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Soft Computing Techniques For Forest Fires Prediction

Abstract:
Forests provide fresh air and they are the source of livelihood to a huge number of
people around the world. The forest fires affect the human lives in different ways such as
economic, environment and health and these forest fires are usually caused by human
negligence, and other environmental factors. The forest fire problem is divided into
categories, i.e. fire risk, forest fire detection, and the prediction of burnt area. Developing
a system to cater for solutions to this problem can help to use the resources in an efficient
manner and can also save human lives and wildlife. In this thesis, some soft computing
techniques are discussed, to predict the burnt area from forest fires. The considered soft
computing techniques are ANFIS, ANN, SVM. In particular, a new variant of ANFIS
is presented. Two publicly available datasets were used: one from Portugal and one
from Canada. The techniques were applied separately on both datasets and results were
collected.
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Metsatulekahjude ennustamise pehmed arvutamistehnikad
Lühikokkuvõte:
Metsad pakuvad värsket õhku ja need on elatusallikaks paljudele inimestele kogu maa-
ilmas. Metsatulekahjud mõjutavad inimelusid mitmel viisil, näiteks majanduslikus,
keskkonna- ja terviseküsimustes ning need metsatulekahjud on tavaliselt põhjustatud
inimlikust hooletusest ja muudest keskkonnateguritest. Metsatulekahju probleem jaguneb
sisekategooriateks, st tuleoht, metsatulekahjude avastamine ja põlenud ala prognoo-
simine. Selle probleemi lahendamiseks mõeldud süsteemi väljatöötamine võib aidata
kasutada ressursse tõhusal viisil ning päästa ka inimelusid ja elusloodust. Selles lõputöös
käsitletakse mõningaid pehmeid arvutustehnikaid, et ennustada põlenud ala metsatule-
kahjude põhjal. Käsitletavad pehmete arvutitehnikad on ANFIS, ANN, SVM. Eelkõige
esitleti ANFISe uut varianti. Kasutati kahte avalikult kättesaadavat andmekogumit: ühte
Portugalist ja Kanadast. Meetodeid rakendati eraldi nii andmekogumites kui ka kogutud
tulemustes.
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Masinõpe, Hägusad järeldamissüsteemid, Murdosa seadustamine

CERCS: P170 Computer science, numerical analysis, systems, control
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1 Introduction

1.1 Problem Overview
Forests are the source of air we breathe and wood we use, and they are source of
livelihood to around 300 million people including 60 million native people [10]. Forest
fire has a huge impact on the environment and it negatively affects different aspects of
life such as economics, natural environment and health [7]. The forest fire can be caused
by human negligence, lightnings, environmental factors [15, 25]. Every year, millions of
forest hectares (ha) are destroyed all around the world. For instance, Portugal is a highly
affected country [12]: in 2007, there were 64 deaths and a loss of 5 billion euros [18]. In
China, from 1952 to 2012, there were 798,500 forest fires and 38,060,000 hectares of
forest destroyed and a loss $22 million a year [20]. Planet Earth lost 129 million hectares
of forest area from 1990 to 2015 [10].

The forest fire problem can be categorized into different classes: forest fire detec-
tion [28, 10], fire risk, burnt area prediction [39, 10]. There have been many systems
developed for the prediction and the early detection of forest fires. Soft Computing (SC)
techniques including CCN, MPNN, PNN, RBF, and SVM were used in [7] to predict the
burned area from forest fire. SVM, Random forests, decision tree, ANNs and multiple
regressions were used in [12]. SVM and ANNs were used in [18] to detect forest fire
in Greek Forest Departments. Fuzzy systems with wireless sensors network to predict
forest fire was employed in [20]. Different ensemble learning approaches were discussed
in [39] to forecast forest fire. ANNs have been used in [30] for forest fire prediction.

While the goal of fire risk algorithms is to prevent ignition, the prediction of the burnt
area during forest fires is aimed at supporting firefighting strategies (e.g. to properly
allocate firefighting resources).

In this thesis the focus is on burnt area prediction. This is a kind of regression
problem.

The regression is a special form of function approximation. Let v = (v1, . . . , vn) be
a vector of independent variables and z a response variable, the following relationship is
considered:

z = f(v1, . . . , vn) + ε, (1)

where ε is an error term to account for uncertainties. Given a data set D, withN instances,
the regression problem consists of finding an estimation of f giving the minimum error.

It is worth mentioning that in Estonia the main reason of forest fires is the improper
human action. Data on forest resources and fires in Estonia are published annually in the
statistical yearbook “Forest” (e.g. see [1]). Unfortunately, information such as time and
exact location of forest fires are not available, both for technical and legal issues.
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1.2 Motivation and Main Goals
As presented in a recent survey [5], there have been many techniques applied to the
forest fires prediction problem. Among them, Neural Networks (NNs) and Support
Vector Regression (SVR) are the most popular approaches in the field while the Adaptive
Neuro-Fuzzy Inference System (ANFIS) and some variants of it for the prediction of the
burnt area have been investigated in few papers. In [15], ANFIS and Dynamic Evolving
Fuzzy Inference System (DENFIS) were numerically investigated. In [37], the authors
compared the results by Takagi-Sugeno-Kang (TSK) fuzzy inference system against some
kinds of functional networks. In [6], a comparative analysis was performed on the results
by ANFIS, whose parameters were optimized by different evolutionary techniques, such
as Flower Pollination Optimization (FPO), Genetic Algorithm (GA-ANFIS), Particle
Swarm Optimization (PSO). All these variants have a certain computational cost, as the
standard ANFIS. The latter is based on grid partitioning [17], which divides the input
space into grid partitions, each one representing a fuzzy rule. In this method, the number
of rules increases exponentially by increasing the dimension. This leads to the curse of
dimensionality. Unlike the grid partitioning, the scatter partitioning divides the input
space into a number of arbitrary partitions, often in the form of clusters obtained by
means of clustering methods. Among them, subtractive clustering is the most popular
one, in spite of the computational cost [40]. This clustering algorithm is based on the
improved Mountain method of data partitioning. The resulting rule base size depends on
the cluster neighborhood radius. A small value leads to a large rule base and therefore
high model complexity and computational cost, while a large value leads to a small rule
base that is a poor model. Besides, the standard ANFIS uses a hybrid learning algorithm
with backpropagation and least-squares (LS) method. Recently, it has been proposed to
use just the LS method in order to lower the computational time [27].

Anyway, the generalized inverse in LS methods could not be computed for ill-
conditioned problems. In order to address such issue, there are regularization techniques.
One of these methods has been recently proposed in fractional version and successfully
applied to different problems [26], [23]. The aim of this thesis is to present an investiga-
tion on ANFIS with a kind of scatter partitioning and LS learning algorithm (without
backpropagation) based both on standard and fractional regularization method.
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2 Background
This section is divided into two parts. Subsection 2.1 describes the related works, and
subsection 2.2 describes different parameters used to solve the problem.

2.1 Related Works
Different soft computing (SC) techniques were considered in [7] to predict the burned
area from a fire. These SC techniques include cascade correlation network (CCN), multi-
layer perceptron neural network (MPNN), polynomial neural network (PNN), radial basis
function (RBF) and support vector machine (SVM). The performance of these models
was evaluated using five quality measures including root mean squared error (RMSE),
mean squared error (MSE), relative absolute error (RAE), mean absolute error (MAE),
and information gain (IG). SVM exhibited the best performance by outperforming RBF,
MPNN, PNN, and CCN models.

Different Data mining (DM) techniques were applied to measure the burned area
of small fires [12]: multiple regression (MR), decision tree (DT), random forests (RF),
neural network (NN), and support vector machine (SVM). There was some preprocessing
done for MR, NN and SVM models. The nominal variables were transformed into a
1-of-C encoding. SVM outperformed the other DM techniques used in the study.

In [18], Greek wild fires from 1983-1997 were discussed to forecast the annual burned
area. The regression ability of SC approaches was discussed in this study. There were
models developed using Artificial Neural Network (ANN) and e-Regression Support
Vector Machine (SVM) which were local to a distinct Greek forest department (GFD).
There were 51 GFD in total. ANN models completely failed in two forest departments
while SVM models worked on all of 51 GFDs. Root mean squared error (RMSE) was
used for the evaluation. The ANN showed low R2 score for only 2 out of 49 cases and
SVM showed low R2 score for 13 out 51 cases, thus, outperforming the ANN models.

Fuzzy inference system and rechargeable wireless sensor networks have shown
promising results in forest fire prediction [20]. These sensors collect a huge amount of
data for weather information on daily basis which can support a very accurate status of
forest environment. The study [20] was conducted in Nanjing City, China. There can
be many factors in forest fire and these factors were divided into three categories which
include weather factors, human behavioral factors and environmental factors which are
input to the fuzzy system. Triangular membership functions were chosen in the fuzzy
rule system in this study. The output of the fire probability were: low, moderate, high,
very high, extreme.

Ensemble learning approaches can be helpful in forest fire forecasting and prevention
and it also can help with forest fire management by providing forest firefighting decision
making [39]. Ensemble learning consists of multiple learners which work together to
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solve a problem and eventually to improve the results of the problem. Random Forests
(RFs) and Extreme Gradient Boosting (EGB) are some of the most popular ensemble
learning methods and they were adopted in [39]. Two experiments were conducted,
one to predict the burned area, and another one to predict large-scale fires. In the
first experiment, there was a comparison made between default random forests (RFd),
tuned random forests (RFt), default gradient boosting machines (GMBd), tuned gradient
boosting machines (GMBt), default generalized linear models (GLMd), tuned generalized
linear models (GLMt) and deep learning (DL). The RFt outperformed other models on
the basis of two evaluation metrics, i.e. root mean squared error (RMSE) and mean
absolute error (MAE). The second experiment dealt with logit regression (LR), decision
tree (DT), random forests (RF), support vector machine (SVM), neural network (NN),
extreme gradient boosting (EGB), and deep learning (DL). EGB achieved the highest
prediction accuracy among all other predictors at 72%.

Artificial Neural Networks (ANNs) were also used for the prediction of forest fire
[30]. The ANN is a mathematical model that can be easily implemented as a software
simulation that tries to simulate two essential properties of the human brain in relation
with its high capabilities of parallel information processing. The first property concerns
our ability to learn from examples, and the second one our ability to generalize the
knowledge we acquire through the learning process to new and unseen examples [30].
The burnt area was predicted using the multi layer perceptron (MLP) architecture. Dif-
ferent number of hidden layers were introduced and the error rate was calculated for
each scheme of hidden layers. The number of hidden layers was determined heuristically.
Backpropagation algorithm was used to converge to a local minimum of the global error
observed. The results of this study were satisfactory and can be tuned with the size of
the hidden layers.

A comparative study of Data Mining (DM) models is presented in [10] which includes
Cascade Correlation (CC), Decision Tree Forest (DTF), Gene Expression Programming
(GEP), Group Method of Data Handling Polynomial Network (GMDH-PN), Linear
Regression (LR), Multilayer Perceptron Neural Network (MLP), Radial Basis Function
Neural Network (RBF), Epsilon Support Vector Regressor (e-SVR) and Nu Support
Vector Regressor (Nu-SVR). The evaluation metrics includes correlation coefficient (R),
Normalized Mean Squared Error (NMSE), Maximum Error (ME), Root Mean Squared
Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE). GEP outperformed other models in 4 out of 7 chosen
accuracy metrics. Two SVR models (e-SVR) and (NuSVR) were close in giving good
predictions but they still got beaten by GEP. The study suggests that GEP models is
suitable to predict the burned area using different features.

Different machine learning algorithms have been used to assess the forest-fire sus-
ceptibility (FFS) in Fars province, Iran [25]. The machine learning algorithms used are
boosted regression tree (BRT), general linear model (GLM), and mixture discriminant
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analysis (MDA). The dataset used contains historical satellite images of forest fires of
358 different locations. The evaluation metrics used are ROC curve, accuracy, overall
accuracy, True-skill statistic (TSS), F-measures, corrected classify instances (CCI), and
K-fold cross-validation (4-fold). The results show that BRT and MDA are more effective
than GLM for FFS mapping.

The images collected from forest fires usually have complex backgrounds which can
lead to false or missing alarm due to the weak generalization of the image recognition
[21]. Deep learning based multi-level forest fire detection method has been used to solve
the aforementioned problem. In particular, the following steps were followed:

• General Advanced Networks (GAN) was used to generate more samples in case of
less samples,

• Adaboost classifier based on Histogram of Oriented Gradients (HOG) was used to
make primary predictions,

• Convolutional neural networks (CNN) and Support Vector Machine (SVM) was
used to make the final prediction.

The GAN was used to create high quality forest fire images to solve the generalization
problem. In total 500 forest fire and 1500 non-fire images were created using GAN.
The proposed method achieved higher recognition rate and lower false alarm rate. The
recognition rate of forest fire is up to 97.6%, missed alarm rate is 1%, and false alarm
rate is 1.4%.

Fuzzy c-means is a well-established clustering algorithm and an extension of fuzzy c-
means, by utilizing a flexible termination criterion, was proposed in [19]. The new system
was named FUCEMFUTEC (fuzzy c-means with fuzzy termination criterion). In fuzzy
c-means each data point belongs to only one specific cluster, while the proposed approach
puts each data point into all of the determined clusters with a degree of membership. The
approach was applied to the Greek forest departments according to their fire risk. The
risks include number of forest fires and annual burned forested areas. There were two
clusters, i.e. "Very Risky" and "Risky" and each forest department was assigned a degree
of membership to each cluster. The results show that the estimation of forest fire risk
is 35-40%, which does not seem very good, but can support the stakeholders decision
making.

Long-term planning of high or low fire risk depends on long-term prediction [16].
The existing approaches for long-term forest fire prediction have a problem of applying
specific cluster boundaries. Triangular and trapezoidal membership functions can be
used to predict long-term forest fire risk. The developed decision system uses various
aspects of fuzzy sets and fuzzy machine learning. This study has been applied to Greek
Forest Department and the results shows an accuracy of 60% in prediction of ten of the
most risky areas.
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A competitive spatial prediction model has been proposed in [22] to detect early
forest fire using geodata. This model can predict forest fires, identify risk zones, provide
real time alerts to authorities and present maps based on geographical treatments. Ma-
chine learning algorithms were used to detect the early forest fire, with the support of
the geographical information system (GIS). The machine learning algorithms include
Random Forest (RF), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN).
RF achieved an overall accuracy of 100% while SVM and KNN achieved 35%, 45% for
small fire and 29%, 45% for large fire. The overall accuracy for RF is 100%, SVM 74%,
and KNN provides 58%.

Topographical and meteorological data of Vietnam was used in [35] for forest fire
prediction; the approach was the Extreme Learning Machine (ELM). This approach
is based on a single hidden neural network, overcoming the problems caused by the
gradient descent in the backpropagation and resulting in a shorter training time. ELM is
designed to work with single hidden layer feed forward (SLFN) networks. These SLFNs
include Support Vector Machine (SVM), polynomial network, Radial Basis Function
(RBF), and single and multi-layer neural networks. The dataset was divided into three
partitions for experiment. The training-testing data were 648-432 for the first partition,
540-540 for the second one, 756-324 for the third one. There were 5 activation functions
used and SinC function achieved 85.42% accuracy with 540-540 scheme, radial basis
function achieved 84.95%, and hardlim achieved 77.08%.

A novel approach for fire prediction combining Internet of Things (IoT) and machine
learning is proposed in [29]. The machine learning algorithms used include Boosted
Decision Trees, Decision Forest Classifier, Decision Jungle Classifier, Averaged Per-
ceptron, 2-Class Bayes Point Machine, Local Deep Support Vector Machine (SVM),
Logistic Regression and Binary Neural Network. A camera was deployed on the field
to capture the real time images of the forest area and those images were compared, on
the basis of the training dataset, to classify fire or no fire. The IoT sensors collect data
for temperature, relative humidity and Carbon mono-oxide (CO). This hybrid model
eliminates false alarms because if one system fails, the other will switch to hot-standby
with weight 1. Boosted decision tree model achieved the highest Area Under Curve
(AUV) of 78% and proved to be the most suitable candidate for forest fire prediction.

In [8], the authors used ELM to predict the burnt area (from the Portuguese dataset
considered in this thesis), by using 10-fold cross validation and trying a different number
of neurons in the hidden layers, i.e. 10, 20, 40, 60, 80. They compared their approach
with Linear Regression, Random Forest Regression, and Support Vector Regression
(SVR), the latter with linear, polynomial, RBF, and sigmoid kernels. They found the best
performance by ELM with linear activation function.

In [37], experiments on the same dataset were performed by using Chebyshev polyno-
mial neural network, Hermite polynomial neural network, Radial Basis Function neural
network, Takagi-Sugeno-Kang (TSK) fuzzy inference system, by finding almost the
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same results.
A comprehensive survey of the machine learning algorithms based forest fires predic-

tion and detection systems can be found in [5].

2.2 Problem parameters
There are various parameters related to the forest fire such as vegetation type, density,
topography, altitude, slope, relative humidity, wind speed and air temperature, season,
date, time [7, 12, 18, 20, 25]. Other parameters may include geographic and temporal
information [12]. In this section several parameters used in different studies are presented.

The features used to predict the burned area in [7, 12, 39, 30, 10] are given in Table
1 in Section 4. There are the geographic features (X and Y) which show the x and y axis
location of the fire. Month and day are the temporal variables and indicate when the fire
occurred. Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), Drought Code
(DC) are the Fuel Moisture Codes [12]. The Initial Spread Index (ISI) belongs to the
Fire Behaviour Indexes. The area is the burned area which is predicted using the other
features.

There are nine independent parameters considered in [18] to determine the total
burned area in Greek Forests and those parameters include: average altitude at the spatial
and temporal point of the forest fire breakout (STPFFB), average relative humidity
STPFFB, average air temperature STPFFB, average wind speed STPFFB, average
slope STPFFB, average vegetation density STPFFB, average grassland density STPFFB,
intervention time (elapsed time from the moment of fire detection till the arrival of
fighting forces) and type of wild fire. The importance of the selected features was
determined by using the Rough Set Theory in the context of attribute reduction [18].

The factors affecting the forest fire were divided into three categories in [20]: weather
factors, human behavioral factors and environmental factors. Weather factors include
temperature, humidity, wind, rainfall. Human behavioral factors include month, date,
time, history of forest fire. Environmental factors are road density, population density,
fuel types, combustible concentration.

There are three categories for factors affecting the forest fire in [25]. These categories
are topographical factors, climate factors, and other factors. Topographical factors
include elevation, slope, aspect, topographical wetness index. Climate factors include
rainfall and temperature. Land use, distance from road, distance from river, and distance
from urban area belongs to the other factors.

In [35], there were 10 parameters selected to predict the forest fire. Those parameters
are slope, aspect, elevation, NDVI, distance to road, distance to residential area, land use,
temperature, wind speed, rainfall and forest fire occurrence.

In [29], the authors used images and different parameters like temperature, relative
humidity, and carbon Mono-oxide (CO). The images were captured from the advanced
cameras deployed at the field while other parameters were collected through sensors.
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3 Methodology

3.1 A WSN based monitoring system
Even though it is beyond the scope of this thesis, it is worth mentioning that the algorithm
for forest fires prediction can be realistically part of an architecture in which wireless
sensor networks (WSNs) technology is utilised to transmit data and predict both the risk
and the evolution of ignition in the forest. Both problems are influenced by meteorological
parameters, such as temperature, relative humidity, wind speed, and daily precipitation,
which can be measured by the sensors. Wireless Sensor Networks (WSNs) based
monitoring systems have shown great potential to reduce forest fires’ damaging effects.
Examples of WSNs for forest fires prediction were discussed in [20, 32].

A WSN based on Internet of Things (IoT) devices and sensors can be used to perform
a real-time environmental monitoring of both the fire risk and the fire detection. Their
design and distribution should be done to cover as much forest areas as possible. With
respect to this, there may be several challenges, such as the authentication of sensor
nodes and the security of wireless communications among distributed sensor nodes,
taking into account possible areas out of network coverage.

In monitoring systems designed to evaluate the fire risk, different types of environ-
mental risk factors can be considered. Factors such as vegetation layers, topography, or
the frequency of forest fires may be useful to perform a long-term estimation of forest
fire risks. Other factors such as meteorological variables, polluting gases, or the oxygen
level measured in real time can be used to perform a short-term estimation of forest fire
risks.

The detection of forest fires involves a fast check of some parameters. In addition
to meteorological variables, the oxygen level and the concentrations of polluting gases
(usual indicators of fire outbreaks occurrence and biomass burning process) measured by
the sensors are analysed. Unusual environmental changes such as temperature increase,
decrease in relative humidity and oxygen values jointly with high concentrations of
carbon dioxide and carbon monoxide may indicate the recent occurrence of a forest fire.

Fire spread can be estimated by analysing the values of meteorological variables, wind
direction changes, and the oxygen level over nearby forest areas, since they influence fire
propagation factors such as dryness of vegetation and organic fuels.

The monitoring platform consists typically of several modules, as described below.

• Data collection module. The measured data are collected for proper calculation.
Fire detection is possible by checking some measurements (e.g. oxygen level and
the concentrations of polluting gases, as mentioned before).

• Communication module. It is used to route the alarm signal generated by the data
collection module to the analysis module, by meeting certain quality of service
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Figure 1. A WSN-based monitoring system

(QoS) requirements such as reliability (i.e. the alarm has to reach the sink safely),
time constraint (i.e. the signal must arrive within a reasonable time) and security
(the routing path has to be secure against any attack or malicious behavior).

• Analysis module. In this module the received alarm signal is properly checked,
to avoid false alarms (e.g. by using the data collected from other sensors nodes).
Then the fire spread is evaluated.

3.2 Soft Computing Approaches

3.2.1 ANFIS

Before introducing ANFIS, it is useful to recall briefly the notion of fuzzy set.
A fuzzy set is a generalization of the classical (crisp) set. While the latter is defined

by a characteristic function, which can assume only the values 0 or 1, a fuzzy set is
defined by a membership function, a real function which can assume any value in the
interval [0, 1]. In Figure 2, some typical membership functions (representing continuous
fuzzy sets) are depicted.

A general class of intersection operators for fuzzy sets is provided by the t-norm. It
aggregates two membership grades in different ways, namely by the minimum operator,
algebraic product, bounded product, drastic product.

The Adaptive Network-based Fuzzy Inference System or Adaptive Neuro-Fuzzy
Inference System (ANFIS) was introduced by Jang [17]. It is a five-layer network
architecture which represents the first-order Sugeno (or TSK) fuzzy inference system.
The name adaptive means that the nodes in this network are adaptive, i.e. the outputs of
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Figure 2. From the top, triangular, trapezoidal and bell-shaped membership functions
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Figure 3. An ANFIS architecture (adapted from mathworks.com)

these adaptive nodes depends on the parameter(s) of that node. The common learning
algorithm is based on gradient descent. To minimize the error measure, parameters
should be tuned and this tuning is specified by the learning. Backpropagation with
least-squares method is usually used to tune the membership function parameters for
fuzzy inference system (FIS). An ANFIS architecture is represented in Figure 3.

In general, ANFIS is based on IF-THEN rules with functional consequent part.
ANFIS aims at adjusting the antecedents and the consequent parameters.

There are five layers (S1, S2, ..., S5) in the ANFIS network. All the outputs from layer
S4 are summed together to get the final output z0. The output of S1 is the membership
degree of the input ξ to the fuzzy set Bi. Layer S2 has all the nodes fixed and the output
of each node represents the firing strength of a rule. The nodes in S2 are computed using
product-type t-norms (to model AND). For each layer Si one has:

S1 : Oi = µBir(ξi);
S2 : ωr = Πn

i=1µBir(ξi);
S3 : ωr = ωr/

∑R
j=1 ωj;

S4 : ρr = wrzr = ωrα0r + α1rξ1 + . . .+ αnrξn;
S5 : z0 =

∑R
r=1 ρr,

where αir are the consequent parameters. Any suitable parameterized membership
function (MF) can be a membership function for Bi. One of them is the generalized
bell-shaped function:
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µBir(ξ) =

(
1 + |ξi − cir

air
|2bir
)−1

, (2)

where {ai, bi, ci} is the parameter set. The value changing parameters are referred to as
premise parameters. An alternative is the classical bell-shaped function:

µBir(ξ) = exp

(
−
(
ξi − cir
air

)2
)
. (3)

Backpropagation and least-squares based hybrid learning algorithm is used in the
ANFIS. The output from all the nodes go forward until layer S4, and least-squares method
is used to determine the consequent parameters for fixed antecedent parameters. Matrix
equation Mδ = Y is obtained using the training data, where δ collects the unknown
parameters and Y the target values. The least-squares (LS) method is formulated as

min
δ
‖Mδ −Y‖2 (4)

with the solution
δ∗ = MY, (5)

where M = (MTM)−1MT is the pseudoinverse of M. Backpropagation is then used to
adjust the antecedent parameters.

3.2.2 ANFIS with regularization

In the proposed variant, the learning algorithm is only LS-based and uses a kind of
regularization, both in standard and fractional version as in [26, 23]. The standard
regularization method, as a generalization of the standard LS method, is a well-known
method for solving discrete ill-posed inverse problems. The minimization problem is
formulated as follows:

min
θ
‖Mδ −Y‖2 +

1

C
‖δ‖2, (6)

where C is a regularization parameter. The solution is:

δ∗ = (MTM +
1

C
I)−1MTY, (7)

where I is the identity matrix.
The fractional method follows the minimization problem

min
δ
‖Mδ −Y‖2Q +

1

C
‖δ‖2, (8)
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where ‖δ‖Q = (δTQδ)0.5 and Q is a symmetric positive semi-definite matrix defined
as [26]

Q = (MTM)
γ−1
2 , (9)

with γ ∈ (0, 1). Let ui and vi be the vectors (columns of the matrices U and V)
coming from the singular value decomposition (SVD) of the matrix M, that is M =
UDVT , with D the diagonal matrix of singular values σi in decreasing arrangement.
Then the solution is [26]:

δ∗ =

q∑
i=1

σγi
σγ+1
i + C−1

(uTi Y)vi. (10)

3.2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing schemes offering a mapping between
some input and output (or target) variables. The input variables are also called attributes
or features. ANNs are employed both in regression and classification problems.

3.2.3.1 Neuron Neuron (also called unit) (Fig 4) is the basic component of the ANN.
An ANN consists of layers with a different number of neurons, namely, input, hidden,
and output layers. There could be one or more hidden layers. They are called hidden
because the computation is not visible to the user. The input χ of a generic node k is
given by the linear sum of incoming signals xi from the preceding layer, through the
weights wik, plus a bias term bk, that is

χk =
∑
i

wikxi + bk

. Notice that xi = f(χi), where f is the activation function.
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Figure 4. Neuron in Artificial Neural Network [4]

There are different activation functions. The well-known ones are:

• Linear: f(χi) = cχi, that is the identity function when c = 1; it can be used in
the output node.

• Sigmoid (logistic): f(χi) = 1
1+exp(−χi) , whose range is between 0 and 1.

• Hyperbolic Tangent: f(χi) = 2
1+exp(−2χi)

− 1, whose range is between −1 and
1.

• Rectified Linear Unit (ReLU): f(χi) = max{0, χi}, which has the advantage
of a lower processing time.

3.2.3.2 Architecture The number of neurons (units) and their distribution in the
layers, with a different number of neurons, describe the architecture of an ANN. The
architecture of an ANN is usually fixed by the user. In general, there are two main types
of architectures:

• Feedforward

• Feedback.

A feedforward network has connections only in one direction from the input to the
output layer, without connections between the neurons of the same layer (Fig 5). In a
feedback network, the output from layers can be redirected to the same layer or any other
layer. In this class there are recurrent networks.

In a feedforward network, the total number of connections Nc between the nth and
(n+ 1)th layer is given by:
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Nc(n) = units(n)× units(n+ 1),

where units(n) and units(n+ 1) are the number of units in the nth and (n+ 1)th layer
respectively. A weight matrix is also associated with the connections between the layers.
For instance, W(n) is the weight matrix referred to the connections between the nth and
(n+ 1)th layer.

Figure 5. Feed forward network [4]

3.2.3.3 Learning Let us consider the training data set T = {v(r), y(r)}Mr=1, with
v(k) ∈ Rm. In a feedforward network, the output is obtained as follows:

• input to hidden layer
χ1 = f(W(1)v(k))

• hidden to hidden layer

χl+1 = f(W(l)vl), ∀l ∈ {1, . . . , s− 1}

• hidden to output layer
y = f(W(s)vs)

The formation and modification of synapses is responsible for the learning in human
brain. The learning in computing scheme is based on the optimization of a mathematical
model. The learning can be supervised or not. In supervised learning, a training data set
T consisting of M input-output data samples is presented to the ANN. The difference
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between the computed output y(r) and the desired output y(r) is computed to correct
the weights so that the actual output could better approximate the desired output. In
unsupervised learning, the desired outputs are not available and the learning algorithm
has to detect independently patterns, features, correlations, and so on, following a process
called "self-organization".

As mentioned before, the supervised learning of a neural network foresees a numerical
optimization, more precisely the minimization of an error function. The latter depends
on the model’s parameters, that are weights and biases.

In the gradient descent algorithm, the objective function is minimized by means of
gradient values with respect to the parameters. In the Levenberg-Marquardt algorithm,
the second-order derivatives appears in the optimization.

Backpropagation is a typical algorithm based on the gradient descent. Weights are
updated at the sth iteration (epoch) by the delta rule

wij(s) = wij(s− 1) + ∆wij(s− 1), (11)

with ∆wij(s− 1) = −η ∂E(s−1)
∂wij(s−1)

where E(s− 1) is the total error at the epoch s− 1 and
η is the learning parameter.

The backpropagation algorithm can be stopped when the absolute rate of change of
the average squared error per epoch is significantly small, e.g. in the range [0.001, 0.01].
Initial weights and the learning rate η influence the convergence of the backpropagation
algorithm.

3.2.3.4 Learning Rate The learning rate defines how the network’s weights are up-
dated. The learning rate can affect both the time the neural network takes to learn a good
solution (the number of epochs) and the result. The lower the learning rate, the smaller
the changes in the weights from one iteration to the next, the higher the computational
time. The higher the learning rate, the worse the stability and the convergence. It is pos-
sible to increase the rate of learning without significant instability effects by modifying
the delta rule by means of a (usually positive) momentum term α

∆wij(s) = ηδjxi(s) + α∆wij(n− 1),

where α is usually a positive number called the momentum constant. Its value ranges
between 0.1 and 1. It is possible to allow the learning rate to vary over time, e.g. with
exponential decay, or to reduce the learning rate by a certain factor every few epochs.

Backpropagation does not represent the best learning algorithm in general, but it
is computationally efficient, because its computational complexity is linear in the total
number of weights. For large-scale learning, probably the most popular method is the
stochastic gradient descent (SGD). It updates the model parameters by means of a random
selection of the training samples.
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3.2.4 Support Vector Machines

Support vector machines (SVMs) is a supervised learning algorithm and was proposed
by Vapnik in 1992 [9]. SVMs can be used for classification and regression problems.
Explicit use of convex optimization, statistical learning theory, and kernel functions are
the key innovations of SVM.

3.2.4.1 Classification Given a training set S = {(x1,y1), . . . , (xn,yn)} of data points
xi from X ⊆ Rn with corresponding labels yi from Y = {−1,+1}, generated from an
unknown distribution, the task of the classification is to learn a function g: X → Y that
correctly classifies new examples (x, y) (i.e. such that g((x) = y) generated from the
same underlying distribution as the training set. Generalization means smallest error on
unseen/test data, so a good classifier should generate the best possible generalization.
The expected generalization error can be calculated using statistical learning theory [38]
for a classifier which is known as the capacity of the classifier. The capacity is regulated
by SVM in a way that it separates the given training data using the hyperplane according
to the labels. A higher dimensional feature space is realized when there is no linear
separation is possible. The hyperplane corresponds to the non-linear decision boundary
in the input space.

Let us consider φ : I ⊆ Rn→ F ⊆ Rn a mapping from the input space I to feature
space F (Fic 6). A hyperplane is found during the learning phase which has the highest
margin. The equation of such a hyperplane is

γ = min 1≤i≤` yi(〈w, φ(xi)〉 − b) = min 1≤i≤` yig(xi) (12)

Figure 6. Mapping of input space I to feature space F [13]

where w is an ` dimensional vector of weights, b is the threshold, and 〈, 〉 is the inner
product.
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The value (〈w, φ(xi)〉 − b)/‖w‖ describes the distance of a sample xi form the
hyperplane. When this value is multiplied to a label yi, we get a positive or negative
value based on the correct or incorrect classification, respectively. A label is assigned to
a given data point x by the following function:

g(x) = sign(〈w, φ(x)〉 − b) (13)

3.2.4.2 Maximizing the Margin When classes are linearly separable, a hyperplane
(w, b) exists such that:

yi(〈w, φ(xi)〉 − b) ≥ γ i = 1, . . . , ` (14)

Imposing ‖w‖2 = 1, the choice of the hyperplane such that the margin is maximized is
equivalent to the following optimization problem:

max w,b ,γγ subject to yi(〈w, φ(xi)〉 − b) ≥ γ i = 1, . . . , ` and ‖w‖2 = 1
(15)

An efficient solution can be found in the dual space by introducing the Lagrange multi-
pliers αi, i = 1, . . . , `. The problem (15) can be recast in the following dual form:

max α

∑̀
i=1

αi
∑̀
i=1

∑̀
j=1

αiαjyiyj〈φ(xi), φ(xj)〉 subject to
∑̀
i=1

αiyi = 0, αi ≥ 0

(16)
This reduces the problem to a quadratic optimization task. The solutions α∗ of this kind
of problems must satisfy the Karush-Kuhn-Tucker conditions. This ensures that only a
subset of training examples needs to be associated to a non-zero αi. This is called the
sparness of the SVM solution. In the solution α∗, only a subset of training examples
is associated to non-zero αi. These lie closer to the separating hyperplane and called
support vectors (Fig 7). The weight vector w∗ for the maximal margin hyperplane is
given by linear function of the training points:

w∗ =
∑̀
i=1

α∗
iyiφ(xi)(17)

Then the decision function (13) can be expressed as:

g(x) = sign(
∑̀
i=1

α∗
i yi〈φ(xi), φ(x)〉 − b) (18)
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Figure 7. Support Vectors on a hyperplane [13]

For a support vector xi, it is 〈w∗, φ(xi)〉 − b =yi from which the optimum bias b∗

can be computed. It is usually better to average the values obtained by considering
all the support vectors [13]. Quadratic programming (QP) problem (16) and decision
function (18) depend on the dot product between data points. The matrix of dot products
with elements Kij = K(xi,xj) = 〈φ(xi, φ(xj)〉 is called the kernel matrix. In the case
of linear separation K(xi,xj) = 〈xi,xj〉, but in general, functions that provides non-
linear boundaries can also be used. Widely used kernels are the polynomial K(xi,xj) =

(〈xi,xj〉+ 1)d or the Gaussian K(xi,xj) = e−
‖xi−xj‖2

σ2 where d and σ are user-defined
parameters.

3.2.4.3 Soft Margin Too much noise in the training data can lead the SVM to over-
fitting. Some training errors needs to be tolerated in order to get the better generalization.
This is called the soft margin classifier [11]. Optimal class separation can be obtained by
introducing the slack variables ξi ≥ 0:

min w,b ,γ ,ξ − γ + C
∑̀
i=1

ξi subject to yi(〈w, φ(xi)〉 − b) ≥ γ − ξi, ξi ≥ 0

i = 1, . . . , ` and ‖w‖2 = 1

(19)

The classification errors and the maximization of the margin can be controlled with the
user-defined constant C.

3.2.4.4 Regression Support Vector regression (SVR) was proposed in 1996 [14]. A
linear algorithm is used in the kernel-induced feature space to construct a function such
that the training points are inside a tube of given radius ε. As for classification the
regression function only depends on a subset of the training data.
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The training dataset {(xi, yi)}ni=1 ⊂ Rd ×R for a regression problem has xi as the
input vector and yi as the output vector. The goal of SVR is to find such a function f(x)
which does not exceed a certain ε deviation. The ε deviation is the sum of all of the target
variables for all the training dataset [15].

The f takes the form in case of linear function:

f(x) =
n∑
i=1

wixi + b with w ∈ R,b ∈ R (20)

By minimizing the norm, the ε deviation can be minimized: ‖w‖2 =
∑n

i=1 wi
Twi. The

problem can be formulated as a convex optimization problem:

minimize
1

2
‖w‖2

subject to

{
yi −

∑n
i=1 wixi − b ≤ ε,∑n

i=1 wixi + b− yi ≤ ε.

3.2.4.5 Speeding up the Quadratic Program (16) is a time consuming task when
there are large training sets. Many researchers have worked to solve this problem. Most
of the methods decompose the large problems into the series of smaller problems. The
Platt[24] method is the most known as Sequential Minimal Optimization.

3.2.4.6 Kernel Methods The learning problem and decision function can be de-
scribed as the dot products between the data points in SVM. Other methods such as
Principal Component Analysis, Canonical Correlation Analysis, Fisher Discriminant
posses the same property. There are number of algorithms that solve the non-linear
problems with the same complexity as the linear problems using kernel. These are called
kernel methods [34, 33].
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4 Numerical Experiments

4.1 Experimental setup and metrics
Two publicly available datasets were used for the experiments, by using data normal-
ization in the range [0, 1]. There are three variants of ANFIS used here: G-ANFIS
with standard regularization, F-ANFIS with fractional regularization, and C-ANFIS
with subtractive clustering. G-ANFIS and F-ANFIS with scattered partition have been
implemented in Scilab 6.0.2. MATLAB 2018a was used for C-ANFIS and ANFIS with
grid partioning. The membership functions for all the ANFIS architectures were the
classical bell-shaped function. The sigmoid and the linear functions were the activation
functions for the hidden and output units of the NNs respectively. The experiments
were performed by means of a CPU clocking in at 2.50GHz. The error measure herein
considered is the root mean square error (RMSE), by taking into account the standard
error, because of the cross validation. k–fold cross–validation is generally used to obtain
reliable results. The idea is that each sample may be used as training data and test data.
First, Data are split into k equal subsets, k − 1 are used k times as training data and one
as test data. Each time the test and training data are different. Usual values for k are 5
and 10.

4.2 Datasets
The first dataset is about forest fires in Portugal. It is obtained from UCI machine learning
repository [3]. It contains 517 instances with 13 attributes. This is a difficult regression
task, where the aim is to predict the burnt area of forest fires, in the northeast region of
Portugal, by using meteorological and other data [12]. The attributes are listed in Table
1, where "D" stands for multivalued discrete and "C" for continuous.
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variable description type
X x-axis spatial coordinate D
Y y-axis spatial coordinate D

month - D
day - D

FFMC fine fuel moisture code C
DMC duff moisture code C
DC drought code C
ISI initial spread index

temperature - C
RH relative humidity C

Wind wind speed C
Rain outside rain C
Area burnt area C (TARGET)

Table 1. First benchmark: dataset attributes

The second dataset is publicly available in the Mendeley Data repository [2]. The
dataset presents 1714 istances and 3 attributes described in Table 2.

variable description type
NDVI Normalized Difference Vegetation Index C
LST Land Surface Temperature C
Area burnt area C

Table 2. Second benchmark: dataset attributes

4.3 Numerical results

4.3.1 First benchmark: Portugal forest fires dataset

A 10-fold cross-validation was performed on the Portugal forest fires dataset [3] in [15].
Two types of experiments were performed in [15]:

• using the actual values of the target variables,

• using the predicted values of the target variable using SVR.

The obtained numerical results were compared against the first experimental setup in
[15], as it can be seen in Figure 8. The best results were achieved by F-ANFIS, with 3
terms (MFs), C = 0.00001, for any γ, since any change of this parameter does not affect
the result significantly.
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In Figure 8, the results by the methods CART, SVR + CART, DENFIS, SVR +
DENFIS, ANFIS, and SVR + ANFIS are from [15] and results by F-ANFIS and G-
ANFIS are from [36].
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Figure 8. First benchmark: 10-fold cross validation test results

Figures 9-12 refer to the experiments performed with the 5-fold cross validation
(in Figures 9-11, results by nu-SVR and C-ANFIS are from [36]). In the comparative
analysis, NN and SVR were considered, because they seem to be the common computing
schemes for forest fires prediction according to the recently published survey [5]. The
best result was by F-ANFIS, with 3 terms (MFs), C = 0.00001, for γ = 0.9, even though
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by changing γ the results did not vary significantly. This result is close to one by nu-SVR
(linear kernel), which exhibits the shortest run-time. By changing the type of kernel
the results did not change significantly. No results by the standard ANFIS with grid
partitioning, with Matlab running out of memory.
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Figure 9. First benchmark: 5-fold cross validation test results

The standard error is presented in Figure 10. It can be seen that the C-ANFIS has
the lowest standard error, while nu-SVR, F-ANFIS, and G-ANFIS have similar standard
errors. All the NN architectures show a higher standard error.
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Figure 10. First benchmark: 5-fold cross validation standard errors measure

C-ANFIS shows the least standard error, but it takes a considerable amount of time
as compared to other approaches. F-ANFIS, G-ANFIS, and nu-SVR have almost the
same elapsed time, with nu-SVR the fastest one. The considered NNs also have less time
elapsed as compared to C-ANFIS. The time elapsed by different approaches is shown in
Figure 11.
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Figure 11. First benchmark: 5-fold cross validation elapsed time for each approach
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Figure 12. First benchmark: RMSE vs (C,γ) for F-ANFIS (5-fold cross validation test
results)

Figure 12 provides the RMSE vs (C, γ) plot for the 5-fold cross-validation test
results by F-ANFIS. In the considered range, that is C ∈ (0, 100], the RMSE exhibits a
quasi-linear variation.

4.3.2 Second benchmark: Canada forest fires dataset

The second dataset was retrieved from the Mendeley Data repository [2]. The original
dataset presented 1714 istances and 3 input attributes. It was used for a binary clas-
sification (fire, non-fire) in [31], but in this thesis the fire instances have been used to
predict the burnt area. The resulting dataset consists of 379 instances, whose attributes
are shown in Table 2. In Figure 13-15, the results by C-ANFIS and nu-SVR are from
[36]. As one can see in Figure 13, the mean RMSE by nu-SVR (linear kernel), C-ANFIS
and G-ANFIS with 3 terms (MFs), C = 100 (or C = 10, as in [36]) is almost the same.
By changing the type of kernel in nu-SVR, the results do not change significantly. In this
example, the result by F-ANFIS are not very good and the worst ones are again by the
NNs.
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Figure 13. Second benchmark: 5-fold cross validation test results

The standard error is high for neural network with architecture [30 30 30], that is 3
hidden layers with 30 units in each layer. The other NNs have similar standard error with
F-ANFIS. C-ANFIS, G-ANFIS, and nu-SVR has the lowest and similar standard error
which is in the Figure 14.
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Figure 14. Second benchmark: 5-fold cross validation standard errors measure

The time elapsed by different approaches is shown in Figure 15. All the ANFIS
approaches took almost the same time. Again, nu-SVR is the fastest one. All the NNs
have a higher run-time, and the NN [20 40 60] takes more time compared to other NNs.
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Figure 15. Second benchmark: 5-fold cross validation elapsed time for each approach
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Figure 16. Second benchmark: RMSE vs (C,γ) for F-ANFIS (5-fold cross validation test
results)

Figure 16 is the RMSE vs (C,γ) plot for F-ANFIS, which shows similar behaviour as
in the previous example.

Even though the classification problem is beyond the scope of this thesis, a few
experiments with this Canadian dataset as the original classification problem in [31] were
performed. Since the authors in [31] did not provide the dataset with the training and
test part, it was not possible to compare our results against those results. Anyhow, 566
samples were used for the training with 133 fire cases, and 238 samples with 60 fires
cases were used for the test stage. The following error measures were considered, being
TP the true positives, TN the true negatives, FP the false positives, FN the false negatives:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F −measure = 2 ∗ (Precision ∗Recall)/(Precision+Recall)

Confusion matrix: [
TP FP
FN TN

]
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The best results sought are tabled in Table 3.

Approach Accuracy Precision Recall F-measure time (s)
G-ANFIS (C=100000) 0.7731092 0.6875 0.1833333 0.2894737 0.1006869

ANFIS 0.7650 – – – 7.103449
SVM 0.7478992 – 0 – 0.0028625

NN [50-50] 0.7479 0.7478992 – – 962.53

Table 3. Classification problem: test results

The confusion matrices are

• for G-ANFIS (2 terms) [
11 5
49 173

]
• for ANFIS (2 terms) [

0 133
0 433

]
• for the SVM [

0 0
60 178

]
• for the NN [

0 0
60 178

]
The results are not good in general, but the results by G-ANFIS (with 2 terms) are

the best ones. The results by SVM did not change significantly by changing the kernel
(here linear).
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5 Concluding Remarks
In this thesis, different soft computing techniques to predict the burnt area from a forest
fires have been applied. Two publicly available datasets [2, 3] were used. The soft
computing techniques that were applied includes ANFIS, ANN, and SVR, which are
state-of-the-art techniques. Regarding ANFIS, a new version using both standard and
fractional regularization has been discussed. The aim of this variant is to provide reliable
results even in case of ill-posedness with a better computational cost with respect to
the classical ANFIS, as mentioned in the Motivation and Main Goals section. From the
numerical experiments, it has been possible to see that G-ANFIS (equipped with the
standard regularization) and F-ANFIS (based on the fractional regularization), with a
proper choice of their parameters, outperformed most of the other approaches. For the
first benchmark case, the only approach whose results are close to those by F-ANFIS
(that are the best ones), is nu − SV R, but the advantage against the latter is in the
interpretability. While the interpretability of nu−SV R has still to be proved (to our best
knowledge), there is a huge literature on the interpretability of ANFIS. For the second
benchmark case, the best result is by G-ANFIS, which is close to that by C-ANFIS
(ANFIS with subtractive clustering), but the latter has a higher computational cost as
confirmed by the elapsed time in the numerical experiments. A proper choice of the
parameters of the proposed variant to get a may represent a limitation of it. This is a
common problem in many machine learning algorithms. Future work will address this
issue.
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