
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Computer Science

Computer Science Curriculum

Mihkel Uutar

Beyond Worst-Case Complexity of the

Simplex Method

Bachelor’s Thesis (9 ECTS)

Supervisor: Kallol Roy, PhD

Tartu 2024

Beyond Worst-Case Complexity of the Simplex Method

Abstract:

This thesis investigates the performance of the Simplex Method beyond its theoretical

worst-case by empirically assessing the effect of input distributions on efficiency.The

research consists of three experiments, which focus on different input distributions and

an optimized pivoting rule, the Zero-Exploiting Simplex Method (ZESM). The results

demonstrate that input distributions significantly affect performance with structured

sparse requiring fewer operations compared to dense matrices. Implementing ZESM

reduced the number of operations required by over 50% across various inputs. The

research aims to provide a foundation for future research to optimize the Simplex Method

based on input characteristics.

Keywords:

Simplex Method, Computational Complexity, Worst-Case Complexity, Input Distribution,

Empirical Research, Algorithm Optimization

CERCS:

P170 Computer science, numerical analysis, systems, control

Simplexi meetodi halvima juhu keerukusest edasi

Lühikokkuvõte:

See lõputöö uurib Simplexi meetodit teoreetilisest halvima juhu keerukusest kaugemale,

hinnates empiiriliselt sisendite jaotuste mõju sooritatud operatsioonide arvule. Praktiline

analüüs koosneb kolmest katsest, mis keskenduvad erinevatele sisendite jaotustele ja opti-

meeritud pööramisreeglile (ZESM). Tulemused näitavad, et sisendite jaotused mõjutavad

oluliselt vajaminevate operatsioonide hulka, kusjuures struktureeritud hõredad maatriksid

nõuavad vähem operatsioone võrreldes tihedate maatriksitega. ZESM-i rakendamine

2

vähendas erinevatel sisenditel nõutavate operatsioonide arvu üle 50%. Töö on aluseks

edasisteks uuringuteks Simplexi meetodi optimeerimiseks lähtuvalt sisendi omadustest.

Võtmesõnad:

Simplexi meetod, Keerukus, Halvima juhu keerukus, Sisendite jaotus, Empiiriline uuri-

mus, Algoritmide optimeerimine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-

teooria)

3

Contents

1 Introduction 5

2 Background 7

2.1 Linear Programming . 7

2.2 Beyond Worst-Case Complexity . 9

2.3 Simplex Method . 10

2.4 Empirical Experiments on the Performance of the Simplex Method . . . 12

3 Methodology 14

3.1 Design of Experiments . 15

3.2 Data Generation for the Experiments 16

3.3 Experiment 1 - Effects of Data Distribution 18

3.4 Experiment 2 - Effects of Optimizing the Simplex Method 19

3.5 Experiment 3 - Effects of Input Preprocessing 19

4 Results and Discussion 21

4.1 Experiment 1 . 21

4.2 Experiment 2 . 25

4.3 Experiment 3 . 29

5 Conclusion 32

References 34

Appendix 35

I. Code Repository . 35

II. Tables . 36

III. Licence . 45

4

1 Introduction

The Simplex Method is a linear programming algorithm used to solve optimization

problems. It was named as one of the 10 most important algorithms by the journal of

Computing in Science & Engineering [1]. Despite its theoretical polynomial worst-case

complexity, its practical performance is often near linear. This thesis looks beyond

worst-case complexity by proposing three research questions:

RQ1: How consistent is the performance of Simplex Method across different types

of input data distributions?

RQ2: What are the impacts of simple optimization techniques on the computational

expensiveness of the Simplex Method?

RQ3: How does input preprocessing affect the performance of the Simplex

Method?

This thesis investigates the effect of input distributions on the performance of the

Simplex Method. Three experiments are designed which use the number of operations

required to reach an optimal solution as a metric. As the research on the Simplex Method

is mostly concerned with theoretical research on pivot rules, the findings serve as a

foundational block for further research for optimizing the Simplex Method for specific

data distributions.

The thesis organization is as follows: (i) Background section introduces the necessary

mathematical preliminaries about linear programming, Simplex Method and worst-case

complexity analysis to understand the following contents; (ii) Methodology section

describes the tools and experiments used to evaluate Simplex Methods’ performance

across different data distributions; (iii) Results section presents the findings from three

practical experiments, evaluates the impact of data distribution and links the empirical

5

results with theoretical understanding. The discussion section underlines most important

findings, discusses potential optimizations and further areas of research.

OpenAI’s ChatGPT-41 has been used to improve the readibility and correct minor

spelling errors of this thesis. Artifical intelligence-based tools have not been used

to create any meaningful written content for this thesis. In the Visual Studio Code2

Integrated Development Environment (IDE) GitHub’s Github Copilot3 was used for code

recommendations and completion. All recommendations were carefully evaluated and

tested before implementation.

1https://openai.com/index/gpt-4/
2https://code.visualstudio.com/
3https://github.com/features/copilot

6

https://openai.com/index/gpt-4/
https://code.visualstudio.com/
https://github.com/features/copilot

2 Background

This section gives a necessary overview of linear programming, worst-case complexity

analysis and development of the Simplex Method. The information in this section serves

to support the practical research of this thesis and helps understand the research questions

and experiment design.

2.1 Linear Programming

Linear Programming is a mathematical method used to find an optimal solution to

an optimization problem by linear constraint. A large number of complex economics,

engineering or resource management problems, such as minimizing the cost of operations

or maximizing profit can be described as a set of linear constraints.

A linear program (LP) in standard form is defined as an optimization problem over

x ∈ Rm:

maximize cTx (1)

subject to ATx = b (2)

x ≥ 0 (3)

where:

• cTx is the objective function, whose value the algorithm aims to maximize

• ATx = b represents the constraints constraints under which the optimizations

needs to be performed

• and x ≥ 0 is the non-negativity constraint for the inputs.

7

To provide a visual example, a linear program with 3 constraints is visualized as a

polyhedron using a Python package GILP [2], developed by Robbins et al. Figure 1

displays the visualization of maximum value and Figure 2 visualizes the constraints of a

linear problem.

Figure 1. Visualized Maximum Value of LP Figure 2. Visualized Constraints of LP

The light blue polyhedron formed by the linear constraints in Figures 1 and 2 represents

the feasible region of the LP and the red dot represents the optimum value for that LP.

maximize Z = 7x1 + 9x2 + 6x3 (4)

subject to 6x1 + 7x2 + 2x3 ≥ 7

8x1 + 4x2 + 9x3 ≥ 5

7x1 + 5x2 + 4x3 ≥ 4

x1, x2, x3 ≥ 0

8

2.2 Beyond Worst-Case Complexity

Worst-case complexity provides an upper bound on the resources required by an

algorithm for any input size n, irrespective of the input’s distribution. Worst-case

complexity is expressed using Big-O notation, which categorizes algorithms according to

the rate at which their runtime increases as does the input size [3]. Common complexity

classes are Constant Time (O(1)), Linear (O(n)), Polynomial (O(nk))) where k is a

constant exponent and Exponential (O(2n)).

In 1970, Klee and Minty constructed an example of a linear program of n inequality

constraints and n variables, which required 2n − 1 iterations to be solved using Dantzigs’

pivoting rule, proving that Simplex Method has exponential complexity in the worst-

case [4]. In 1982, Borgwardt showed that a version of the Simplex Method, called

Schatteneckenalgorithmus exists, which had a polynomial upper bound for a problem

with m inequality constraints and n variables [5]. However, he assumed that the feasible

regions are sampled from an independent and identical distribution in a high-dimensional

space. In the same year, Smale published an article in which he showed that for a fixed

number of constraints the number of steps required to solve a problem by a variant of the

Simplex Method grows slower than the squaret root of the number of variables [6]. This

indicates, that the computation growth time is less than exponential.

Spielman et al. introduced the concept of smoothed analysis to better understand

algorithms that have poor theoretical worst-case performance, but good average-case

performance on random input distributions [7]. The 2003 paper by Spielman et al.

shows that the Simplex Method has polynomial smoothed complexity by introducing

small randomness into the worst-case analysis, proving Simplex Method has polynomial

complexity in almost all instances. The polynomial theoretical performance is contrasted

by the performance of the most efficient implementations of the Simplex Method. In an

9

article, Karp states that linear programs can be solved "with a number of pivoting steps

that is roughly linear" [8].

2.3 Simplex Method

The Simplex Method was first worked on by George B. Dantzig in the year 1947 and

was first intended to be used for "planning of large-scale enterprises" [9]. The Simplex

Method is not an algorithm in itself, but a class of different algorithms for solving LPs

by moving from vertex to vertex along the edges of a feasible region until an optimal

solution is found. The methods differ based on the way of choosing the next vertex, often

referred to as the "pivot rule" [10]. This thesis focuses on the pivoting rule introduced by

George B. Dantzig for its simplicity and good performance on a variety of inputs.

A pseudocode example of the Simplex Method for maximization is presented in

Algorithm 1. This is the base for the Python implementation in the design of experiments

used in the paper. The pivoting rule used in the pseudocode is based on the method

developed by Dantzig in 1951 [11]. The rule chooses the edge which minimizes the

quotients the most. Dantzig originally proposed the pivoting rules for minimization, so

instead of choosing the largest quotient the rule in this implementation of the Simplex

Method chooses the smallest instead.

The pseudocode and Python implementation use a structure named "Simplex Tableau"

which is a tabular represantation organizing all coefficients of the objective function

and the variables of the constraints into a matrix format. Each row in the tableau is

constructed from one inequality constraint and the constraint bound is added as the last

element. The objective function is added as the last row with its coefficients multiplied

by −1 since the coefficients are moved from the right side of the equation to the left side.

10

An example of a Simplex Tableau is provided in Table 1. In the table x1, x2, x3

represent the variables, s1, s2, s3 represent the slack variables, Z represents the column

for the objective function value and c represents the inequality constraint bounds.

Table 1. Example of a Simplex Tableau

x1 x2 x3 s1 s2 s3 Z c

Inequality Constraint (1) 6 3 4 1 0 0 0 1

Inequality Constraint (2) 2 7 8 0 1 0 0 7

Inequality Constraint (3) 7 5 4 0 0 1 0 4

Objective Function -2 -8 -5 0 0 0 1 0

In 2006, Kelner and Spielman presented the first version of the Simplex Method which

had polynomial-time complexity [12]. This was achieved by projecting the constraints of

the linear problem into a lower-dimensional space (the so-called shadow-vertex pivoting)

to simplify the original linear program.

11

Algorithm 1 Simplex Method for Maximization
Input: 3-tuple A, b, c; where A represents objective function coefficients, b is a matrix

of inequality constraints and c contains constraint bounds

Result: Simplex Tableau, where the maximum value for the objective function is in the

bottom right corner

1 Initialize simplex_tableau from A, b, and c

2 Add slack variables to simplex_tableau to convert inequality constraints and bounds

into equalities.

3 while a negative coefficient exists in the objective row of simplex_tableau do

4 Identify the pivot column with the most negative coefficient in the objective row of

simplex_tableau

5 foreach row in simplex_tableau do

6 if element in the pivot column is positive then

7 Calculate quotient by dividing the right-most element in the row by the

element in the pivot column

8 else

9 Set quotient for the row as infinity.

10 Select the pivot row as the one with the smallest quotient

11 Set the value for pivot element as 1 and other values in the column to 0.

2.4 Empirical Experiments on the Performance of the Simplex Method

In his 1987 paper, "Origins of the Simplex Method" [9], Dantzig predicted that new

methods will become more effective than Simplex, not because of any theoretical reasons

regarding polynomial time, but because they can more effectively exploit the sparsity

and structures of practical problems. Most of the literature on the topic is focused on

implementation of pivoting rules to traverse the vertices more efficiently. This section

contains results from empirical research about Simplex Methods’ performance using

12

Dantzigs pivoting rule as well as experiments on the use of different pivot rules.

In 1962, Kuhn and Quandt investigate on practical performance of the Simplex Method.

They experimented with matrices of 5× 5, 10× 10, 15× 15, 20× 20 and 25× 25 with

their elements distributed randomly in the range from 1 to 1,000. The results were

promising, as the average number of iterations over 100 problems for matrixes with the

size 25× 25 was 18 to 19 [13].

Zadeh, stated in his 1980 report that the Simplex Method solves linear problems with

n inequalities in n to 3n pivots [14]. In the same paper he suggests a pivoting rule

named "least entered" to supress the algorithm from entering any column twice before

all of them have been visited. In the same year, Dantzig estimated the bound of number

of operations as a multiple of the number of equations in a linear problem [15] and

theoretically showed that the distributions have an impact on the bounds for number of

iterations.

In 2021, Adham et al empirically measured the performance of Simplex Method by

selecting the pivoting rule using machine learning [16]. They used a test-set of 7,729

linear problems, each ranging from 120 to 200 inequality constraints and 50 to 100

variables. The results showed that Dantzigs’ pivoting rule required two times more

iterations on average when compared to the "best in theory" rule. This suggests, that

a large effort in optimizing the algorithm should come from finding a more efficient

pivoting rule.

13

3 Methodology

This section describes the tools and frameworks used in this thesis, the practical exper-

iments, and data generation methods. It discusses the rationale for experiment parameter

selection and also, identifies some potential shortcomings of the methodology. Python4

version 3.10.13 is used for the implementation of the experiments. Primary Python

packages used are NumPy5 (version 1.26.4) for numerical operations and Matplotlib6

(version 3.8.3) for visualizing the results and input distributions. Additional standard

libraries used are json, random, os and copy. GILP (Geometric Implementation of

Linear Programs) [2], is a Python package used to visualize geometry of linear problems

and the Simplex Method. GILP is used for both visualizing and verifying the correctness

of the self-implemented Simplex Method by cross-verifying the equality of solutions of

GILP and the self-implemented Simplex Method. All of the experiments were run inside

a Jupyter Notebook7 both on a local computer and by using Google Cloud Computing

Services8 for larger inputs. A link to the code repository is provided in Appendix I.

Three practical experiments are designed to evaluate the Simplex Methods performance

across various input distributions. Each of the experiment involves different input sizes

described by ni × nv where ni and nv are the number of inequalities and variables in

an input. For the experiments ni and nv are kept as equal to ensure uniformity in the

complexity increases. However, it has to be noted that this is not alwasy the case for

real-life problems, which often have different numbers of inequalities and variables.

The experiments aimed to quantify the Simplex Methods performance by measuring the

number of operations needed to solve a specific problem. The results are aggregated

4https://www.python.org/
5https://numpy.org/
6https://matplotlib.org/
7https://jupyter.org/
8https://cloud.google.com/

14

https://www.python.org/
https://numpy.org/
https://matplotlib.org/
https://jupyter.org/
https://cloud.google.com/

over multiple runs to obtain an average result and reduce the effect of outliers. In a

number of referenced articles, the number of pivot-rule interactions is used as a metric for

performance. This thesis uses the number of operations as it allows to be more precise

for the operations required to implement the pivoting rule. Detailed descriptions of the

experiment design and data distributions are available in Section 3.1 and Section 3.2.

3.1 Design of Experiments

All experiments in this thesis are based on a self-implemented Simplex Method for

maximization which follows the pseudocode provided in Algorithm 1. The second

experiment uses a variation of the method by using a optimized pivoting mechanism

that skips zero values for better efficiency on sparse matrices. All implementations

track the number of operations, which are counted in five categories: comparisons,

assignments, arithmetic operations, accesses and function calls. Performance in Python

can be measured by tracking time between operations or by using a more detailed

profiling tool like cProfile9 which returns how long and how often certain parts of the

algorithm were run. A custom solution was preferred for this thesis, since it allows

for more control and predictability on counting the operations. Using the number of

operations as a metric is more beneficial than time spent, as it does not take computational

resources into account.

The setup for the experiments is contained in the Jupyter Notebook named the-

sis_experiments.ipynb which has the necessary experiment code, Simplex Method im-

plementation in simplex.py and simplex_with_counts.py, the latter being used for the

experiments. The file simplex_with_counts.py has the same implementation of the Sim-

plex Method, but with added operation counting variables, discussed in more detailed in

the section about Design of Experiments. The codebase has a directory named Utilities

9https://docs.python.org/3/library/profile.html

15

https://docs.python.org/3/library/profile.html

which contains all functions needed to generate the inputs. The contents of the codebase

can be accessed via the link provided in Appendix 5 with further details available in the

README file.

Each experiment is configurable and allows the input sizes, types and number of itera-

tions on each input size to be specified. The experiments repeat counting of operations

on each size and type of input 2000 times to ensure statistical accuracy. Different default

iteration numbers were tested in batches against a benchmark by averaging operation

counts over 100,000 iterations. The results of the experiments on choosing the number of

iterations are presented in the Appendix, Table 2. Each experiment also allows to specify

the range for values of variables and coefficients. The default range of inequalities and

variables used for all experiments is between 1 to 1,000,000.

3.2 Data Generation for the Experiments

Inputs used for the experiments are generated algorithmically, with a Python function

implemented for each input type. The input generation functions use randomness, but

employ some boundaries to maintain a structure needed for a specific type of input. The

inputs are returned as 3-tuples A, b, c, where A represents objective function coefficients,

b is a matrix of inequalities, and c contains inequality values.

Different input types are chosen, to feature both structures found in real-life problems

(Top-Zero, Gaussian) and irregular distributions (Geometric, Linear). These types

include:

• Random - generates inputs randomly in a set range

• Symmetric - generates input that follows a pattern where every second inequality

reverses the sign of a chosen variable, maintaining the same absolute value from

the previous inequality

16

• Geometric varied - generates input such that the variables for each inequality are

defined by geometric progression with added variance in a set range

• Linear varied - variables for each inequality are defined by linear progression

with added variance

• Prime numbers - generates input such that each variable and inequality value was

chosen randomly from all prime numbers in a range

• Pseudoprimes - generates input such that the variables are chosen from “pseudo-

primes” in a set range. Pseudoprimes are defined as integers where the difference

between two adjacent numbers increases as the numbers do. This helps simulate

characteristics of prime numbers without needing to use exceedingly large primes.

• Gaussian distribution - generates input such that each variable and inequality

was calculated based on a preset mean value for 97% of the values to be within

three standard deviations from the mean.

• Sparse distributions - generated using the same function as random inputs, but a

number of variables based on the sparsity parameter is set to zero for each input

• Top-Zero distributions - generated using random input generation, with all values

above the top diagonal of the inequality matrix set as zero.

Examples of different input configurations are visualized in Figure 3, showing linear

problems with the size ni × nv = 32× 32. Each row in a matrix represents an inequality

constraint with each pixel in the row representing a variable. The values of variables are

shown as colors with darker colors for larger variable values and white pixels indicating

that the value of a variable is 0 (variable is absent from the inequality).

17

Figure 3. Visualization of Data Distributions

3.3 Experiment 1 - Effects of Data Distribution

Experiment 1 quantifies the effects of data distributions on unoptimized Simplex

Methods performance, which addresses Research Question 1 (RQ1): “How consistent is

the performance of Simplex Method across different types of input data distributions?”

This experiment utilizes all of the mentioned input types and creates a benchmark for

comparison.

Inputs are generated to cover small to medium problem sizes with the number of

inequalities and variables increasing incrementally from 10 to 30. Larger inputs up to

ni × nv = 1000 × 1000 are also tested with a smaller number of iterations per input

to ensure the results scale. The results are then plotted to a line graph for comparison

and saved to a text file for more detailed analysis. Results for both experiment runs are

covered in the Results Section.

18

3.4 Experiment 2 - Effects of Optimizing the Simplex Method

Experiment 2 quantifies the impacts on relative performance using a simple opti-

mization method. The Simplex Methods pivoting mechanism is altered to bypass zero

elements to reduce number of operations required on sparse matrices. The experiment

aims to answer Research Question 2 (RQ2): “What are the impacts of simple optimiza-

tion techniques on the computational expensiveness of the Simplex Method?”. Three

different inputs are utilized: Random, Sparse Random with 50% sparsity and Top-Zero.

The input choice was made to include a structured input (Top-Zero), a sparse input with

similar sparsity as Top-Zero (Sparse Random with 50% sparsity) and a non-sparse input

(Random).

The efficiency of Zero-Exploiting Simplex Method (ZESM) is compared with the

standard Simplex Method (SM) across the inputs to measure the reduction in the number

of operations to reach a solution. The solutions of ZESM and SM are then compared to

ensure validity and an error is raised if they deviate more than 0.001. The error trigger

was chosen to account for minor rounding differences in the pivoting rules between

two methods. During the running of the experiments, if the error exceeds the threshold

a warning is printed to console and the iteration is excluded from the calculation of

average operations. Additionally, after each experiment the number of errors is manually

assessed to ensure accuracy of the methods. This experiment covers input sizes from 10

to 30 inequalities and variables over 2000 iterations, while larger inputs of 100 to 1000

inequalities and variables are evaluated over 30 iterations.

3.5 Experiment 3 - Effects of Input Preprocessing

Experiment 3 explores the effect of input preprocessing on the performance of the

Zero-Exploiting Simplex Method and addresses Research Question 3 (RQ3): "How does

input preprocessing affect the performance of the Simplex Method?". The experiment

19

uses a generally well-performing Top-Zero input and shuffles its columns and rows to

break the structure while maintaining the correctness of inequalities.

Four variations of the input are compared: Baseline Top-Zero, Rows (Order of in-

equalities) Shuffled, Columns (order of variables) Shuffled and both Rows and Columns

Shuffled. The experiment was run on inputs with 10 to 30 inequalities and variables and

after each run the values returned are compared. If the solutions differed by more than

0.001, an error was raised to ensure validity of the results and to make sure shuffling did

not change the original problem.

Figure 4 is a visualization of ni × nv = 64 × 64 Top-Zero inputs, that have been

shuffled as they would be in the third experiment. A visualization of a Sparse Random

input with 50% sparsity is presented for comparison.

Figure 4. Visualization of Top-Zero Inputs After Shuffling

20

4 Results and Discussion

This section presents the results of three experiments which are designed to quantify

the computational effectiveness of the Simplex Method. The findings discussed will also

address the Research Questions outlined in the introduction of this thesis.

4.1 Experiment 1

The first experiment explored the impact of different data distributions on the Simplex

Method’s operation count, with results visualized in Figure 5. The experiment uses

incrementally increasing input sizes ranging from 10 to 30 inequalities and variables.

The experiment was repeated for input sizes ranging from 100 to 1000 inequalities to

see how the results scale. The recorded results establish a benchmark for comparing the

Simplex Method’s performance across various input types.

Figure 5. Visualization of Average Number of Operations over 10 to 30 Inequalities and

Variables: Results from Experiment 1

21

Figure 5 shows a line graph visualizing the average number of operations required as

the number of inequalities and variables increase. The experiment used 9 different input

types with three levels of sparsity which are color-coded and shown in the legend. All

variables and coefficients were within 1 to 1,000,000 for this experiment. Detailed data

from the experiment is provided in the Appendix, in Table 3.

The results show that the inputs with varying levels of sparsity required the most

operations to be solved. The number of operations for Sparse Random inputs with 30%,

50% and 70% sparsity and Sparse Random was between 2,135 to 28,126; 2,512 to

38,941; and 2,210 to 53,767 operations, respectively. However, Top-Zero inputs, which

are also sparse consistently required fewer operations and indicated some efficiency in

structured sparse distributions. The average number of operations needed for Top-Zero

input was between 1,871 to 24,817.

Non-Sparse inputs such as Random, Geometric Varied, Prime numbers, Gaussian

and Pseudoprimes performed relatively similarly, with Gaussian distribution seeming to

perform slightly better with an average of 15,908 operations for a ni × nv = 30 × 30

input. Symmetrical inputs needed on average from 1,662 to 18,346 operations and Linear

Varied inputs from 1,434 to 21,859 operations.

An interesting trend can be noticed with Geometric Varied inputs. At smaller problem

sizes it tends to perform slightly worse than Random or Gaussian inputs, while the

performance is similar for larger inputs. There is a notable drop in the number of opera-

tions required to solve a Geometric Varied input, presumably due to the simplification

of calculations as the values converged to the maximum allowed value for inequality

variables. This can be attributed to the generation function of the Geometric Varied input,

which uses a geometric progression to set a value for variables. However, as the problem

size increased, the average number also rose reflecting the increasing size of the matrix.

22

The results confirm that the Simplex Method’s performance fluctuates significantly

on input distributions. The research findings indicate a strong need for an algorithm

that exploits sparsity. The sparse inputs require more operations than non-sparse. The

benefits of optimizing the Simplex Method for sparse matrices are discussed under the

results for Experiment 2. The experiment was repeated on inputs from 100 to 1000

inequalities and variables to see if the same patterns for an average number of operations

hold across larger inputs. The results are presented as a line graph in Figure 6 and as a

table for detailed operation counts across input sizes in the Appendix, Table 4.

Figure 6. Visualization of Average Number of Operations over 100 to 1000 Inequalities

and Variables: Results from Experiment 1

Interestingly, based on the larger experiment, Linear inputs seemed to perform worse

than with smaller inputs. The average number of operations for solving a Linear Varied

23

input for 100 and 1000 inequalities and variables was 797,499 and 1,256,456,290,

respectively. The sparse inputs with 70%, 50% and 30% of sparsity gave comparable

results to the smaller experiment, with a larger rate of sparsity requiring on average more

operations to solve. Top-Zero inputs have similar average number of operations as Sparse

Random 30%, which was the case for the experiment with smaller inputs as well.

From the non-sparse inputs, Pseudoprime inputs performed slightly worse than others,

which was not the case for smaller inputs, where the performance was similar for all

sparse input types. For inputs ranging from 100 to 1000 inequalities and variables, the

Pseudoprime inputs required an average of 258,619 to 103,103,613 operations to be

solved. For 100 to 1000 inequalities and variables, the Symmetric, Random, Prime

number, and Gaussian input needed an average of 290,400 to 46,953,618; 276,150 to

46,418,955; 243,296 to 41,285,171; and 218,089 to 17,434,350 operations, respectively.

The relatively higher count for Pseudoprime inputs suggests, the Simplex Method per-

forms better on uniformly distributed values. This is further confirmed by the lower

number of operations required for Gaussian inputs, which are uniform around average

values.

In summary, the first experiment addressed RQ1 by empirically showing that the

unoptimized Simplex Method is more effective on non-sparse inputs across various sizes,

from ni × nv = 10 × 10 to ni × nv = 1000 × 1000. The larger inputs highlighted

performance disparities between input types and provide some unexpected results. For

instance, the Simplex Method performed better on uniformly distributed Gaussian inputs

and worse on Pseudoprime inputs. The results confirm that input distributions have a

large impact on the performance of the Simplex Method which can be measured on

different input sizes.

24

4.2 Experiment 2

The second experiment evaluated the performance benefits of using an optimized Sim-

plex Method on sparse matrices with the results visualized in Figure 7. The experiment

includes Random, Sparse Random, and Top-Zero inputs and incrementally increasing

input sizes ranging from 10 to 30 inequalities and variables. The average operation counts

are plotted for unoptimized Simplex Method (SM) and Zero-Exploiting Simplex-Method

(ZESM) for comparison. The experiment was repeated on inputs ranging from 100

to 1000 inequalities and variables to verify that the results scale. Average operation

counts for ZESM are marked with the _exploit suffix in the legend. Notably, only three

cases of differing output values were observed out of nearly 50,000 solves. All of these

differences were less than 0.001 and can be attributed to rounding inaccuracies. Data

recorded during the experiment can be accessed in the Appendix, in Table 5, Table 6,

Table 7 and Table 8.

For Random inputs, which are not inherently sparse, ZESM showed to be more

efficient. At a size of ni × nv = 10 × 10, ZESM required 784 operations on average,

compared to 1,418 operations needed for SM, meaning a 44.71% decrease in the number

of operations needed. The decrease in number of operations is more pronounced for

larger inputs. At ni × nv = 30 × 30, ZESM required an average of 7,735 operations

and SM an average of 16,492 operations, marking a 53.1% decrease. While Random

inputs are not sparse, some elements are set as zeroes during the pivoting phase of the

algorithm; for the following steps of the algorithm, this could be beneficial, as not all

elements need to be evaluated.

Sparse Random inputs also showed similar tendencies, as ZESM showed to be more

efficient in solving linear problems than SM. This decrease in the number of operations

was consistent over various problem sizes. For size ni×nv = 10× 10, SM needed 2,526

25

Figure 7. Visualization of Average Number of Operations over 10 to 30 Inequalities and

Variables: Results from Experiment 2

operations, compared to 848 for ZESM, marking a 66.43% decrease in the number of

operations. For ni × nv = 30× 30 size inputs, SM needed 39,112 operations, compared

to 12,833 for ZESM, marking a 67.19% decrease. The average reduction in the number of

operations for Sparse Random inputs was 66.77% across inputs from 10 to 30 inequalities

and variables. The consistent performance benefit across input sizes can most likely

be attributed to the method’s handling of sparsity, as sparsity rate for every input was

consistently 50% and the primary variable for increasing operations count was the matrix

size.

Top-Zero inputs displayed the largest decrease in the number of operations needed

when using ZESM over SM. The relative decrease in number of operations ranged from

65.13% for inputs of 10 inequalities and variables to 74.22% for 30 inequalities and

26

variables. The average decrease in the number of operations was 71.39%. For size

ni × nv = 10× 10, SM needed 1,867 operations, compared to 651 for ZESM. For larger,

ni × nv = 30× 30 inputs, SM needed 25,406 operations, compared to 6,549 for ZESM.

The higher performance benefit is because of the structure of Top-Zero algorithm, as the

Simplex Method does not need to traverse the full matrix.

This experiment was repeated on inputs with 100 to 1000 inequalities and variables

for 30 iterations to see how larger inputs affect the performance of ZESM compared to

SM. The results are displayed in Figure 8.

Figure 8. Visualization of Average Number of Operations over 100 to 1000 Inequalities

and Variables: Results from Experiment 2

27

Figure 8 displays a pattern similar to the one observed for smaller inputs. For Random

inputs, the average decrease in the number of operations was 58.67%, a little more than

observed with 30 inequalities and variables. For Sparse Random inputs the average

decrease was similar to one observed before, 64,8%. Number of operations decreased

by 70.12% on average for Top-Zero inputs, however, it’s worth noting that due to the

smaller number of iterations, the accuracy of the averages could be improved.

The graphs are not completely similar as a divergence can be seen for ZESM on Top-

Zero and Random inputs. For 10 to 30 inequalities and variables, Top-Zero input required

fewer operations when using ZESM, presumably thanks to the optimized methods ability

to exploit sparse inputs. This Was not the case for 100 to 1000 inequalities and variables,

as the Top-Zero input frequently required more operations than Random input when

solved with ZESM. The results suggest that the experiment could benefit from being run

again with larger number of iterations for increased accuracy. However, if the results

were to persist on a larger number of iterations it would mean that the optimization is

less effective on larger inputs.

In conclusion, Experiment 2 has demonstrated performance improvements achieved

by using an optimized version of the Simplex Method. This method works particualrily

well for sparse matrices but has benefits for non-sparse ones as well. The experiment

answers RQ2 by stating that the number of operations of the Simplex Method is reduced

by over 50% when using ZESM over SM. Due to the nature of the experiments, results

for smaller inputs of 10 to 30 inequalities and variables were different from the ones

found for 100 to 1000 inequalities. This can be improved by running the experiments

again for a larger number of iterations and comparing the results again.

28

4.3 Experiment 3

The third experiment evaluated the effects of shuffling structured inputs on the effi-

ciency of the Zero-Exploiting Simplex Method (ZESM). ZESM was chosen for its better

performance on sparse inputs. The experiment compared four variations of Top-Zero

inputs: an unshuffled baseline, Top-Zero with rows shuffled, Top-Zero with columns

shuffled and Top-Zero with both rows and columns shuffled. The experiment is run on

inputs from 10 to 30 inequalities and variables, with larger inputs from 100 to 1000

inequalities tested over 30 iterations to assess the scalability of the results. Figure 9

demonstrates the results from Experiment 3. Detailed data about the experiment iterations

and average operation counts is presented in the Appendix, Table 9.

Figure 9. Visualization of Average Number of Operations over 10 to 30 Inequalities and

Variables: Results from Experiment 3

29

For size ni × nv = 10× 10, baseline Top-Zero input, Rows shuffled inputs, Columns

shuffled input, and Rows and Columns shuffled input needed an average of 1,848; 1,824;

1,862; and 1,850 operations, respectively. For larger, size ni × nv = 30× 30 the inputs

needed 25,480; 25,228; 25,371; and 25,184 operations, respectively. The operation

counts for all three versions of shuffling, as well as the baseline deviate about 1% from

each other and visually form one line. The small deviations in the average number of

operations that can be seen arise from experiment design. For this experiment, a new

input is generated for every iteration and shuffled, which means that all types of shuffling

input take a different Top-Zero input as a base.

Figure 10. Visualization of Average Number of Operations over 100 to 1000 Inequalities

and Variables: Results from Experiment 3

30

Larger inputs were tested for 30 iterations with the results visualized in Figure 10.

Data about average operations based on the number of inequalities and variables for this

run is presented in the Appendix, Table 10. The number of inequalities and variables

ranged from 100 to 1000 and the experiment was repeated for 30 times for each size of

input. The results are similar, though they do have more variance since the experiment

was run only 30 times, instead of the usual 2000. For inputs with 100 inequalities and

variables, the baseline Top-Zero required an average of 459,887 operations and Columns

shuffled, Rows shuffled and both Rows and Columns shuffled require an average of

614,286; 430,305; and 486,156 operations. Larger inputs with 1000 inequalities and

variables needed an average of 153,792,091; 143,524,583; 134,113,421; and 173,898,153

for baseline, Columns shuffled, Rows shuffled and both Rows and Columns shuffled,

respectively.

While the results from Experiment 3 were somewhat disappointing they follow ex-

pectations. Since the implementation of the ZESM does not account for specific data

structures except for sparsity it can not effectively exploit such structures. Additionally,

any negligible performance benefits for this experiment do not take into account the

operations needed for preprocessing. A simple example shows that if preprocessing

requires iterating over all elements in the matrix, then the complexity of those operations

alone is O(n2).

31

5 Conclusion

The primary objective of this thesis was to look beyond the traditional worst-case

analysis of the Simplex Method and get a better understanding on how different input

distributions affect the performance. The empirical research was based on three experi-

ments which evaluated the performance of the method on different inputs and by using

an optimized pivoting rule for the Zero-Expoliting Simplex Method (ZESM).

The experiments revealed that the distribution of input data significantly affects the

number of operations required by the Simplex Method, with structured sparse matrices

performing better for all tested input sizes. Additionally, the implementation of ZESM

demonstrated a decrease in number of operations across all tested input distributions

and worked particularly well on sparse distributions. The thesis addressed preprocessing

of the inputs, but found no improvements by changing the order of inequalities and

variables.

The findings in this thesis confirm the Simplex Method is directly linked to distribution

of input data. For future research, it would be beneficial to replicate the experiments

with larger input sizes over more iterations. Another promising field of research would

involve optimizing the Simplex Method using a machine learning model as demonstrated

by Adham et al. [16], with a focus on adapting the pivot rule selection to the input data

distribution.

In conclusion, this thesis serves as a baseline for further research on the effects of input

distribution and has succesfully addressed the posed research questions. The framework

for experiments that was developed for this thesis is available in Github and can be used

for further analysis on the Simplex Method.

32

References

[1] J. Dongarra and F. Sullivan. Guest editors introduction to the top 10 algorithms.

Computing in Science & Engineering, 2(01):22–23, jan 2000.

[2] Henry W. Robbins, Samuel C. Gutekunst, David B. Shmoys, and David P.

Williamson. Gilp: An interactive tool for visualizing the simplex algorithm. In Pro-

ceedings of the 54th ACM Technical Symposium on Computer Science Education V.

1, SIGCSE 2023, pages 108–114. Association for Computing Machinery, 2023.

[3] Ian Chivers and Jane Sleightholme. An Introduction to Algorithms and the Big O

Notation, pages 359–364. Springer International Publishing, Cham, 2015.

[4] Victor Klee and George J. Minty. How good is the simplex algorithm. Technical

report, Sep 2020.

[5] Karl Heinz Borgwardt. The average number of pivot steps required by the simplex-

method is polynomial. Zeitschrift für Operations Research, 26:157–177, 1982.

[6] Steve Smale. On the average number of steps of the simplex method of linear

programming. Math. Program., 27(3):241–262, oct 1983.

[7] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why

the simplex algorithm usually takes polynomial time, 2003.

[8] Richard M. Karp. George dantzig’s impact on the theory of computation. Discrete

Optimization, 5(2):174–185, 2008. In Memory of George B. Dantzig.

[9] George B. Dantzig. Origins of the simplex method, page 141–151. Association for

Computing Machinery, New York, NY, USA, 1990.

[10] Daniel Dadush and Sophie Huiberts. Smoothed Analysis of the Simplex Method,

page 309–333. Cambridge University Press, 2021.

33

[11] George B. Dantzig. Linear programming. Applied Mathematics, 15:18–21, 1951.

[12] Jonathan A. Kelner and Daniel A. Spielman. A randomized polynomial-time

simplex algorithm for linear programming. In Proceedings of the Thirty-Eighth

Annual ACM Symposium on Theory of Computing, STOC ’06, page 51–60, New

York, NY, USA, 2006. Association for Computing Machinery.

[13] Harold W Kuhn and Richard E Quandt. An experimental study of the simplex

method. 1962.

[14] Norman Zadeh. What is the worst case behavior of the simplex algorithm. 1980.

[15] George B. Dantzig. Expected number of steps of the simplex method for a linear

program with a convexity constraint. 1980.

[16] Imran Adham, Jesus De Loera, and Zhenyang Zhang. (machine) learning to improve

the empirical performance of discrete algorithms, 2021.

34

Appendix

I. Code Repository

The Python code and Jupyter Notebooks used to run the experiments, visualize data

and generate inputs is available from GitHub: https://github.com/mihkeluutar/

simplex-practical-experiments

35

https://github.com/mihkeluutar/simplex-practical-experiments
https://github.com/mihkeluutar/simplex-practical-experiments

II. Tables

Table 2. Deviation of Operation Counts for Random Input from a Benchmark of 100,000

Iterations

Inequalities/Iterations 100 300 2000 10000 20000 50000 100000

2 1.39% 0.04% 0.61% 0.04% 0.16% 0.08% 0.00%

3 2.39% 4.08% 0.51% 0.50% 0.23% 0.04% 0.00%

4 1.23% 0.30% 1.60% 0.19% 0.04% 0.13% 0.00%

5 5.25% 2.21% 1.02% 0.58% 0.45% 0.16% 0.00%

6 1.18% 1.19% 0.58% 0.21% 0.37% 0.31% 0.00%

7 0.19% 1.15% 0.45% 0.30% 0.11% 0.09% 0.00%

8 2.66% 4.77% 0.50% 0.45% 0.23% 0.04% 0.00%

9 3.74% 1.23% 0.31% 0.65% 0.66% 0.14% 0.00%

Average Deviation 2.26% 1.87% 0.70% 0.37% 0.28% 0.12% 0.00%

36

Table 3. Detailed Data Overview for Experiment 1 (10-30 Inequalities and Variables)

Ineq. No. Symm. Rn. Geo. Var. Lin. Var. Prm. Gaus. Pseu. Sprs. Rn. 30 Sprs. Rn. 70 Sprs. Rn. 50 TZ

10 1662 1407 1906 1434 1425 1400 1404 2135 2210 2512 1871

11 2009 1771 2322 1754 1722 1717 1787 2540 3370 3055 2266

12 2428 2096 2819 2179 2112 2113 2105 3014 4264 3965 2817

13 2867 2511 3339 2643 2501 2424 2497 3587 5280 4649 3365

14 3418 2945 3921 3249 2984 2889 2943 4521 6557 5795 4103

15 3991 3423 4527 3827 3446 3370 3447 5248 7968 6662 4816

16 4583 3979 5128 4388 3973 3931 3952 5853 9528 8010 5541

17 5210 4639 5842 5090 4618 4432 4512 7223 11044 9079 6414

18 5868 5146 6237 5886 5192 4991 5150 8102 13088 10777 7286

19 6711 5825 6519 6684 5823 5577 5854 8993 15195 12045 8451

20 7500 6578 6466 7594 6545 6351 6510 10657 17658 14048 9407

21 8395 7310 6662 8479 7286 6986 7391 11849 19883 15269 10603

22 9249 8179 7566 9518 8043 7727 8156 12768 22722 17944 11846

23 10187 9083 8682 10671 8872 8666 9002 14259 25962 19369 13171

24 11329 9711 9684 11985 9808 9362 10033 16276 27976 21927 14676

25 12233 10915 10821 13337 10616 10409 10924 17703 32023 23841 16165

26 13228 11680 11622 14788 11847 11313 11788 19518 35842 26939 18095

27 14678 12807 12618 16449 12882 12437 12979 22117 38670 28917 19655

28 15915 13893 14056 18127 14107 13290 13861 23539 43317 32871 21033

29 17337 15044 14999 20156 14935 14661 15272 25269 48512 34806 23392

30 18346 16468 16357 21859 16264 15908 16494 28126 53767 38941 24817

37

Table 4. Detailed Data Overview for Experiment 1 (100-1000 Inequalities and Variables)

Ineq. No. Sym. Rand. Geo. V. Lin. V. Prm. Gaus. Psdp. Sprs. Rn. 30 Sprs. Rn. 70 Sprs. Rn. TZ

100 290400 276150 209350 797499 243296 218089 258619 562017 1425962 783198 399655

150 747742 735533 474134 2181640 596275 383704 696427 1505031 4497152 2281749 1218709

200 1427152 1189330 713694 6230704 1081234 1055273 1530915 3000993 9628817 4440673 2325787

250 2493459 2170028 1118816 10403715 2055492 1577020 2655186 5067378 15860996 8031939 5463892

300 3506675 3032054 1753518 18906321 3003015 1598487 3952222 7816762 26693090 14063754 6827507

350 5675311 4687840 2383615 33653544 4490353 2620593 6360053 12443000 40934161 19473615 10295267

400 6563719 5361029 3436757 52984942 5876472 3264835 8127160 16494336 63104299 25668384 20701354

450 8235791 8214098 4672219 86999381 7105899 4650454 12581538 20468887 76178731 43783038 20705380

500 10912200 10563709 5228469 115010466 8633407 4585006 17105261 28820863 108549739 43619151 23992410

550 12548847 12354286 5869384 149892410 9857659 6679966 19844226 33689102 123402737 58687090 29697862

600 15892407 18438090 7522141 202457470 15776665 7213605 26075179 43355098 188418231 76602682 44547219

650 19368957 19052250 9322721 254947271 16970588 7422133 33849744 54213080 193134260 100324448 68553673

700 23978405 21407449 10966489 349053982 23611092 10126881 40505393 58763416 256820464 108606018 59231413

750 27699754 23845974 13790126 456175040 25411595 12405076 50159744 62744211 292697417 130966001 61776416

800 28495301 30961174 12672651 509938009 28015775 12193111 53701493 81510314 353225213 156031828 109587328

850 34558601 31388937 18246215 677142459 29688140 13375581 66255653 102126892 456507178 189562457 107764534

900 45323099 48096134 18632417 806504260 40643586 16985905 77992828 112308684 605899542 228774212 116635575

950 41126732 46725971 23267248 886977765 38713172 15929922 93257390 128783170 584917502 228022463 164205113

1000 46953618 46418955 23423880 1256456290 41285171 17434350 103103613 142247793 684701759 291765282 177427721

38

Table 5. Detailed Data Overview for Experiment 2 (10-30 Inequalities and Variables)

Ineq. No. Rand. (SM) Sprs. Rn. 50 (SM) TZ (SM) Rand. (ZESM) Sprs. Rn. 50 (ZESM) TZ (ZESM)

10 1418 2526 1867 784 848 651

11 1724 3074 2271 935 1098 777

12 2131 3955 2799 1124 1280 899

13 2531 4652 3396 1329 1599 1065

14 2928 5805 4029 1519 1901 1248

15 3499 6626 4768 1752 2258 1445

16 3974 8111 5595 2038 2627 1620

17 4434 8949 6372 2278 3025 1855

18 5103 10896 7364 2532 3526 2110

19 5792 12023 8137 2874 4005 2325

20 6560 14035 9448 3192 4542 2661

21 7328 15416 10396 3589 5117 2954

22 8086 17680 11902 3927 5851 3240

23 9025 19243 13246 4351 6406 3527

24 9913 22192 14694 4725 7314 3952

25 10669 23813 16082 5149 7938 4308

26 11849 26994 17788 5677 8864 4536

27 12833 28893 19655 6156 9614 4988

28 13886 33080 21304 6666 10928 5475

29 15072 34939 23390 7072 11507 5914

30 16492 39112 25406 7735 12833 6549

39

Table 6. Detailed Data Overview for Experiment 2 with Comparison of SM and ZESM

Operations (10-30 Inequalities and Variables)

Inequalities Rand. (SM) Rand. (ZESM) Difference Sprs. Rn. 50 (SM) Sprs. Rn. 50 (ZESM) Difference TZ (SM) TZ (ZESM) Difference

10 1418 784 44.71% 2526 848 66.43% 1867 651 65.13%

11 1724 935 45.77% 3074 1098 64.28% 2271 777 65.79%

12 2131 1124 47.25% 3955 1280 67.64% 2799 899 67.88%

13 2531 1329 47.49% 4652 1599 65.63% 3396 1065 68.64%

14 2928 1519 48.12% 5805 1901 67.25% 4029 1248 69.02%

15 3499 1752 49.93% 6626 2258 65.92% 4768 1445 69.69%

16 3974 2038 48.72% 8111 2627 67.61% 5595 1620 71.05%

17 4434 2278 48.62% 8949 3025 66.20% 6372 1855 70.89%

18 5103 2532 50.38% 10896 3526 67.64% 7364 2110 71.35%

19 5792 2874 50.38% 12023 4005 66.69% 8137 2325 71.43%

20 6560 3192 51.34% 14035 4542 67.64% 9448 2661 71.84%

21 7328 3589 51.02% 15416 5117 66.81% 10396 2954 71.59%

22 8086 3927 51.43% 17680 5851 66.91% 11902 3240 72.78%

23 9025 4351 51.79% 19243 6406 66.71% 13246 3527 73.37%

24 9913 4725 52.34% 22192 7314 67.04% 14694 3952 73.10%

25 10669 5149 51.74% 23813 7938 66.67% 16082 4308 73.21%

26 11849 5677 52.09% 26994 8864 67.16% 17788 4536 74.50%

27 12833 6156 52.03% 28893 9614 66.73% 19655 4988 74.62%

28 13886 6666 51.99% 33080 10928 66.96% 21304 5475 74.30%

29 15072 7072 53.08% 34939 11507 67.07% 23390 5914 74.72%

30 16492 7735 53.10% 39112 12833 67.19% 25406 6549 74.22%

Average Decrease 50.16% 66.77% 71.39%

40

Table 7. Detailed Data Overview for Experiment 2 (100-1000 Inequalities and Variables)

Ineq. No. Rand. (SM) Sprs. Rn. 50 (SM) TZ (SM) Rand. (ZESM) Sprs. Rn. 50 (ZESM) TZ (ZESM)

100 241649 934916 525577 94525 273713 84619

150 630477 2389242 1399466 251179 721498 474460

200 1180689 4870902 1809123 615450 1603257 752773

250 2304795 9581708 5618830 764816 2869115 731714

300 2978775 13802253 5955864 1257035 5484892 2604679

350 3654229 19592099 8708679 1549785 6285210 2439206

400 6546555 25565352 11647342 2974516 9859235 5171042

450 7692575 39893618 25061929 3156117 12709200 6570404

500 10738019 43069547 21190982 5484581 17964934 8031968

550 14397047 67068717 30735600 6629831 22380394 8075707

600 15795871 69833559 35116908 6946050 27085842 13909589

650 21247068 97405599 75273254 8785450 30769995 17603139

700 27467438 105851468 68150621 9234609 39733160 16731224

750 25110464 139275309 69633883 9813435 52676510 20808645

800 26919855 147538452 70272801 10696337 58995311 23136002

850 38617394 173714225 149356241 13423127 67492790 53737069

900 46016493 203687050 116592187 16217255 70775865 29444503

950 52276979 226912510 158268434 18662719 76505265 39156890

1000 45402800 268717211 159139105 22422677 96842924 32314837

41

Table 8. Detailed Data Overview for Experiment 2 with Comparison of SM and ZESM

Operations (100-1000 Inequalities and Variables)

Inequalities Rand. (SM) Rand. (ZESM) Difference Sprs. Rn. 50 (SM) Sprs. Rn. 50 (ZESM) Difference TZ (SM) TZ (ZESM) Difference

100 241649 94525 60.88% 934916 273713 70.72% 525577 84619 83.90%

150 630477 251179 60.16% 2389242 721498 69.80% 1399466 474460 66.10%

200 1180689 615450 47.87% 4870902 1603257 67.09% 1809123 752773 58.39%

250 2304795 764816 66.82% 9581708 2869115 70.06% 5618830 731714 86.98%

300 2978775 1257035 57.80% 13802253 5484892 60.26% 5955864 2604679 56.27%

350 3654229 1549785 57.59% 19592099 6285210 67.92% 8708679 2439206 71.99%

400 6546555 2974516 54.56% 25565352 9859235 61.44% 11647342 5171042 55.60%

450 7692575 3156117 58.97% 39893618 12709200 68.14% 25061929 6570404 73.78%

500 10738019 5484581 48.92% 43069547 17964934 58.29% 21190982 8031968 62.10%

550 14397047 6629831 53.95% 67068717 22380394 66.63% 30735600 8075707 73.73%

600 15795871 6946050 56.03% 69833559 27085842 61.21% 35116908 13909589 60.39%

650 21247068 8785450 58.65% 97405599 30769995 68.41% 75273254 17603139 76.61%

700 27467438 9234609 66.38% 105851468 39733160 62.46% 68150621 16731224 75.45%

750 25110464 9813435 60.92% 139275309 52676510 62.18% 69633883 20808645 70.12%

800 26919855 10696337 60.27% 147538452 58995311 60.01% 70272801 23136002 67.08%

850 38617394 13423127 65.24% 173714225 67492790 61.15% 149356241 53737069 64.02%

900 46016493 16217255 64.76% 203687050 70775865 65.25% 116592187 29444503 74.75%

950 52276979 18662719 64.30% 226912510 76505265 66.28% 158268434 39156890 75.26%

1000 45402800 22422677 50.61% 268717211 96842924 63.96% 159139105 32314837 79.69%

Average 58.67% 64.80% 70.12%

42

Table 9. Detailed Data Overview for Experiment 3 (10-30 Inequalities and Variables)

Ineq. No. Base (Random Top-Zero) Columns Shuffled Rows Shuffled Rows and Columns Shuffled

10 1848 1824 1862 1850

11 2306 2303 2333 2310

12 2806 2804 2768 2780

13 3388 3384 3443 3405

14 3990 4024 4066 3976

15 4716 4767 4663 4641

16 5623 5598 5486 5468

17 6299 6431 6350 6247

18 7202 7291 7218 7305

19 8369 8301 8251 8349

20 9303 9615 9484 9640

21 10729 10549 10592 10663

22 11818 11943 11752 11912

23 13191 13024 12975 13246

24 14761 14757 14459 14547

25 16163 16149 16182 15944

26 17412 17417 17721 17466

27 19120 19156 19559 19289

28 20945 20825 21181 21351

29 23066 22802 23253 22976

30 25480 25228 25371 25184

43

Table 10. Detailed Data Overview for Experiment 3 (100-1000 Inequalities and Variables)

Ineq. No. Random (Top-Zero) Columns Shuffled Rows Shuffled Rows and Columsn Shuffled

100 459887 614286 430305 486156

150 1401913 1375082 1384802 1204093

200 2572183 2602477 2879204 2779725

250 5174076 5888264 4554305 4540822

300 8299678 6401351 8348153 10449781

350 9597255 10295222 10874461 10558575

400 15925176 19790902 14842745 15306826

450 17555009 22356922 20596933 24725172

500 30078074 35493528 33429103 31311304

550 38257520 34269490 28336345 33912930

600 47594256 43120187 35637427 55693855

650 44706366 57783755 57376843 56833635

700 72872157 65579706 59179092 54404624

750 82911144 58163581 71530886 75324347

800 79381799 104929765 108354634 118149486

850 89829217 99647532 98487750 124152716

900 113429540 106757080 154850401 110742994

950 170769721 146056492 126749611 142870869

1000 153792091 143524583 134113421 173898153

44

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Mihkel Uutar,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace

digital archives until the expiry of the term of copyright,

Beyond Worst-Case Complexity of the Simplex Method,

supervised by Kallol Roy.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via

the DSpace digital archives, under the Creative Commons licence CC BY NC

ND 4.0, which allows, by giving appropriate credit to the author, to reproduce,

distribute the work and communicate it to the public, and prohibits the creation of

derivative works and any commercial use of the work until the expiry of the term

of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Mihkel Uutar

14/05/2024

45

	Introduction
	Background
	Linear Programming
	Beyond Worst-Case Complexity
	Simplex Method
	Empirical Experiments on the Performance of the Simplex Method

	Methodology
	Design of Experiments
	Data Generation for the Experiments
	Experiment 1 - Effects of Data Distribution
	Experiment 2 - Effects of Optimizing the Simplex Method
	Experiment 3 - Effects of Input Preprocessing

	Results and Discussion
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion
	References
	Appendix
	I. Code Repository
	II. Tables
	III. Licence

