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Query Workload-Driven Schema Optimization For Processing Large
RDF Datasets

Abstract:
In the world we live in, data are not only increasing in volume, but they are also becoming
more and more interconnected and linked. In many areas of our daily lives, such as
social media, computational biology and protein networks, telecommunications, and
many others, graph data models are the most natural, easy-to-understand, and versatile
data abstraction to represent the world’s structured knowledge. In fact, the information
retrieved via natural language processing and computer vision is currently being rep-
resented mostly by Knowledge Graphs (KGs). KGs are efficient means to represent,
integrate and connect data from several heterogeneous data sources. Those applications
led to a surge in the popularity of KGs. However, on the other side, this brings compu-
tational challenges because KGs are growing in massive volumes. Specifically, several
applications have used the standard Resource Description Framework (RDF) graph data
model to represent, share, and integrate pieces of data on the web.

Therefore, the Semantic Web (SW) community’s central problem for managing
scalable RDF KGs is now in demand. The native graph databases (e.g., Apache Jena,
RDF-3X, and Virtuoso) fall short of managing and processing large RDF datasets due
to their centralized computational paradigm, i.e., they cannot scale out. Thus, the SW
community has started to investigate relational Big Data (BD) frameworks harnessing
their scalability and efficiency. Relational systems get a lot of their efficient performance
from sophisticated optimizers that leverage relational model, relational algebra simplicity,
and maturity. Despite the flexibility of the relational solutions, the flexible (i.e., schema-
less) structure of RDF graphs brings challenges to store and manage RDF graphs in
relational schemas. The state-of-the-art shows that there is no “One-Size-Fits-All” RDF
relational schema that can fit all the query workloads. In particular, there is a different
winner of RDF relational schema by a large margin for each query type, and the winner
in one query family may unexpectedly perform the worst in another.

In this thesis, we argue that combining multiple RDF relational schemas to attain a
hybrid one provides better performance for the BD system while querying large KGs.
Nevertheless, designing hybrid schema solutions for schema-less KGs require huge data
engineering efforts and tailored solutions. To this end, this thesis proposes algorithms that
automatically design a hybrid RDF relational schema that adapts to the query workload
covering a wide range of query types, without ignoring the loading times, as well as
the storage overheads. In particular, we approach this goal via data profiling along
with query profiling seeking better data localization andcombining relevant data that
frequently queried together on the same relations. Our approach reaches to an optimal
hybrid schema that consider both the underlying data relationships, as well as the query
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workloads.

Keywords: Large RDF Graphs, SPARQL, Spark-SQL, RDF Relational Schema, Work-
load Driven

CERCS: P170 - Computer Science, numerical analysis, systems, control

Päringukoormusele suunatud skeemi optimeerimine suurte RDF-
andmekogumite töötlemiseks

Lühikokkuvõte:
Maailmas, kus me elame, ei suurene andmete maht mitte ainult, vaid need on ka üha
enam omavahel seotud ja lingitud. Paljudes meie igapäevaelu valdkondades, nagu
sotsiaalmeedia, arvutusbioloogia ja valguvõrgud, telekommunikatsioon ja paljud teised,
on graafikute andmemudelid kõige loomulikum, hõlpsamini mõistetav ja mitmekülgsem
andmeabstraktsioon, mis esindab maailma struktureeritud teadmisi. Tegelikult esindavad
loomuliku keele töötlemise ja arvutinägemise kaudu hangitud teavet praegu peamiselt
teadmiste graafikud (KG-d).

KG-d on tõhusad vahendid mitmest heterogeensest andmeallikast pärit andmete
esitamiseks, integreerimiseks ja ühendamiseks. Need rakendused tõid kaasa KG-de
populaarsuse tõusu. Kuid teisest küljest toob see kaasa arvutuslikke väljakutseid, kuna
KG-de maht kasvab tohutult. Täpsemalt on mitmed rakendused kasutanud standardset
Resource Description Framework (RDF) graafiku andmemudelit, et esitada, jagada ja
integreerida veebis olevaid andmeid.

Seetõttu on nüüd nõutud semantilise veebi (SW) kogukonna keskne probleem skaleer-
itavate RDF-i KG-de haldamisel. Natiivsed graafikuandmebaasid (nt Apache Jena,
RDF-3X ja Virtuoso) ei suuda oma tsentraliseeritud arvutusparadigma tõttu suuri RDF-
andmekogumeid hallata ja töödelda, st neid ei saa skaleerida. Seega hakkab SW
kogukond uurima relatsioonilisi suurandmete (BD) raamistikke, kasutades nende mas-
taapsust ja tõhusust. Relatsioonisüsteemid saavad suure osa oma tõhusast jõudlusest
tänu keerukatele optimeerijatele, mis kasutavad relatsioonimudelit, relatsioonialgebra
lihtsust ja küpsust. Vaatamata relatsioonilahenduste paindlikkusele, pakub RDF-graafiku
paindlik (st skeemivaba) struktuur väljakutseid RDF-graafikute salvestamisel ja hal-
damisel relatsiooniskeemides. Kaasaegne tehnika näitab, et pole olemas ühtset RDF-i
relatsiooniskeemi, mis sobiks kõigile päringukoormustele. Eelkõige on iga päringutüübi
puhul erinev RDF-i relatsiooniskeemi võitja ja ühe päringuperekonna võitja võib oota-
matult teises osas kõige halvemini toimida.

Selles lõputöös väidame, et mitme RDF-i relatsiooniskeemi kombineerimine hübri-
idskeemi saamiseks tagab BD-süsteemi parema jõudluse suurte KG-de päringute tegemisel.
Sellegipoolest nõuab skeemita KG-de jaoks hübriidskeemilahenduste kavandamine to-
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hutuid andmetehnilisi jõupingutusi ja kohandatud lahendusi. Sel eesmärgil pakub see
lõputöö välja algoritme, mis kujundavad automaatselt hübriidse RDF-i relatsiooniskeemi,
mis kohandub päringu töökoormusega, hõlmates paljusid päringutüüpe, jätmata tähelepanuta
laadimisaegu ja salvestuskulusid. Eelkõige läheneme sellele eesmärgile andmeprofiilide
koostamise ja päringute profileerimisega, et otsida paremat andmete lokaliseerimist,
kombineerides asjakohaseid andmeid, mida sageli samade seoste kohta päritakse. Meie
lähenemisviis ulatub optimaalse hübriidskeemini, mis võtab arvesse nii aluseks olevaid
andmesuhteid kui ka päringu töökoormust.

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
Graph-based data models such as RDF (Resource Description Framework) have shown
great potential for managing interconnected data[Los22]. In particular RDF, which stands
for Resource Descriptive Framework, is a technology for modeling and representing
data on the web. RDF uses a very simple structure to represent each relation using a
triple-store "<subject, property, object>".

Triple stores is a type of database system that is specifically designed to store and
manage RDF data[Ont22]. The architecture of triple-stores is optimized for processing
graph data. However,triple-stores are not performing well when processing large RDF
datasets due to their centralized architecture which can make it difficult to distribute
the workload across multiple nodes[GHH14]. To address this issue, the Semantic Web
community has started to consider the relational model as the underlying schema for
RDF datasets. By leveraging the benefits of relational databases, such as advanced query
optimization and indexing, this approach can improve the performance of RDF data
processing. However, storing and managing RDF data in a relational database presents
several challenges due to the differences in the structures and semantics of RDF and
relational data.

As the volume of RDF data continues to grow, the need for efficient and scalable
solutions for storing and querying RDF data in relational databases becomes increasingly
important. The use of RDF data in applications such as knowledge graphs, linked
data, and semantic web applications make it necessary to have a solution that can
handle the complexity and scale of RDF data while preserving its relationships and
semantics[Hor08].

Without a proper solution for storing RDF data in a relational database, organizations
may resort to using specialized RDF stores or NoSQL databases, which can lead to
increased costs and complexity. This can result in increased maintenance activity after
development. Therefore, there is a pressing need for a solution that can bridge the gap
between RDF data and relational databases and provide a scalable, efficient, and flexible
way to store and manage RDF datasets in a relational database.

Different types of RDF relational schemas have been proposed to query RDF datasets,
but state of the art shows that there is no "One-Size-Fits-All" solution[KZJ+19]. Depend-
ing on the type of query pattern, one solution may outperform another.

In this thesis, we propose a hybrid schema solution that combines different types
of RDF relational schemas using both data and query profiling techniques to provide
better performance. Furthermore, we create an auto query mapping solution that allows
queries to adapt to new versions while the schema is changing, further improving the
performance and adaptability of RDF data processing.
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1.1 Problem Statement
Storing RDF graphs in a relational model presents several challenges that need to be
addressed. RDF data is inherently complex and has a flexible structure, making it diffi-
cult to store it in a relational database. Because graph databases are schema-free, while
relational databases require schema upfront. The goal of this thesis is to design and
implement a solution that can efficiently store and manage RDF datasets in a relational
databasewhile preserving the semantics and relationships of the data.

Challenges:
There are already too many ways to represent RDF graphs in relational models

(schemas). There is no one schema that can have constant and ever-well-performing
behavior with all query shapes. Each schema outperforms the others with specific types
of query shapes. For example, the WPT schema is well-suited for star-shaped queries, on
the other hand, for linear queries, performance is worse.

Performing schema tuning (changing the schema to adapt to the query workload),
requires changes in the query workload (that would not work anymore with the changes
in the schema). Therefore, our thesis also aims to provide an automatic translation
solution for the newly generated schema.

The solution needs to overcome these challenges and provide a scalable, efficient,
and flexible way to store RDF datasets in a relational database while preserving the
relationships and semantic meaning of the data.

1.2 Research Questions
The research questions of the thesis are followings :

RQ1: How to automatically design a relational schema for efficiently processing
large RDF knowledge graphs?

RQ2: How to automatically adapt query workload with schema changes?

1.3 Contribution
Our main contributions are the followings:

Tailored Schema Optimization Algorithm : The first contribution of the thesis is
the development of a tailored schema optimization algorithm for SPARQL. The algorithm
takes into account both data and query profiling in order to create an optimized schema
that can efficiently handle complex interconnected data. By using data profiling, the
algorithm identifies the most frequently used properties and entities in the dataset, while
query profiling helps to identify the most common query patterns. By combining these
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two approaches, the algorithm creates a tailored schema tailored to the specific dataset
and query workload, leading to better query performance.

Replication of Most Used Properties : The second contribution of the thesis is the
replication of the most frequently used properties while generating the schema. This is a
novel approach that has not been explored in previous research. By replicating the most
used properties, in our thesis, we demonstrate that the performance of the system can be
greatly improved, particularly in cases where the data is heavily interconnected.

Query Translation Algorithm : The third contribution of the thesis is the devel-
opment of a query translation algorithm that can convert old queries to newly adapted
schema queries . This algorithm is particularly useful when the schema is updated and
old queries need to be adapted to the new schema. The query translation algorithm
helps to reduce the manual effort required to update old queries and ensures that the new
queries are optimized for the new schema.

1.4 Outline of the Thesis
The thesis is structured as follows :

Chapter 2 provides an introduction to various concepts and technologies that are
relevant to the topic of the thesis. Knowledge graphs, semantic web, RDF , SPARQL
(SPARQL Protocol and RDF Query Language) and RDF relational schemas are all
covered in this chapter. The goal of this chapter is to provide the reader with the
necessary background and context to better understand the rest of the thesis.

In Chapter 3, the algorithm designed for optimizing an existing WPT (Wide Property
Table) schema is presented. The chapter describes the steps involved in the algorithm,
including schema normalization and the creation of new sets of tables based on query
workloads. The chapter also discusses the process of adapting existing queries to the
new schema and the introduction of a new algorithm for automatically transforming old
schema queries to new ones.

Chapter 4 provides an overview of different solutions that have been proposed to
address the same issue of optimizing RDF schemas. The chapter discusses the strengths
and weaknesses of each solution and provides a comparison with the approach proposed
in the thesis.

Chapter 5 presents the results of the experiments conducted to evaluate the proposed
algorithm against state-of-the-art solutions. The experiments are performed on WATDIV
datasets with 1M, 10M, and 100M data sizes. The chapter provides detailed analyses of
the experimental results and shows the effectiveness of the proposed algorithm.

Chapter 6 concludes the thesis by summarizing the main contributions of the work
and discussing the limitations and future directions. The chapter provides a perspective
on the potential improvements and extensions of the proposed algorithm and its possible
applications in real-world scenarios.
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2 Background
In this chapter, we provide background information necessary to contextualize this
thesis’s subsequent sections for readers unfamiliar with Semantic Web. We start giving
information about knowledge graphs and semantic webs; then, we define Resource
Descriptive Framework(RDF) and SPARQL query language. In order to understand
the structure of the following chapters, we give some information regarding Relational
Schemas and Relational Algebra.

2.1 Knowledge Graphs and Semantic Web
The World Wide Web Consortium is the driving force behind the Semantic Web (W3C).
The Semantic Web’s main purpose is to cause the existing Web to evolve so that users
may search, find, share, and combine information with minimal effort. People could use
web for different purposes such as (online shopping,searching for some information and
etc.). Nonetheless, machines can not do any of these jobs without human help, since web
pages are designed to be viewed by humans. Semantic Web is a vision for the future
where machines can easily analyze the data, do different types of tiresome jobs related to
the data on the web.

Figure 1. A Guide to the knowledge graphs [May21]

Knowledge graphs are a sort of semantic network that serves as the foundation for
network relationships between concepts and entities – links between real-world objects,
events, or abstract concepts. There have been different proposals of the knowledge graphs
from different big companies with varying complexity and approaches, such as Google’s
Knowledge Graph, Facebook’s Entities Graph, etc.
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2.2 RDF and SPARQL
RDF: The standard data model used for the Semantic Web is the Resource Descriptive
Framework(RDF). RDF was first released in 1999 as a metadata data model that allows
describing anything, including people,animals, and objects. In RDF, Facts is stored in the
form of Triples of (<subject,”<predicate”>,<object>). The RDF predicate or relationship
always connects a subject to an object.

Figure 2. RDF triple relationship

Figure 3 shows a simple example of RDF data that describes. . .

Figure 3. An example RDF graph serialized in n-triples format

From this sample, we can see that not only does one statement belongs to one resource,
but multiple can also reference the same resource.

SPARQL is the standardized graph query language for RDF data, the same as SQL
is for relational databases. The triple pattern is similar to the RDF triple, except that
the triple’s constituents can be substituted by (unbounded) variables (preceded by the
“?” character) and can be referred to in multiple triple patterns across the query. The
SELECT clause is used to specify the projected variables. The datasets are specified
by the FROM clause, and the filter conditions are defined by the WHERE clause. For
instance, the SPARQL Q1 shown in Listing 1 can be described as “return student whose
name is Jake”.

SELECT ?student
WHERE {

?student rdf:Name "Jake"
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}

Listing 1. An example of a SPARQL query.

2.3 SPARQL Query Shapes
In SPARQL, the concept of query shapes can be related to the structure of the graph
patterns used in a query. There are four types of query shapes are used in SPARQL:
Linear, Star, Snowflake and Complex[FWF+19].

Linear : SPARQL query that involves a single graph pattern with a single triple
pattern. This schema is simple and straightforward, however, it is not optimized for
complex queries and can result in large amounts of redundant data.

Star : SPARQL query that involves multiple graph patterns where each pattern has a
central node with multiple outgoing edges.

SnowFlake: SPARQL query that involves a complex graph pattern where the central
node has many incoming and outgoing edges, and additional nodes are connected to it.
This schema reduces data redundancy and saves disk space, but it can also result in more
complex queries and slower performance.

Complex : SPARQL query that involves a combination of different types of shapes
mentioned above.

Figure 4. SPARQL query shapes [SPZSL16]
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Therefore, the concept of query shapes in RDF and graph databases can be directly
applied to SPARQL queries to analyze their structure and optimize query performance.
By understanding the different types of query shapes and their characteristics, it is
possible to design more efficient RDF and SPARQL query processing systems.

2.4 RDF Relational Schemas
Triplestores are systems that store RDF data in their native graph structures and use
the native standard graph query language. RDF queries over mapped databases usually
contains star queries that reference multiple columns underlying the table , and generated
sql query most likely will contain self-joins. These extra joins are not only costly but
also the complexity of query optimization grows exponentially with the number of joins.
When compared to relational databases, SPARQL query optimization is quite difficult.
SPARQL queries can involve complex patterns of triple patterns. These patterns can be
combined with logical operators, optional patterns, and other constructors to form queries
that are difficult to optimize. As a result, most queries are executed with poor strategy.
RDBMS systems, on the other hand, may be readily optimized utilizing sophisticated
techniques such as data splitting, indexing, materialized views, and so on.

The most typical relational schemas for displaying RDF in the relational schema are
shown in the next paragraph.

2.4.1 Single Statement Table

Single Statement table schema (ST) stores RDF triples in a single table with three
columns (subject, propert, object). It is used in many open-source triple stores, such
as RDF4J[dev], Apache Jena[apa], and Virtuoso[lin16]. This schema is very similar
to triple store. It has a problem of self-joins if multiple different predicates are used.
Therefore its performance on large-scale datasets is poor. In Table 1, we can see the
example of the ST table.

2.4.2 Property Table

Property Table (PT) is another relational schema for storing RDF data. In some sources, it
is also referred to as an n-ary columns table. It groups all related attributes into one table
where column names are predicates, and each cell includes the subject and predicate’s
object value. This level of grouping can be completed with either a grouping algorithm
or a type definition table. Table 2 depicts an example of a Student Table.

This schema does not require any join criteria to obtain all of the student information.
This schema, however, has a number of drawbacks. For example, not all subjects will
have data for each predicate, thus increasing the sparsity of the data with too many
NULL values. If the data comprises an array structure, we must either flatten it or use an
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Subject Property Object
Student1 Name Jake

Student1 Age 20

Student1 Birthyear 2000

Student1 Studies University1

Student2 Name John

Student1 Age 23

Student1 Phonenumber 45522244

University1 Name Harvard

University1 City Cambridge

University2 Name MIT

University2 City Massachusetts

Table 1. An example of an RDF graph is represented in the ST schema.

Subject Name Age Birthyear PhoneNumber Studies
Student1 Jake 20 2000 University1

Student2 John 23 45522244

Table 2. PT schema example.

alternative technique. Therefore this schema works best with well-structured data rather
than poorly organized data.

2.4.3 Wide Property Table

Wide Property Table (WPT) is a special version of the PT table. It groups all the
attributes under one denormalized table called (WPT). The main idea is to decrease the
join conditions and try to have one reference table for accessing the data. However, it
is also suffering from sparsity and huge size in terms of storage. Table 3 describes an
example of a WPT table.

Subject Name Age Birthyear Phonenumber Studies City
Student1 Jake 20 2000 University1
Student2 John 23 45522244

University1 Harvard Cambridge
University2 MIT Massachusetts

Table 3. WPT schema example

14



2.4.4 Vertically Partitioned Table

A vertically partitioned table(s) schema, in which each predicate is kept in its own table,
is another approach to relationally store RDF data. The table is composed of two columns
(i.e., a subject and object) of the triple, with the predicate being the table’s name. This
schema attempts to circumvent the sparsity problem by deleting null values. However,
VP-based methods are inefficient when processing queries with unbounded predicates;
in this situation, all tables must be searched and their answers must then be combined
to produce the final result. Because this cost grows linearly with the number of various
predicates in the dataset[A14], VP is not the ideal solution for encoding datasets with a
large number of predicates. This strategy’s another drawback is that some partitions may
result in a sizable section of the entire graph and generate a lot of I/O [A14]. In table 4,
we can see the example of VP table.

Names Ages Phonenumbers Birthyears Cities

Subject Object

Student1 Jake

Student2 John

University1 Harvard

University2 MIT

Subject Object

Student1 20

Student2 23

Subject Object

Student1 45522244

Subject Object

Student1 2000

Subject Object

University1 Cambridge

University2 Massachusetts

Table 4. Vertically Partitioned Tables Example

2.5 FP-Growth Algorithm
The FP-Growth algorithm is a popular algorithm for frequent pattern mining in data
mining and machine learning[sof23]. It is an efficient algorithm for mining frequent
itemsets from a large dataset. The "FP" in FP-Growth stands for "Frequent Pattern."

The main idea behind the FP-Growth algorithm is to construct a tree-like data
structure called the FP-tree that captures the relationships among the frequent itemsets in
the dataset. The algorithm first scans the dataset to identify frequent items and then uses
these items to build the FP-tree. Once the FP-tree is constructed, frequent itemsets can
be extracted from the tree using a recursive mining process.

Here’s a brief overview of the steps involved in the FP-Growth algorithm:
1. Scan the dataset to identify frequent items.
2. Build the FP-tree by inserting each transaction into the tree.
3. Mine the FP-tree to generate frequent itemsets.
One of the key advantages of the FP-Growth algorithm is its ability to handle datasets

with a large number of items and transactions efficiently. It achieves this by compressing
the dataset into a compact FP-tree, which avoids the need to repeatedly scan the original
dataset.
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Another advantage of the FP-Growth algorithm is that it can be parallelized, which can
further improve its performance on large datasets. For example, consider the following
scenario described in table 5 below.

Transaction List of Items
T1 A,B,C

T2 B,C,D

T3 D,E

T4 A,B,D

T5 A,B,C,E

T6 A,B,C,D

Table 5. List of Transactions

We will take the support threshold as 50 percent. According to our example, our min
support will be 0.5 * 6=3.

If we calculate a count of each attribute and sort them by count, then we will have
the following table.

Item Count
B 5

A 4

C 4

D 4

Table 6. Count of each item ordered by count

As we can see that we have not included E because it is less than minimum support
threshold.

The next stage is building FP-tree, which is the final tree described below.
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Figure 5. Final FP-tree

The steps for building FP-tree are below :

1. The root node is considered null.

2. During the first scan of Transaction T1 containing items A, B, and C, B is linked
as a child to the root node, A is linked to B, and C is linked to A

3. In Transaction T2 containing items B, C, and D, B is already linked to the root
node, so its count is incremented by 1. C is linked as a child to B, and D is linked
as a child to C

4. In Transaction T3 containing items D and E, a new branch with E is linked to D as
a child

5. In Transaction T4 containing items A, B, and D, B is already linked to the root
node, so its count is incremented by 1. A is also incremented by 1 as it is already
linked with B in T1

6. n Transaction T5 containing items A, B, C, and E, the sequence will be B, A, C,
and E, resulting in counts of (B:4), (A:3), (C:2), and (E:1)
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7. Finally, in Transaction T6 containing items A, B, C, and D, the sequence will be B,
A, C, and D, resulting in counts of (B:5), (A:4), (C:3), and (D:1).

The next stage is a mining of FP-tree which is summarized below.

Item Conditional Pattern
Base Conditional FP-tree Frequent Pattern Generated

D {B,A,C:1},{B,C:1} {B:2},{C:2} {B,D:2},{C,D:2},{B,C,D:2}

C {B,A:3},{B:1} {B:4},{A:3} {B,C:4},{A,B,C:3},{B,A,C:3}

A {B:4} {B:4} {B,A:4}

Table 7. FP-tree mining

1. The smallest node item, E, is not considered because it doesn’t meet the minimum
support count requirement and is therefore removed.

2. The next smallest node, D, is present in two branches: (B, A, C, D4:1) and (B, C,
D:1). Using D as a suffix, we get the prefix paths (B, A, C:1) and (B, C:1), which
form the conditional pattern base.

3. We then create an FP-tree using the conditional pattern base, which contains (B:2,
C:2). A is not included since it doesn’t meet the minimum support count.

4. This path generates all combinations of frequent patterns: (B, D:2), (C, D:2), (B, C,
D:2). For C, the prefix path is (B, A:3) and (B:1), resulting in a two-node FP-tree
(B:4, A:3) and frequent patterns: (B, C:4), (A, C:3), (B, A, C:3).

5. For A, the prefix path is (B:4), generating a single-node FP-tree (B:4) and frequent
patterns: (B, A:4).

Overall, the FP-Growth algorithm is a powerful tool for discovering frequent patterns
in large datasets and is widely used in a variety of applications, such as market basket
analysis, web log analysis, and bioinformatics.
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3 Design
The main idea behind the H2O is to provide a custom structure for each RDF dataset
based on its specific characteristics and query workload. The algorithm recognizes
that different RDF datasets may have different levels of structure and therefore require
different schema designs to optimize their storage and query processing performance.

For instance, suppose we have a dataset for social media posts, where for each post,
we have properties such as schema:publish date, author, message and etc. In this scenario,
since we have one to one relationship with post and its properties in this scenario, using
the WPT table is the best-case scenario. After some time, we have added new property
which is mentions (showing who has mentioned your post). The repeated mentions
property may result in duplicate data and storage inefficiencies.

The schema generation algorithm aims to find a solution that can handle different
types of RDF datasets and query workloads, providing the most efficient storage and
query execution performance. H2O considers various factors, such as the structure
and relationships of the data, the frequency and type of queries, and the performance
requirements to determine the optimal schema design.

Figure 6. The workflow of the algorithm [May21]

Grouping, Partitioning, and Stars Discovering are the three steps of our approach.
The first step, Grouping, is designed to group attributes (or properties) in the RDF data
that meet a specified support threshold parameter. The algorithm employs the association
rule algorithm known as FPGrowth to identify similar properties and group them together.
The idea behind this step is that properties that are frequently used with each other can
be stored in the same table, reducing the number of join operations required for query
processing.

The result of the Grouping step includes final tables as well as clustered properties.
These tables are built as VT tables, as they contain attributes that are not listed in any
clusters.

The second step, Partitioning, takes the groups from the previous step and attempts
to find a unique set of attributes for each group while keeping the amount of null storage
for each group below a specified null threshold. The final tables are the result of the
Grouping and Partitioning steps.
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The final step, Stars Discovering, attempts to discover stars (a group of properties
with a central property) from a specified query workload. New table candidates are
formed by merging similar stars. The pseudocode for the entire algorithm is described
in Algorithm 1. The three-step approach is designed to provide a flexible and efficient

Algorithm 1: Main algorithm for the H20
Input: The support threshold, null threshold, data workload and query workload
Output: The final optimal schema

1 forall support ∈ Support do
2 forall nullthreshold ∈ NullThreshold do
3 Groups, F inalTables← GetGroups(support, nullthreshold);
4 FinalTables.append(GetPartitions(Groups);

5 FinalTables.append(StarsDiscovering(QueryWorkload);

solution for storing RDF data in a relational database optimized for the specific needs of
each RDF dataset and query workload.

3.1 Data Structures
Our algorithm takes the RDF graph as input with two different thresholds: (1) Null
threshold and (2) Support Threshold. Support threshold is the value to measure how
frequently properties appear together for the same subject in the RDF graph. If sets of
properties meet the condition then they are considered to be in the same n-ary table. Null
Threshold is the percentage of the acceptable null values in the table.

We have defined two main data structures for this algorithm:
(1) Property Usage List. This is a list structure where all the properties of the RDF data
is storing counts of the subject that property has. If we have built the data structure based
on the Figure 3 from the background section, then our data structure will be like the
below figure.
(2) Subject Property Basket. This is the list of the subject with its associated properties.

It is shown in the form of SubjId -> prop1,prop2. . . propn) where SubjectId is the URI of
the given subject and its property basket is the list of all properties defined for that subject.
As an example from, for the sample data in Figure 3, we could have the following table.

3.2 Algorithm Design
The goal of this three-phase clustering process is to group together attributes in a way that
maximizes the data saved in n-ary tables. The focus is on identifying maximum-sized
clusters that often occur in the data and include the most properties. By doing so, the
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Property Usage
Name 4

Age 2

City 2

Birthyear 1

Studies 1

Phonenumber 1

Table 8. Usage of each property

Subject Properties
Student1 [Name,Age,Birthyear,Studies]

Student2 [Name,Age,Phonenumber]

University1 [Name,City]

University2 [Name,City]

Table 9. The subject property basket list

approach aims to optimize the storage and querying of the data. The full lifecycle of the
algorithm is described in Figure 7.

Figure 7. The algorithm design

3.2.1 Grouping Phase

This phrase describes a two-step grouping process for grouping together attributes in a
dataset.
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Figure 8. The algorithm design

In the first step, frequent itemset discovery is used to identify sets of highly correlated
groups. A frequent itemset is a set of items (in this case, attributes) that frequently occur
together in the data. The support of a frequent itemset is defined as the frequency with
which the attributes are found together in the same group. A high support indicates that
these attributes are highly correlated with one another.

To discover the groups, a support threshold is set, and property sets are considered to
be groups only if they are higher than or equal to this threshold. The optimal support
threshold is determined based on the size and correlation of the resulting groups. A high
support threshold can result in a large number of small, strongly connected groups, while
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a low support threshold can result in a smaller number of larger, less connected groups.
In the second step of the grouping phase, an initial set of final tables is created. This set
contains properties that are not listed in the clusters and are thus saved as a VT Table, as
well as properties that fulfill the null threshold (i.e., properties that do not contain any
properties from other clusters). Any group that is added to the final table phase is deleted
from the list of groups.

Pseudocode for the grouping phase of an algorithm (Algorithm 2) that uses the
inputs of a Subject Property Basket, Support Threshold, and Null Threshold to group
together attributes in a dataset. The algorithm first detects groups and orders them by

Algorithm 2: Get Groups for initial phase
Input: The Subject Property Basket, Property Usage List, Null Threshold and

Support Threshold
Output: Groups and Final Binary Tables

1 Groups← FPGrowthList(Basket, PropertyUsage, SupportThreshold);
2 FinalTables← Properties which are not in any groups
3 forall c1 ∈ Groups do
4 Flag ← true;
5 if findNullThreshold(c1) < NullThreshold then
6 forall c2 ∈ Groups do
7 if c1 ∈ c2 and c1 ̸= c2 then
8 Flag ← false

9 if Flag = True then
10 FinalTables.insert(c1);
11 Groups.remove(c1) ;

their supportthreshold, which is a value that indicates how frequently the attributes in the
group occur together in the dataset. The groups are saved in a variable called Groups[1].

Next, the algorithm creates the first set of VT tables based on the attributes that are
not part of any groups. These attributes are saved in a VT table[2].

The algorithm then looks for groups that are less than the null threshold (a value that
determines how many properties a group can have before it is considered "null") and not
part of any other groups. If such a group exists, it is added to the final table and removed
from the Groups variable[4-11].

The property usage list is used to calculate the null threshold. The formula used for
null threshold is:

NullThreshold =

∑
(PUmax(c)− PUcount(ci))

(c+ 1) ∗ PUmax(c)
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where |c| is the number of properties in the group and PU.maxcount(p) is the maximum
property count.

Finally, the algorithm returns the first set of initial tables and the remaining groups
that will be sent to the next phase of the algorithm. The initial tables are the VT tables
created in the second step of the algorithm, and the remaining groups are those that were
not added to the final table. These groups will be further processed in the next phase of
the algorithm.

Example. We will use the following WPT table to explain algorithm steps. For our
case, we will take a support threshold of 20 percent and a null threshold of 10 percent.
Our initial table is described below.

Subject Name Age Working Likes Teaches Supervises Website City Population

Person1 Farid 25
Data

Engineer
Table
Tennis

Person2 Parviz 23
Software
Engineer

Gym

Person3 Murad 23
Data

Analyst

Person4 Ragab 23 Data Engineering Farid

Person5 Riccardo 28 Data Engineering Ragab

University1 ut.ee Tartu

University2 taltech.ee Tallinn

City1 100k

Table 10. An example of a WPT for the running example.

Firstly, we will calculate our initial data structures (PropertyUsage List and Subject
Property Baskets) from the above example.

Property Usage
Name 5
Age 5

Working 3
Likes 2

Teaches 2
Supervises 2

Website 2
City 2

Population 1

Table 11. Property Usage List.

Subject Properties
Person1 [Name,Age,Working,Likes]
Person2 [Name,Age,Working,Likes]
Person3 [Name,Age,Working]
Person4 [Name,Age,Teaches,Supervises]
Person5 [Name,Age,Teaches,Supervises]

University1 [Website,City]
University2 [Website,City]

City1 [Population]

Table 12. Subject Property Basket.

Later, we will calculate support and null thresholds based on those data structures.
For example, if we want to calculate the support percentage of the [Name, Age, Working,
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Likes], we need to find out how many subjects are simultaneously containing these
properties out of all subjects. Then in our scenario, it will be

support =
2 ∗ 100

8
= 25%

If we want to calculate the null threshold for the same group, then

NullThreshold =
((5− 5) + (5− 5) + (5− 3) + (5− 2)) ∗ 100

5 ∗ 5
= 20%

We will calculate the support percentage for all possible group property combinations.
The following tables will be generated.

Figure 9. Support Percentages

First FPGrowth Function will remove all the groups below the support threshold,
such as [Population], which has only 12 percent. Then the algorithm will consider a
maximum number of properties that can be grouped and remove all their subsets. For
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Example, [Name, Working] is a subset of [Name, Age, Working, Likes], so we will
not consider subsets. In that scenario, from the first function, we will get (Name, Age,
Working, Likes), (Name, Age, Teaches, Supervises),(Website, City)[1]. Based on those
clusters, we now calculate a null percentage.

Cluster Null Percentage
Name, Age, Working, Likes 20%

Name, Age, Teaches, Supervises 24%

Website, City 0%

Table 13. Null Percentage by Cluster

Since the Population property is not part of any group, then we will create this
property as a VT table.[2].

In the next stage, we will loop through all the groups to find the final table candidates[3-
11]. First, we check whether the group is below the null threshold to decide whether we
can use this group as the final table[5]. Among generated groups, [Name, Age, Working,
Likes] and [Name, Age, Teaches, Supervises], which have 20 percent and 24 percent null
storage, respectively, do not meet this condition. We will forward these groups to the
partitioning phase. However, [Website, City] is less than the null threshold, so we will
look into whether other groups contain any properties of this group. Since there is no
intersection with other groups, we will consider [Website, City] as the final table.

The result of this phase is in Figure 10:

Figure 10. Grouping algorithm final result

3.2.2 Partitioning Phase

The second phase, which is the focus of this paragraph, is to further refine the grouping
by dividing the groups into non-overlapping sets and ensuring that each set is below a
certain null threshold.
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Figure 11. The algorithm design

The null threshold refers to a minimum support level for each cluster, which is the
frequency at which a particular attribute or set of attributes appears in the data. The
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goal is to ensure that each partitioned group is below the null threshold, so that it can be
efficiently queried without the need for costly join or union operations.

The process for discovering final tables involves a greedy approach that attempts to
increase the support threshold for each group until a final set of non-overlapping groups
is identified. In some cases, a group may meet the null threshold and can be considered a
final table. In this scenario, the process attempts to trim any extraneous attributes from
the group to further optimize the query workload.

In other cases, a group may not meet the null threshold and the process attempts to
prune attributes until the group does meet the threshold. If a pruned attribute is present in
another group with a lower support threshold, it may be merged into a larger n-ary table.
If the pruned attribute is not present in any other group, it must be retained as a VT table.

Overall, the goal of this process is to create a set of non-overlapping groups that meet
the null threshold, which can then be efficiently queried without the need for costly join
or union operations.

Algorithm 3 shows the steps of partitioning the groups produced in the first phase of
the process and identifying the final tables that meet the null threshold.

Algorithm 3: Get Partitions for the second phase
Input: Groups from the first phase, Property Usage List, Null Threshold
Output: Final Tables from data workload

1 forall c ∈ Groups do
2 if PropertyUsage(c1) ≥ NullThreshold then
3 while PropertyUsage(c) ≤ NullThreshold do
4 p1← Most Nullable Property from clusters;
5 c1← Remove p1 from the group
6 if p1 /∈ Other Groups then
7 FinalTables.Insert(p1);

8 FinalTables.Insert(c1);
9 forall c2 ∈ Groups do

10 if c2 /∈ c1 then
11 c2.remove(c2 ∩ c1);

The input for Algorithm 3 includes the Groups from the first phase, a PropertyUsage
List, and the NullThreshold. The algorithm begins by looping over all of the groups and
checking whether each group meets the NullThreshold. If a group meets the NullThresh-
old, it is directly entered into the final table list.

If a group does not meet the NullThreshold, the algorithm attempts to delete a
property from the group, which results in more null values in the group. The algorithm
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then checks to see whether the deleted property exists in other groups before deciding
whether to include it as a distinct final table.

If the final table list does not already exist, the algorithm creates it and adds the group
to the list. If the final table list already exists, the algorithm checks whether the group
can be merged with an existing final table that has the same set of properties. If a merge
is possible, the algorithm merges the groups into a single final table.

If a merge is not possible, the algorithm only removes the property from the group
until the null threshold is met. This process continues until all groups have been checked
and partitioned into non-overlapping sets that meet the null threshold.

For example, let’s say we have three groups, C1, C2, and C3, with the following
property usage lists and support levels:

C1: p1, p2, p3, p4, support(C1) = 0.8

C2: p1, p3, p5, p6, support(C2) = 0.6

C3: p3, p5, support(C3) = 0.4

Suppose the null threshold is set to 0.5, Algorithm 3 will iterate over each group and
check whether the group meets the null threshold. Since C1 and C2 meet the null thresh-
old, they would be directly inserted into the final table list. However, C3 does not meet
the null threshold, so the algorithm would attempt to delete a property from the group. In
this case, the algorithm would delete p5 from C3, which results in a null value.

Figure 12. The final table sets

The algorithm would then check whether p5 exists in any other groups. Since p5
is present in C2, the algorithm would not create a distinct final table for C3, but rather
merge it with C2. The result would be two final tables: p1, p2, p3, p4 and p1, p3, p5, p6.

Example. Using the example from the grouping phase section, there are two groups
that need to be refined into final tables. The first group is [Name, Age, Working, Likes],

29



and its null storage is higher than the null threshold. To satisfy the condition, the property
with the most null values, i.e., "Likes", is removed from this group. Then the null
threshold is recalculated for the remaining properties [Name, Age, Working], which is
now 10 percent and satisfies the condition. As a result, one VT table, Likes, and one
PT table, [Name, Age, Working] are created for this cluster, and these properties are
removed from other groups.

In the second group [Name, Age, Teaches, Supervises], Name and Age properties are
removed, leaving [Teaches, Supervises]. The null threshold for this group is 0 percent
now, which meets the condition and can be generated as a final table.

The final tables from this phase are following :

Tables
Name, Age, Working

Likes

Website, City

Table 14. The final table sets from partitioning phase

3.2.3 Stars Discovering

The algorithm developed for this phase aims to optimize the schema further by creating
new sets of final tables and making adjustments to the already created final tables based
on the provided query workload using the BGP pattern. Overall, this phase is critical in
ensuring that the schema is optimized not just for the data provided but also for the query
workload. By identifying stars in the query workload (i.e., properties that are queried
together for the same Subject) and optimizing already created tables, the algorithm can
ensure that the schema is efficient and can handle queries with minimal join or union
operations, thereby improving query performance.

The main goal of this phase is twofold. Firstly, the algorithm tries to identify star
query shapes from the query workload and merge them if they have at least one common
property.

Secondly, the algorithm tries to optimize already created tables from above phases
either by joining them with new stars or by keeping them as separate tables. In this
scenario, the following conditions need to be considered. Firstly, if the table is a subset
of any star, then algorithm need to remove this table from the schema. Secondly, if only
some properties exist in both tables, we need to consider the support threshold of each
property. If the support threshold is 2 times higher than the support threshold, we keep
this property in both tables; otherwise, we remove it from the previous table but keep it
in the star tables.
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As an example, consider the following scenario: T1=p1,p2,p3, T2=p4,p5, S1=p1,p4,p5.
We can see that T2 is a subset of S1, so we will remove T2 and keep S1 only. On the
other hand, T1 and S1 have a common property, which is p1. Here we need to decide
whether to keep it in both tables or remove it from T1. This will be determined based
on the support percentage of p1. If it is less than support threshold, then algorithm will
remove this property from T1 and keep it only in S1; otherwise, algorithm will keep it in
both tables.

The second most important part of this algorithm is finding out join tables (which
is third table used for storing many to many relationships). This step is very crucial for
removing redundancy in the data and at the same time improving query performance.

Algorithm 4 aims to find the common stars from the given query workload and
change the existing calculated final tables structure.

Algorithm 4: Discovering Stars from given query workload
Input: Query Workload and Final Tables from the partitioning phase
Output: Final Tables from query workload

1 FinalStars, JoinTables← FindFinalStars(QueryWorkload);
2 forall table ∈ FinalTables do
3 if len(table) > 1 then
4 forall property ∈ table do
5 forall star ∈ FinalStars do
6 if property ∈ star & PropertyUsageList(property) >

2 ∗ SupportThreshold then
7 FinalTable← Remove property from Final Table

8 forall jointable ∈ JoinTables do
9 if property ∈ jointable & PropertyUsageList(property) >

2 ∗ SupportThreshold then
10 FinalTable← Remove property from Final Table

The algorithm takes as input a query workload and the final tables from the parti-
tioning phase. It then uses the FindFinalStars function to identify the final stars and
connector tables.

For each table in the final tables, it checks if the length of the table is greater than 1.
If so, it loops over each property in the table and then over each star in the final stars. If
the property is in the star and its usage count exceeds the support threshold, the property
is removed from the final table. The output of the algorithm is the updated final tables.
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Example. If we continue our running example from the above section with the below
query workload described in BGP Pattern and query pattern.

Figure 13. The query workload for our algorithm input

Based on the query workload provided, we can identify stars, which are sets of
properties that frequently co-occur together in the queries. In this case, we have three
stars: [Name, Age, Working], [Name, Age, Working, Likes],[Teaches,Supervises]. Since
the [Name, Age, Working] star is a subset of the [Name, Age, Working, Likes] star, we
can combine these two sets of properties into one table, which includes all the properties
of both stars: [Name, Age, Working, Likes].

If we take final tables from the table 14 into consideration as well we will have
following tables:
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Name, Age, Working

Likes

Website, City

Name, Age, Working, Likes

Teaches, Supervises

Table 15. Final Tables

Now if we look into the tables generated from the 3 phases we could see that
[Name,Age,Working] is a subset of [Name,Age,Working,Likes] so we will remove
[Name,Age,Working] table from final tables list. Same for the the Likes table as well.
Now updated final tables will be below.

Name, Age, Working, Likes

Website, City

Teaches, Supervises

Table 16. Final Tables

3.2.4 Auto Query Mapping

After creating a new schema, existing queries need to be adapted to the new schema
since properties no longer exist in the same tables. To address this issue, a new algorithm
was introduced that automatically transforms old schema queries to new ones. For the
preprocessing step, a PostgreSQL database was used to store initial data structures, but
the choice of database is not mandatory and can be easily replaced with others.

The algorithm relies on two main tables: Global Mapping and Metrics. Global
Mapping is used as metadata for keeping track of property location, and Metrics stores
information about each property, including the column name, count, and null threshold.
The benefit of the Metrics table is that it eliminates the need to calculate metrics each
time the queries are run.

The main purpose of the algorithm is to find the best query plan while generating the
new schema. When replication of properties is added, the algorithm goes through the
following steps to find the appropriate tables:

1. If one table covers the most properties of the selected query, then that table is picked.
For example, if we have T1=p1,p2,p3 and T2=p1,p4,p5,p6, and our query contains p1,p2,
then we will use T1 since most of the properties are coming from there.
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2. If properties from both tables are equally used, then the algorithm uses the Met-
rics table to calculate the size of each table and picks the one with less size.

The algorithm effectively solves the issue of adapting old schema queries to the new
schema, making the transition to the new schema seamless.

3.2.5 AutoQueryMapping Algorithm

Algorithm 5: Find best query plan for existing WPT query
Input: WPT query
Output: Final converted query plan

1 TablesDict← FindDistinctTables(Query);
2 PTTablesDict← EmptyList;
3 Columns← TablesDict[table];
4 forall table ∈ TablesDict.keys() do
5 ReplicatedColumns← FindReplicatedColumns(TablesDict[table]);
6 if Len(ReplicatedColumns) > 0 then
7 BestTable← FindBestTable(ReplicatedColumns);
8 CoveredColumns← FindColumns(BestTable);
9 PTTablesDict.Insert(BestTable, CoveredColumns);

10 Columns.Remove(CoveredColumns);

11 PTTablesDict.Insert(FindTables(Columns));
12 JoinCondition← CreateJoinStatement(PTTablesDict);
13 Subquery ← CreateSubQuery(JoinCondition)
14 Query ← Query.Replace(′WPTV 0′, Subquery)

Example Lets consider following WPT query in listing 2.

SELECT V0.Name ,
V0.Age ,
V0.Website ,
V0.Teaches

FROM WPT V0;

Listing 2. Example query for WPT table

If we continue our running example here, we must rewrite this query to be compatible
with our new schema. Our algorithm starts with extrapolating our tables from this query,
WPT aliased as V0. And we begin creating a tables dictionary with the table being the
key and columns being values[1]. The dictionary described in listing 3.
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{V0:[Name ,Age ,Website ,Teaches ]}

Listing 3. TablesDictionary in our sample

Later algorithm iterates through all the tables dictionary to form a subquery for each
table[4:11]. First, we find out whether any columns are replicated across multiple tables
and store them in the ReplicatedColumns variable.[5]. For finding out replication, we are
using the Global Mapping table. In our running example, we do not have any replication.
So ReplicatedColumns will be Empty. In this scenario, our algorithm will calculate
the list of pt tables with their columns used in the join condition[11]. The following
dictionary described in listing 4 will be generated in our example.

{T1:[Name ,Age],
T2:[ Website],
T3:[ Teaches ]}

Listing 4. PTTablesDictionary in our sample

Now we will create a join condition based on the following dictionary. According to
our running example, it will be like the below in listing 5.

T1 FULL JOIN T2 ON T1.Subject=T2.Subject
FULL JOIN T3 ON T1.Subject=T3.Subject

Listing 5. Join condition for WPT V0 table

Later we will generate a subquery considering columns projected from this table.
And our final subquery will be like the below in listing 6.

(SELECT T1.Name ,
T1.Age ,
T2.Website ,
T3.Teaches

FROM T1 FULL JOIN T2 ON T1.Subject=T2.Subject
FULL JOIN T3 ON T1.Subject=T3.Subject) V0

Listing 6. Final subquery for WPT table

If we replace WPT with our subquery, it will be like the one below in listing 7.

SELECT V0.Name ,
V0.Age ,
V0.Website ,
V0.Teaches

FROM (SELECT T1.Name ,
T1.Age ,
T2.Website ,
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T3.Teaches
FROM T1 FULL JOIN T2 ON T1.Subject=T2.Subject

FULL JOIN T3 ON T1.Subject=T3.Subject) V0;

Listing 7. Final subquery for WPT table

3.3 Algorithm Implementation
For the proof of concept of this thesis, we have implemented following algorithms using
Python and Postgresql. Python is a popular general-purpose programming language with
a wide range of libraries and frameworks available, making it a popular choice for data
processing and analysis tasks[Wor22]. PostgreSQL is a powerful open-source relational
database system that provides advanced features such as transaction support, data in-
tegrity, and concurrency control [Pos]. To connect our Python code to the PostgreSQL
database, we used psycopg2, which is a popular database adapter for Python[psy]. It
provides an easy-to-use interface for interacting with a PostgreSQL database and can be
used to change the database system easily whenever needed.Overall, the combination
of Python and PostgreSQL with psycopg2 as a database adapter was a suitable choice
for our project, which involved data processing and analysis using a relational database
management system.

Project is currently taking WPT schema represented in csv as input file and creates
corresponding tables. In the next stage, these tables are converted into csv in order to be
deployed to other systems if needed.
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4 Related Work
Previous attempts to RDF storage were divided into three types. (1) The triple-store .
Oracle[ora23], Sesame[BKvH02], 3-Store[dat], R-Star [MSP+04] and Redland[Bec01]
are examples of relational systems that employ a triple-store as their main storage
method. (2) The property table. The Property Table schema alleviates the issue of the
low performance of Single Statement schema due to excessive self-joins. Jena Semantic
Web Toolkit[Wil06]is an example of an architecture that uses property tables as its major
storage strategy. Oracle also use property tables as supplementary structures, referred
to as materialized join views (MJVs).(3) The decomposed storage model was recently
presented as an RDF storage approach , and it has been demonstrated to scale effectively
on column-oriented databases with mixed results on row-stores.

One of the attempts was from Peter Boncz[PPEB15], who suggested creating emer-
gent relational schemas by means of semantically and structurally optimizing existing
schemas using knowledge graphs.

Figure 14. The workflow of emergent relational schema

The algorithm in figure 14 starts with discovering the Characteristics Set(The group of
properties that can be combined)—then tries to find human-understandable labels and
relations to the CS with the Labeling Step. In the next step, they merge structurally and
semantically similar CS to make the schema more compact. The next step is removing
low frequency and high sparse properties from the schema. In the last step, the algorithm
filters out some rows to make properties more homogeneous (keeping them in the
same type) and individual triples, which make multi-valued attributes. However, in this
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solution, only some triples could be described in an automated solution( even in the
best-case scenario, 90 % of the data).

Automated relational schema design has primarily been studied using query workload
statistics. Techniques have been proposed for index and materialized view creation, hori-
zontal and vertical partitioning, and partitioning for large scientific workloads. However,
Mokbel, in his paper, introduced a data-centric approach where the structure of the data
is more important than the query workload[LM09]. This work aims to create hybrid
schemas using data correlation meaning that putting them in the same cluster if they
have used together a lot using null threshold. The approach of this work consists of two
phases clustering and partitioning. In the clustering phase initial version of the table and
clusters are found. Next phase is further dividing clusters to final tables. However, this
approach is very time-consuming especially with large RDF datasets..

Our approach introduced hybrid-solution through query and data-driven approaches
while keeping each approach’s benefits in mind. Second, we found that none of these
approaches are considered property replication in multiple tables. Third, we have
introduced a new way of not only schema generation but also automated SQL generation
if the data structure changes.
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5 Results
This section assesses the effectiveness of our approach to creating RDF schemas in
comparison to the currently available RDF storage methods.

5.1 Experimental Setup
In order to evaluate the performance of the proposed schema optimization technique, we
test our experiments for querying RDF datasets using Apache Spark-SQL data engine.

In our experiments, we have loaded the generated tables from the WPT schema into
Spark and performed a set of benchmark tests on different query shapes and optimization
techniques.

The purpose of these experiments is to measure the performance of each created
schema and compare it with the performance of the original un-optimized schema. We
aim to show that our proposed optimization techniques can significantly improve the
performance of SPARQL queries on large RDF datasets.

In our experiments, we opt for the WatDiv RDF benchmark with three different
dataset sizes used: 1 million, 10 million, and 100 million.

The support threshold for the experiments was set at 5%, meaning that properties
occurring in less than 5% of the triples were not considered significant and were pruned
during schema creation. The null threshold was set to 15%, indicating that if a property
had more than 15% null values, it was considered insignificant and was also pruned.

Hardware and Software Configurations. Our experiments have been executed on a
Macbook Air M1 running a Mac-OS system with 8GB of unified memory. The schema
generation module was built using Python and integrated with Postgresql, although the
database choice can easily be changed.

We compare our solution to existing approaches, i.e., the Wide Property Table and
Data-Centeric approaches[LM09].

5.2 Experimental Evaluation
A Sample query template was picked to evaluate the performance of a solution for storing
RDF data in a relational database. The template includes a collection of 20 predefined
queries using the WatDiv benchmark1. These query templates are categorized into four
groups based on their shapes: star (S), linear (L), snowflake (F), and complex (C).

1Query templates can be found here : https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
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Figure 15. WatDiv benchmark queries’ runtimes with hot loading

To measure the performance of the solution, the predefined queries are executed
multiple times, and the average runtime is calculated. The resulting data is then plotted
on a graph for comparison against another solutions.

The graph shows that the solution being tested outperforms WPT by several orders
of magnitude for all categories of query shapes,meanwhile outperforms most of the data-
centric schemas as well. However, to deeply analyze the reasons behind this performance
difference, it is necessary to look at each of the shapes separately and provide input on
the results. This would involve a more detailed analysis of the query execution plan and
the specific optimizations that are being applied to each query shape.

Overall, the testing use case provides a rigorous evaluation of the solution’s per-
formance and highlights its superiority over another solution. It also demonstrates the
importance of considering the shape of queries when optimizing the storage and querying
of RDF data in a relational database.
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Figure 16. Query runtimes in ms

5.2.1 Linear queries

In linear queries, we see that The hybrid schema generated by our approach significantly
outperforms the WPT schema performance . This difference comes from the input size
of each joined table. In our algorithm, we try to decreasing the sparsity of the table
(reducing null values). By means of reducing input size of the WPT table we are also
improving the scan time as well. But there is an interesting aspect while comparing the
linear queries of L1 with others. L1 performs better than others while at the same time
being the subpattern for them. The reason is in the underlying data. Thus in the first
query, we have used org: caption property as the second join condition, which has only
0.0002 selectivity. In our solution, since this predicate has been used as a separate VP
table, we have significantly reduced the size of the second table. But in all other cases
joined table does not have such low selectivity.
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Figure 17. Linear queries runtimes with different scales
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5.2.2 Star queries

Figure 18. Star queries runtimes with different scales

In star queries, we see that our solution is not the best-performing. WPT tables are
optimized primarily for star queries, and to retrieve stars, you don’t need to do any join.
However, our optimized schema needs to have multiple joins in order to retrieve the same
result. This figure shows that our solution is still outperforms in 5 out of 7 cases. The
underlying reason is that the size of the generated schema tables (especially star tables)
is not so big that splitting the predicate into the different tables and keeping them in the
same table does not have a huge difference.

5.2.3 Snowflake queries

Since snowflake is a more complex version of the star and linear queries, that is why we
need to consider different scenarios. Our sample can easily show that the WPT schema
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Figure 19. Snowflake queries runtimes with different scales

is not performing well against our schema. If we look at some edge cases, such as F3
and F4, we can see that there is a subquery and filter that has been used against a huge
wide property table which creates a bottleneck in the execution time.
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5.2.4 Complex queries

A significant difference comes when the query is complex. It means a lot of joins and
filter conditions that can be overwhelmed the system. In this graph, we can see a huge
difference in terms of the runtime. The main difference is coming from using self-joined
in the WPT table, which is quite a big table. If we look at the graph, we can see one
anomaly, which, although queries C1 and C2 have significant improvement, however,
C3 is almost at the same level. This huge difference is the structure of the C3 which is
entirely close to the Star schema. Since it retrieves huge property values, it is considered
a complex query.

Figure 20. Complex queries runtime with different scales
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6 Conclusion & Future Work
The exponential growth and interconnectedness of data in various domains creates a
need for the development of efficient and scalable solutions for processing Knowledge
Graphs(KGs). The Resource Description Framework(RDF) is one of the popular graph
data models for representing KGs. However, it faces significant challenges in storing and
managing KGs using relational schemas.

In our thesis, we have introduced a new hybrid schema generation algorithm using
data and query workload techniques. Our algorithm has shown great potential for manag-
ing RDF data. Meanwhile, we have created an algorithm for smooth query translation
from old queries to new ones. It has also opened so many interesting improvements and
challenges for future research.

6.1 Exploiting Hybrid Schema in Batch Processing
In our thesis, we have designed a workload-driven approach to manage and optimize the
processing of RDF data queries. The approach involves storing frequently-used queries
to determine the actual workload of the system. Thus , we can identify the most important
queries and optimize the system accordingly to improve the overall performance.

However, the frequency of queries can change over time based on user requirements, and
our solution is flexible enough to accommodate these changes. We take snapshots of
query statements at various points in time and apply any new changes to the existing
schema.

To ensure seamless transitioning of queries from the old schema to the new schema, we
leverage the benefits of our auto query mapping solution. This solution adapts queries to
the new schema automatically, without any manual intervention needed. By doing so,
we ensure that our system remains efficient and effective, even as the schema changes
over time.

6.2 Finding a correlation between properties using Machine Learn-
ing Algorithms

In our thesis, we used query and data profiling techniques to select the best hybrid
schema for a given dataset. It could be interesting to explore the use of machine learning
techniques to automate this process even further, potentially leading to more effective
schema selection.
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6.3 Extension of auto query mapping solution
Our thesis proposes an auto query mapping solution to adapt queries to new versions of
the schema. This solution could be extended to handle more complex schema changes,
or to include additional features such as automatically generate new queries from native
SPARQL itself directly.
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Appendix

I. Basic WATDIV query workload

# L1:
{

?v0 wsdbm:subscribes %v1% .
?v2 sorg:caption ?v3 .
?v0 wsdbm:likes ?v2 .

}

#L2:
{

%v0% gn:parentCountry ?v1 .
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?v2 wsdbm:likes wsdbm:Product0 .
?v2 sorg:nationality ?v1 .

}

#L3:
{

?v0 wsdbm:likes ?v1 .
?v0 wsdbm:subscribes %v2% .

}

#L4:
{

?v0 og:tag %v1% .
?v0 sorg:caption ?v2 .

}

#L5:
{

?v0 sorg:jobTitle ?v1 .
%v2% gn:parentCountry ?v3 .
?v0 sorg:nationality ?v3 .

}

#S1:
{

?v0 gr:includes ?v1 .
%v2% gr:offers ?v0 .
?v0 gr:price ?v3 .
?v0 gr:serialNumber ?v4 .
?v0 gr:validFrom ?v5 .
?v0 gr:validThrough ?v6 .
?v0 sorg:eligibleQuantity ?v7 .
?v0 sorg:eligibleRegion ?v8 .
?v0 sorg:priceValidUntil ?v9 .

}

#S2:
{

?v0 dc:Location ?v1 .
?v0 sorg:nationality %v2% .
?v0 wsdbm:gender ?v3 .
?v0 rdf:type wsdbm:Role2 .

}
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#S3:
{

?v0 rdf:type %v1% .
?v0 sorg:caption ?v2 .
?v0 wsdbm:hasGenre ?v3 .
?v0 sorg:publisher ?v4 .

}

#S4:
{

?v0 foaf:age %v1% .
?v0 foaf:familyName ?v2 .
?v3 mo:artist ?v0 .
?v0 sorg:nationality wsdbm:Country1 .

}

#S5:
{

?v0 rdf:type %v1% .
?v0 sorg:description ?v2 .
?v0 sorg:keywords ?v3 .
?v0 sorg:language wsdbm:Language0 .

}

#S6:
{

?v0 mo:conductor ?v1 .
?v0 rdf:type ?v2 .
?v0 wsdbm:hasGenre %v3% .

}

#S7:
{

?v0 rdf:type ?v1 .
?v0 sorg:text ?v2 .
%v3% wsdbm:likes ?v0 .

}

#F1:
{

?v0 og:tag %v1% .
?v0 rdf:type ?v2 .
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?v3 sorg:trailer ?v4 .
?v3 sorg:keywords ?v5 .
?v3 wsdbm:hasGenre ?v0 .
?v3 rdf:type wsdbm:ProductCategory2 .

}

#F2:
{

?v0 foaf:homepage ?v1 .
?v0 og:title ?v2 .
?v0 rdf:type ?v3 .
?v0 sorg:caption ?v4 .
?v0 sorg:description ?v5 .
?v1 sorg:url ?v6 .
?v1 wsdbm:hits ?v7 .
?v0 wsdbm:hasGenre %v8% .

}

#F3:
{
?v0 sorg:contentRating ?v1 .
?v0 sorg:contentSize ?v2 .
?v0 wsdbm:hasGenre %v3% .
?v4 wsdbm:makesPurchase ?v5 .
?v5 wsdbm:purchaseDate ?v6 .
?v5 wsdbm:purchaseFor ?v0 .

}

#F4:
{

?v0 foaf:homepage ?v1 .
?v2 gr:includes ?v0 .
?v0 og:tag %v3% .
?v0 sorg:description ?v4 .
?v0 sorg:contentSize ?v8 .
?v1 sorg:url ?v5 .
?v1 wsdbm:hits ?v6 .
?v1 sorg:language wsdbm:Language0 .
?v7 wsdbm:likes ?v0 .

}

#F5:
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{
?v0 gr:includes ?v1 .
%v2% gr:offers ?v0 .
?v0 gr:price ?v3 .
?v0 gr:validThrough ?v4 .
?v1 og:title ?v5 .
?v1 rdf:type ?v6 .

}

#C1:
{

?v0 sorg:caption ?v1 .
?v0 sorg:text ?v2 .
?v0 sorg:contentRating ?v3 .
?v0 rev:hasReview ?v4 .
?v4 rev:title ?v5 .
?v4 rev:reviewer ?v6 .
?v7 sorg:actor ?v6 .
?v7 sorg:language ?v8 .

}

#C2:
{

?v0 sorg:legalName ?v1 .
?v0 gr:offers ?v2 .
?v2 sorg:eligibleRegion wsdbm:Country5 .
?v2 gr:includes ?v3 .
?v4 sorg:jobTitle ?v5 .
?v4 foaf:homepage ?v6 .
?v4 wsdbm:makesPurchase ?v7 .
?v7 wsdbm:purchaseFor ?v3 .
?v3 rev:hasReview ?v8 .
?v8 rev:totalVotes ?v9 .

}

#C3:
{

?v0 wsdbm:likes ?v1 .
?v0 wsdbm:friendOf ?v2 .
?v0 dc:Location ?v3 .
?v0 foaf:age ?v4 .
?v0 wsdbm:gender ?v5 .
?v0 foaf:givenName ?v6 .
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}

II. Access to Code
The code used to obtain the results can be found in this GitHub repository given below:
https://github.com/faridvaliyev1/Comet
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