
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Tiit Vaino

Anomaly Detection in CDR-Based
Trajectories of the Mobile Cellular

Network.

Master’s Thesis (30 ECTS)

Supervisor: Amnir Hadachi, PhD

Tartu 2024

Anomaly Detection in CDR-Based Trajectories of the Mobile Cellular
Network.

Abstract:

Mobile data is an excellent resource to approximate people’s location and movement.
This could be used by governments and private companies. For example, emergency
services use people’s phone locations to know where to send help. The approximate
location is derived from combining mobile and cellular network connections information
with cellular network cell (mobile mast antenna coverage area) locations. Multiple
location events with consecutive timestamps, when put together, make one trajectory. It
is crucial to ensure that datasets are clean to prevent costly decisions based on flawed
analyses.

The main issue is that cell location in a database and in real life does not match
because of human error or unsynchronized databases. This thesis proposes a model for
anomaly detection in CDR-based trajectories using a Trajectory Anomaly Detection
with Mixed Feature sequence (TAD-FM) approach. The training and testing were done
using real data with integrated virtual anomalies, where some of the cell’s locations are
deliberately modified. Additionally, improvement has been introduced to the model to
reduce the time complexity for training and prediction. The proposed model was capable
of labelling and detecting 66% of the cells with wrong location data as an outlier.

Keywords:
Machine Learning, Artificial Intelligence, Clustering Algorithm, Neural Network, Au-
toencoder, TAD-FM, DBSCAN, Cellular Network

CERCS: P176 Artificial intelligence; P170 Computer science, numerical analysis,
systems, control.

2

Anomaaliate tuvastamine mobiilsidevõrgus CDR-põhistes trajektoori-
des.

Lühikokkuvõte:

Mobiilse kõne- ja andmeside andmestik on suurepärane viis inimeste asukoha ja lii-
kumise ligikaudseks hindamiseks. Seda saaks eetiliselt kasutada nii valitsuste kui ka
eraettevõtete poolt. Näiteks kasutavad hädaabiteenused inimeste telefonide asukohti,
et teada saada, kuhu saata abi. Ligikaudne asukoht saadakse mobiili ja mobiilivõrgu
andmete kombineerimisega mobiilivõrgu kärgede (mobiilimasti antennide katvusalade)
asukohtadega. Mitmed asukoha sündmused koos järjestikuste ajatemplitega saab kokku
panna üheks trajektooriks. Neid asukohti ja trajektoore võiks kasutada mitmesuguste va-
litsuse või ärivaldkonna küsimuste analüüsimiseks. On oluline tagada, et andmekogumid
oleksid puhtad, et vältida vigaste analüüside põhjal kallite vigade tegemist.

Põhiline probleem on selles, et kärje asukoht andmebaasis ja reaalses elus ei kattu,
sest on tehtud inimlik viga või andmebaaside pole sünkroonis. Antud magistritöö pakub
välja mudeli anomaaliate tuvastamiseks CDR-põhistes trajektoorides, kasutades Trajec-
tory Anomaly Detection with Mixed Feature sequence (TAD-FM) ehk siis trajektoori
anomaaliate tuvastamine kombineeritud tunnusjoonte jadaga lähenemisviisi. Mudeli
treenimine ja testimine viidi läbi reaalsete andmetega, kuhu olid integreeritud virtuaalsed
anomaaliad, kus mõne kärje asukohti oli tahtlikult muudetud. Lisaks on mudelile teh-
tud täiustusi, et vähendada treenimise ja ennustamise ajalist keerukust. Pakutav mudel
suutis märgistada ja tuvastada 66% kärgedest, millel olid valed asukohaandmed, kui
kõrvalekalded.

Võtmesõnad:
Masinõpe, Tehisintellekt, Klasterdamisalgoritm, Neuraalvõrk, Autokodeerija, TAD-FM,
DBSCAN, Raadiovõrk

CERCS: P176 Tehisintellekt; P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine.

3

Contents
Terms and notions 6

Introduction 7

1 Background 11
1.1 Cellular Network . 11
1.2 Cellular Network’s Cell Data . 13
1.3 Mobile Data . 14
1.4 Autoencoder . 15
1.5 DBSCAN . 15

2 Literature overview 18
2.1 Statistical Learning Techniques . 18
2.2 Clustering Techniques . 19
2.3 Deep Learning Techniques . 20

3 Methods 22
3.1 Model . 22

3.1.1 High-Level Architecture . 22
3.1.2 Preprocessing . 24
3.1.3 Autoencoders . 26
3.1.4 Clustering . 28

3.2 Training and test dataset . 28
3.3 Tuning the Model . 29

3.3.1 Tuning Autoencoders . 29
3.3.2 Tuning Clustering . 30

4 Results 32
4.1 Preprocessing Results . 32
4.2 Autoencoders Results . 32
4.3 Clustering Results . 33

5 Discussion 36
5.1 Model performance . 36
5.2 Usability . 36
5.3 Possible Future Improvements . 37

5.3.1 Model . 37
5.3.2 Data . 38

Conclusion 39

4

Acknowledgments 40

References 41

Appendices 45
I Detailed Preprocessing . 46
II Used Soft- and Hardware . 47
III Licence . 49

5

Terms and notions
CDR Call Detail Record. 2, 3, 7, 8, 19, 22

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 2–4, 11, 15,
16, 20–22, 28–37, 39, 47

GRU Gated Recurrent Unit. 20

HMM Hidden Markov Model. 19

k-NN k-Nearest Neighbors. 18

MLP Multilayer Perceptron. 20

PCA Principal Component Analysis. 19

RNN Recurrent Neural Network. 20

SNN-CAD Similarity-based Nearest Neighbour Conformal Anomaly Detector. 18

ST-RNN Spatial-Temporal Recurrent Neural Network. 20

STL Spatial-Temporal Laws. 19

SVM Support Vector Machines. 19

TAD-FM Trajectory Anomaly Detection with Mixed Feature sequence. 2, 3, 9, 11, 21,
22, 26, 27, 29, 30, 32, 37, 39

6

Introduction

Overview

A mobile phone is a part of our everyday lives. In 2022, 73% of the world’s population
had one[1]. They generate a lot of data per device. It was about, on average, 15 GB per
month in 2022, which is expected to rise to 46 GB by 2028 [2]. With all this data is also
a lot of metadata that could be used for different purposes.

The interesting part of this metadata is spatial-temporal data, which has many use
cases. In the Call Detail Record (CDR) is saved events timestamps with a phone’s
approximate location. These could be put together into one trajectory. Having a lot of
CDR data enables to construct a lot of trajectories, which gives many possibilities for
research.

Much research has been done to utilize Call Detail Records. It is known that different
aspects can affect CDR data, for example political, social and cultural events [3]. Also,
people’s behaviour like commuting between home and work [4]. It is also possible to
estimate population density and its changes [5].

With all those tools, governments could solve a lot of issues. One use case is saving
people’s lives. Seeing a person’s near real-time location gives emergency services the
possibility to find people in need quickly. This could be used because of natural or human-
caused disasters when there is a threat to people in a given area who need notifying to
evacuate. The more everyday situation is that a person needs emergency services like
an ambulance or police. With the right methods, the CDR data gives the right tools for
epidemiological specialists to monitor disease spreading in the present and future [6, 7,
8].

Population density estimations and commuting patterns could give city planners
a hint about which city parts need more attention. For example, infrastructure needs
updating because of more traffic. Or there is a need for more public services like schools
and hospitals because of rising population density.

A lot of companies could also benefit from processed CDR data. For example, it
allows understanding what type of people are surrounding their business [9]. This gives
them knowledge on improving their services or products because they understand the
target audience better. It also allows companies to make more targeted advertisements,
decreasing marketing costs and raising the target audience’s visibility. CDR data could
also help companies better understand their products and services. For example, taxi

7

companies could give time estimates for their rides [10].

CDR data is coming from telecommunication companies. So they should be inter-
ested in processing this data and helping governments and companies benefit from the
knowledge that CDR data provides. There are some problems with the CDRs that bring
the impact down.

Problem statement

The problem with the CDR data is that the information about the cell (mobile mast
antenna coverage area) location could be incorrect. This impacts all applications that are
using this corrupted data. The issue effect on the estimated path and locations can be
seen in Figure 1.

Figure 1. Broken cell affect on location and trajectory estimation.

Those wrong entries about the cellular network mostly come from human error. Some
technicians have made a typo in cell coordinates or assembled cell antenna wires in the
wrong order. Another problem could be that databases are out of synchronization. This
means when some changes are done, then at the same time, in the different databases,
the same cell could have a different location.

Wrong location and trajectory estimates could affect the users of CDR data. For

8

example emergency services input data could be compromised, therefore putting lives in
danger and wasting money. Wrong locations affect population density estimations: in
the expected area, there are fewer people, and in the wrong area, there are more people.
This introduces bias into the data, so governments and businesses could make wrong
decisions that can be costly and introduce inconvenience to society. Fixing those errors is
crucial for telecommunication companies to offer the best quality data to their customers.

Contribution

This thesis focuses on finding cells with the wrong locations. They affect trajectory
patterns; therefore, short segments of people’s trajectories are used to find these cells.

Modern artificial intelligence methods are used to solve the problem. The final
Trajectory Anomaly Detection with Mixed Feature sequence (TAD-FM) model was
inspired by its original article [11]. Updating the preprocessing and clustering algorithm
improved the TAD-FM. A half-synthetic dataset was created from the real dataset to train
and test the model, where some of the cell’s locations were altered.

The main result of this thesis is a promising model that can be used in real-life
business processes to detect anomalistic cells. In addition, a list of improvements points
was made to the final model.

Roadmap

The thesis is structured into five chapters. They will describe the background, related
works, and used methods with final results and discussions.

Those chapters are:

• Chapter 1 teaches the reader how a cellular network works and what kind of data it
generates.

• Chapter 2 introduces different researches on how to find anomalies. It is divided
into three categories: statistical learning techniques, clustering techniques and
deep learning techniques.

• Chapter 3 shows what is inside the TAD-FM and discusses how data was prepro-
cessed and the model was trained in different parts.

9

• In Chapter 4, the reader can see the model training results and how well it finds
the anomalistic cells.

• Chapter 5 will analyze if a developed model is usable in the real world and what
can be improved.

At the end of the thesis are the appendices with extra information about the model
and development. This research was done in cooperation with Reach-U1, who provided
data and hardware. To make the text more readable, Grammarly was used throughout the
thesis 2.

1https://www.reach-u.com/
2Grammarly was used in the time range from 15.04.2024 to 15.05.2024

10

1 Background

This section simplistically describes how cellular networks work, what kind of data was
used for this thesis and what could be derived from this information. Furthermore, it
highlights the potential challenges associated with the data. At the end are described
autoencoder and DBSCAN, two important parts of TAD-FM.

1.1 Cellular Network

Cellular networks enable us to call anybody from anywhere. For that, many antennas are
needed to cover large areas. Usually, there are three antennas to cover 360° on one mast.
An example of this can be seen in Figure 2. Each antenna is servicing one area that is
named a cell.

Figure 2. Cellular network mast with antennas [12].

When those antennas are combined, they make a cellular network. In Figure 3, it
can be seen how the cellular network is designed. Phone 1 represents the usual use case,
where one device in a given cell talks to the antenna that services this area. However,
there are challenges with Phone 2 and Phone 3, which are on the border of the two cells,
so the connection hops between antennas that can be on the same mast (Phone 2) or
a different mast (Phone 3). Based on this information, it could be said approximately
where the phone is located.

11

Figure 3. Phones connect to a different antenna in the cellular network.

Localisation can be done in a couple of different ways. The first would be the least
accurate but the most straightforward. For example, Phone 1 is connected to the dark
blue mast’s antenna, which means it is in one of the three dark blue cells, so the mast
location is chosen because it is in the middle. The second way would be to take the
cell’s centroid. Phone 1 is connected to one of the dark blue mast’s antenna covering
the bottom left dark blue cell, so it can be assumed that the phone location is this cell’s
centroid. The third way would be more complicated. It would use the ping time between
the antenna and the device. It is called timing advance. From that, it can be calculated
how far the device is from the antenna, forming a potential sector where it could be
located. Those sectors can be seen in Figure 4.

Trajectories with different characteristics could be formed based on those three device
localisation methods. When a phone moves through the cellular network, it connects to
different antennas, and the distance from the connected antennas also changes. These
changes could be used to track phone movements using the localisation methods above.
The effect of those localisation methods on a predicted trajectory can be seen in Figure 4.

12

Figure 4. Phone estimated trajectories compared to real trajectory.

All this information about phone activity is stored in two datasets. One dataset
includes information about antennas and their characteristics. The other dataset includes
information about phone connection characteristics.

1.2 Cellular Network’s Cell Data

Each cell in a cellular network has its own characteristics. Any changes in these are
manually stored. Human errors can occur when inserting the values or assembling the
antenna. Errors can also appear due to network system design because there are time
windows where information in different databases is not synced. Each cell has a cell
identification number, cell antenna coordinates and address, antenna azimuth and other
info about the antenna. It is possible to calculate the area the antenna is covering (a
cell), which can be seen as hexagons in Figure 3 and Figure 4. When there are errors in
those values for one reason or another, there can be anomalies in phones’ trajectories
connected to this antenna with problematic values in the database.

In Figure 5 can be seen one example of how an anomalistic cell could affect a phone’s
trajectory. The problem is that the red cell’s antenna location was wrong. Its new location
is shown by the white arrow. The result of this can be seen in the estimated trajectories.
All three have now "V" shaped segment in their trajectory. This segment causes different
anomalistic behaviour in movement characteristics: long distance, really fast movements

13

and big accelerations.

Figure 5. Phone estimated trajectories compared to real trajectory with anomalistic cell.

1.3 Mobile Data

Each time a phone connects to an antenna, an event is created. This event information is
automatically saved to a database. Each entry to the database includes metadata about the
connection. Essential values are the phone identification number, what kind of event it
was, the cell identification number to which the phone was connected, and the timestamp
when the event happened. There is also timing advance, which can be used to enhance
localisation.

When merging those events with the cell table, it is possible to locate approximately
where this event happened. Moreover, we get trajectories when putting merged infor-
mation in order based on timestamp, as shown in Figure 4. In addition to the phone’s
trajectories, it is also possible to get its movement characteristics. For example, average
speed, acceleration, direction, and changes in all those. However, when there is an error
in data, those characteristics are also affected.

14

1.4 Autoencoder

An autoencoder is an unsupervised neural network where the model tries to output the
same result as the input [13]. In Figure 6, it can be seen how the autoencoder is built.
The autoencoder effect comes from the fact that the middle layer is smaller, so the
autoencoder has to generalise.

Figure 6. Autoencoder [11].

1.5 DBSCAN

In 1996, was published the article "A density-based algorithm for discovering clusters in
large spatial databases with noise" [14] where was introduced a well-known clustering
algorithm, Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Its
design already included noise detection helping to filter outliers out. Its ability to detect
arbitrary shapes has attracted a lot of other researchers to use DBSCAN as part of their
methods, as seen in Section 2.

The logic of DBSCAN is described in Figure 7.

15

Figure 7. DBSCAN logic chooses core (A) and border points(B,C) and leaves out noise
(N)[15].

A more detailed algorithm can be seen in Algorithm 1. For DBSCAN is necessary
two variables: max distance to the neighbouring point (ϵ or eps) and the minimal number
of neighbours (MinPts). In data, DBSCAN has three different types of points (colours
in Figure 7): core points (red), border points (yellow) and noise (blue). Core points are
points with at least MinPts of neighbouring points under epsilon distance (marked as a
circle). Border points have under MinPts of neighbours, but at least one of the neighbours
is a core point. Points marked as noise have fewer than MinPts of neighbours, and none
is a core point. Clusters are assigned based on the core points. Core points are points
in each other’s neighbours and belong to the same cluster. Border points belong to the
same cluster as their neighbouring core point. Points that are noise do not belong to any
cluster.

16

Algorithm 1: DBSCAN Algorithm
Input: DB: Database
Input: ϵ: Radius
Input: MinPts: Density threshold
Input: dist: Distance function
Data: label: Point labels, initially undefined

1 foreach point p in database DB ; // Iterate over every point
2 do
3 if label(p) = undefined then
4 continue ; // Skip processed points

5 Neighbors N ← RangeQuery(DB, dist, p, ϵ) ; // Find initial
; // neighbors

6 if |N | < MinPts then
7 label(p)← Noise ; // Non-core points are noise
8 continue;

9 c← next cluster label ; // Start a new cluster
10 label(p)← c;
11 Seed set S ← N \ {p} ; // Expand neighborhood
12 foreach point q in S do
13 if label(q) = Noise then
14 label(q)← c;

15 if label(q) ̸= undefined then
16 continue ; // Previously processed

17 label(q)← c;
18 Neighbors N ← RangeQuery(DB, dist, q, ϵ);
19 if |N | ≥ MinPts ; // Core-point check
20 then
21 continue

22 S ← S ∪N

17

2 Literature overview

This section introduces current state-of-the-art methods for finding anomalies that could
be used to solve finding anomalistic cells from cellular network. It is done in three
categories: statistical learning techniques, clustering techniques, and deep learning
techniques. In each category, a variety of methods from different articles is introduced.
Some of them find anomalies in a set of trajectories, and some of them from a set of data
points.

2.1 Statistical Learning Techniques

Statistical algorithms are one of the most intuitively understandable ways to find anoma-
lies. They could be used wholly or as one step in the whole process. There has been
much research in this field, and this subsection will introduce some of them.

In 2012, a paper, "An online algorithm for anomaly detection in trajectory data"
[16], was published. The task was to identify unusual sea vessel routes. Their solution
was short and computationally easy. Authors even say it could be used as a one-line
solution. Based on initial data, a typical route was calculated. Now, they take each route
and calculate the abnormality score for each route utilizing a statistical test. They used
simulated data and ship trajectories travelling through the English Channel for testing,
and the test results were promising.

Similarly to the previous paper [16], an article "Anomaly detection in maritime data
based on geometrical analysis of trajectories" [17] dealt with anomalous ship trajectories.
Their proposed unsupervised method takes trajectories and gives them an abnormality
score. They first find the shortest path using the A* algorithm to calculate the score.
Then, key features, such as trajectory length, were extracted for each trajectory under
observation. Using those features, patterns were compared with the shortest path to get
the abnormality score.

The following paper, "Anomaly detection in trajectory data for surveillance appli-
cations" [18] by Rikard Laxhammer, also automates anomaly detection of sea vessel
trajectories. Rikard introduced Similarity-based Nearest Neighbour Conformal Anomaly
Detector (SNN-CAD) algorithm. This algorithm takes data points, compares them to
known points (similarly to how in the k-Nearest Neighbors (k-NN) algorithm) and then,
based on a given threshold, says if it is abnormal.

The paper "Trajectory-Based Anomalous Event Detection" [19] introduced the pos-

18

sibility of using a single-class Support Vector Machines (SVM) to find outliers. The
approach was based on SVM clustering and they used a single-class variant for it. They
used generated data and vehicle and people trajectories extracted from the video for
testing. In both cases, it was able to find outliers. A good thing about this model is that it
can be known how many outliers there are.

Unlike previous methods described above in this section of the paper "STL: Online
Detection of Taxi Trajectory Anomaly Based on Spatial-Temporal Laws," [20] time info
is also used in addition to spatial data. For this, an algorithm called Spatial-Temporal
Laws (STL) was introduced. STL looks at how given trajectory characteristics differ
(time, distance and displacement vector) from previous trajectories. When the observable
trajectory is out of the range of expected values, it is considered abnormal. For training
and testing, taxi movements were used to spot fraudly behaving taxis making too long
trips.

To find anomalies, it is also possible to use a Hidden Markov Model (HMM), which
has been shown in the article "Anomaly Detection on Collective Moving Patterns: A
Hidden Markov Model Based Solution" [21]. They took a path and the probability that
this sequence is possible was calculated using the HMM. This path was marked as an
outlier if this value was lower than the threshold. They used people’s movements for
training and testing as generated and from real-world data. For the last one, they used
Principal Component Analysis (PCA) to reduce dimensionality.

In all the discussed statistical methods, it can be seen that some type of abnormality
score is calculated. These abnormality scores were used to find the outliers. With a given
threshold, outliers can be filtered out.

2.2 Clustering Techniques

Different clustering methods could be used to find outliers in some datasets. Outliers
are points that do not have similar points in their proximity. In this subsection, some
methods from the research done in the field will be introduced.

The article "CDR Based Temporal-Spatial Analysis of Anomalous Mobile Users"
[22] introduces how hierarchical clustering could be used for anomaly detection. In their
approach, they had to define several clusters and then look into those clusters. Their data
was CDR, in which they detected anomalous users.

K-means++ was used in the method presented in the article "Local Outlier Detection
for Multi-type Spatio-temporal Trajectories" [23]. They used different trajectory datasets

19

from the solar astronomy domain, and their goal was to find anomalous subsegments. In
the first stage, the trajectory was split into segments, and then features were extracted. In
the second stage, clustering was done, and now they have template trajectory segments.
In the last step, they calculated the abnormality score and the segment distance from the
template.

The article "A Framework for Spatial-Temporal Trajectory Cluster Analysis Based
on Dynamic Relationships" [24] also used spatial-temporal data (truck and human
trajectories). Clustering was done using DBSCAN; they looked at each event’s location
and the haversine distance between those events.

DBSCAN was also used in another research described in the paper "DensityBased
Clustering Based on Hierarchical Density Estimates" [25]. They updated the DBSCAN
algorithm to find the dataset hierarchical structure.

As seen, different clustering methods are usable. The aforementioned methods use
the distance between points for clustering. This means between the two points, a distance
is calculated, and clusters are formed between those points that are close to each other.

2.3 Deep Learning Techniques

The most novel topic in anomaly detection is deep learning. Different neural models
could be used for noise detection. This subsection will describe some of them with
examples from different papers.

Recurrent Neural Network (RNN) is usually used with time-series data, so it seems
to be a logical choice when dealing with sequence-based data as trajectory. In the article
"Spatial-Temporal Recurrent Neural Network for Anomalous Trajectories Detection"
[26], the model Spatial-Temporal Recurrent Neural Network (ST-RNN). Their model
used Gated Recurrent Unit (GRU), attention units and simple Multilayer Perceptron
(MLP). They used their model on taxi trajectories and assigned each the probability of
being anomalous.

A similar problem was solved in the article "A deep encoder-decoder network for
anomaly detection in driving trajectory behaviour under spatiotemporal context" [27].
There, they segmented road networks into spatial-temporal units. For each unit, char-
acteristics like speed, acceleration and direction were calculated. Then, each unit’s
characteristics were given an autoencoder, and it was calculated later if it was possible to
reconstruct the same output as the initial input.

20

An interesting approach was chosen in the paper, "Unsupervised learning trajec-
tory anomaly detection algorithm based on deep representation" [11]. Researchers
used a mixed approach to detect anomalistic trajectories in a dataset. They used two
autoencoders in sequence and DBSCAN on top of it. It is called TAD-FM and uses
unsupervised learning. Autoencoders were used to make a summary of each trajectory,
reducing dimensions. Also, there is preprocessing before the autoencoders, where each
trajectory is segmented, and characteristics like variations of velocity, distance, angle,
and acceleration are calculated for each trajectory.

All described models used neural network models to find summarising features.
There were end-to-end models, but they also incorporated into other methods. Also,
movement was described similarly in preprocessing with several values.

21

3 Methods

This section will describe TAD-FM architecture, preprocessing data, and how the final
model was trained. The method was inspired by the paper [11], which addressed anomaly
detection on GPS traces. Since the CDR location data is almost similar to GPS traces
but it has significant geolocation inaccuracy and sparseness in time and space. It was
decided to build the model for this thesis following the same philosophy. Adjustments
and modifications were necessary in the application of techniques to ensure suitability
for CDR-based trajectories.

3.1 Model

This subsection will describe TAD-FM. A short overview is given of a high-level view
of the architecture with examples of input data. The preprocessing part includes data
cleaning, making trajectory segments, calculating metrics for each cell and normalizing.
The autoencoder part includes two autoencoders with mixed feature fusion. The last part
is clustering, where DBSCAN is used.

3.1.1 High-Level Architecture

On a high level, the TAD-FM is separated into three layers: preprocessor, autoencoders,
and clustering. Each of them has a unique part to do in solving the problem. Model
architecture can be seen in Figure 8.

Figure 8. TAD-FM high-level architecture.

22

The model takes two datasets, as shown in Figure 8. Phone users create mobile events
dataset rows. Each connection between the user’s phone and cell antenna is recorded as
one row. It contains info about the user, connection, and cell. Table 1 shows an example
of the mobile events dataset. Cell plan data contains info about mobile masts’ locations
and antenna characteristics. The cell data example is in Table 2. In both tables only
relevant columns are shown, unnecessary columns are dropped for both datasets in the
preprocessing part.

Table 1. Example of a mobile events.

user_id timestamp cell_id
1 1715075250000 100-200-30000-40004
2 1715075251000 100-200-30000-40000
1 1715075252000 100-200-30000-40001
1 1715075253000 100-200-30000-40003
4 1715075254000 100-200-30000-40002

Table 2. Example of a cell plan.

cell_id latitude longitude
100-200-30000-40000 12.123456 21.654321
100-200-30000-40001 12.223456 21.654321
100-200-30000-40002 12.323456 21.754321
100-200-30000-40003 12.423456 21.654321
100-200-30000-40004 12.534567 21.654321

Those datasets are cleaned and merged. Unimportant events are removed and five
points trajectories are formed. Based on these trajectories, each cell’s characteristics
are calculated. In the end, these characteristics are normalized. All this was done in the
preprocessing layer.

Normalized characteristics are then fed through an autoencoder layer, from which
a short summary is generated for each cell. This summary is then given to a clustering
algorithm. After the algorithm, each cell is assigned a class number. -1 indicates the
value is an outlier, and 0 and above indicate some cluster. Now, those outliers could be
given a closer look by a human who could fix this issue.

23

3.1.2 Preprocessing

There are two inputs: mobile events and the cell plan. In Figure 9, the simplified flow
can be seen. A more detailed flow can be seen in Appendix I. In the original article [11],
researchers took trajectories and calculated metrics for each trajectory. For this thesis,
relevant trajectories were summarized into one set of metrics for each cell.

Figure 9. Simplified datasets preprocessing flow.

As can be seen, two datasets are merged to add a location to each event. The cell
site location was chosen because this is the value in which the error is searched, and it
does not need any more computation. To reduce the need for computation even more,
irrelevant points are dropped. Those are the repetitive middle points where the cell does
not change. Then, the time difference and distance with the next point are calculated.
Angle change is calculated between the last, current and following points. Speed is
calculated using time and distance, and acceleration is calculated using the change in
velocity at the current point. Thus, for each point, there is a quantification of distance,
angle, speed, and acceleration.

The five-point trajectories’ characteristics are calculated using those four values for
each point. An example of a five-point trajectory with chosen metrics can be seen in
Figure 10. Vectors in this figure how values like distance and speed angle are measured.
The movement characteristics are measured between the current and the next point, and
the angle and acceleration is measured between the last, the current and the next point.
Each trajectory comes from one phone movement by looking at two points before and
two after the current point. Only relevant metrics that give information about the middle
cell are selected at each point. About each trajectory, there are four metrics describing
them:

• Sum of distances of cells C-2, C-1, C0, C1, C2.

24

• Sum of velocities of cells C-1, C0.

• Angle of the C0 cell between the cells C-1, C1.

• Acceleration difference in C-1, C1.

Figure 10. Example trajectory with used metrics for each cell.

For each cell, trajectories are taken where the middle point is the given cell. Using
those trajectories, four metrics and 28 cell metrics are calculated. Number 28 comes
from seven statistics being calculated over four metrics of the given cell’s trajectory.
Those seven statistics are:

• minimal value,

• maximal value,

• standard deviation value,

• 25 percentile value,

• median value,

• 75 percentile value.

To make the autoencoder part perform even better, those metrics are normalized. It
was needed because each of the 28 values are on its own range. To solve this a Min-Max
scaler were chosen, because it compresses the range between the values 0 and 1.

25

Its calculation can be seen in Equation (1).

Xscaled =
X −Xmin

Xmax −Xmin
(1)

• Xscaled: Scaled value of the feature X

• X: Original feature value

• Xmin: Minimum value of the feature X in the training dataset

• Xmax: Maximum value of the feature X in the training dataset

3.1.3 Autoencoders

Autoencoder layer architecture can be seen in Figure 11. In TAD-FM, it is used as a
summarizer that reduces dimensionality, therefore reducing computation needed in the
clustering layer.

Figure 11. TAD-FM autoencoders and clustering.

TAD-FM has two autoencoders, as shown in Figure 11 and Figure 12. The TAD-
FM autoencoders will generalise 28 values to 15 values. The first autoencoder takes
those 28 normalised metrics as input and tries to learn them. Because the middle layer
has 10 neurons, the model has to generalise. The second autoencoder does the same
process as the first one with different inputs and a different size hidden layer. The second

26

autoencoder takes the same input as the first layer and concatenates the first layer’s
middle-layer output. So, in total, the second autoencoder has 38 values as input. Its
middle layer has 15 neurons. Later, after training both autoencoders, the output is taken
from the second autoencoder’s middle layer.

Figure 12. TAD-FM autoencoders fusing features. The size of the boxes represents the
real layers size

To train both models, a loss function and optimizer are needed. Equation (2) shows
a loss function used for the original paper’s first and second autoencoder. x represents
input, and y represents output of a autoencoder. ADAM [28] optimizer was used as the
optimizer for both autoencoders, because it is adaptive and converges fast.

L(x, y) = −
n∑

i=1

(xi log(yi) + (1− xi) log(1− yi)) (2)

27

3.1.4 Clustering

Those 15 summarised values from the second autoencoder middle layer was given to
the clustering algorithm to find cells that form clusters and outlying cells. For this, a
density-based clustering algorithm DBSCAN was used.

The goal of the DBSCAN clustering was aimed for broken cells to come out as noise
and other points to belong to the main cluster.

3.2 Training and test dataset

The autoencoder and the clustering part need data to learn and predict something. To
evaluate the models, this data needs to include broken cells. This subsection describes
how a training and test dataset was created.

Firstly, finding the ratio between normal and broken cells was necessary. It was a
balancing between the two arguments. The first one was that not too many normal cells
should not be affected by broken cells. It is a problem, because normal cells that are
near the broken cells, their trajectories are affected also. This will result in changes in
representing 28 metrics. The second one was that when there were very few broken cells,
it was hard to evaluate how well the model performed.

In the data, there were not enough known errors in the cell plan, so it was decided
that creating a set of broken cells was necessary. A possibility would have been to find
those real-life broken cells, but it would have taken a lot of resources.

Cells’ locations were broken in three different ways, which could also happen in real
life. The first way is for two cells to switch their locations. The second way would be
for latitude and longitude to be switched. The third way would be that the latitude or
longitude is wrong. Those three changes were done in the cell plan dataset to a small
amount of cells, so those altered cells were mixed with real-life data.

Cell location change affects the trajectories of those mobile phones connected to
broken cells. Therefore, cell 28 representative metrics are affected. Now, there are three
types of cells in the cell plan. Broken cells, where location data is wrong. Affected cells,
where there is a broken cell, one or two jumps away in the trajectory. Lastly, normal
cells, which have not been altered nor affected.

Two different days were chosen to make a training and test set. On the first day data,
the model was fine-tuned and trained. On another day, the model was only evaluated.

28

Choosing two different days ensured that there wass at least some variability between
the test and training set.

3.3 Tuning the Model

Initially, the TAD-FM autoencoder layer was tested on a small dataset to get initial results
fast. Then, the model was fine-tuned. Lastly, the model was trained on two weeks of
real-life data, where no modifications were made and saved. After that, DBSCAN was
fine-tuned to find the best parameters, and then the clustering algorithm was usable on
necessary datasets.

3.3.1 Tuning Autoencoders

For the model, fine-tuning was tested by changing layers, the number of neurons and
learning parameters. It was found that the base model’s architecture is better than variants
where some changes were made. So, only learning parameters needed to be tuned.

There were two learning parameters for both autoencoder layers separately: the
number of epochs and the learning rate. It is a challenge to find the best parameters. An
evolutionary algorithm was used to find those parameters. The paper "An Overview of
Evolutionary Algorithms for Parameter Optimization" [29] describes different Evolution-
ary algorithms. In this thesis, a genetic algorithm was used, which was implemented in
Python by Daniel Tucker in the evolutionary-algorithm Python library [30].

This genetic algorithm implementation at first generates a population of random pairs
of epoch and learning rate values in a given range. Then, those pairs are given a score
based on how well the model trains described by the TAD-FM custom loss function.
The best values are chosen as parents of the new population. Lastly, new offspring are
derived from those parents by mixing values and mutating those. Now, there is a new
population, and a new cycle starts. This is done until there are no improvements or a
maximum number of cycles has been reached.

After the genetic algorithm had found the best parameters, the autoencoder’s loss
functions graphs were evaluated, and based on that, necessary adjustments were made
with parameters to avoid over-fitting. In the final step, the first autoencoder is trained
on two weeks of data, and then the second autoencoder is trained on concatenated first
autoencoder output and two weeks of data. After that, the model is saved for later usage
to avoid unnecessary retraining.

29

3.3.2 Tuning Clustering

To get the best results out of DBSCAN, the best parameters combination needs to be
found. For this, two parameters MinPts and ϵ were fine-tuned. Also, the most suitable
distance metric was looked for.

Firstly, the best distance metric was found. The tricky thing about it was that cluster
labels and actual labels may be different, so there is a need for a specific metric that
handles this well. For this, ten synthetic datasets were made that represent different
distributions of clusters. Ten metrics were chosen to evaluate those datasets. Metrics and
results can be seen in Table 3. The best of the given results was the Chi-Square test. It
gave good results on df_real_01 dataset, which is closest to the real case.

Table 3. Evaluating different metrics on synthetic datasets.

Initially, cosine distance was used to measure the distance between two points, as in
the initial TAD-FM paper [11]. However, due to its slow implementation in scikit-learn
3, Euclidean distance was considered. To evaluate if it is suitable, it was compared with
cosine distance in a grid search; they gave similar patterns as can be seen in Figure 13,
so Euclidean was chosen.

3https://scikit-learn.org/stable/

30

Figure 13. Comparison of cosine similarity with Euclidean metric grid search.

When looking into the hot spot’s cluster distribution, the results were good but needed
to improve. There were a lot of different small clusters, but it would have been hard to
say if a small cluster was normal or abnormal. However, when the number of MinPts
was raised, the results got better. Most of the values were in one big cluster and others
that were marked as outliers mainly were broken or affected cells. So, it was chosen as
the best parameter for DBSCAN.

31

4 Results

This Section will be about autoencoder layer learning, DBSCAN learning and the final
results of the training and test set. Information about hardware and software can be seen
in Appendix II.

4.1 Preprocessing Results

The steps done in the preprocessing helped to reduce the input for the autoencoder. In
the initial paper [11] each trajectory was segmented and for each segment was calculated
summarizing metrics. This means the number of summarizing metrics depends on how
many events there is. In the current thesis the size of the autoencoder input depends only
how many cells there is, what is considerably less than the number of events or even
trajectories. It is this way because all the trajectories that are relevant for a given cell,
their metrics are merged into one.

4.2 Autoencoders Results

The TAD-FM autoencoder layer was trained on two weeks of data. Preprocessing and
training the neural network was done on two different computers. One was a laptop, and
the other was a powerful remote server.

Preprocessing was done on the more powerful server. Data and preprocessing were
split into three to four-day patches because there were many entries in the mobile events
dataset, and the server halted with a longer time window. In total, it took 16h 39m 54s to
calculate 28 metrics for each day for each cell.

Training the autoencoder went rather quickly. For two weeks of data, which was a
couple of millions of rows, on a laptop, it took 133 seconds. Both autoencoders’ loss
graphs can be seen in Figure 14. From the graphs, it can be seen that the model is
learning quite fast when compared to the original paper [11].

32

Figure 14. A custom loss function has been used for the first and second autoencoders’
loss graphs.

4.3 Clustering Results

DBSCAN was already trained with one day of data that was under observation. At first, it
was trained on a modified train dataset and later at a modified test dataset. Both datasets
were run through the already trained autoencoder layer.

Using the original distance metric, cosine similarity, caused problems. Model training
took a long time, and sometimes, it even halted. This problem was caused by the fact
that scikit-learn does not support using tree-based algorithms with cosine similarity. This
raised DBSCAN computational and memory complexity. Then, as described earlier
and can be seen in Figure 13, cosine similarity was compared to Euclidean distance.
Euclidean distance was chosen because scikit-learn supports using it in the tree-based
algorithms, and the results are similar to cosine similarity.

In Table 4 and Table 6 are the results of the tests. Outliers summary of those tables
can be seen in Table 5 and Table 7. In the results were three distinct cell types, marked
in column Type. Here are listed their labels and meanings:

• "Norm" - cells which did not have any synthetically anomalous cells nearby,

• "Broken" - cells whose locations were synthetically changed in three different

33

ways,

• "Affected" - cells which had "broken" cells in at least one shared five-point trajec-
tory.

The column broken_type with type gives information on how the cell or its neighbour
is synthetically affected. Those types were chosen based on how humans can make an
error when inserting location values. Here are listed those errors and their labels:

• "1" - two cell’s locations are switched,

• "2" - latitude and longitude are switched,

• "3" - one of the two, latitude or longitude, location is random.

Training DBSCAN on training data took 741 seconds. It clustered data into two
clusters plus outliers, as seen in Table 4. As expected, most of the cells are in the main
cluster "0". Then, a small amount is marked as cluster "1" and noise. Chi-Square result
was 48737.31.

Table 4. Train dataset clustering.

Type broken_type labels Precent by type
Norm 0 0 99.72

1 0.28
Affected 1 0 23.52

2 -1 0.48
0 57.11

3 -1 0.13
0 18.75

Broken 1 0 24.00
1 4.00

2 -1 40.00
3 -1 16.00

0 16.00

In Table 5, it could be seen that the model found over half of the broken cells. Also,
there is only a little noise from other cells. None of the normal cells are an outlier, and a
small percentage of affected cells are marked as outliers.

34

Table 5. Train dataset outliers percentage per type.

Type Percent
Norm 0

Affected 0.61
Broken 56.00

Training DBSCAN on test data took 270 seconds. The results were also clustered
into two clusters plus outliers, as seen in Table 6. The cluster distribution is somewhat
similar. One difference is that there is a small amount of outliers in the type "Norm" cells.
Also, cells with the type "Affected" have more outliers. Chi-Square result was 24972.21.

Table 6. Test dataset clustering

Type broken_type labels Precentage by type
Norm 0 0 99.03

1 0.96
-1 0.01

Affected 1 0 40.44
2 0 35.60

-1 3.48
3 0 19.00

-1 1.49
Broken 1 0 27.78

-1 11.11
2 -1 22.22
3 0 5.56

-1 33.33

Table 7 is similar to the train results. It could be seen that the model was able to
find over half of the broken cells. Also, there is only a little noise from other cells. A
small percentage of the normal cells are an outlier, and a more significant percentage of
affected cells are marked as outliers.

Table 7. Test dataset outliers percentage per type.

Type Percent
Norm 0.01

Affected 4.97
Broken 66.66

35

5 Discussion

This Section will discuss the results from Section 4. A good thing about the model’s
performance is the rooms with improvements. Also how current implementation is usable
and what needs to be done to make it perform even better. Lastly are brought out possible
ways to improve the model and the input data.

5.1 Model performance

There were good things about results. The model found over half of the broken cells. A
lot of processing was done in the preprocessing part. This reduces autoencoders’ training
time a lot. Also, there was not much noise, which could affect finding broken cells. It
is even good when some affected cells are present. They help to find the broken cell’s
original location.

There is also room for improvements. It would have been better if all the "broken"
cells were found. With current setup, when changing the DBSCAN parameters to achieve
this, it would have come with a cost of more noise from normal cells, making it harder to
distinct affected and broken cells from noisy normal cells.

5.2 Usability

With a couple of improvements, the model could be usable in business to find anomalistic
cells. The code needs to be integrated with other business pipeline. This way a model’s
preprocessing and autoencoder part could be done weekly or over two weeks, depending
on the needs. Training DBSCAN could be done daily. Then the outcome would be
an error raised with an info which cells are outliers and needs to be checked. Finding
problematic cells quickly gives the possibility to fix issues fast therefore affecting less
end users’ analysis.

There is also room to make the implementation better by reducing computation
needed. Model training process could be done fewer times. Maybe monthly or even
quarterly. The costly part currently is preprocessing. It is worth looking into reducing
this part’s computation time because currently, it takes almost 17 hours, but there were
other business-critical processes running on the same server.

36

5.3 Possible Future Improvements

There are ways to make enhancements to both the model and the overall process. Mainly,
those improvements are ways to evaluate mode, better preprocessing, and improve neural
network or clustering.

5.3.1 Model

One way is to improve preprocessing. When looking into data, it takes a full day at a
time. This window could be reduced to avoid long jumps because the phone was turned
off, but the person moved. These jumps are causing a hard time for clustering because it
will make the distance metrics longer, but usually, the anomalitic cells also have a large
value in the distance metrics. Making adjustments could help make a better distinction
between the two.

Another way to make preprocessing better is to reduce the number of features.
Currently, there are 28 metrics for each cell. This is a lot, but when removing less
necessary ones, all the other processes down the pipeline take less time.

Autoencoders could also be made lighter. It would be worth reducing the number
of neurons in the hidden layer. This reduces the computation needed for training and
predicting, making the model cheaper to run and is also greener. Reducing the number
of neurons forces the model to generalise more therefore making it more robust.

Clustering could be enhanced in a couple of ways. One could be saving only the core
points or the cluster areas. This could reduce computation power because new points
could be measured against existing core points. Finding new clusters is unnecessary
every time because the behaviour of the cell’s should not change a lot.

Currently, the scikit-learn’s DBSCAN implementation is slow, especially with cosine
distance. So, the scikit-learn could be replaced by something else. In the current case,
it would be good to do it in Apache Spark. It would be good because preprocessing is
already done using Pyspark, and it could better handle a large number of data points
better. A new implementation in Spark could help try out cosine similarity as in the
initial TAD-FM paper.

The TAD-FM gave promising results but, it would be good to look into other methods.
They could be used as comparison models to evaluate if the results are good.

It is also worth to look over the autoencoders’ training process. It could be done by

37

trying out other loss functions and optimizers. This could help to train the model better
making the loss graphs a little better looking than it is currently seen in Figure 14.

5.3.2 Data

Clustering results could also give a better understanding of the data. It would be worth
looking into what type of data is in different clusters. This could also give some new
insights about the data and maybe even some new hypotheses which could be worth
researching.

Better input data is always a good way to improve the results. Currently the anomalous
cells were generated synthetically, but it would be better to find more known real-life
errors. Also, enhancing the synthetic anomalous data generation could be developed
further by introducing new possible error types. Better anomalous data points give a
possibility to train and evaluate models better.

38

Conclusion

This thesis gives an overview to a reader simplistic overview of how a cellular network
works. It is described, that wrong cell location entry in a database could cause many
problems, for example, how it affects the trajectories of mobile phones. Therefore, it
affects end users, like emergency services.

Then a reader could learn different ways in which anomalistic trajectories could be
found. A little summary of a variety of methods from different articles was done in three
categories: statistical learning, clustering and deep learning methods. One of them was
also TAD-FM [11], which had parts of clustering and deep learning methods.

The thesis described how a TAD-FM was used to solve one real-world problem:
finding the cell with the wrong location data. Compared to the original article about TAD-
FM [11], there were updates to preprocessing and clustering. Changes in preprocessing
helped to make the joined mobile events and cell plan datasets usable for TAD-FM and
reduce the computation power for autoencoders. Also, a distance metric was changed in
the clustering part from cosine similarity to Euclidean distance to reduce computation
and memory complexity for DBSCAN.

A considerable amount of real-life data was used to train the autoencoders, and a
half-synthetic dataset was created to train and test the whole model. The results were
promising using this improved model with the given dataset. The model was able to find
over half of the "broken" cells without a lot of noise. With a couple of extra steps, the
finished model is usable in business to solve the issue.

In the future there are a couple of ways to make improvements for this thesis method.
In preprocessing, it could reduce the number of features and trajectory time window.
In the neural network layer, it could reduce the number of neurons and enhance the
training process. Also, improving the clustering could be done by separating training
and predicting processes. All this could reduce the computation burden and enhance the
performance. It is also worth looking into other methods to find anomalistic trajectories.

39

Acknowledgments

This research was done in Reach-U in the University of Tartu Industrial Master’s Pro-
gramme in IT. Reach-U provided access to the data and provided necessary working
equipment and environment.

I would like to thank my supervisor, Amnir Hadachi, who helped me with working
on and writing my thesis. Also, a lot of support came from Reach-U and its ETL team.
So big thanks to Joosep, Robert, Tanel and also Elis and Teet.

40

References
[1] International Telecommunication Union. Facts and Figures 2022. 2024. URL:

https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-
mobile-phone-ownership/ (visited on 04/03/2024).

[2] Petroc Taylor. Average monthly usage of mobile data per smartphone in 2022
and 2028*, by region(in gigabytes). 2024. URL: https : / / www . statista .
com/statistics/1100854/global- mobile- data- usage- 2024/ (visited
on 04/15/2024).

[3] Hendrik Hiir et al. “Impact of Natural and Social Events on Mobile Call Data
Records – An Estonian Case Study”. In: Jan. 2020, pp. 415–426. ISBN: 978-3-
030-36682-7. DOI: 10.1007/978-3-030-36683-4_34.

[4] Kevin S. Kung et al. “Exploring Universal Patterns in Human Home-Work Com-
muting from Mobile Phone Data”. In: PLOS ONE 9.6 (June 2014), pp. 1–15.
DOI: 10.1371/journal.pone.0096180. URL: https://doi.org/10.1371/
journal.pone.0096180.

[5] Guangyuan Zhang et al. “A Method for the Estimation of Finely-Grained Temporal
Spatial Human Population Density Distributions Based on Cell Phone Call Detail
Records”. In: Remote Sensing 12.16 (2020). ISSN: 2072-4292. DOI: 10.3390/
rs12162572. URL: https://www.mdpi.com/2072-4292/12/16/2572.

[6] Kyra H. Grantz et al. “The use of mobile phone data to inform analysis of COVID-
19 pandemic epidemiology”. In: Nature Communications 11 (2020). URL: https:
//api.semanticscholar.org/CorpusID:222162112.

[7] Nishant Kishore et al. “Flying, phones and flu: Anonymized call records suggest
that Keflavik International Airport introduced pandemic H1N1 into Iceland in
2009”. In: Influenza and Other Respiratory Viruses 14 (Nov. 2019). DOI: 10.
1111/irv.12690.

[8] Patty Kostkova et al. “Data and Digital Solutions to Support Surveillance Strategies
in the Context of the COVID-19 Pandemic”. In: Frontiers in Digital Health 3
(2021). ISSN: 2673-253X. DOI: 10.3389/fdgth.2021.707902. URL: https:
//www.frontiersin.org/journals/digital-health/articles/10.3389/
fdgth.2021.707902.

[9] Filippo Maria Bianchi et al. “Identifying user habits through data mining on call
data records”. In: Engineering Applications of Artificial Intelligence 54 (2016),
pp. 49–61. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.
2016.05.007. URL: https://www.sciencedirect.com/science/article/
pii/S0952197616300975.

41

https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-mobile-phone-ownership/
https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-mobile-phone-ownership/
https://www.statista.com/statistics/1100854/global-mobile-data-usage-2024/
https://www.statista.com/statistics/1100854/global-mobile-data-usage-2024/
https://doi.org/10.1007/978-3-030-36683-4_34
https://doi.org/10.1371/journal.pone.0096180
https://doi.org/10.1371/journal.pone.0096180
https://doi.org/10.1371/journal.pone.0096180
https://doi.org/10.3390/rs12162572
https://doi.org/10.3390/rs12162572
https://www.mdpi.com/2072-4292/12/16/2572
https://api.semanticscholar.org/CorpusID:222162112
https://api.semanticscholar.org/CorpusID:222162112
https://doi.org/10.1111/irv.12690
https://doi.org/10.1111/irv.12690
https://doi.org/10.3389/fdgth.2021.707902
https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2021.707902
https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2021.707902
https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2021.707902
https://doi.org/https://doi.org/10.1016/j.engappai.2016.05.007
https://doi.org/https://doi.org/10.1016/j.engappai.2016.05.007
https://www.sciencedirect.com/science/article/pii/S0952197616300975
https://www.sciencedirect.com/science/article/pii/S0952197616300975

[10] Hongjian Wang et al. “A Simple Baseline for Travel Time Estimation using Large-
scale Trip Data”. In: ACM Trans. Intell. Syst. Technol. 10.2 (Jan. 2019). ISSN: 2157-
6904. DOI: 10.1145/3293317. URL: https://doi.org/10.1145/3293317.

[11] Zhongqiu Wang et al. “Unsupervised learning trajectory anomaly detection algo-
rithm based on deep representation”. In: International Journal of Distributed Sen-
sor Networks 16.12 (2020), p. 1550147720971504. DOI: 10.1177/1550147720971504.
eprint: https://doi.org/10.1177/1550147720971504. URL: https://doi.
org/10.1177/1550147720971504.

[12] Vyacheslav Shatskiy. black and white electric post under blue sky during day-
time. 2021. URL: https : / / unsplash . com / photos / black - and - white -
electric-post-under-blue-sky-during-daytime-31JqyCVndUM (visited on
04/17/2024).

[13] Andrew Ng et al. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011),
pp. 1–19.

[14] Martin Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise”. In: Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining. KDD’96. Portland, Oregon:
AAAI Press, 1996, pp. 226–231.

[15] Erich Schubert et al. “DBSCAN Revisited, Revisited: Why and How You Should
(Still) Use DBSCAN”. In: ACM Trans. Database Syst. 42.3 (July 2017). ISSN:
0362-5915. DOI: 10 . 1145 / 3068335. URL: https : / / doi . org / 10 . 1145 /
3068335.

[16] Olov Rosén and Alexander Medvedev. “An on-line algorithm for anomaly de-
tection in trajectory data”. In: 2012 American Control Conference (ACC). 2012,
pp. 1117–1122. DOI: 10.1109/ACC.2012.6315346.

[17] Behrouz Haji Soleimani et al. “Anomaly detection in maritime data based on
geometrical analysis of trajectories”. In: 2015 18th International Conference on
Information Fusion (Fusion). 2015, pp. 1100–1105.

[18] Rikard Laxhammar. “Anomaly detection in trajectory data for surveillance ap-
plications”. PhD thesis. Örebro universitet, 2011. URL: https://urn.kb.se/
resolve?urn=urn:nbn:se:oru:diva-17235.

[19] Claudio Piciarelli, Christian Micheloni, and Gian Luca Foresti. “Trajectory-Based
Anomalous Event Detection”. In: IEEE Transactions on Circuits and Systems
for Video Technology 18.11 (2008), pp. 1544–1554. DOI: 10.1109/TCSVT.2008.
2005599.

42

https://doi.org/10.1145/3293317
https://doi.org/10.1145/3293317
https://doi.org/10.1177/1550147720971504
https://doi.org/10.1177/1550147720971504
https://doi.org/10.1177/1550147720971504
https://doi.org/10.1177/1550147720971504
https://unsplash.com/photos/black-and-white-electric-post-under-blue-sky-during-daytime-31JqyCVndUM
https://unsplash.com/photos/black-and-white-electric-post-under-blue-sky-during-daytime-31JqyCVndUM
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1109/ACC.2012.6315346
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-17235
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-17235
https://doi.org/10.1109/TCSVT.2008.2005599
https://doi.org/10.1109/TCSVT.2008.2005599

[20] Bin Cheng et al. “STL: Online Detection of Taxi Trajectory Anomaly Based on
Spatial-Temporal Laws”. In: Database Systems for Advanced Applications. Ed. by
Guoliang Li et al. Cham: Springer International Publishing, 2019, pp. 764–779.
ISBN: 978-3-030-18579-4.

[21] Su Yang and Weihua Liu. “Anomaly Detection on Collective Moving Patterns: A
Hidden Markov Model Based Solution”. In: 2011 International Conference on
Internet of Things and 4th International Conference on Cyber, Physical and Social
Computing. 2011, pp. 291–296. DOI: 10.1109/iThings/CPSCom.2011.25.

[22] Zhen Wang and Sihai Zhang. “CDR Based Temporal-Spatial Analysis of Anoma-
lous Mobile Users”. In: 2016 IEEE 14th Intl Conf on Dependable, Autonomic
and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing,
2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress(DASC/PiCom/DataCom/CyberSciTech). 2016, pp. 710–714.
DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.126.

[23] Xumin Cai et al. “Local Outlier Detection for Multi-type Spatio-temporal Trajec-
tories”. In: 2020 IEEE International Conference on Big Data (Big Data). 2020,
pp. 4509–4518. DOI: 10.1109/BigData50022.2020.9377801.

[24] Ivens Portugal, Paulo Alencar, and Donald Cowan. “A Framework for Spatial-
Temporal Trajectory Cluster Analysis Based on Dynamic Relationships”. In: IEEE
Access 8 (2020), pp. 169775–169793. DOI: 10.1109/ACCESS.2020.3023376.

[25] Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. “Density-Based
Clustering Based on Hierarchical Density Estimates”. In: Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining. 2013. URL: https://api.
semanticscholar.org/CorpusID:32384865.

[26] Yunyao Cheng et al. “Spatial-Temporal Recurrent Neural Network for Anomalous
Trajectories Detection”. In: Advanced Data Mining and Applications. Ed. by
Jianxin Li et al. Cham: Springer International Publishing, 2019, pp. 565–578.
ISBN: 978-3-030-35231-8.

[27] Wenhao Yu and Qinghong Huang. “A deep encoder-decoder network for anomaly
detection in driving trajectory behavior under spatio-temporal context”. In: Inter-
national Journal of Applied Earth Observation and Geoinformation 115 (2022),
p. 103115. ISSN: 1569-8432. DOI: https://doi.org/10.1016/j.jag.2022.
103115. URL: https://www.sciencedirect.com/science/article/pii/
S156984322200303X.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[29] Thomas Bäck and Hans-Paul Schwefel. “An overview of evolutionary algorithms
for parameter optimization”. In: Evolutionary computation 1.1 (1993), pp. 1–23.

43

https://doi.org/10.1109/iThings/CPSCom.2011.25
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.126
https://doi.org/10.1109/BigData50022.2020.9377801
https://doi.org/10.1109/ACCESS.2020.3023376
https://api.semanticscholar.org/CorpusID:32384865
https://api.semanticscholar.org/CorpusID:32384865
https://doi.org/https://doi.org/10.1016/j.jag.2022.103115
https://doi.org/https://doi.org/10.1016/j.jag.2022.103115
https://www.sciencedirect.com/science/article/pii/S156984322200303X
https://www.sciencedirect.com/science/article/pii/S156984322200303X
https://arxiv.org/abs/1412.6980

[30] Daniel Tucker. evolutionary-algorithm 0.0.2. 2020. URL: https://pypi.org/
project/evolutionary-algorithm/ (visited on 05/07/2024).

44

https://pypi.org/project/evolutionary-algorithm/
https://pypi.org/project/evolutionary-algorithm/

Appendices

45

I Detailed Preprocessing

Figure 15. Detailed overview of the preprocessing.

46

II Used Soft- and Hardware

Calculating metrics and training DBSCAN was done on a more powerful server.

• OS: Red Hat Enterprise Linux Server release 7.9 (Maipo)

• RAM: 503GB

• CPU: Intel (R) Xeon (R) CPU E5-2667 v4 @ 3.20GHz

Most important software and versions used in a server:

• python 3.9, pip 24.0

• jupyterlab==4.0.12

• pandas==2.1.4

• numpy==1.24.4

• pyspark==3.5.0

• scikit-learn==1.4.1.post1

• scipy==1.9.1

For development and training the autoencoders was used Lenovo ThinkPad P14s Gen
4 21K5000BMX.

• OS: Ubuntu 23.10

• RAM: 27GiB

• CPU: AMD Ryzen 7 PRO 7840U w/ Radeon 780M Graphics

Most important software and versions used in a laptop:

• python 3.11, pip 23.0.1

• notebook==7.0.6

47

• pandas==2.1.2

• numpy==1.26.1

• pyspark==3.5.0

• scikit-learn==1.3.2

• torch==2.1.0

• evolutionary-algorithm==0.0.2

• scipy==1.11.3

48

III Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Tiit Vaino,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Anomaly Detection in CDR-Based Trajectories of the Mobile Cellular Net-
work.
supervised by Amnir Hadachi.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Tiit Vaino
15/05/2024

49

	Terms and notions
	Introduction
	Background
	Cellular Network
	Cellular Network's Cell Data
	Mobile Data
	Autoencoder
	dbscan

	Literature overview
	Statistical Learning Techniques
	Clustering Techniques
	Deep Learning Techniques

	Methods
	Model
	High-Level Architecture
	Preprocessing
	Autoencoders
	Clustering

	Training and test dataset
	Tuning the Model
	Tuning Autoencoders
	Tuning Clustering

	Results
	Preprocessing Results
	Autoencoders Results
	Clustering Results

	Discussion
	Model performance
	Usability
	Possible Future Improvements
	Model
	Data

	Conclusion
	Acknowledgments
	References
	Appendices
	Detailed Preprocessing
	Used Soft- and Hardware
	Licence

