
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Aleksander Daniel Veske

Development and Implementation of a
Full-Stack Food Delivery Website

Bachelor’s Thesis (9 ECTS)

Supervisor: Lidia Feklistova, PhD

     
     

Development and Implementation of a Full-Stack Food Delivery Website
Abstract:
The aim of the bachelor’s thesis is to develop a full-stack food delivery website that can be
used by users, both selling and buying products. With the difference from existing websites
being the usage of weather data to calculate the delivery fee. The thesis written part includes
a plan for the website, website requirements, the architecture of front-end and back-end and a
plan for prospective enhancements.

Keywords:
Spring Boot, Spring Security, Angular, PostgreSQL, AWS, Docker, Swagger UI, Website,
Testing, Full-Stack Development

CERCS: P175 Informatics

Full-Stack toidu kohaletoimetamise veebisaidi arendamine ja juurutamine
Lühikokkuvõte:
Bakalaureusetöö eesmärk on välja töötada full-stack toidu kohaletoimetamise veebisaidi,
mida kasutajad saavad kasutada nii tooteid müües kui ka ostes. Erinevus olemasolevatest
veebisaitidest seisneb ilmaandmete kasutamises kohaletoimetamistasu arvutamisel. Lõputöö
kirjalik osa sisaldab veebisaidi plaani, veebisaidi nõudeid, esi- ja tagaosa arhitektuuri ning
tulevaste täienduste plaani.

Võtmesõnad:
Spring Boot, Spring Security, Angular, PostgreSQL, AWS, Docker, Swagger UI, Veebisait,
Testimine, Full-Stack arendus

CERCS: P175 Informaatika

2

Table of Contents

Introduction.. 5
1. Terms and abbreviations... 6
2. Overview of food delivery platforms.. 7

2.1. Customer experience with food delivery platforms..7
2.1.1. Advantages.. 7
2.1.2. Disadvantages..7

2.2. Restaurant experience with food delivery platforms...8
2.2.1. Advantages.. 8
2.2.2. Disadvantages..8

2.3. Experience and business dynamics of food delivery platforms...................................8
2.3.1. Advantages.. 8
2.3.2. Disadvantages..8

2.4. What can be done.. 8
3. Website development plan and requirements...10

3.1. Webpage prototype... 10
3.1.1. Common web layout...10
3.1.2. Prototype pages... 10

3.2. Website development plan.. 12
3.3. Functional requirements..13
3.4. Non-functional requirements... 14

4. Technologies used... 15
4.1. Java..15

4.1.1. Spring and its components...15
4.2. Angular..16
4.3. PostgreSQL... 16
4.4. Docker... 16
4.5. JWT... 16
4.6. AWS.. 17

5. Front-end...18
5.1. Components...18

5.1.1. Shared..18
5.1.1.1. Header...18
5.1.1.2. Footer.. 19
5.1.1.3. Home... 19

5.1.2. Users.. 20
5.1.2.1. User details..20
5.1.2.2. Owner.. 21
5.1.2.3. Customer... 24
5.2.2.4. Admin.. 26

5.1.3. Others...28
5.1.3.1. Authentication..28
5.1.3.2. Errors...30

3

5.1.3.3. Contact, about, legal, help pages..30
5.2. Dependency injections.. 30

5.2.1. Services and clients..30
5.2.2. Guards..32
5.2.3. Interceptors...32

6. Back-end..33
6.1. Code repository structure.. 33
6.2. Database structure... 33
6.3. Components...34

7. Hosting...35
7.1. Front-end hosting.. 35
7.2. Back-end hosting...35

8. Testing..36
8.1. Front-end testing... 36

8.1.1. Mobile-friendly.. 36
8.1.2. Performance...36
8.1.3. Security.. 38

8.2. Back-end testing..39
8.2.1. Unit tests.. 39
8.2.2. Integration tests..40

8.3. User feedback..41
9. Future works...45
Conclusion...46
References... 47
Appendix... 51

I. Access to Code..51
II. Database structure... 52
III. Feedback survey... 53
IV. License..56

4

Introduction

In the modern day, the popularity of ordering food is more than ever. People find it
convenient to order food online and have it delivered next to their doorstep. There is no
stopping the industry as long as there is the demand, so there are no signs of the food delivery
industry declining. Meanwhile, there is a competition between food delivery companies to
have various restaurants in their lists, and enough drivers who can deliver the order. Since in
many companies there are a lot of drivers-cyclists, they should receive fair pay, which, in
turn, should take into account weather conditions.

In this context, the bachelor’s thesis is focused on the development and implementation of a
full-stack food delivery website. The website is designed to provide a platform for both
sellers and buyers and has a unique feature to calculate the delivery fees based on weather
and other rules. The point of this study is not only to plan and construct the website, but also
to address various technical aspects of the website, such as front-end development, back-end
development, security considerations and the hosting of the website.

This thesis combines a range of technologies, such as Java, Spring Boot, Angular,
PostgreSQL, AWS. It offers to the author of the current thesis a learning opportunity and
contributes a practical solution to the ever changing online food delivery industry.

The bachelor's thesis consists of nine chapters: in the first chapter, to help the reader, the
meanings of some more complicated terms that may be unfamiliar to the reader are given; the
second chapter is about existing food delivery applications and websites, the brief analysis of
the food delivery phenomenon and the reasoning about the development of the website; the
third chapter describes the the prototype of the website, the plan of its development along
with functional and non-functional requirements; the fourth chapter focuses on the
technologies used to create the website; the fifth chapter shows the architecture of the
front-end, its pages and core functionality; the sixth chapter focuses on back-end architecture,
database structure and the components of the back-end; the seventh chapter is about the
chosen method of hosting the web application; the eight chapter is written about testing of the
website, both on front-end and back-end, also with the provided user feedback; the final,
ninth chapter outlines possible future development directions of the website.

5

1. Terms and abbreviations

Term Definition

API Application Programming Interface

AWS Amazon Web Services

EC2 Amazon Elastic Compute Cloud

DTO Data Transfer Object

HTTP Hypertext Transfer Protocol, a protocol used for transfering data on the
internet

HTTPS Secure version of HTTP

JSON JavaScript Object Notation, lightweight data-interchange format

JWT JSON Web Token

OOP Object-oriented programming

RDS Amazon Relational Database Service

S3 Amazon Simple Storage Service

SEO Search Engine Optimisation

Swagger UI UI that allows to visualize and interact with the API's resources

UI User Interface

URL Uniform Resource Locator

VPS Virtual Private Server

6

2. Overview of food delivery platforms

In this chapter, the landscape of food delivery platforms is discussed. As well as the
perspectives of customers and restaurants while also examining the inner workings of these
platforms from a business standpoint. Additionally, with the discussion about the future of the
industry and introduction of an innovative concept, for a fairer food delivery platform.

There are many food delivery websites that cater to a wide variety of restaurants, as well as
websites dedicated to individual restaurants. Most of the big food delivery websites are
intuitive, with modern design, big selection of restaurants and a large pool of the delivery
drivers. In Estonia, the most famous food delivery websites and applications are: Wolt, Bolt
Food, Fudy and Tellitoit [1] [2] [3] [4].

Meanwhile, the individual restaurants often have a poorly designed website, without the
option of the order on the site and are not intuitive (for example, the website of Shaurma
Kebab [5]). For these reasons, most individual restaurants use the services of the big food
delivery companies. This brings both good and bad factors to the business.

2.1. Customer experience with food delivery platforms

2.1.1. Advantages

Food delivery platforms offer customers a wide variety of choices, so the customers can
always find food for their liking. Additionally, the ordering of food is time-saving, which is
crucial for some people. Because some of the restaurants are not offering the delivery and/or
order option, the usage of food delivery website/app makes ordering food more convenient,
fast and secure.

2.1.2. Disadvantages

Because companies make money on commissions, the price of each item can be significantly
higher, than ordering directly from the restaurant (Figure 1 and Figure 2). However, it may
not be the case at all times. For some users price might be a deciding factor in the decision of
ordering or not ordering.

Figure 1. Item from LIT Pirita website [6].

Figure 2. Item from Wolt website [7].

7

2.2. Restaurant experience with food delivery platforms

2.2.1. Advantages

On the good side, the restaurant owners get a reach to a wider client base, can increase their
sales and can focus only on cooking, without worrying about the delivery [8].

2.2.2. Disadvantages

However, there are some consequences for this: food delivery companies take a commission
on each product, causing the restaurants to scale up the prices, which can cause the customers
not to consider buying at all. Also, the result of the way the food was delivered is also often
projected to the restaurant, not the actual person, who delivered the food. The incidents that
can occur: spilled drinks, damaged packaging, the food that fell apart, the long time of the
delivery. All those factors can cause the irritation of the customer and the decision to not
order the food from the said restaurant anymore.

2.3. Experience and business dynamics of food delivery platforms

2.3.1. Advantages

Having a big selection of known restaurant chains and local restaurants makes the customers
accustomed with the brand of food delivery and using it often. If not on a daily, but on a
weekly or monthly basis, gaining the loyal customer for the company.

2.3.2. Disadvantages

Food delivery companies are often not profitable. They compete with each other for
restaurants, drivers and customers. Any special promotion that is launched in any website/app
is to attract customers while losing money. Because of the competition, companies spend
significant sums on marketing and other means to attract restaurants, drivers and customers
[9]. Looking at the net income graphs of the USA companies DoorDash and Uber (UberEats)
it is clear that they lose money, while maybe this not being the case with their counterparts in
Europe, it is still a concerning matter [10] [11]. There is not much information about the net
income of the food delivery companies in the free access on the web, but even the tech and
food delivery giant in Estonia, Bolt, is reportedly losing money while growing the revenue,
so it can be the case with its competitors too [12].

2.4. What can be done

The trend of ordering and delivering food is not slowing down, as well as the convenience of
such methods of getting the food. So, there is no stopping the industry from evolving and
right now there is just a very small chance that the industry will become obsolete [13].

Because of this, new food delivery websites, companies and applications will be made to
provide services for the customers and restaurant owners.

The concept of the website in this thesis is to make an easy platform for small restaurants to
display their dishes for the customers. The website will provide the service to migrate the
data about restaurants, its menus and items into the website, managing this data and ordering
process for the restaurant owners. For the customers the website will provide the display of
the restaurants and ordering process as well.

8

There will be no commissions on items, but a fixed amount of money every month
(subscription). This will allow restaurants to maintain lower prices while still paying for the
service.

The restaurants can use their own delivery drivers or use the provided drivers by the service.
While being fair to the customers and restaurants, it is also important to be fair for the
delivery drivers. With the API of the website, the delivery fees will be calculated based on a
set of rules: base fee rules (vehicle type and city) and weather fee rules (weather
phenomenon, wind speed and temperature). The weather data will be fetched from Estonian
Environment Agency Weather API every hour, saved and used to calculate the delivery fee
for each order.

9

3. Website development plan and requirements

In this chapter, the plan of the development process is described. The plan includes the
webpage prototype, the plan for the development and the requirements for the website.

3.1. Webpage prototype

It is important to have a prototype of the pages while building a website. Alongside the
planning of the development of the website, the prototype was done and consisted of several
pages.

3.1.1. Common web layout

Food delivery website is not a unique website that needs a special layout. The prototype of
the website was developed based on suggestions provided by Mozilla and Digiworks.
According to Mozilla [14] and Digiworks [15], the standard web page should contain the
following parts:

1. Header

The part of the page which is always shown at the top of the page. It contains the information
about the website, like the logo and the name and the navigation to the other pages.

2. Main content

The main content of the page that is unique to the current page.

3. Side menu

It can be a dropdown menu from the header or the part of the page that is always on the side.
It is an optional part of the page, but usually it contains: additional information about the
main content or information and links to the other pages.

4. Footer

The part of the page which is shown when the user scrolls at the bottom of the page. It
contains additional information about the website, like contact information or legal pages,
that is less prominent for the user to be used in the header.

5. Call To Action

Calls to action (hereafter, CTAs) are important to grab the user's attention and navigate the
user to seeked pages. CTAs can be used as buttons, links within the text and as images.

6. Social links

Links to social media are popular and an important addition to the website. Usually being in
the footer, the links provide a fast and reliable way to connect between the user and the
website. Users that are interested will follow the social media further engaging with the
website.

3.1.2. Prototype pages

The prototype consisted of 3 pages: home, user panels (admin, restaurant owner, customer)
and user details. Each prototype page contained the default layout of the web page: the header
(name, navigation bar, sign in), the main content, footer and the side menu. The side menu is
a dropdown from the header, that has additional navigation to user-specific pages and to the
logout page.

10

The home page prototype main content consisted of an image and the text for the image
(Figure 3). The prototype was expanded with adding the new section to the home page.

Figure 3. Prototype of home page.

The panel pages prototype main content consisted of buttons that linked to the different panel
pages. The prototype was used in building the panels for admin and owner roles (Figure 4).

Figure 4. Prototype of panel pages.

The user details prototype main content consisted of two fields: user detail field and address
detail field. The user detail field was used in the all role user detail pages, but the address
field was only used in the customer role page (Figure 5).

11

Figure 5. Prototype of user details page.

The color palette was built around the color red, because it is a widely used color in branding
and marketing of the various food brands and restaurants [16]. The visual look of the website
was done, for it to be minimal, easily readable and not so flashy, so the end user is not
distracted and focused on the content and functionality of the website. It should be noticed,
that the design and layout similar to the prototype was found on the internet. So, part of the
code was used from the guide on the codevoweb webpage [17].The primary prototype was
seen by the supervisor and discussed to add further improvements to the final design of the
website.

3.2. Website development plan

The plan of the website development consisted of:

1. planning the security measures for the website;
2. plan and implementation of the back-end:

○ planning the architecture of the code for back-end;
○ writing the core part of the back-end (including security);

3. plan and implementation of the front-end:
○ planning the architecture of the code for front-end;
○ writing the core part of the front-end (including security);

4. the functionality of the webpage (adding features both on front- and back-end);

Firstly, the security measures for the website were planned. These measures should include
user authentication and authorization via JWT and Spring Security, restriction of the
endpoints and paths via role-based access on front- and back-end.

12

Secondly, the plan for the code of the back-end was done: components (users, restaurants,
menus, items, orders), configurations, exceptions. Each component should have a controller,
entity, DTO(s), repository and service classes. The planning was heavily influenced by the
general approach to building such applications [18] [19]. After the planning stage, the core of
the code was written, while keeping in mind that improvements/fixes will be needed in the
future.

Thirdly, the plan of the code for the back-end was done: core (clients, guards, handlers,
interceptors, services), models (the DTO(s) from back-end), shared pages (home, header,
footer, authentication, other pages) and user pages (admin, owner, customer). The initial
structure of the project was as in the official angular documentation, but further expansion
was influenced by some of the angular file structure best practices [20] [21]. After the
planning stage, the code was written and further improved in the following stages of the
development.

The plan also provided information that аfter the main code would be written, the adding of
the new features, fixing of the bugs, the validation of the data, the routing of the pages, and
improvement to the code could be required. Thus, the plan also included time for that.

3.3. Functional requirements

Functional requirements describe the way in which the system interacts with its users by
providing tasks or functions that it needs to perform [22], and the things that users can do on
the pages [23]. These requirements often include detailed specifications of the user
interactions with the website.

With the website that is for both owners of the restaurants, and the customers, it is important
to have a separation between the pages and the functionality that users can use. Thus, the
functional requirements for the website are provided below.

Site navigation:

● users can navigate through the page via links to the other pages that are placed in the
header, footer or in the main container of the page;

User profile settings:

● all users can edit their profile information: name, username, password, telephone,
address;

Admin panel:

● display and usage of owner panels - admin can use all the functionality provided in
the owner panels;

● display of all users - admin can see the information about all users and be able to sort
it by needed fields;

● display of all orders - admin can see the information about all the orders that were
made on the site and be able to sort it by needed fields;

● accept/decline of owner applications - admin can see the page with the new users that
want to become owners and decide whether to accept or decline the owners;

Owner panel:

● display the overview of the restaurants - owner can see the overview of his/her
restaurants;

● add/edit/delete the restaurants, menus, items - owner can manage all the assets he/she
owns;

13

● accept/decline incoming orders - owner can decide whether he/she accepts the orders
of customers or no;

● display all orders - owner should be able to see all the incoming orders to his/her
restaurants.

Customer panel:

● display the list of restaurant to choose from - customer can choose between all
available restaurants to make an order;

● add/remove the items in the cart - customer can add or remove items from cart;
● checkout - customer can checkout and submit the order;
● display orders - customer can see all the orders that he/she has ordered.

Error handling:

● the errors that can occur must be shown to the user so the user is informed about the
possible problems either from his/her side or the website side.

3.4. Non-functional requirements

The non-functional requirements mean the broad and abstract things that should be
implemented on the website [23].

The non-functional requirements for the created website:

● mobile-friendly design - the website should be accessible from desktop and mobile,
the layout must adjust to the screen size of the used device; the buttons must be
appropriately sized for comfortable usage of the website;

● responsiveness - the website must load fast (under 5 seconds) and have quick
response time (under 2 seconds) for all the actions that are performed;

● intuitive navigation - the website should have a logical flow and easily accessible
links to pages; with that user will be able to quickly move between different sections
of the website and understand how to navigate back;

● security - the security must be provided via secure storage of the passwords,
validation, authentication and authorization;

● informativity - the informativity must be implemented with well-organized, helpful
and easily understandable content of the pages.

14

4. Technologies used

In this chapter, the overview of the technologies used in the created website is shown.
Additionally, the reason behind the choice of each technology is explained.

The choice of technology stack for a project plays a role in determining the extent of
customization and the overall scope of the application that needs to be developed. Various
combinations of technologies or tech stacks lead to the creation of applications that cater to a
range of objectives [24].

When choosing the technology stack, it is important to choose the tools and technologies that
one is comfortable with, while not binding oneself into strict bounds. For this project, the
next stack was chosen: Java, Spring, Angular, PostgreSQL, AWS.

4.1. Java

Java is a widely used object-oriented programming (hereafter, OOP) language and software
platform that runs on billions of devices. The rules and syntax of Java are based on the C and
C++ languages [25]. Java is rather simple to learn and many universities are using Java as a
preferred language to teach students OOP, including the University of Tartu [26] [27].

The decision to use Java was because the author is already familiar and comfortable with it,
and Java is the platform independent, performant, scalable and is widely used as a preferred
language in production at many software development companies [28]. While being on the
market for a long time, Java is one of the most popular languages in the world, also being one
of the most popular back-end languages [29] and one of the most seeked languages on the
software engineer market in Estonia (Figure 6).

Figure 6. Job listings in Estonia on LinkedIn based on programming language [30].

For the current project, the package manager Maven was chosen.

4.1.1. Spring and its components

Spring, also referred to as Spring Framework, is a framework that provides comprehensive
infrastructure support for developing Java applications. It has many modules, such as Spring

15

JDBC, Spring MVC, Spring Security, Spring Test and many more [31] [32]. It is a most
popular framework for Java and is used to build production-grade applications [29] [33]. The
decision to use Spring Framework was because it is the most developed, maintained and
easy-to-use framework in the Java ecosystem.

Although Spring Framework is a capable framework, it still requires significant time and
knowledge to configure, set up, and deploy the applications [31][33]. Spring Boot is a tool
that makes it easy to create stand-alone, enterprise-level Spring applications that can run
without any additional configuration. It takes an opinionated view of the Spring platform and
third-party libraries and, thus, developers can get started with minimum requirements [31].

Spring Security is a powerful and highly customizable authentication and access-control
framework. It is a standard for securing Spring-based applications, and is often used with the
JWT to provide both authentication and authorization to Java applications [34].

4.2. Angular

Angular is a comprehensive development platform and framework, built on TypeScript for
building client-side applications with HTML, CSS, and JavaScript/TypeScript [35]. It is one
of the most popular frameworks to write front-end [29]. It is performant, cross-platform and
is perfect for building the single-page applications. In addition, the choice was also due the
fact that the author had prior experience with it.

4.3. PostgreSQL

PostgreSQL is an advanced, enterprise-class, and open-source relational database system
[36]. It is the most widely adopted database in the world [29]. PostgreSQL is famous for its
object-relational nature, so because of it, it's a great pairing with Java, which is also heavily
object-oriented [37]. All these caused the decision to use PostgreSQL in the current project.

4.4. Docker

Docker is a software platform that allows one to build, test, and deploy applications quickly
and almost everywhere. Docker packages software into units called containers that have
everything the software needs to run including libraries, system tools, code, and runtime [38].

While there was no actual usage of Docker in the deployment and hosting of an application,
the both front- and back-end have the configuration files for the website to be deployed using
docker.

4.5. JWT

JSON Web Token (hereafter, JWT) is an open standard that defines a compact and
self-contained way for securely transmitting information between parties as a JSON object.
This information can be verified and trusted because it is digitally signed and the signature is
provided inside the token [39].

The main usage of the JWT is authorization and authentication. The JWT can be used as a
token that will be applied to validate the user, usually on the back-end side of the application.
The JWT token can contain any fields, such as username, user id and others (Figure 10).

16

Figure 10. The example of encoded and decoded JWT token [40].

4.6. AWS

Amazon Web Services (hereafter, AWS) is the world’s most comprehensive and broadly
adopted cloud platform [29] [41]. AWS provides a wide variety of different services and
solutions that can be used to cater to every need that companies and individuals need to
implement in the cloud. In the project the following services were used.

Amazon Simple Storage Service (hereafter, S3) is an object storage service offering
industry-leading scalability, data availability, security, and performance [42]. It can be used as
just data storage, but also S3 bucket can be used as storage for a static website. On a static
website, individual web pages include static content and might contain client-side scripts
[43].

Elastic Beanstalk is a service for deploying and scaling web applications and services that
also automatically handles the deployment [44]. In Elastic Beanstalk the environment is
created, where user can put, for example, the .jar file after building the Java application in the
local environment. Elastic Beanstalk will automatically deploy the code to the EC2 instance
and it will be accessible to the static website in the S3 bucket [45]. Amazon Elastic Compute
Cloud (EC2) is the service that is used to create and run virtual machines in the cloud
(Amazon calls these virtual machines 'instances') [46].

Amazon Relational Database Service is a collection of managed services that makes it simple
to set up, operate, and scale databases in the cloud [47]. It was used to host a PostgreSQL
database.

17

5. Front-end

In this chapter, the simple explanation of the Angular structure and elements is provided
alongside all the pages, components and services that were used to build a website.

The application structure in Angular mainly consists of components and dependency
injections. Components can be pages, parts of the page, dialogs. Some dependency injections
are the services that are injected into components. Others are the services that are declared in
modules and run in the background [48]. For example, a request interceptor that intercepts
every request that is made by the user and handles it.

5.1. Components

Components are the main building blocks for Angular applications. They are annotated with
the “@Component”. Each component consists of:

● an HTML template that declares what renders on the page;
● a TypeScript class that defines behavior of the component;
● a CSS selector that defines how the component is used in a template [49].

In this section the overview of almost all the components that the website consists of is
provided.

5.1.1. Shared

The directory shared consists of components provided in Figure 11.

Figure 11. Components of a shared directory.

5.1.1.1. Header

The header of the website is present at all times. It has the name of the website, the
navigation bar that has links to the common pages and the button that triggers the dropdown
of user-specific pages (Figure 12).

18

Figure 12. Header.

5.1.1.2. Footer

The footer of the website is presented when scrolled down to. Parts are placed as most of the
real websites place them. The footer has the small description of the website, the contact
information, the links to common pages, links to the code of the webpage, and the legal
information (Figure 13).

Figure 13. Footer.

5.1.1.3. Home

The home page is the default page and is the page that the user sees when he/she visits the
website. It has the user-specific information, depending on the role of the logged user. When
the user is not logged in, the home page shows the main content with the “Sign in” button and
text (Figure 14). This indicates that the user needs to log in. For the logged in customer there
is the button and text to go to the restaurant menus, for the logged in owner the button to go
to the owner panel and for the logged in admin the button redirect to the admin panel.

19

Figure 14. Home page for the unauthorized user.

5.1.2. Users

Each type of the users (customer, owner, admin) has its unique pages and has a shared page
for logged in users called “Profile Settings” in the header.

5.1.2.1. User details

The user details page is called “Profile Settings” and allows users to edit their personal
information stored on the site. There are 2 different types of user details page: one is for the
customers and another for the owners and admin. The user details page is the one with the
address details (Figure 15) and the page without the address field is for owners and admin.

The functionality of the page allows the user to change the details. The user fields and
address fields have validation on every field, so the text can’t be added to the phone number
and the numbers can’t be added to the first or last name.

20

Figure 15. User details page for the customers.

5.1.2.2. Owner

On the website, under owner pages, there are the following pages and components. The
“Owner Panel” page, which has “Overview Restaurants”, “Manage Restaurants”, “Manage
Menus” and “Manage Items” components, and the “Orders” page.

The component “Overview Restaurants” provides the grid list of the restaurants that the
owner has (Figure 16).

Figure 16. Owner panel: “Overview Restaurants” component.

21

The component “Manage Restaurants” has the list of the restaurants the owner has. The
owner is able to change details of the restaurants, add new restaurants and delete restaurants
(Figure 17). When pressing the add or edit restaurant the page similar to “Profile Settings”
opens where user can add or edit the necessary fields. When pressing “Delete Restaurant” the
dialog window asking the user to confirm deletion of the selected restaurant pops up. This
approach helps prevent the owner from deleting the restaurant on accident.

Figure 17. Owner panel: “Manage Restaurants” component.

The component “Manage Menus” has the list of the menus that the owner has. The owner is
able to change details of the menus, add new menus, delete menus, assign menus to
restaurants, remove menus from restaurants (Figure 18). When pressing the add or edit menu
the page similar to “Profile Settings” opens and the owner can add or edit the necessary
fields. When pressing “Delete Menu” the dialog window asking the owner to confirm
deletion pops up. This approach helps prevents the owner from deleting the menu on
accident. When pressing “Assign Restaurant” the dialog window pops up and the owner is
able to choose which restaurant will have this menu. It is important to keep in mind that the
menu is not visible to the users by default and the owner needs to manually make it visible
through the “Edit Menu” option. When pressing “Remove from Restaurant” there is no pop
up warning window for the owner, because it is not an irreversible action and the owner
simply can assign the restaurant back. With the current implementation, the menu can belong
only to one restaurant.

Figure 18. Owner panel: “Manage Menus” component.

The component “Manage Items” has the list of the items that the owner has. The owner is
able to change details of the items, add new items, delete items, assign items to menus,
remove items from menus, assign menus to restaurant and remove items from restaurant
(Figure 19). When pressing the add or edit item the page similar to “Profile Settings” opens
and the owner can add or edit the necessary fields. When pressing “Delete Item” the dialog
window asking the owner to confirm deletion pops up. This approach helps prevent the

22

owner from deleting the item on accident. When pressing “Assign Restaurant” the dialog
window pops up and the owner is able to choose which restaurant will have this item. When
pressing “Remove from Restaurant” there is no pop up warning window for the owner,
because it is not an irreversible action and the owner simply can assign the restaurant back.
Nevertheless, the item will be automatically removed from the assigned menu as well. When
pressing “Remove from Menu” there is no pop up warning window similar to “Remove from
Restaurant“ and the restaurant will be left assigned as it was. When pressing “Assign to
Menu” or “Assign to Restaurant” the dialog window pops up and the owner can choose the
menu or the restaurant from those that he/she owns, if the assigned menu was chosen, the
restaurant will be assigned automatically. With the current implementation, the item can
belong only to one restaurant and only one menu.

Figure 19. Owner panel: “Manage Items” component.

The page “Orders” allows the restaurant owner to see all the orders that were submitted by
the customers of his/her restaurants. The owner can sort the orders by id, order date,
username, restaurant name, price and status. In the actions column the owner can either
choose to fulfill the order by pressing “Approve” or decline by pressing “Cancel” (Figure
20).

Figure 20. Owner orders table page.

23

5.1.2.3. Customer

On the website, under customer pages, there are the following pages and components. The
“Restaurants” page, the page of the chosen restaurant in the “Restaurants”, the “Checkout”
page and the “Orders” page.

The page “Restaurants” allows the customer to decide on the restaurant that he/she wants to
make an order in (Figure 21). The click on the “View Menu” redirects the customer to the
page of the chosen restaurant. With the current implementation, the customer can
simultaneously order from one restaurant at a time.

Figure 21. Restaurant list page.

On the page of the chosen restaurant, the user sees all the menus of the restaurant alongside
the items of displayed menus (Figure 22). If the restaurant does not have any items or the
menus are empty, the text stating the emptiness of the restaurant will be shown on the page.
On this page the user can add items to the cart by pressing “Add to Order”. By pressing the
“Show More”, dialog window, displays all the info about the chosen item (Figure 23). In the
cart, the customer can add more of the already chosen items or remove them one by one.
After pressing the “Checkout” button, the customer is redirected to the checkout page.

Figure 22. Restaurant menu and item page.

24

Figure 23. “Show More” dialog.

The checkout page consists of several elements. The “Go Back” button takes the customer to
the last page where he/she was. The main part is the chosen item list in cart, with the same
functionality as in the restaurant page (Figure 24). Also, selection of the delivery method is
provided. The values of the price are not fixed and are calculated based on the set of rules:
base fee rules (city and delivery method) plus weather fee rules (weather phenomenon, wind
speed and temperature).

Figure 24. Checkout page.

25

When a customer presses the “Place Order” button, the order is submitted and the customer is
taken to the page with the direction from the restaurant to the customer saved address (Figure
25). The page also shows the time of delivery, which is provided by the Google Directions
API.

Figure 25. Directions page.

Also, the customer has the page with the table of all orders that the user placed (Figure 26).
The table can be sorted by order id, restaurant name, datetime, price and status.

Figure 26. Customer order details table page.

5.2.2.4. Admin

On the website, under admin pages, there are the following pages and components. The
“Admin Panel” page, which has “Display Owners and Restaurants” component, “Display All
Users” component, “Display All Orders” component, “Manage Items” components and
“Pending Owner Applications” component.

In the display of owners and restaurants component, the admin can see all owners as well as
the restaurants that owners have (Figure 27). By pressing “Open Panel” in the actions
column, the admin is redirected to the owner panel of the selected owner and can use every
function that the owner panel has. The table also can be sorted by owner id, owner username
and restaurants.

26

Figure 27. Admin panel: “Display Owners and Restaurants” table component.

In the display all users component the admin can see all the users that are registered on the
site (Figure 28). The table can be sorted by the user id, username, first name, last name,
email, telephone and role.

Figure 28. Admin panel: “Display All Users” component.

In the display all orders component the admin can see all orders that were done on the site
(Figure 29). The table can be sorted by order id, customer username, restaurant name and
total price.

Figure 29. Admin panel: “Display All Orders” component.

In the pending owner applications component the admin can see and manage the approval of
the owner accounts (Figure 30). By pressing the button “Approve” in the actions column, the
admin approves the owner and the owner can start using the owner panel. There was
functionality for rejecting the owner, but it seemed unnecessary, so it was commented out.

27

Figure 30. Admin panel: “Pending Owner Applications” component.

5.1.3. Others
5.1.3.1. Authentication

Authentication pages encompass register, login and logout. The role selection is a component
of the register page.

When the user goes to the registration page, he/she chooses the role (Figure 31) and then fills
out the registration form fields (Figure 32). All registration form fields are with validation, so
the faulty data is not accepted. After registering, the user is redirected to the home page. If it
is a user with a customer role, the notification about providing the information about address
is necessary to make an order.

Figure 31. Role selection component.

28

Figure 32. Form of registration page.

When the user goes to the login page, he/she needs to fill the login fields that are validated to
login (Figure 33). After logging in, the user is redirected to the home page.

Figure 33. Form of login page.

When the user goes to the logout page, the user is asked whether he/she wants to log out
(Figure 34). If the user logs out, the local storage will be cleared.

Figure 34. Logout page.

29

5.1.3.2. Errors

There are two error pages: access denied and not found. The access denied page is shown
when a user without the necessary permissions tries to access the restricted page (Figure 35,
left). For example, a user with a customer role tries to go to the admin panel. The not found
page is shown when the user tries to open a page that does not exist (Figure 35, right).

Figure 35. “Access Denied” page on the left and “Not Found“ page on the right.

5.1.3.3. Contact, about, legal, help pages

The “About us”, “Contact”, “Help” and legal pages are placed in the footer with the helpful
information to the user.

The “About us” page provides the brief information about the website company. The
“Contact” page provides the necessary contact information so the users that want to have a
chat with the company can do that. “Help” page provides the guide for each user role, the
admins, owners and customers are given the necessary information to use the site.

5.2. Dependency injections

Dependency Injection (hereafter, DI) is a core design pattern used by Angular. DI promotes a
modular and maintainable code structure. It allows classes with Angular-specific decorators,
such as Components, Directives, Pipes, and Injectables, to receive dependencies. This system
allows the injectables to be used inside other injectables to provide the needed functionality
[50].

5.2.1. Services and clients

The services provide the communication with the API or maintain the state of some objects
[51]. In the code, the author decided to separate the service into service and client. The
service is responsible for handling the errors and passing the data to the component (Figure
36). The client is communicating with the API and passes the data to the service (Figure 37).

30

Figure 36. Directions service.

Figure 37. Directions client.

The list of services and clients:

● Restaurant - get/add/update/delete (address included into add/edit);
● Item - get/add/update/delete, assign and remove from restaurant/menu;
● Menu - get/add/update/delete, assign and remove from restaurant, toggle visibility;
● Order - get/add/update/delete;
● Admin - approve/reject owner, get owners;
● Customer - get/add/update address;
● Owner - get, approve and reject order;
● Users - get/update;
● Authentication - login, register (add user), logout, refresh token and many helper

methods;
● DeliveryFee - get;
● Directions - get.

Also there are services without clients. Those services are working inside the application and
do not communicate with the API. Those services are:

● ErrorHandler - displays errors to the users with the help of ErrorHandler and
HotToastService(import);

31

● CartState - allows the cart to be saved across every page;
● DeliveryFeeState - allows the delivery fee not to be calculated after leaving the cart

and going there again, causing the unnecessary requests to the API;
● Navigation - sets and gets the state from checkout page to directions page.

5.2.2. Guards

The guards are interfaces that provide route based access to the pages when used in pair with
routing modules [52].
The guard that are used in the current project are as following:

● Authentication - prevents authenticated users from accessing the login and register
pages and unauthorized users from accessing the logout page;

● Routing - provides role-based access to pages. For example, only admins can use
admin paths. Also prevents unauthorized users from accessing the user pages;

● CheckoutNavigation - makes sure that the only place from where users can access the
directions page is from pressing the button “Place Order” in the checkout page.

5.2.3. Interceptors

The interceptors are used to intercept the HTTP requests and responses and handle them
according to implemented logic [53].

The interceptors that are used in the current project are as following:

● Error - catches errors and checks whether the user is authorized and logs the user out
if the user is not authorized, refreshes the access token if the user is authorized;

● JSONP - is used to send requests to the Google Maps API;
● Request - is used to set the authorization header on every request, instead of

specifying it in the clients.

32

6. Back-end

In this chapter, the structure of the back-end part of the webpage is discussed. It includes the
code repository structure, database structure and the components of back-end.

6.1. Code repository structure

There are two main approaches for structuring the Spring boot projects: by feature and by
layer. Structure by feature means that all classes that are connected to a particular feature are
placed in the same package. The other way is to place the classes based on its layer
(Controller, Service) in the one package [19].

In the code of the website both approaches are used and modified for convenience. The main
directories for code, such as config, exception and security directory are structured by layer
and the directories and files inside them are structured by feature (Figure 38).

Figure 38. Structure of the code repository.

6.2. Database structure

The database schema is rather big, but it contains all the necessary tables to provide the
functionality. The most important tables for the website are: users table, including admins,

33

owners and customers tables; tokens table; restaurants, menus, items, orders tables (Appendix
2).

The users table and its dependent tables users_admins, users_owners and users_customers are
needed to provide role-based access to the website. While sharing all the fields from the users
table, role tables have the unique fields. The tokens table is necessary to store the tokens (that
are JWT tokens) for the security measures of the website. They are used to validate the user
at all times [54]. The restaurants, menus, items and orders tables are needed to provide the
main functionality on the page and allow owners to provide the food for the customers by
listing the data of the restaurants on the website and customers to order the food. The
weather_data, delivery_fee and fee rules (base_fee_rules, extra_fee_rules_(wind_speed,
weather_phenomenon and temperature)) tables are used to store the weather data and rules.
With the help of the data from those tables the calculation of the delivery fee is performed.
The tables are only used for calculation, and, therefore, are not connected to the main block
of tables.

6.3. Components

In this code, the components are directories of classes that were structured by feature. The
main components in the back-end encompass calculations, with the calculation of the
delivery fee, fee rules and the directions; restaurant components - restaurants, menus, items
and orders; user components - admins, owners, customers and users; weather components -
weather data and external weather API.

The purposes for each component are listed below. The purpose of the restaurant and user
components as well as the functionality was discussed in the front-end chapter (subchapters
5.1.2, 5.1.3 and 5.2).

Calculations:

● delivery fee - calculation of the base and weather fees and saving the sum into
database;

● fee rules - base and weather (phenomenon, wind speed and temperature) fee rule
management;

● google maps - get the route and time for the order deliveries via Google Directions
API.

Weather:

● external API - takes the weather data from the Estonian Environment Agency Weather
API [55];

● weather data - processes the data from the external API and saves the latest weather
data every hour into the database.

34

7. Hosting

This chapter explains the way the created website is hosted.

There are different ways of hosting the infrastructure for the websites, applications and data.
The traditional hosting includes the dedicated servers, shared server and VPS. Cloud hosting
consists of many different methods. Cloud hosting is the place where the website or the app
runs on the virtual servers in the cloud [56].

For the current project, all three parts necessary for the functioning website were hosted in
the AWS. Front-end was hosted in the S3 bucket, back-end was hosted in Elastic Beanstalk
environment and the database was hosted in RDS for PostgreSQL.

7.1. Front-end hosting

The easy way to host a front-end in the AWS is the static website in the S3 bucket. The
process of setting up the bucket takes minutes and after the required files, such as
“index.html” are uploaded to the bucket, the website is up and running [43]. The created
website is hosted in the URL: http://fd-app-test.s3-website.eu-north-1.amazonaws.com/.

7.2. Back-end hosting

Due to the Elastic Beanstalk it is possible to deploy the back-end of the website via upload of
the code. After uploading the code, the service will handle the deployment by itself [45]. The
back-end API is shown in the Swagger UI in the URL:
http://fd-app.eu-north-1.elasticbeanstalk.com/swagger-ui/index.html.

35

http://fd-app-test.s3-website.eu-north-1.amazonaws.com/
http://fd-app.eu-north-1.elasticbeanstalk.com/swagger-ui/index.html

8. Testing

In this chapter, the results of the tests of the website are shown along with the feedback from
the users.

It is important to test both parts, the front-end and the back-end, before actually letting the
users use it. For this reason, several tests like website security, performance, mobile
compatibility were applied. For the back-end, the tests should consist of unit and integration
tests. Unit tests check the services, while integration tests check the controller endpoints.

8.1. Front-end testing

8.1.1. Mobile-friendly

To test mobile-friendliness, a testing tool called Mobile-Friendly Test [57], was used to
evaluate how mobile-friendly the created website is. The test indicated that the website is
mobile-friendly (Figure 39).

Figure 39. Mobile-friendliness test result.

8.1.2. Performance

To test the speed, performance and other aspects, the Lighthouse tool was used. This tool
evaluates performance, accessibility, best practices and SEO [58]. The test was done both for
mobile devices (Figure 40) and desktop devices (Figure 41).

The results indicated that the website is less performant in the mobile devices, than in
desktop, while other metrics are good in both cases.

The score of performance in mobile is lower because generally mobile devices are less
powerful than desktop devices and they require highly optimised websites, to have the
maximum performance.

36

Figure 40. Lighthouse mobile device test result.

37

Figure 41. Lighthouse desktop device test result.

8.1.3. Security

To assess the security of the website, the website security test by the company ImmuniWeb
was chosen [59]. The test is giving the result of B+ (Figure 42), which means the security is
not perfect. The outcome is not unexpected, because the website is not hosted with the SSL
certificate and is on HTTP protocol.

38

Figure 42. ImmuniWeb security test result.

The ImmuniWeb shows that there is a vulnerability in software, with an outdated Angular
version. When looking at the error, it is shown that the project version of Angular is newer
than the reported newest version of Angular in the ImmuniWeb security test (Figure 43).

Figure 43. ImmuniWeb security test Angular vulnerability error.

8.2. Back-end testing

For testing of the back-end the following Java libraries were used: Mockito, Spring Boot
Test, JUnit and AssertJ.

All the methods in the back-end were tested manually via Postman, Swagger UI and the
actual website.

The application has the necessary configuration to either allow unit or integration tests to run
with the build of the application. As well as not allowing them to run at all, to save time
while building the app.

The application is built in the way so there is a dedicated database for the tests. It is rewritten
in every run and uses the schema and data specified in the sql files.

8.2.1. Unit tests

Unit tests are the tests that are written to test the specific parts of the code, and are usually
tested with the services [60]. The unit tests were written for DeliveryFeeService, checking all
possible use cases of the calculation of the delivery fee and all tests were passed successfully
(Figure 44).

39

Figure 44. DeliveryFeeService unit tests results.

8.2.2. Integration tests

Integration tests are the tests that are written to test the combined modules of the application,
to test how they work, and are usually tested with the endpoints of Controllers [61].

The integration tests were written for WeatherDataContoller, ExternalWeatherDataController,
DeliveryFeeContoller and FeeRuleController and were successfully passed (Figure 45). The
tests consisted of:

● get;
● add, get by id, edit by id, delete by id;
● get, add or edit with faulty ids or data.

40

Figure 45. Integration tests results.

8.3. User feedback

A feedback survey was made to get the opinion on the created website. Feedback survey
(Appendix 3) was created with the Google Forms [62]. The feedback survey was divided into
two parts, where the first part was the mandatory questions and the second part was the open
question for the feedback. The majority of the questions were with the 1 to 5 scale system,
where “1” stands for awful and “5” stands for excellent.

The survey was sent to several chats, including the chat with the students and the 10 people
answered. Most of the respondents used mobile phones to access the site (Figure 46).

41

Figure 46. Comparison of devices used by website users.

The majority of the users were satisfied with the flow and navigation of the website and for
nobody the navigation was awful (Figure 47).

Figure 47. Website ease of navigation feedback.

Most of the respondents were satisfied with the design and visual appeal of the website
(Figure 48).

Figure 48. Website visual appeal feedback.

42

Also, the majority of the respondents did not have any problem with the loading time of the
page and the response times on the page, meaning the website operated fast (Figure 49).

Figure 49. Website response time feedback.

According to the results, 90% of the people who responded to the survey had good and very
good experience with the website (Figure 50).

Figure 50. Website overall experience feedback.

People were also asked about possible improvements. There was a list with different options
and it was possible to select multiple answers. The most picked answer was “Everything is
fine”, but respondents also picked at least one of each provided aspect that can be improved
(Figure 51). Options like “Design” and “Functionality” are the most chosen ways how the
website can be improved.

43

Figure 51. Suggestions for website improvement feedback.

At the end of the questionnaire, respondents could leave their comments. There were only 2
responses, one being the smiling emoji and the other response stated that: “the website is very
nice, but the option for the password confirmation is missing, so it is easy to make a mistake
and lose an account”.

So, based on the survey results, it could be concluded that overall most users were satisfied
with the website. In the last chapter of the thesis, some possible future works are given.

44

9. Future works

In this chapter, the various ways that can be used to improve the website functionality, user
experience and security are provided.

Currently, the owners can’t add images for the restaurants and items and it makes the website
seem empty. It can be done by adding the feature to upload files on the AWS S3 and storing
the URL of the image in the database.

As on every food delivery website and application, the rating and feedback system can be
added.

Also, the implementation of the directions can be vastly improved, as right now the Google
Directions API responses seem inconsistent and sometimes are not showing the proper output
on the map.

The possibility to order food from different restaurants can also be added, with the logic that
automatically makes the order into two orders and with the double delivery fee. It should be
implemented this way, because the one delivery driver should not be able to deliver
simultaneously from 2 different restaurants that can be in different parts of town.

For the hosting part, the website should be hosted using the SSL certificate and the protocol
to be HTTPS instead of HTTP for the full security for the users.

45

Conclusion

The goal of the bachelor’s thesis was to develop a food delivery website that allowed the
owners of the restaurants and the customers to use the site and its functionality, such as
managing the restaurant and ordering of the food. The distinguishing feature of the created
website was the taking into account weather conditions in the calculation of delivery fee.

During the process of writing the bachelor's thesis, a website prototype was developed, and a
comprehensive development plan was composed. This plan consisted of the front-end and
back-end components, as well as the functional and non-functional requirements.

To create a website the one of the most popular and seeked technologies on the job market
were used, such as Java, Spring Boot, Angular, PostgreSQL and AWS. As a result of the
work, the website was completed and hosted in the AWS on the domain
http://fd-app-test.s3-website.eu-north-1.amazonaws.com/. Website was tested on both front-
and back-end. The tests on the front-end consisted of mobile-friendliness, performance,
accessibility and security. The front-end implementation showed good results on every test.
The back-end was tested with the unit tests and the integration tests that all passed
successfully. The feedback survey for the website showed that users thought that the website
has good design, is performant and were overall satisfied with the experience on the website.
However, the survey respondents highlighted several areas for improvement, which have
been included into the list of potential future works.

46

http://fd-app-test.s3-website.eu-north-1.amazonaws.com/

References

[1] Bolt Food. https://bolt.eu/et-ee/food (09.08.2023)

[2] Wolt. https://wolt.com/en/est (09.08.2023)

[3] Fudy. https://fudy.ee (09.08.2023)

[4] Tellitoit. https://www.tellitoit.ee (09.08.2023)

[5] Shaurma Kebab. https://shaurmakebab.ee (09.08.2023)

[6] Lit. “Kebab Plate”. https://litwagon.ee/lit-pirita/kebab (09.08.2023)

[7] Wolt. “Lit Kebab Plate”. https://wolt.com/en/est/tallinn/restaurant/lit-pirita#kebab-3
(09.08.2023)

[8] Bolt Food. “Restaurant & Takeaway Sign Up”. https://partners.food.bolt.eu (09.08.2023)

[9] Vested Finance. Food Delivery Business - How to be Profitable in the Food Delivery.
https://vestedfinance.com/in/blog/how-to-be-profitable-in-the-food-delivery-business
(09.08.2023)

[10] MacroTrends. “DoorDash Net Income 2019 - 2023”.
https://www.macrotrends.net/stocks/charts/DASH/doordash/net-income (09.08.2023)

[11] MacroTrends. “Uber Technologies Net Income 2019 - 2023”.
https://www.macrotrends.net/stocks/charts/UBER/uber-technologies/net-income (09.08.2023)

[12] A.Whyte, B. Oja. ERR. “Bolt revenue up 152 percent on year to 2022, still made a loss”.
https://news.err.ee/1609031954/bolt-revenue-up-152-percent-on-year-to-2022-still-made-a-lo
ss (09.08.2023)

[13] K. Ahuja, V. Chandra, V. Lord, and C. Peens. McKinsey & Company. “Ordering in: The
rapid evolution of food delivery”.
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insight
s/ordering-in-the-rapid-evolution-of-food-delivery (09.08.2023)

[14] Mozilla. MDN Web Docs. “What do common web layouts contain?”.
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Design_and_accessibilit
y/Common_web_layouts (25.04.2023)

[15] Digiworks. “13 Parts of a Website You Should Know About”.
https://www.digiworks.co.za/13-parts-of-a-website-you-should-know-about (25.04.2023)

[16] Branding Compass. “Color Theory: Red as a Branding Color”.
https://brandingcompass.com/branding/color-theory-red-as-a-branding-color (30.04.2023)

[17] Codevoweb. “LC24- Responsive Food Ordering Website with HTML, CSS, and
JavaScript”.
https://codevoweb.com/lc24-responsive-food-delivery-website-with-html-css-and-javascript
(10.05.2023)

[18] Baeldung. “Learn Spring Boot”. https://www.baeldung.com/spring-boot (16.03.2023)

[19] Ganeshchowdharysadanala. GeeksForGeeks. “Spring Boot – Code Structure”.
https://www.geeksforgeeks.org/spring-boot-code-structure (16.03.2023)

[20] Angular. “Workspace and project file structure”. https://angular.io/guide/file-structure
(25.04.2023)

47

https://bolt.eu/et-ee/food/
https://wolt.com/en/est
https://fudy.ee/
https://www.tellitoit.ee/
https://shaurmakebab.ee/
https://litwagon.ee/lit-pirita/kebab
https://wolt.com/en/est/tallinn/restaurant/lit-pirita#kebab-3
https://partners.food.bolt.eu/
https://vestedfinance.com/in/blog/how-to-be-profitable-in-the-food-delivery-business/
https://www.macrotrends.net/stocks/charts/DASH/doordash/net-income
https://www.macrotrends.net/stocks/charts/UBER/uber-technologies/net-income
https://news.err.ee/1609031954/bolt-revenue-up-152-percent-on-year-to-2022-still-made-a-loss
https://news.err.ee/1609031954/bolt-revenue-up-152-percent-on-year-to-2022-still-made-a-loss
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ordering-in-the-rapid-evolution-of-food-delivery
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ordering-in-the-rapid-evolution-of-food-delivery
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Design_and_accessibility/Common_web_layouts
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Design_and_accessibility/Common_web_layouts
https://www.digiworks.co.za/13-parts-of-a-website-you-should-know-about/
https://brandingcompass.com/branding/color-theory-red-as-a-branding-color/
https://codevoweb.com/lc24-responsive-food-delivery-website-with-html-css-and-javascript/
https://www.baeldung.com/spring-boot
https://www.geeksforgeeks.org/spring-boot-code-structure/
https://angular.io/guide/file-structure

[21] S. Nath. Medium. “Angular File Structure and Best Practices (that help to scale)”.
https://medium.com/@shijin_nath/angular-right-file-structure-and-best-practices-that-help-to-
scale-2020-52ce8d967df5 (25.04.2023)

[22] AltexSoft. “Functional and Nonfunctional Requirements: Specification and Types”.
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specific
ation-and-types (30.04.2023)

[23] Y. Shvetsova. Elogic Commerce. “Functional and Non-Functional Requirements of
Online Shopping System: List & Examples”.
https://elogic.co/blog/functional-and-non-functional-requirements-for-ecommerce-websites
(08.08.2023)

[24] Indeed Editorial Team. Indeed. “What is a tech stack? (Plus importance, types and
examples)”. https://uk.indeed.com/career-advice/career-development/what-is-tech-stack
(07.08.2023)

[25] IBM. “What is Java?”. https://www.ibm.com/topics/java (01.08.2023)

[26] Javatpoint. “Features of Java”. https://www.javatpoint.com/features-of-java (01.08.2023)

[27] University of Tartu Institute of Computer Science. “Object-oriented Programming”.
https://courses.cs.ut.ee/2023/OOP/spring (01.08.2023)

[28] StackShare. “Java”. https://stackshare.io/java (01.08.2023)

[29] Stack Overflow. “Stack Overflow Developer Survey 2023”.
https://survey.stackoverflow.co/2023 (15.07.2023)

[30] LinkedIn. “See all Jobs”. https://www.linkedin.com/jobs/search/ (10.08.2023)

[31] Baeldung. “A Comparison Between Spring and Spring Boot”.
https://www.baeldung.com/spring-vs-spring-boot (16.03.2023)

[32] Spring. “Spring Boot”. https://spring.io/projects/spring-boot (16.03.2023)

[33] IBM. “What is Java Spring Boot?”. https://www.ibm.com/topics/java-spring-boot
(01.08.2023)

[34] Spring. “Spring Security”. https://spring.io/projects/spring-security (19.05.2023)

[35] Angular. “Introduction to the Angular docs”. https://angular.io/docs (25.04.2023)

[36] Amazon Web Services. “What is PostgreSQL?”.
https://aws.amazon.com/rds/postgresql/what-is-postgresql (29.04.2023)

[37] H. Kamau. StackAbuse. “Working with PostgreSQL in Java”.
https://stackabuse.com/working-with-postgresql-in-java (29.04.2023)

[38] Amazon Web Services. “What is Docker?“. https://aws.amazon.com/docker
(10.05.2023)

[39] jwt.io. “​​Introduction to JSON Web Tokens”. https://jwt.io/introduction (19.05.2023)

[40] jwt.io. https://jwt.io (19.05.2023)

[41] Amazon Web Services. “What is AWS”. https://aws.amazon.com/what-is-aws
(28.06.2023)

[42] Amazon Web Services. “Cloud Object Storage - Amazon S3”.
https://aws.amazon.com/s3 (28.06.2023)

48

https://medium.com/@shijin_nath/angular-right-file-structure-and-best-practices-that-help-to-scale-2020-52ce8d967df5
https://medium.com/@shijin_nath/angular-right-file-structure-and-best-practices-that-help-to-scale-2020-52ce8d967df5
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://elogic.co/blog/functional-and-non-functional-requirements-for-ecommerce-websites/
https://uk.indeed.com/career-advice/career-development/what-is-tech-stack
https://www.ibm.com/topics/java
https://www.javatpoint.com/features-of-java
https://courses.cs.ut.ee/2023/OOP/spring
https://stackshare.io/java
https://survey.stackoverflow.co/2023/
https://www.linkedin.com/jobs/search/
https://www.baeldung.com/spring-vs-spring-boot
https://spring.io/projects/spring-boot
https://www.ibm.com/topics/java-spring-boot
https://spring.io/projects/spring-security
https://angular.io/docs
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://stackabuse.com/working-with-postgresql-in-java/
https://aws.amazon.com/docker/
https://jwt.io/introduction
https://jwt.io/
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/s3/

[43] Amazon Web Services. “Hosting a static website using Amazon S3”.
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html (28.06.2023)

[44] Amazon Web Services. “Website & Web App Deployment - AWS Elastic Beanstalk”.
https://aws.amazon.com/elasticbeanstalk (28.06.2023)

[45] Amazon Web Services. “The Amazon EC2 instances for your Elastic Beanstalk
environment”.
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.ec2.html
(28.06.2023)

[46] Amazon Web Services. “Launch a Linux virtual machine in Amazon Web Services”.
https://aws.amazon.com/getting-started/launch-a-virtual-machine-B-0 (28.06.2023)

[47] Amazon Web Services. “Fully Managed Relational Database - Amazon RDS”.
https://aws.amazon.com/rds (28.06.2023)

[48] Angular. “Understanding Angular”.
https://angular.io/guide/understanding-angular-overview (25.04.2023)

[49] Angular. “Angular components overview”. https://angular.io/guide/component-overview
(25.04.2023)

[50] Angular. “Understanding dependency injection”.
https://angular.io/guide/dependency-injection (25.04.2023)

[51] Angular. “HTTP Server communication”.
https://angular.io/guide/http-server-communication (25.04.2023)

[52] Angular. “Common Routing Tasks”. https://angular.io/guide/router (30.04.2023)

[53] Angular. “HttpInterceptor”. https://angular.io/api/common/http/HttpInterceptor
(30.04.2023)

[54] K. Karnatakapu. Medium. “How to secure Spring Boot with JWT Authentication and
Authorization”.
https://medium.com/javarevisited/spring-security-role-based-access-implementation-with-spr
ing-boot-3-0-and-jwt-34164bd593fd (19.05.2023)

[55] Estonian Environment Agency. “Observation data”.
https://www.ilmateenistus.ee/ilm/ilmavaatlused/vaatlusandmed/?lang=en (16.03.2023)

[56] Google Cloud. “What is cloud hosting?”.
https://cloud.google.com/learn/what-is-cloud-hosting (29.06.2023)

[57] Google Search Console. “Mobile-Friendly Test”.
https://search.google.com/test/mobile-friendly (03.08.2023)

[58] Chrome Developers. “Lighthouse Overview”.
https://developer.chrome.com/docs/lighthouse/overview (03.08.2023)

[59] ImmuniWeb. “Website Security Test”. https://www.immuniweb.com/websec
(03.08.2023)

[60] T. Hamilton. Guru99. “Unit Test vs Integration Test – Difference Between Them”.
https://www.guru99.com/unit-test-vs-integration-test.html (26.03.2023)

[61] Baeldung. “Integration Testing in Spring”.
https://www.baeldung.com/integration-testing-in-spring (16.03.2023)

49

https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://aws.amazon.com/elasticbeanstalk/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.ec2.html
https://aws.amazon.com/getting-started/launch-a-virtual-machine-B-0/
https://aws.amazon.com/rds/
https://angular.io/guide/understanding-angular-overview
https://angular.io/guide/component-overview
https://angular.io/guide/dependency-injection
https://angular.io/guide/http-server-communication
https://angular.io/guide/router
https://angular.io/api/common/http/HttpInterceptor
https://medium.com/javarevisited/spring-security-role-based-access-implementation-with-spring-boot-3-0-and-jwt-34164bd593fd
https://medium.com/javarevisited/spring-security-role-based-access-implementation-with-spring-boot-3-0-and-jwt-34164bd593fd
https://www.ilmateenistus.ee/ilm/ilmavaatlused/vaatlusandmed/?lang=en
https://cloud.google.com/learn/what-is-cloud-hosting
https://search.google.com/test/mobile-friendly
https://developer.chrome.com/docs/lighthouse/overview/
https://www.immuniweb.com/websec/
https://www.guru99.com/unit-test-vs-integration-test.html
https://www.baeldung.com/integration-testing-in-spring

[62] Google Workspace. “Google forms: Online Form Creator”.
https://www.google.com/forms/about (06.08.2023)

50

https://www.google.com/forms/about/

Appendix

I. Access to Code

Front-end GitHub: https://github.com/sndvsk/fd-frontend

Back-end GitHub: https://github.com/sndvsk/foodDeliveryDemoApp

Website link: fd-app-test.s3-website.eu-north-1.amazonaws.com

Swagger UI: http://fd-app.eu-north-1.elasticbeanstalk.com/swagger-ui/index.html

51

https://github.com/sndvsk/fd-frontend
https://github.com/sndvsk/foodDeliveryDemoApp
http://fd-app-test.s3-website.eu-north-1.amazonaws.com/
http://fd-app.eu-north-1.elasticbeanstalk.com/swagger-ui/index.html

II. Database structure

52

III. Feedback survey

53

54

55

IV. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Aleksander Daniel Veske,
(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the
copyright,

of my thesis

Title, Development and Implementation of a Full-Stack Food Delivery Website
(title of thesis)

supervised by Lidia Feklistova,

(supervisor’s name)
2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu, 11.08.2023

56

