UNETR, and Swin-Basic (referred to as Swin-small) on each
dataset separately, following the training protocol outlined in Section 3.3. In contrast, we
assessed SAM’s out-of-the-box performance without any fine-tuning to evaluate its im-
mediate usability. The results, detailed in Table 4, show that U-Net consistently performs
well across all datasets, achieving the highest IoU of 0.88 on the Electron Microscopy
dataset. UNETR generally matches U-Net34’s performance but lags slightly on the
Electron Microscopy dataset. SAM, when using bounding box prompts, demonstrates
reasonable performance but does not reach the levels of the fine-tuned models. Perfor-
mance significantly drops when using point prompts and in automatic mode, particularly
on the Seven Cell Lines dataset.

37

4.2 Comaprison of Swin Modifications

Table 5. Detailed Comparison of Swin Modifications against U-Net Across Datasets.
Each row represents the Swin modification. The checkmarks show what has been added
to the modification. Deconv denotes a series of convolutional blocks and transposed
convolutional layers. Skip denotes the presence of skip connection from the input image
to the decoder part of the network. Extra Stage denotes the additional Swin stages in
the encoder of the network. Pyramid denotes the modification described in paragraph
3.2.5. The best score is highlighted in bold, the second-best score is underlined.

Model Modifications LIVECell Seven
Cell Lines MoNuSeg Electron

Microscopy
Patch
Size Deconv Skip Extra

Stage Pyramid F1 IoU F1 IoU F1 IoU F1 IoU

U-Net — — — — — 0.92 0.86 0.81 0.70 0.80 0.68 0.92 0.88

Swin-Basic 4× 4 — — — — 0.90 0.84 0.79 0.66 0.82 0.71 0.91 0.85
Swin-PS2 2× 2 — — — — 0.93 0.86 0.80 0.68 0.83 0.71 0.89 0.87
Swin-Conv 4× 4 ✓ ✓ — — 0.91 0.84 0.77 0.61 0.77 0.61 0.85 0.82
Swin-TB 2× 2 ✓ ✓ ✓ — 0.93 0.88 0.83 0.74 0.83 0.71 0.91 0.88
Swin-Pyramid 1× 1 — ✓ ✓ ✓ 0.91 0.85 0.80 0.67 0.80 0.67 0.90 0.84

Table 6. Comparison of different parameters and modifications of Swin-TB across all
datasets

Stages Patch
Size

Embed
Dim

Our
PM

Original
PM Skip LIVECell Seven

Cell Lines MoNuSeg Electron
Microscopy

F1 IoU F1 IoU F1 IoU F1 IoU

+1 2× 2 96 0.92 0.87 0.81 0.70 0.83 0.71 0.90 0.85
+2 2× 2 24 ✓ ✓ 0.91 0.85 0.78 0.65 0.82 0.69 0.91 0.87
+2 4× 4 96 ✓ ✓ 0.91 0.85 0.78 0.65 0.83 0.70 0.92 0.88

We fine-tuned all of the designed modifications on each dataset separately, utilising
the proposed train pipeline, described in Section 3.3 and draw a comparison between
U-Net and Swin-Basic models. From the Table 5 we can see that Swin-TB modification
excels across all datasets, surpassing U-Net. Notably, U-Net maintains almost the same
performance on Electron Microscopy. Also, Swin-PS2 shows solid performance and
does not fall behind too much. We also conducted a series of additional experiments
on the Swin-TB modification described in Section 3.2.6. As we can see in Table 6,
the performance of those improvements slightly falls behind the original Swin-TB
modifications and does not yield better results. Thus, we consider Swin-TB to be our
best modification.

38

Figure 21. Predicted segmentation masks on the given phase-contrast image from
LIVECell dataset. The colour in the image represents the predicted masks. Ground truth
mask represented as the white contour.

39

Figure 22. Predicted segmentation masks on the given brightfield image from Seven Cell
Lines dataset. The colour in the image represents the predicted masks. Ground truth
mask represented as the white contour.

40

Figure 23. Predicted segmentation masks on the given histopathology image from
MoNuSeg dataset. The colour in the image represents the predicted masks. Ground
truth mask represented as the white contour. The input image on the background of each
prediction is converted to grayscale for the visualisation purposes.

41

Figure 24. Predicted segmentation masks on the given electron microscopy image from
Electron Microscopy dataset. The colour in the image represents the predicted masks.
Ground truth mask represented as the white contour.

42

5 Discussion
Our experiments explored the capabilities of transformer-based models, such as UNETR,
SAM, and various versions of the Swin Transformer in recognising and segmenting
objects within biomedical images across different modalities.

The results displayed in Table 4 indicate that U-Net remains a robust model and a
good choice for semantic segmentation challenges in biomedical images. While UNETR
and Swin Transformer (Swin-small) perform on par, they still fall behind on datasets
such as Seven Cell Lines and Electron Microscopy. SAM delivered the best results by
utilising bounding boxes as the input prompt to the model, yet they achieved worse
results than other transformers. It is also worth noting that SAM requires user-generated
prompts to operate on images, demanding additional effort from the user. SAM also
tended to segment some unnecessary areas incorrectly, showing it lacked class awareness,
especially when automatic segmentation was activated (see Figures 24, 22, 23).

While the default version of Swin Transformer did not show promising results com-
pared to U-Net, our designed architectural modification, utilising convolutional blocks,
skip connection, and extended encoder, yielded impressive improvements compared
to the original architecture. Table 5 and Figures 22, 21 demonstrate that Swin-TB
modification achieved higher IoU and F1 scores across all datasets by better handling
complex spatial relationships. While the increase in performance is not drastic, it is still
noteworthy and shows that there is still room for improvement even in well-established
models like Swin Transformer.

5.1 Limitations
One primary limitation is the dependency on the quality and diversity of the datasets
used. Despite efforts to include a variety of image modalities, the results of our findings
may be limited to the types and characteristics of the datasets employed. For instance,
we did not include datasets with fluorescent microscopy images, which could provide
different insights and challenges compared to the modalities we used.

Another limitation arises from the computational resources required for training and
evaluating complex models like UNETR and Swin Transformer (see Table 7 for number
of parameters and FLOPs for each model). Such requirements may not be feasible in
all research environments, potentially limiting the broader adoption of these advanced
models.

Lastly, the scope of the thesis was restricted to 2D image segmentation. While many
microscopy imaging tasks are effectively handled in two dimensions, there are numerous
applications, particularly in volumetric imaging, where 3D models might be necessary.
For instance, studying 3D models of cysts and tumours requires capturing and analysing
volumetric data to fully understand their structure and progression. Therefore, the results

43

and conclusions drawn from this study may not directly translate to 3D applications,
necessitating further research and validation in those areas.

6 Conclusion
This work provides a thorough comparison between U-Net and modern transformers -
SAM, UNETR, and Swin Transformer in the framework of microscopy image analysis.
Our results illustrate that while modern transformer-based models perform comparably
to the robust U-Net, they can be improved. Particularly, in this work we proposed and
implemented a number of architectural modifications to the Swin Transformer. Experi-
ments that we have conducted have shown that these modifications notably enhance its
performance. To this end, our version of the Swin model, called Swin-TB, has surpassed
the U-Net and other alternative approaches across all tested microscopy datasets with
respect to the IoU metric. This improvement has come at the cost of a higher computa-
tional burden, which might render the application of our proposed model problematic.
Therefore, future research should focus on optimising the proposed transformer model
for real-world settings, improving its computational efficiency, and integrating it into
various microscopy image analysis workflows.

44

7 Acknowledgements
I want to express my sincere thanks to my supervisors, Dmytro Fishman and Pavel
Chizhov for their tremendous help, guidance, and support. I am also very grateful to the
Biomedical Computer Vision Lab and its members for their continuous support. Thank
you all for your encouragement and assistance.

45

References
[1] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(6):641–647, June 1994.

[2] Ayman Al-Kababji, Faycal Bensaali, and Sarada Prasad Dakua. Scheduling tech-
niques for liver segmentation: Reducelronplateau vs onecyclelr. 2022.

[3] Mohammed A. S. Ali, Oleg Misko, Sten-Oliver Salumaa, Mikhail Papkov, Kaupo
Palo, Dmytro Fishman, and Leopold Parts. Evaluating very deep convolutional
neural networks for nucleus segmentation from brightfield cell microscopy images.
SLAS DISCOVERY: Advancing the Science of Drug Discovery, 26(9):1125–1137,
2021. PMID: 34167359.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. 2014.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166,
1994.

[6] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software
available from wandb.com.

[7] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov,
Mikhail Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and flexible
image augmentations. Information, 11(2), 2020.

[8] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu,
Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. Symbolic discovery of optimization algorithms. 2023.

[9] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A
tutorial on the cross-entropy method, February 2005.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. 2020.

46

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12(61):2121–2159, 2011.

[13] Christoffer Edlund, Timothy R. Jackson, Nabeel Khalid, Nicola Bevan, Timo-
thy Dale, Andreas Dengel, Sheraz Ahmed, Johan Trygg, and Rickard Sjögren.
Livecell—a large-scale dataset for label-free live cell segmentation, August 2021.

[14] Dmytro Fishman, Sten-Oliver Salumaa, Daniel Majoral, Tõnis Laasfeld, Samantha
Peel, Jan Wildenhain, Alexander Schreiner, Kaupo Palo, and Leopold Parts. Practi-
cal segmentation of nuclei in brightfield cell images with neural networks trained
on fluorescently labelled samples, June 2021.

[15] Dmytro Fishman, Sten-Oliver Salumaa, Daniel Majoral, Tõnis Laasfeld, Samantha
Peel, Jan Wildenhain, Alexander Schreiner, Kaupo Palo, and Leopold Parts. Practi-
cal segmentation of nuclei in brightfield cell images with neural networks trained
on fluorescently labelled samples, June 2021.

[16] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. 2017.

[17] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko,
Bennett Landman, Holger Roth, and Daguang Xu. Unetr: Transformers for 3d
medical image segmentation. 2021.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. arXiv, 2014.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2015.

[20] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum
suppression. 2017.

[21] Pavel Iakubovskii. Segmentation models pytorch, 2019.

[22] Grammarly Inc. Grammarly. https://www.grammarly.com/, 2024.

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. 2015.

[24] Itseez. Open source computer vision library. https://github.com/itseez/
opencv, 2015.

47

https://github.com/itseez/opencv
https://github.com/itseez/opencv

[25] Xin Jin and Jiawei Han. K-Means Clustering, pages 563–564. Springer US, Boston,
MA, 2010.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
2014.

[27] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross Girshick. Segment anything. arXiv:2304.02643, 2023.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[29] Neeraj Kumar, Ruchika Verma, Deepak Anand, Yanning Zhou, Omer Fahri Onder,
Efstratios Tsougenis, Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu, Yunzhi
Wang, Navid Alemi Koohbanani, Mostafa Jahanifar, Neda Zamani Tajeddin, Ali
Gooya, Nasir Rajpoot, Xuhua Ren, Sihang Zhou, Qian Wang, Dinggang Shen,
Cheng-Kun Yang, Chi-Hung Weng, Wei-Hsiang Yu, Chao-Yuan Yeh, Shuang Yang,
Shuoyu Xu, Pak Hei Yeung, Peng Sun, Amirreza Mahbod, Gerald Schaefer, Is-
abella Ellinger, Rupert Ecker, Orjan Smedby, Chunliang Wang, Benjamin Chidester,
That-Vinh Ton, Minh-Triet Tran, Jian Ma, Minh N. Do, Simon Graham, Quoc Dang
Vu, Jin Tae Kwak, Akshaykumar Gunda, Raviteja Chunduri, Corey Hu, Xiaoyang
Zhou, Dariush Lotfi, Reza Safdari, Antanas Kascenas, Alison O’Neil, Dennis Es-
chweiler, Johannes Stegmaier, Yanping Cui, Baocai Yin, Kailin Chen, Xinmei Tian,
Philipp Gruening, Erhardt Barth, Elad Arbel, Itay Remer, Amir Ben-Dor, Ekate-
rina Sirazitdinova, Matthias Kohl, Stefan Braunewell, Yuexiang Li, Xinpeng Xie,
Linlin Shen, Jun Ma, Krishanu Das Baksi, Mohammad Azam Khan, Jaegul Choo,
Adrián Colomer, Valery Naranjo, Linmin Pei, Khan M. Iftekharuddin, Kaushiki
Roy, Debotosh Bhattacharjee, Anibal Pedraza, Maria Gloria Bueno, Sabarinathan
Devanathan, Saravanan Radhakrishnan, Praveen Koduganty, Zihan Wu, Guanyu
Cai, Xiaojie Liu, Yuqin Wang, and Amit Sethi. A multi-organ nucleus segmentation
challenge. IEEE Transactions on Medical Imaging, 39(5):1380–1391, 2020.

[30] Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Va-
hadane, and Amit Sethi. A dataset and a technique for generalized nuclear seg-
mentation for computational pathology. IEEE Transactions on Medical Imaging,
36(7):1550–1560, 2017.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition, 1998.

48

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. 2016.

[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal
loss for dense object detection. 2017.

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. 2021.

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 2017.

[36] OpenAI. Chatgpt. Software tool, 2023. Available from OpenAI: https://www.
openai.com/chatgpt.

[37] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66, Jan 1979.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. 2015.

[40] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain., 1958.

[41] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.

[42] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors, October 1986.

[43] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part
1 – learning rate, batch size, momentum, and weight decay. 2018.

[44] Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M. Jorge Car-
doso. Generalised dice overlap as a deep learning loss function for highly unbal-
anced segmentations. In M. Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer
Syeda-Mahmood, João Manuel R.S. Tavares, Mehdi Moradi, Andrew Bradley,

49

https://www.openai.com/chatgpt
https://www.openai.com/chatgpt

Hayit Greenspan, João Paulo Papa, Anant Madabhushi, Jacinto C. Nascimento,
Jaime S. Cardoso, Vasileios Belagiannis, and Zhi Lu, editors, Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
pages 240–248, Cham, 2017. Springer International Publishing.

[45] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop: Divide the gradient by a running
average of its recent magnitude, 2012. COURSERA: Neural Networks for Machine
Learning.

[46] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:
The missing ingredient for fast stylization. 2016.

[47] University of Tartu. High performance computing center, institute of computer
science, 2018.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
2017.

[49] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(6):583–598, June 1991.

[50] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified
perceptual parsing for scene understanding. 2018.

[51] Omry Yadan. Hydra - a framework for elegantly configuring complex applications.
Github, 2019.

[52] Batuhan Yildirim and Jacqueline M. Cole. Bayesian particle instance segmentation
for electron microscopy image quantification, March 2021.

[53] Ying Yu, Chunping Wang, Qiang Fu, Renke Kou, Fuyu Huang, Boxiong Yang,
Tingting Yang, and Mingliang Gao. Techniques and challenges of image segmenta-
tion: A review, March 2023.

[54] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao
Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip H. S. Torr, and Li Zhang.
Rethinking semantic segmentation from a sequence-to-sequence perspective with
transformers. 2020.

50

Appendix

I. Complexity

Model Params (M) FLOPs (G)

Swin-TB 82.1 224.9
UNETR 111.7 83.2
Swin-small 81.1 49.0
U-Net 24.4 6.0
SAM 93.7 —

Table 7. Model Parameters and FLOPs. We calculated the number of FLOPs by passing
the 3-channel image of size 224× 224 to the model. We cannot provide FLOPs for the
SAM model, as it depends on the number of prompts passed to the model, which can
vary.

51

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Illia Tsiporenko,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Going Beyond U-Net: Assessing Vision Transformers for Semantic Segmenta-
tion in Microscopy Image Analysis,

(title of thesis)

supervised by Dmytro Fishman and Pavel Chizhov.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Illia Tsiporenko
14/05/2024

52

	Introduction
	Background
	Segmentation
	Classical segmentation algorithms
	Deep Learning
	Multilayer Perceptron
	Convolutional Neural Networks
	U-Net
	UperNet

	Attention-based Neural Networks
	Vision Transformers
	Segment Anything

	Metrics
	Loss functions
	Optimisers
	Scheduler

	Method
	Datasets
	Segmentation models
	U-Net
	UNETR
	SAM
	Swin Transformer
	Swin Modifications
	Additional modifications of Swin-TB

	Training pipeline
	Data Preparation and Augmentation
	Training Details
	Evaluation metrics and Testing
	Computational resources

	Writing aid

	Experimental Results
	Comparison of Transformer Models
	Comaprison of Swin Modifications

	Discussion
	Limitations

	Conclusion
	Acknowledgements
	References
	Appendix
	I. Complexity
	II. Licence

