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Low-Complexity Decoding of Best Known Quasi-Cyclic Linear Codes

Abstract: Error-correcting codes are widely used in modern communications to detect
and correct errors that can occur during the transmission of digital information. These
codes help ensure reliable transmission by enabling the receiver to reconstruct the original
information even if some bits of data were lost or corrupted during transmission. This
thesis focuses on improving the decoding schemes of quasi-cyclic error-correcting codes.
A classical theoretical framework is provided for understanding error-correcting codes.
Quasi-cyclic codes which have the best parameters for given length are considered as
generalized low-density parity-check codes to perform decoding. Exhaustive search
for parity-check matrices of these codes is done to find ones as suitable as possible for
iterative decoding. A new low-complexity decoding algorithm is proposed that uses
multiple sub-decoders for the same code. It is shown that for a length 24 quasi-cyclic
error-correcting code, this algorithm approaches the best achievable error rates and is
competitive with previous results.

Keywords:
Decoding algorithms, error correction, generalized LDPC codes, quasi-cyclic LDPC
codes.

CERCS: P170: Computer science, numerical analysis, systems, control

Parimate kvaasi-tsükliliste koodide vähekeerukas dekodeerimine
Lühikokkuvõte:

Veaparanduskoode kasutatakse laialdaselt tänapäeva kommunikatsioonis, et tuvas-
tada ja parandada vigu, mis võivad tekkida digitaalse info edastamisel. Veaparandus-
koodid aitavad tagada usaldusväärset infoedadsust, võimaldades vastuvõtjal taastada
algse info, isegi kui mõned bitid edastamisel rikuti. Antud uurimistöö keskendub kvaasi-
tsükliliste veaparanduskoodide dekodeerimisskeemide parandamisele. Selles töös antakse
klassikaline teoreetiline raamistik veaparanduskoodide mõistmiseks. Parimaid tuntuid
kvaasi-tsüklilisi koode vaadeldakse kui üldistatud hõredaid paarsuskontrolli koode ning
neile otsitakse dekodeerimiseks hästi sobivaid paarsuskontrolli maatrikseid. Pakutakse
välja uus dekodeerimisalgoritm, mis kasutab mitut alam-dekodeerijat. Näidatakse, et
pikkusega 24 kvaasi-tsüklilise veaparanduskoodi puhul läheneb antud algoritm parima-
tele võimalikele veamääradele, mis on üldiselt saavutatavad suure ajalise keerukusega
algoritmidega.

Võtmesõnad:
Decoding algorithms, error correction, generalized LDPC codes, quasi-cyclic LDPC
codes.

CERCS: P170: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
Error-correcting codes are needed whenever information is transmitted over noisy com-
munication channels. The main idea of error-correcting codes is to add some redundancy
to all transmitted messages, which allows for detection and correction of errors that
may occur during transmission. This helps to protect integrity of all transmitted data.
Error-correcting codes are used intensively in modern communications. Digital cellular
networks use a number of error-correcting codes. Starting from 3G, the two most popular
classes of codes are Turbo codes and LDPC codes, which are suitable for low-complexity
iterative decoding. However, these codes are not best for given parameters. At the same
time, the best known codes do not allow low-complexity decoding. Applying iterative
methods to the best codes will be done. Let us introduce the framework that is used to
construct error-correcting schemes, starting with Shannon’s communication model.

1.1 Communications model
We will first introduce the Shannon’s Communication Model. The communications
system consists of an information source, an encoder, a modulator, a noisy channel, a
demodulator, a decoder, and a destination. [Sha48]

Figure 1. Shannon’s Communication Model

1.2 Channel Models
Channel models provide a mathematical framework to describe the characteristics of
different communication channels, which are often affected by various types of noise and
interference. This chapter will focus on two widely studied channel models: the binary
symmetric channel (BSC) and the additive white Gaussian noise (AWGN) channel. The
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BSC is given as the most simple but important channel model that captures the errors
introduced by a binary channel with a fixed probability of bit error. On the other hand, the
AWGN channel is a channel model that introduces the notion of noise, which is present
in many communication systems. Even the AWGN channel is a simplified model and
does not fully capture the complex characteristics of real-world communication systems.
In particular, real-world channels can exhibit a wide range of non-linear effects, such
as fading, interference, and multipath propagation, that are not captured by the AWGN
model. Despite its limitations, the AWGN model is still widely used as a benchmark
for evaluating the performance of communication systems. This thesis uses the AWGN
channel model to analyze decoding performance in all chapters that follow.

1.2.1 Binary Symmetric Channel

The simplest channel model is the Binary Symmetric Channel. The transmitter and
receiver both have alphabet {0, 1}. There is an equal probability that noise will corrupt a
transmitted zero to a one or a one to a zero.

p(0 received | 1 transmitted) = p(1 received | 0 transmitted ) = p

p is called crossover probability.

Figure 2. Binary Symmetric Channel

1.2.2 AWGN Channel

This thesis will focus on a discrete time channel with AWGN (additive white Gaussian
noise) model. The model assumes that the signal is discrete in time, the noise is additive
and white. Let yyy,xxx,nnn ∈ Rn. Additive noise means that channel output yyy = xxx + nnn
can be represented as a sum of two independent vectors: the transmitted message
xxx = (x1, ..., xk) and the noise vector nnn = (n1, ..., nk). This channel is memoryless,
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that is, each component yi = xi + ni. White noise means that the noise has a flat
power spectral density over all frequencies. The noise is called Gaussian because each
component ni of nnn is a random variable with Gaussian probability density function (PDF)
having zero mean and variance σ2. The probability density function for some expected
value µ is of the form

f(x) =
1

σ
√
2π

e−
(x−µ)2

σ2

Figure 3. AWGN Channel

Adding noise to the signal degrades the quality of the signal, which makes it harder
to decode. One way to measure the quality of the signal is by its signal-to-noise ratio
(SNR). SNR is defined as the ratio of the power of the signal to the power of the noise.
Mathematically, SNR is expressed in decibels (dB) as

SNR = 10 log10

(
Ps

Pn

)
,

where Ps is the signal power and Pn is the noise power. The logarithmic scale is used
to express SNR in dB because it allows for a wider range of values to be expressed in a
more manageable scale.

In the context of the Additive White Gaussian Noise (AWGN) channel, with noise
being Gaussian and signals having average energy E, the SNR per signal is

SNR = 10 log10
E

σ2
,

where E is the average energy per signal and σ is the noise variance. SNR is an
important parameter in communication systems because it affects the performance of
the system. A higher SNR means that the signal is stronger relative to the noise and can
be more easily detected and decoded by the receiver. On the other hand, a lower SNR
means that the signal is weaker relative to the noise and can be more difficult to detect
and decode, which can result in errors in the decoded information.
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The first chapter focuses on introducing all the necessary definitions and concepts
related to linear codes. The second chapter derives the rules for maximum-likelihood
decoding and the BCJR algorithm for symbol maximum a posteriori decoding. The
third chapter of the thesis focuses on the class of low-density parity-check codes and the
belief propagation algorithm that makes them viable. Generalizations of LDPC codes
are explained and multi-base decoding is proposed to further improve the generalized
belief propagation algorithm. Finally, we search for code representations suitable for
low-complexity iterative decoding to use in multi-base decoding. The aforementioned
ideas are combined into a new decoding algorithm. The final chapter presents results
as plots of error rate as a function of the signal-to-noise ratio of the communication
channel. The goal of this thesis is to approach the error rates of optimal decoding using
low-complexity algorithms.

1.3 Overview of Literature and Related Works
1. "A Mathematical Theory of Communication" by Claude E. Shannon. Shannon’s

theory, introduced in his 1948 paper "A Mathematical Theory of Communication,"
established a mathematical framework for understanding communication and
information transfer in systems that use symbols or signals. His work focused on
how to measure the amount of information in a message and how to efficiently
encode and transmit that information through a noisy channel. "A Mathematical
Theory of Communication" is considered as a cornerstone for information theory.
This thesis relies on the concepts and models introduced by Shannon.

2. "Low Density Parity Check Codes" by Robert Gallager. Gallager introduced the
concept of LDPC codes, a then new class of error-correcting codes that can achieve
near-Shannon limit performance with low decoding complexity. Published in
1963, the thesis later became a monumental work in the field of coding theory and
inspired a new wave of research in the development of practical applications in
digital communication and storage systems. In this thesis, Gallager’s ideas are
used to decode codes with higher density than he intended.

3. "Tailbiting Codes: Bounds and Search Results" by Irina E. Bocharova, Rolf
Johannesson, Boris D. Kudryashov, Per Ståhl The codes presented in this paper
are the best quasi-cyclic codes for given lengths. Because of this, they are used as
a starting point for search of good code representations in this thesis.

4. "Multiple-Bases Belief-Propagation for Decoding of Short Block Codes" by
Thorsten Hehn, Johannes B. Huber, Stefan Laendnert, Olgica Milenkovict. This
paper introduces a simple multiple base belief propagation decoding algorithm.
This thesis will try to make some improvements and also use the algorithm they
propose as a baseline for comparison.
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2 Linear Codes
Definition 2.1 (Error-Correcting Code). An error-correcting code C is a set of vectors
over some finite alphabet F. Elements of C are called codewords.

Definition 2.2 (Linear Subspace). C ⊂ A is a linear subspace of vector space A over
finite field F, iff

1. C is closed under addition, meaning that if c ∈ C and d ∈ C, then c+ d ∈ C.

2. C is closed under scalar multiplication, meaning that if c ∈ C and a ∈ F, then
a · c ∈ C.

Definition 2.3 (Linear Code). Let F = (Σ,+, ·) be a finite field. Any C ⊂ Fn that is a
k-dimensional subspace of Fn is called a [n, k] linear code. We call n code length and k
code dimension.

2.1 Code Parameters
A code can be characterized by a certain set of parameters. This thesis will focus on binary
codes. This means that the alphabet for codes examined in this paper is F2 = {0, 1}. The
transmitted messages xxx = (x1, x2, ..., xk) are vectors of length k, which are encoded to
codewords ccc = (c1, c2, ..., cn), vectors of length n.

2.1.1 Minimum Distance

Definition 2.4 (Hamming distance). The Hamming distance between two binary vectors
is the number of coordinates where the vectors don’t coincide. It is denoted by d(xxx,yyy).
The number of 1-s in a binary vector xxx, denoted by w(xxx) is called the Hamming weight
of xxx

For example, if xxx = (0, 0, 0, 1, 0), yyy = (1, 1, 0, 0, 0), then the Hamming distance
between xxx and yyy is d(xxx,yyy) = 3. The vectors don’t coincide on indices 0, 1, 3. It is clear
that in binary arithmetic, d(xxx,yyy) = w(xxx+ yyy). + is interpreted as symbol-wise modulo 2
addition.

Definition 2.5 (Minimum distance). The minimum distance of a code is the minimum
of the Hamming distances of pairs of distinct codewords. In other words, let the set of
codewords be C, then the minimum distance is d = min{d(xxx,yyy) | xxx,yyy ∈ C,xxx ̸= yyy}.

The minimum distance is generally a good measure of a code error correcting
capability, because when two codewords have a small Hamming distance from each
other, a smaller number of bit changes during transmission results in a decoding error. If
C is a linear code with codeword length n, code dimension k and minimum distance d, it
is called a [n, k, d] code over F.
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2.1.2 Code Rate

The code rate characterizes the efficiency of information transmission. The simplest
possible solution to increase reliability of information transmission over a noisy channel
is repeating the message m times. Decoding such a code is choosing the most common
symbol for all positions among all repetitions of the message. This process resembles
having the copies of the transmitted message vote for a symbol on any given position.
The major drawback of this solution is that the code rate, the ratio of the number of bits
of useful information to the total number of transmitted bits, is 1

m
. As m increases, 1

m

decreases. There are far more effective codes with higher code rates.

Definition 2.6 (Code rate). For linear codes, the code rate is the ratio of code dimension
k to code length n. We usually denote code rate by R = k

n
.

2.2 Generator Matrix
Definition 2.7 (Generator matrix). Let C be a [n, k, d] linear code over a finite field
F. A k × n matrix G is a generator matrix of C if its rows form a basis of C. That
is, any codeword ccc in C can be expressed as a linear combination of the rows of G =
(g1g1g1, . . . gngngn)

T , i.e., ccc = a1g1g1g1 + a2g2g2g2 + ...+ akgkgkgk, where a1, a2, ..., ak are elements of F.

The generator matrix G is often used to encode data into a codeword. To encode a
message m, we multiply the message by G to get the codeword ccc =mmmG. This operation
maps the k-dimensional message space onto the n-dimensional codeword space.

2.3 Parity-Check Matrix
Definition 2.8 (Parity-check matrix). Let C be a [n, k, d] linear code over some finite
field F. The parity check matrix H = (h1, ...,hn)

T of C is an (n − k) × n matrix
whose rows span the orthogonal complement of C. That is, for any codeword ccc ∈ C and
any row hi of H , we have the scalar product ⟨hihihi, ccc⟩ = 0. The scalar product of vectors
xxx,yyy is defined as Σ

j
xjyj . Equivalently, H is a matrix such that cccHT = 0 for all c ∈ C. It

follows that GHT = 0.

The parity check matrix H is often used to decode channel output data. To check
whether a received vector yyy is a codeword, we compute the syndrome sss = yyyHT . If the
syndrome is all zeros, then yyy is a codeword of C. We can construct G from H by using
linear row operations to obtain form

G = (IkP ).

Then
H = (P T Ir).

It is clear that GHT = 000
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2.4 Quasi-Cyclic Codes
In practice, quasi-cyclic codes are often used, because they are known to be as good as
arbitrary linear codes and because they are convenient to store.

Definition 2.9. Linear code is called l-quasi-cyclic (QC) if for some l ∈ N a cyclic shift
of a codeword by l positions is a codeword of the same code.

2.4.1 Example of QC Code

This generator matrix for a rate R = 1
2

code is constructed by cyclically shifting the first
row by 2 positions. It is possible to check that code defined by G is QC.

G =

1 1 0 1 0 0
0 0 1 1 0 1
0 1 0 0 1 1

 .
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3 Optimal Decoding
This chapter examines the maximum-likelihood (ML) and symbol-wise maximum a
posteriori (symbol MAP) decoding principles. Let us introduce two closely related
metrics to measure the error-correcting capability of codes.

Definition 3.1. The frame error rate (FER) of a communications channel is the ratio of
decoder mistakes to the number of decoding attempts. If N codewords are transmitted
and e of them are decoded incorrectly (decoder output is not the same as encoder output),
then

FER =
e

N
.

Definition 3.2. The bit error rate (BER) of a communications channel is the ratio of
incorrectly decoded bits to the total number of bits transmitted. If N codewords of length
n are transmitted and e number of bit errors were made (decoder output has e different
bits than encoder output), then

BER =
e

Nn
.

ML decoding is optimal in terms of FER and symbol MAP decoding is optimal in
terms of BER. We call ML and symbol MAP decoding optimal decoding. Because
higher levels of noise result in more decoding errors, we evaluate the capabilities of
decoding schemes by giving their FER and BER as a function of SNR.

3.1 Maximum Likelihood Decoding
Let C be a [n, k, d] linear code over finite field F. Maximum likelihood (ML) decoding
is a decoding technique that aims to find a codeword ccc maximizing probability of
channel output yyy given ccc was transmitted. We will denote the probability p(yyy received |
ccc transmitted) as p(yyy | ccc). A maximum likelihood decoder outputs ccc ∈ C so that p(yyy | ccc)
is maximized. Denote the output of a maximum-likelihood decoder given channel output
yyy by x̂(yyy). If the channel is discrete and memoryless:

x̂(yyy) = argmax
ccc∈C

p(yyy | ccc) =
n∏

i=1

p(yi | ci).

Since ln(x) is a monotonic function of x

argmax
ccc∈C

p(yyy | ccc) = argmax
ccc∈C

ln p(yyy | ccc) = argmax
ccc∈C

n∑
i=1

ln p(yi | ci).

If binary phase-shift keying (BPSK) is used for modulation, the conditional probability
density function for each transmitted symbol ci is
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f(yi | ci) =
1

σ
√
2π

e−
(yi−bi)

2

2σ2 ,

where bi = (1− 2ci)
√
E and E is signal energy. We get

ln p(yyy | ccc) = −∥yyy − bbb∥2

2σ2
+ n ln

1

σ
√
2π

,

where ∥yyy−bbb∥2 denotes the squared Euclidean distance between vectors yyy and bbb. Because
n ln 1

σ
√
2π

is constant for all channel outputs and because 1
−2σ2 is always negative

argmax
ccc∈C

ln p(yyy | ccc) = argmin
ccc∈C

∥yyy − bbb∥2 = argmin
ccc∈C

Σ
i
(yi − bi)

2.

Therefore maximum-likelihood decoding for AWGN channel with BPSK modulation is
equivalent to finding the codeword ccc which has smallest Euclidean distance from channel
output yyy.

Further simplifications can be made when we use modulation such that all signals
have the same energy E, as is the case for BPSK modulation:

argmin
ccc∈C

Σ
i
(yi − bi)

2 = argmin
ccc∈C

Σ
i
(y2i − 2yibi + b2i ) =

= argmin
ccc∈C

(∥yyy∥+ ∥bbb∥−Σ
i
(2yibi)) = argmax

ccc∈C
⟨yyy, bbb⟩.

This means ML decoding for AWGN channel with BPSK modulation is finding the
codeword ccc which has the largest scalar product with channel output yyy. The time
complexity of scalar product ML decoding is that of exhaustive search over all 2k

keywords.

3.2 Symbol MAP Decoding
The symbol a posteriori probabilty for symbol c in position i given channel output yyy is

p(ci = c | yyy) = p(ci = c, y)

p(yyy)

where p(ci = c,yyy) = Σ
ccc∈Ci

p(ccc,yyy) where Ci(c) is the set of codewords which have c in

position i.
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3.3 Trellis Diagrams
Due to exponential complexity of optimal decoding, it becomes unfeasible as code length
grows. The search for lower complexity of decoding leads us to labelled digraphs called
trellises or trellis diagrams. Furthermore, trellis based decoding called BCJR decoding
is used as a sub-algorithm in chapter 4.2

Definition 3.3. G = (V, E , L) is a labeled directed graph. V is the set of nodes, E is the
set of directed edges, L is the labelling L : E → F, where F is a finite alphabet. G is a
trellis or a trellis diagram if

1. there exists a set of subsets of P = {V1, ..., Vl} such that
⋃l

i=1 Vi = V . Vi are
non-empty and non-intersecting subsets of nodes. The set Vi is called the i-th level
of the trellis;

2. edges exist only between neighbouring levels. Futhermore, they are directed from
the i-th level to the i+ 1-st. ∀uv ∈ E : u ∈ Vi ⇒ v ∈ Vi+1;

3. the initial and the last levels contain only one node each | V1 |=| Vl |= 1.

The first node v1 ∈ V1 is called the root and the last node vs ∈ Vl is called the toor.
We call the nodes of a trellis diagram states.

Definition 3.4 (State complexity). The state complexity ν of a trellis diagram is

ν = max
i=1,...,l

log2 | Vi |

Paths of a code trellis are codewords. It is possible to construct a trellis for linear
codes such that every labelled path from root ∈ V1 to toor ∈ Vl is a codeword.

3.3.1 Example of Trellis Diagram

Let linear code C = {(1, 1, 0), (0, 1, 1), (0, 0, 0), (1, 0, 1)} be defined by its generator
matrix G.

G =

(
1 1 0
0 1 1

)
Then the corresponding trellis is

13



Figure 4. Trellis

It is easy to check that every path from root to toor corresponds to a codeword. Every
linear code has an unique trellis representation such that the state complexity is minimal
[BCJR74].

3.4 BCJR algorithm
The BCJR algorithm is used for trellis-based symbol MAP decoding. It was named after
L. Bahl, J. Cocke, F. Jelinek, and J. Raviv after they published it in [BCJR74]. BCJR is a
soft-input soft-output (SISO) algorithm. It receives input yyy ∈ Rn and outputs a vector of
symbol-wise LLRs (log-likelihood ratios of the code symbols)

λλλ =

(
ln

p(c0 = 1 | yyy)
p(c0 = 0 | yyy)

, ln
p(c1 = 1 | yyy)
p(c1 = 0 | yyy)

, . . . , ln
p(cn = 1 | yyy)
p(cn = 0 | yyy)

)
.

We know that the a posteriori probability of symbol c ∈ {0, 1} at position t is given by yyy
is

p(ct = c | yyy) = p(ct = c, y)

p(yyy)
,

where p(ci = c,yyy) = Σ
ccc∈Ci

p(ccc,yyy), where Ci(c) is the set of codewords which have c in

position i. We replace summation over codewords by summation over trellis states

p(ct, yyy) =
∑

(m′m)∈St(c)

p(st−1 = m′, st = m,yyy),

where st is a trellis state at level t, St(c) is a set of pairs of states such that

∀(m′m) ∈ St(c) L(m
′m) = c,

meaning (m′,m) is a pair of trellis states at levels t − 1 and t corresponding to code
symbol c. Then the LLR for symbol at position t using the notation σt(m

′,m) =
p(st−1 = m′, st = m,yyy) becomes

λt = ln

∑
(m′m)∈St(1)

p(st−1 = m′, st = m,yyy)∑
(m′m)∈St(0)

p(st−1 = m′, st = m,yyy)
= ln

∑
(m′m)∈St(1)

σt(m
′,m)∑

(m′m)∈St(0)
σt(m′,m)

.
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We use the denotation yyyji = (yi, yi+1, . . . , yj) for the part of yyy that is between indices i
and j. We will now decompose p(st−1 = m′, st = m,yyy) into three events:

• A1: The state at level t − 1 is m′ and the beginning of the received sequence is
yyyt−1
1 ;

• A2: The received symbol on index t is yt and the state on level t is m;

• A3: The end of the received sequence is yyynt+1.

Using the conditional probability formulas gives

Pr(A1A2A3) = Pr(A1)Pr(A2 | A1)Pr(A3 | A1A2).

For memoryless channels we assume that symbols of the received vector yyy are
conditionally independent.

Pr(A1) = p(st−1 = m′, yyyt−1
1 )

Pr(A2 | A1) = p(st = m, yt | st−1 = m′, yyyt−1
1 ) (1)

= p(st = m, yt | st−1 = m′) (2)
Pr(A3 | A1A2) = p(yyynt+1 | st−1 = m′, yyyt−1

1 , st = m, yt),

= p(yyynt+1 | st−1 = m′, yyyt1, st = m) (3)
= p(yyynt+1 | st = m), (4)

where (1) ≡ (2) because yt does not depend on yyyt−1
1 and yyyt−1

1 does not influence the
event st = m when st−1 = m is known. (3) ≡ (4) because neither st−1 = m′ or yyyt1
influences the next symbols yyynt+1 We introduce the notation

αt(m) := Pr(A1) = p(st = m,yyyt1),

γt(m
′,m) := Pr(A2 | A1) = p(st = m, yt | st−1 = m′),

βt(m) := Pr(A3 | A1A2) = p(yyynt+1 | st = m).

We can write σt(m
′,m) = αt−1(m

′)γt(m
′,m)βt(m). From the law of total probability

we get

αt(m) =
∑
m′

p(st−1 = m′, yyyt−1
1 )p(st = m, yt | st−1 = m′, yyyt−1

1 ).

After omitting yyyt−1
1 when st−1 is given we obtain the forward recursion

αt(m) =
∑
m′

αt−1(m
′)γt(m

′,m).
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We define

α0(m) =

{
1, if m = 0;

0, otherwise.

Similarly it is possible to obtain the backward recursion

βt(m) =
∑
m′

βt+1(m
′)γt+1(m

′,m).

with the initial conditions

βn(m) =

{
1, if m = 0;

0, otherwise.

We can calculate the edge metric γ as

γt(m
′,m) =

∑
ct

Pr(st = m, ct, yt | st−1 = m) =
∑
ct

p(ct | m,m′)p(yt | ct) =

= p(ct,m,m′)p(yt | ct,m,m′),

where ct,m,m′ is the code symbol associated with edge m′ → m at layer t. Define
γt(m

′,m) = 0 for those (m′,m) which are not connected in the trellis. We have now
derived recursive formulas which we can use to calculate λ(ct) for every position. The
absolute value | λ(ct) | is called the reliability of the symbol. We can obtain hard decision
of BCJR decoder ĉt by

ĉt =

{
1, if λt ≥ 0;

0, if λt ≤ 0.

Note that if λt = 0 a decision is made randomly. Pseudo-code of the BCJR algorithm is
presented as Algorithm 1.
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Algorithm 1: BCJR decoding algorithm
Input: The received sequence yyy a priori probabilities p(yt | ct) of symbols

c1, ..., cn
Result: LLRs λλλ = (λ1, . . . , λn)

1 Initialization: For layers 1, . . . n and pairs of states (m′,m) compute∑
m′

αt−1(m
′)γt(m

′,m)

2 foreach layer from 0 to n do
3 foreach state m of the layer do
4

calculate αt(m) =
∑
m′

αt−1(m
′)γt(m

′,m)

5 foreach layer from n to 0 do
6 foreach state m of the layer do
7

calculate βt(m) =
∑
m′

βt+1(m
′)γt+1(m

′,m)

8 foreach layer Vt of trellis do
9 foreach pair of states (m′,m), m′ ∈ Vt−1, m ∈ Vt of the layer do

10

calculate σt(m
′,m) = αt−1(m

′)γt(m
′,m)βt(m)

11 foreach layer t from 1 to n do
12

calculate λt = ln

∑
(m′m)∈St(1)

σt(m
′,m)∑

(m′m)∈St(0)
σt(m′,m)
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4 Low-Density Parity-Check (LDPC) Codes
LDPC codes were first introduced in [Gal62]. Despite not having the best minimum
distance for given code length n, LDPC codes have good error-correcting capability.
Gallager proposed low-complexity iterative decoding of LDPC codes. It is called belief
propagation (BP) decoding. The BP decoding principle can be explained by using graph
representations of parity-check matrices called Tanner graphs.

Definition 4.1. Low-density parity-check (LDPC) codes are codes whose parity-check
matrix H has relatively few 1-s and many 0-s.

Definition 4.2. A binary linear [n, k]-code determined by a parity-check matrix H is
called a (J,K) regular LDPC code if each column of H contains J ones and each row
contains K ones.

Definition 4.3. The Tanner graph of a linear code determined by the parity-check matrix
H = {hij}, i = 1, . . . , r, j = 1, . . . , n is a bipartite graph whose one set of nodes
corresponds to the checks of H (check nodes) and the other set of nodes corresponds to
the set of code symbols (variable nodes). A check node ci is connected with a variable
node vj if hij = 1.

4.1 Example of LDPC code
Let us consider a (2, 4) regular binary [8, 4] LDPC code C defined by it is parity-check
matrix

H =


v0 v1 v2 v3 v4 v5 v6 v7
1 1 1 1 0 0 0 0 c0
0 0 1 1 1 1 0 0 c1
0 0 0 0 1 1 1 1 c2
1 1 0 0 0 0 1 1 c3

 .

Since every codeword ccc has to satisfy cccHT = 000 we can also consider H as the
following set of equations in binary field F2. The corresponding Tanner graph is given in
Figure 5. 

v1 + v2 + v3 + v4 = 0

v2 + v3 + v4 + v5 = 0

v4 + v5 + v6 + v7 = 0

v0 + v1 + v6 + v7 = 0

The main advantage of LDPC codes, is that the belief propagation algorithm can
be used for decoding. The belief propagation algorithm time complexity is proportional
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Figure 5. Tanner graph of (2, 4) regular binary [8, 4] LDPC code

to code length [Gal62]. The main idea of belief propagation decoding is to consider the
rows of parity-check matrix H as parity-check matrices of single parity-check codes
and calculate symbol probabilities based on the fact that every parity check has to be
satisfied for any codeword. It would be possible to construct a single-row trellis for each
row to make MAP decisions for each symbol, but it is possible to simplify further. Belief
propagation is not MAP decoding, because it assumes that all single parity check rows
are independent, meaning there are no cycles in the Tanner graph. First introduce the
following notation:

• Sd is the event that the d-th check is satisfied.

• Let pi = Pr(xi = 1 | yyy) be the probability that the i-th symbol is a 1, conditional
on the received sequence yyy.

• Let pjh = Pr(xh = 1 | yyy, Sj) be the probability of 1 in position h of the jth check
given received vector yyy and event that check Sj is satisfied.

• K is the number of ones in each row of the parity check matrix.

We will give the following theorem from [Gal62] without proof.

Theorem 1. If checks containing the symbol xi do not overlap except position i

P (xi = 0 | yyy, S)
P (xi = 1 | yyy, S)

=
1− pi
pi

i∏
j=1

1 +
∏K

h=1,h̸=i(1− 2pjh)

1−
∏K

h=1,h̸=i(1− 2pjh)

Decoding based on this formula is called the sum-product algorithm (SPA), but
only relatively short LDPC codes can be decoded using the SPA, because the required
arithmetic precision increases with code length. [Gal62]. The sum-product decoding
algorithm can be interpreted as iterative exchange of probabilities (LLRs) between vari-
able and check nodes of the Tanner graph. This problem can be solved by reformulating
the problem in terms of LLRs. We introduce the following notations:

• Let αi be the sign of the LLR of the ith symbol.
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• Let βi be the absolute of the LLR of the ith symbol.

• Let f(β) = ln eβ+1
eβ−1

= − ln(tanh(β
2
)), β > 0.

• tanh(x) = ex−e−x

ex+e−x = e2x−1
e2x+1

is the hyperbolic tangent.

If p = Pr(xi = 1) then the corresponding LLR is Li = ln 1−p
p

= αiβi. Simplifying the
expression 1− 2p that appears on the right-hand side of 1 gives

1− 2p =
(1− p)/p− 1

(1− p) + 1
= α tanh β/2 = −αe(f(β)).

Taking logarithm of both sides of (1) gives

LLR(xi) = Li +
J∑

i=1

ln

∏K
h=1,h̸=i αjhe

f(βjh) + 1∏K
h=1,h̸=i αjhef(βjh) + 1

=

= Li +
J∑

i=1

(
K∏

h=1,h̸=i

αjh

)
f

(
K∑

h=1,h̸=i

f(βjh)

)
.

Let α′
i and β′

i denote the sign and absolute value of LLR(xi) calculated on the next
iteration of the algorithm. Then

α′
iβ

′
i = αiβi +

J∑
i=1

(
K∏

h=1,h̸=i

αjh

)
f

(
K∑

h=1,h ̸=i

f(βjh)

)
(5)

The general idea of the algorithm is as follows:

1. Calculate LLR for every symbol based on channel output yyy.

2. Update LLRs based on (5).

3. Make hard decisions based on LLRs, if the resulting vector is a codeword, stop
and return. Otherwise go to 2.

We will now give the pseudocode of the sum-product algorithm in logarithmic domain
as Algorithm 2.
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4.1.1 Sum-Product Algorithm Pseudocode

Algorithm 2: SPA in logarithmic domain
Input: Symbol LLRs lll = (l1, . . . , ln) computed from channel output yyy,

parity-check matrix H
Result: Decoder output x̂̂x̂x

1 Initialization: L(0)
ji = lj, t = 0

2 while t < MaxIter do
3 /* Horisontal step. Every iteration estimates LLR of xh based on row i:

foreach i = 1 to r do
4

α
(t−1)
hi = sign (Lhi)

Zij =

(∏
h̸=j

α
(t−1)
hi

)
f

 ∑
h=1,h ̸=jK

f
(
| L(t−1)

hi |
)

5 /* Vertical step
6 foreach j = 1 to n do
7

Lt
ji = lj +

J∑
k=1,k ̸=i

Z
(t)
kj

Lt
j = lj +

J∑
k=1

Z
(t)
kj

8 /* Make hard decision x̂j

9 if lj<0 then
10 x̂j = 1

11 else
12 x̂j = 0

13 Calculate syndrome sss = x̂xxHT

14 if sss == 000 then
15 break
16 t = t+ 1

17 return x̂xx
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4.2 Generalized Low-Density Parity-Check (GLDPC) Codes
Definition 4.4 (Generalized Low-Density Parity-Check (GLDPC) codes). LDPC codes
whose row constituent codes are linear codes which are not limited to single-parity-check
codes are called generalized LDPC (GLDPC) codes. In other words, each row of the
LDPC code parity-check matrix is replaced with a few rows of parity-check matrix of a
constituent code. GLDPC codes were introduced in [Tan81].

The main idea behind the decoding of GLDPC codes is to combine the BCJR and
BP as sub-algorithms by replacing single row parity-check codes in the BP algorithm
with constituent codes not restricted to single parity-check codes. Let C be a linear code
determined by it is r × n parity-check matrix H . We will now consider some number m
(such that m | r) of consecutive rows as parity-check matrices Hi and represent H in the
form

H =


H1

H2

. . .
H r

m


The generalized BP algorithm executes the BCJR algorithm on the parity-check

matrix Hi instead of single row parity-check matrices. Hi are called the constituent codes
of H . For all Hi the horizontal step of BP decoding is performed as BCJR decoding but
due to very simple parity-check matrix structure the BCJR implementation is simple. In
the case of GLDPC, we perform standard BCJR decoding on the trellis of constituent
code. Every iteration, the vertical step combines the LLR outputs of each constituent
code as Algorithm 2. We call the number of the rows of the constituent code the strip
length of the GLDPC code. This algorithm is a trade-off between complexity and error
probability. The time complexity is proportional to 2ν where ν is the maximum state
complexity of constituent code trellises. This allows us to approach the error-correcting
performance of MAP decoding for larger parity-check matrices for which genuine ML
or MAP decoding is infeasible. This thesis studies iterative decoding of codes that are
generally considered too dense for BP decoding. The main idea behind the proposed
approach is to interpret them as GLDPC codes. We aim to approach optimal decoding
performance by adding different decoders for the same code, thus leveraging the strengths
of each individual decoder.
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4.3 Example of GLDPC Code
This is the generator matrix of the QC [24, 12, 8] code given in [BJKS02].

G =



010010101110110000000000
000100101011101100000000
000001001010111011000000
000000010010101110110000
000000000100101011101100
000000000001001010111011
110000000000010010101110
101100000000000100101011
111011000000000001001010
101110110000000000010010
101011101100000000000100
001010111011000000000001


Consider it as a GLDPC code with strip length 4, as shown by the horizontal lines. One
iteration of the generalized BP algorithm would be as follows: Horisontal step: Perform
BCJR for constituent codes

G1 =


010010101110110000000000
000100101011101100000000
000001001010111011000000
000000010010101110110000



G2 =


000000000100101011101100
000000000001001010111011
110000000000010010101110
101100000000000100101011



G3 =


111011000000000001001010
101110110000000000010010
101011101100000000000100
001010111011000000000001


Obtain three corresponding soft outputs g1g1g1, g2g2g2, g3g3g3 and combine them as per the vertical

step of Algorithm 2.
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4.4 Multi-Base Decoding
Multi-base (MB) decoding is the general term for decoding schemes where more than
one decoder is used. Notice that for linear code C the generator matrix G nor the parity-
check matrix H is unique. Any set of k linearly independent codewords can be used as
a generator matrix as they form a basis of the same linear subspace. The same is valid
for parity-check matrices, because the rows of H are r = n − k linearly independent
vectors that form the basis for the orthogonal complement of C, which is also a subspace
of Fn. It is possible for one decoder to fail for some channel output yyy and another one
to succeed. The structure of a multi-base decoder is shown in Figure 5. The informal
description of a multi-base decoder M containing sub-decoders D1, . . . , Ds is as follows:

• M contains s decoders D1, . . . , Ds that determine the same code.

• For channel output ŷ̂ŷy decoder M performs decoding in each of the s sub-decoders.

• Using sub-decoder outputs x1x1x1, . . . ,xsxsxs for decoding result x̂̂x̂x.

The important characteristics of a multi-base decoder are

• Decoding algorithms used in D1, . . . , Ds;

• Number of decoders;

• The way in which sub-decoder outputs are combined to make decision about the
decoder output.

We will present the pseudo-code of multi-base decoder given in [HHLM07] as
Algorithm 3. It uses ordinary BP decoders for sub-decoders, remembers which of the
sub-decoder outputs are valid codewords and chooses the sub-decoder output which has
the smallest squared Euclidean distance from the channel output. It will be used as a
reference point to measure obtained results. Denote by Di(yyy) the output of decoder Di

on input yyy by and by S the set of indices of those decoders with outputs that are valid
codewords.

The multi-base decoder proposed for QC codes in this thesis uses the generalized
BP algorithm in decoders D1, . . . , Ds. The parity-check matrices used in D1, . . . , Ds

are ranked based on empirically measuring error-correcting performance of individual
decoders. Decoding will start with the best individual decoder D1 and only run the next
decoder Di+1 if Di didn’t return a codeword. The justification for this is that generalized
BP decoders very rarely output the wrong codeword - they either don’t converge to a
codeword or converge to the transmitted one using this. If none of the sub-decoders
output a valid codeword, we make hard decisions about sub-decoder outputs, calculate
their Euclidean distances from channel output and then choose output so that distance is
minimal. This makes sense as calculating distance between LLRs and channel output is
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Algorithm 3: Multi-Base Belief Propagation
Input: The received sequence yyy

1 Initialization: S := ∅, initialize decoders D1, . . . Ds

2 foreach i = 1, . . . s do
3 xixixi = Di(yyy)
4 if xixixiH

T
i = 000 then

5 S = S ∪ {i}

6 if S = ∅ then
7 S = {1, . . . , s}
8

x̂̂x̂x = argmin
i∈S

n∑
j=1

| yj − xij |2

return x̂̂x̂x

Figure 6. Multi-base decoder
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unpredictable. Decoders may output LLRs with large absolute values and comparing
the distance from those loses meaning. We propose this new low-complexity decoding
scheme as Algorithm 4.

Algorithm 4: Multi-Base Generalized Belief Propagation
Input: The received sequence yyy

1 Initialization: S := ∅, initialize generalized BP decoders D1, . . . Ds

2 foreach i = 1, . . . s do
3 xixixi = Di(yyy)
4 if xixixiH

T
i = 000 then

5 return xixixi

6 if S = ∅ then
7 S = {1, . . . , s}
8 /* Convert vectors of LLRs to binary vectors.
9 foreach i = 1, . . . s do

10 /* Interpret logical values binary symbols.
11 xixixi = xixixi < 0

12

x̂̂x̂x = argmin
i∈S

n∑
j=1

| yj − xij |2

13 return x̂̂x̂x

The next chapter focuses on the search for optimal representations (parity-check
matrices) of the best known QC codes such that the generalized BP algorithm has good
error-correcting performance. These representations are then used in decoders D1, . . . Ds
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4.5 Search for Representations of Best Known QC Codes
The following procedure was used to find optimal representations of best known QC
codes.

1. Generate parity check matrix H for best minimum distance QC code from [BJKS02].

2. Perform exhaustive search over subspace defined by H to find parity-check matri-
ces H ′ that

(a) decode the same code as H;

(b) consist of cyclic shifts of the first row;

(c) have minimal row weight.

3. Simulate generalized BP decoding for some strip length m using H ′ over the
AWGN channel for different signal to noise ratios.

4. Normalize the decoding results and rank the representations.

We will now give pseudo-code for searching for best representations of given QC code.

27



Algorithm 5: Procedure for finding good parity-check matrices for given QC
code C

Input: Generator matrix G for [n, n
2
, d] QC code C with best minimum distance.

Taken from [BJKS02]. Strip length m
Result: Ranked list of minimum weight rows which generate parity-check

matrix H for code C

1 Initialization: Find a systematic form parity-check matrix H based on G.
2 Since R = 1

2
, H has dimensions n

2
× n.

3 Denote by d′ the minimum distance of code defined by considering H as a
generator matrix.

4 Initialize empty list S used for storing rows to generate parity-check matrices.
5 Initialize matrix RES for storing results of decoding simulations. Columns of

RES correspond to SNRs, odd rows to FERs of decoders, even rows to BERs
of decoders.

6 foreach i from 1 to 2k − 1 do
7 Calculate binary vector iii corresponding to decimal i. Consider H as

generator matrix for dual code. Compute ccc = iiiH
8 if w(ccc) == d′ then
9 Consider the matrix H ′ = (ccc, ccc(2), . . . cccn)T .

10 if rank(H ′) == n
2

and no cyclic shifts of ccc are in S then
11 S = S ∪ {c}

12 foreach ccc ∈ S do
13 foreach SNR from 2 to 5 do
14 Simulate generalized belief propagation decoding with strip length m

using parity-check matrix H ′ = (ccc, ccc(2), . . . cccn)T , where c(n)c(n)c(n) denotes a
cyclic shift of ccc by n positions, over AWGN channel. Obtain
corresponding FER and BER.

15 Append rows which correspond to decoding results (FERs and BERs) of H ′

generated by ccc to RES

16 Split the odd and even rows of RES to RESFER and RESBER.
17 Normalize RESBER and RESFER by columns, because larger SNRs have

smaller error rates.
18 Sort RESBER and RESFER by ascending row weight.
19 Sort S in the same order, corresponding to either RESBER or RESFER as

necessary.
20 S now consists of good first rows for generating parity-check matrices, ranked by

their error-correcting capabilities.
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5 Results
Exhaustive search for best code representations was done for the best minimum distance
QC [24, 12] code from [BJKS02]. After choosing the best representations, decoding was
simulated using Algorithm 4 with s = 5 decoders using strip lengths m = 2, 4, 6. Each
generalized BP decoder performed a maximum of 50 iterations. Figure 7 and Figure
8 were obtained by simulating this decoding scheme for SNRs in the range 2-5. For
simulations and plots, MatLab was used. They also contain ML decoding FER and
BER and results from [HHLM07]. The best results were obtained with highest strip
length m = 6. Decoder with strip length 6 had approximately the same performance as
[HHLM07]. For some SNRs, slightly better error rates were achieved. This leads us to
believe that this decoding scheme is promising, because in [HHLM07] three times more
s = 15 decoders were used to decode the [24, 12] Golay code with the same minimum
distance. For decoders with strip length 6, FER and BER were respectively about 0.5dB
and 0.2 worse than optimal decoding. It is possible that performance could be further
improved by adding decoders or increasing strip length. The proposed decoding scheme
could have lower average complexity, due to the fact that decoding is stopped once
zero syndrome is obtained, whereas in their paper, every sub-decoder was run on every
channel output. On the other hand, each generalized BP sub-decoder has a larger time
complexity than regular BP decoders, therefore it is not apparent which algorithm is
simpler.
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Figure 7. FER of multi-base decoding of QC [24, 12] code
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Figure 8. BER of multi-base decoding of QC [24, 12] code
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6 Conclusion
In this thesis, we tried to achieve low error rate, low complexity decoding for QC codes
with the best minimum distance for given code length. We attempted to improve decoding
with the following three techniques

1. Since the best QC codes are too dense for BP decoding, we tried to approach ML
decoding by considering them as GLDPC codes and using the generalized BP
algorithm.

2. Multi-base decoding - many decoders were used for the same code. Since each
of them has relatively low complexity, adding them influences the complexity by
some constant.

3. The performance of the BP algorithm depends on the structure of the parity-check
matrix. We performed exhaustive search to find the best representations for codes
such that error rates are minimal.

Using these techniques, near-ML performance was achieved with lower complexity.

6.1 Future work
Multi-base decoding of GLDPC codes is promising due to the degrees of freedom
the schemes have. That is, there are many parameters to optimize, such as finding
better representations, changing the number of decoders or changing the strip length for
generalized BP decoding. The following topics should be considered for further research:

• Time complexity analysis for Algorithm 4.

• The techniques explored in this thesis could be tried for longer codes. It would
be remarkable if results were similar, as optimal decoding is infeasible for longer
codes.

• Different ways of combining sub-decoder outputs for MB decoding should be
investigated. Methods from the fields of machine learning and neural networks
could be used to combine different decoder outputs so as to reduce error rates.
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