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Introduction 

The free vibration of elastically restrained beams is a subject of practical engineering 

interest that has been studied by various investigators over the years. One of the most 

popular theories dealing with the vibration of beams is the Euler-Bernoulli beam theory. 

In the current thesis, the frequency equations for the Euler-Bernoulli beams with non-

classical boundary conditions are considered. Two types of beams are studied: beams 

with elastic supports at the boundaries, and beams with intermediate elastic support. 

The elastic supports of beams play an important role in structural performance. In the 

case of vibrating structures the frequencies of vibration depend on the stiffness 

parameters of elastic supports. The stiffness characteristics of elastic supports can 

change during the exploitation of structures due to environment conditions or damages, 

and as a result, they can significantly influence the performance of the structures. 

Therefore, it is important to identify these parameters online during the exploitation.     

The calculation of the stiffness parameters of the support conditions from the governing 

equations of the vibrating beams is an inverse problem and cannot be done analytically. 

Therefore, some alternatives for reaching the goal of the task could be considered. One 

option is to use artificial neural networks. 

Artificial neural networks (ANNs) are a simulation of biological neural networks which 

means that they are capable of learning by examples. Since ANNs are able to find 

relationships between input and output data, they can be trained to produce a desired 

output based on the input. In terms of the vibrating Euler-Bernoulli beams, this means 

that all of the frequency equations needed to solve a task do not need to be computed or 

measured anymore; instead, a smaller amount of obtained information is sufficient, and 

the rest of the necessary data could be predicted by the artificial neural network. 

The main goal of the current thesis is to study the free vibration of the Euler-Bernoulli 

beams with non-classical boundary conditions and to analyze the efficiency of predicting 

the support coefficients based on the calculated training data provided to the neural 

networks. For both types of beams – beams with elastic supports at the boundaries and 
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beams with intermediate elastic support – several examples with different support 

conditions are investigated. 

The thesis is arranged into three main chapters. Chapter 1 provides an overview of the 

Euler-Bernoulli theory and the Euler-Bernoulli beam model. The cases of possible 

boundary conditions are introduced, and two examples of finding general solutions to 

the beam models are provided. 

In Chapter 2, the basics of artificial neural networks are presented. The section explains 

the basic idea of a perceptron, and gives an overview of the architectures and learning 

methods of artificial neural networks. The learning algorithm used in the practical 

implementation of the current thesis – called the error back-propagation – is 

characterized in detail. 

The third chapter – the practical implementation of the thesis – focuses on two types of 

beams: cases of beams with elastic supports at the boundaries, and cases of beams with 

intermediate elastic support. For predicting the support coefficients of the beams, 

artificial neural networks are created and trained in the MATLAB environment. For each 

case, the acquired test results are compared to the expected results, and characterized 

based on predefined efficiency parameters. 
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1 Euler-Bernoulli beam theory 

1.1 Overview of the Euler-Bernoulli beam theory 

A beam is a common structural element in structural and mechanical engineering – 

some examples of beams are a bookshelf, the frame of a car, the plank of a seesaw [1]. 

Beams are capable of enduring vertical (sometimes also horizontal) load by bending [2].  

The free vibration of beams is explored in attempt to simulate the dynamics of different 

structural and mechanical components [3]. 

One of the theories that deal with the vibration of beams is the Euler-Bernoulli beam 

theory. It is used for calculating the load-carrying and deflection characteristics of a 

beam. The Euler-Bernoulli beam theory was first formed by Leonhard Euler and Daniel 

Bernoulli in the middle of the 18th century, but it became the cornerstone of engineering 

only after the construction of the Eiffel Tower and Ferris wheel in the late 19th century 

[4]. 

The basic assumptions of the Euler-Bernoulli beam theory are: 

1. The length of the beam is significantly larger than the width and thickness of the 

beam. 

2. The material of the beam is linear-elastic (strain is directly proportional to 

stress). 

3. Planes perpendicular to the neutral axis remain perpendicular after deformation 

[5]. 

1.2 The Euler-Bernoulli beam model 

In the present paper, the frequency equations for the Euler-Bernoulli beams with 

elastically retrained end and intermediate supports are examined. The restraints are 

provided by either a translational or rotational spring, or both. 
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Figure 1 represents a simple beam that is clamped at the left end and has a translational 

and a rotational spring at the right end.  

On Figure 1,      is the deflection,   is the location at distance   along the length of the 

beam L, RR is the rotational spring constant at right end (   ) and TR is the 

translational spring constant at right end (   ). For the free vibration of the beam, 

also EI – the flexural rigidity, A – the cross-sectional area of the beam, and ρ – density of 

the material need to be considered. 

The free vibrations of a beam are described by the equation [6] 

   
        

   
   

        

   
    (1.1) 

By dividing it with   , we get 

 
  

  
 
        

   
 
        

   
    (1.2) 

The function        depends on distance   and time  . For free vibrations the solution 

can be sought in the form 

                      (1.3) 

where   is the natural frequency and      is the mode shape of the beam. Substituting 

(1.3) into (1.2) and eliminating the trivial solution           we obtain 

                       (1.4) 

where E is Young’s modulus of elasticity, I is the moment of inertia, ρ is the material 

mass density, and A is the cross-sectional area of the beam. 

Figure 1. Beam clamped at left end, rotationally and translationally restrained at right 

end. 
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Introducing the non-dimensional quantities 

 
  

 

 
    

      

  
  

(1.5) 

the equation of mode shapes can be presented as 

            (1.6) 

The general solution of the equation (1.6) is as follows: 

                                      (1.7) 

Here, c1, c2, c3, c4 are the integration constants, k is the natural frequency parameter we 

are looking for, and               . 

1.2.1 Model of a beam with intermediate support 

A beam with an intermediate support can be represented in a similar way. Figure 2 

shows a beam that is clamped at left end, has a rotational and a translational spring at 

right end, and a translational spring as an intermediate support. 

In case of a beam with intermediate support, the beam is divided into two parts with 

two different coordinate systems. The length of the left part of the beam is L1, whereas 

the length of the right part of the beam is L2. The general solution of the left part of the 

beam can be expressed with the following equation: 

                                               (1.8) 

 

 

Figure 2. Beam clamped at left end, translationally supported in the center, rotationally and translationally 

supported at right end. 
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In this case, 

    
  
  
    

 

  
            (1.9) 

The frequency parameter we are looking for can be expressed as follows: 

   
  

      
 

  
  

  
 
 
 

    (1.10) 

where 

    
      

  
  (1.11) 

The equation for the general solution of the right part of the beam is 

                                               (1.12) 

where 

    
  
  
    

 

  
            (1.13) 

The frequency parameter in this case is 

   
  

      
 

  
  

  
 
 
 

    (1.14) 

Here,    is the same as in equation (1.11). 

1.3 Cases of boundary conditions 

In the present thesis, the following boundary conditions of a beam are considered on the 

left end: 

1. Clamped: 
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2. Simply supported: 

 
      
        

  

3. Free: 

 
        
         

  

4. Guided/sliding: 

 
       
         

  

5. Sliding with translational spring: 

 
                 

       
  

6. Free with translational spring: 

 
                 

        
  

7. Translational and rotational spring: 

 
                 

           
      

  

On the right end, the equations for the boundary conditions are analogous: 

1. Clamped: 

 
      
       

  

2. Simply supported: 

 
      
        

  

3. Free: 

 
        
         

  

4. Guided/sliding: 
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5. Sliding with translational spring: 

 
                 

       
  

6. Free with translational spring: 

 
                 

        
  

7. Translational and rotational spring: 

 
                 

           
      

  

In the boundary constraints the following dimensionless translational and rotational 

stiffness coefficients at the ends of the beam have been introduced: 

    
   

 

  
     

   
 

  
     

   

  
     

   

  
  

For the following part – finding the constants in the general solution to the mode shape – 

the first, second and third derivations of w(x) are needed:  

 

                                     

                                         

                                            

                                             

(1.15) 

(1.16) 

(1.17) 

(1.18) 

The equation and derivations on the left end of the beam are respectively the equation 

and the derivations on the position    : 

 

           

               

                  

                   

(1.19) 

(1.20) 

(1.21) 

(1.22) 

The equation and derivations on the right end are on the position    : 

 

                                   

                                       

                                          

                                           

(1.23) 

(1.24) 

(1.25) 

(1.26) 
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1.3.1 Beam clamped at the left end and having translational and rotational spring at the 

right end 

As an example, we are going to find a general solution for the beam which is clamped at 

left end and has translational and rotational support at right end. 

To find the frequencies, we need to construct a four by four matrix where the first two 

rows each contain the four coefficients from the equations of the left end of the beam 

and the following two rows each contain the four coefficients from the equations of the 

right end of the beam. 

According to the boundary condition of the left end – clamped – the equations of the left 

end of the beam, using equations (1.19) and (1.20) are as follow: 

  
            

                
  

(1.27) 

(1.28) 

On the right end, supported with a translational and rotational spring, we use equations 

(1.23)-(1.26) and get 

 

 
 
 

 
 
                                                   

                                     

           
                                        

                                     

  

(1.29) 

(1.30) 

Using the equations (1.27)-(1.30) we create a matrix D with the coefficients from these 

equations: 

    

    
    
            
            

   (1.31) 

where the coefficients denoted with     are respectively 

                                       , 

                                          , 
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                                        , 

                                          

The determinant of the matrix D has to be equal to zero for a non-trivial solution to exist 

in this homogeneous system [7]. 

1.3.2 Beam with intermediate support 

Similarly to the previous example, the coefficients for the general solution for the beam 

with intermediate support can be found. In this example, we consider a beam that has 

sliding with translational spring at left end, a translational and a rotational spring as an 

intermediate support, and is simply supported at the right end. 

Similarly to simple supported beam, a matrix with the coefficients of the general 

solution has to be constructed, but in this case the dimensions of the matrix are eight by 

eight.  

The first two rows of the matrix contain coefficients from the equations of the left end of 

the beam; the next two rows contain coefficients from equations of the right end of the 

beam. The following four rows contain coefficients from the equations of the 

intermediate part of the beam. 

The boundary condition at the left end of the beam is sliding with translational spring. 

Using the equations (1.19), (1.20) and (1.22) we get the equations: 

    
           

  
 
 
 

        
              

  
 
 
 

         

  
                

  
(1.32) 

(1.33) 

By using equations (1.23) and (1.25) we get the equations for the simply supported right 

end: 

  
                                        

         
                                       

  
(1.34) 

(1.35) 
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For the equations on the intermediate part of the beam we get the following equations: 

 

 
 
 
 
 

 
 
 
       

  
  
       

  
             

  
  
 
  
     

  
  
  
        

       

  
  
 
 
  
 
 
 

       
  
  
 
 

  
         

        

  

(1.36) 

 (1.37) 

(1.38) 
 

(1.39) 

where    is the rotational constant in the intermediate point and     is the translational 

constant in the intermediate point.  

Using equations (1.19)-(1.26) we get the following equations from (1.36)-(1.39): 

 

 
 
 
 
 
 
 

 
 
 
 
 
                                   

  
  
         

                                                 

  
  
 
                                      

 
  
  
  

                                        
           

  
  
 
 
  
 
 
 

                                    

  
  
  
 
 

  
                                        

           

  

(1.40) 

(1.41) 

 
(1.42) 

 
 
 

(1.43) 

Using equations (1.40)-(1.43) we create an eight by eight matrix of the coefficients: 

   

 

 
 
 
 
 

                
            
                
                
                    
                    
                    
                     

 
 
 
 
 

  (1.44) 

where aij are as follows: 

       
 ,         
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The rest of the combinations of boundary conditions of the beams can be treated in a 

similar way. 
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As an example, some numerical values of the frequencies calculated for a beam clamped 

at left end and free at right end (called a cantilever beam), with translational and 

rotational springs at the intermediate support are depicted in Table 1. The calculated 

values of the rotational stiffness coefficients kr = {10, 100, 1000} are outlined along the 

values reported by Lau [8], based on the fixed value of kt = 10 of translational stiffness 

coefficient. The results are compared for modes three, four and five. The left column for 

each mode contains the results acquired by the author of the current thesis, and the 

right column contains results presented by Lau [8]. 

Table 1. Frequency parameters for a cantilever beam with translational and rotational intermediate support. 

Comparison to the results reported by Lau [8]. 

kr 

mode = 3 mode = 4 mode = 5 

kt = 10 kt = 10 [8] kt = 10 kt = 10 [8] kt = 10 kt = 10 [8] 

10 8,023621 8,02362 11,002136 11,00212 14,205721 14,20572 

100 8,423806 8,42381 11,008224 11,00821 14,355295 14,35528 

1000 8,599826 8,59981 11,011199 11,01121 14,415894 14,41589 

 

The values presented by Lau [8] and the values obtained with the present approach after 

rounding the values to five decimal points are almost equal. Only in a few cases, there is 

a slight difference of size 0.00001 or 0.00002. 
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2 Artificial neural networks 

Artificial neural networks have been influenced by the natural networks of biological 

neurons in the (human) brain [9]. Data processing in the brain is carried out by highly 

interconnected neurons which send out electric impulses through the neural network 

[10]. Each neuron is a cell that uses biochemical reactions to receive, process, and 

transmit information. Among the neurons there are dendrites (treelike networks of 

nerve fibers connected to the cell body) and axons (a single long fiber extending from 

the cell body) which are connected to other neurons through synapses [11] (the links 

between one neuron’s axon and another’s dendrite [12]). The structure of a biological 

neural network in the brain is shown on Figure 3. 

The transmission of impulses from one neuron to another is a complex chemical process 

[11] in which signals are sent to other neurons along the axon and received through the 

dendrites, and as a result, certain chemicals are released [12]. Since the information is 

stored in the connection strengths between neurons in the brain [13], the synapses 

manage the work of the brain and are in charge of human memory [14]. 

 

Figure 3. Structure of biological neural network [13]. 
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2.1 Overview of artificial neural networks 

Artificial neural networks (ANNs) can be created by simulating biological nervous 

systems on a computer [10]. ANNs consist of simple computational units called artificial 

neurons, or simply neurons. The synapses are represented by connection weights that 

adjust the effect of input signals [11]. 

2.1.1 History 

In the history of artificial neural networks research, there have been three periods of 

considerable activity [12]. The first was in the 1940s after McCulloch and Pitts had 

introduced simplified artificial neurons [11], the second took place in the 1960s with 

Rosenblatt’s perceptron convergence theorem, and Minsky and Papert’s work showing 

the limitations of a simple perceptron. As a result of Minsky and Papert’s work the 

enthusiasm of most researchers in the computer science community was diminished. In 

the 1980s, the interest in artificial neural networks began to rise again and artificial 

neural networks have become the subject of more and more attraction ever since [12]. 

2.1.2 Computational model 

A neuron receives n signals x1, ...,  xn from other neurons through synapses: 

   

  
 
  
   

Each input is multiplied with a weight coefficient (called synaptic weight) which can be 

either positive or negative. The synaptic weights can be denoted with a W: 

           

The values of inputs x1, ..., xn are multiplied with the corresponding weight coefficients to 

get the weighted sum [14]: 
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If the total value NET is above a threshold β, the neuron fires an impulse that is carried 

out to other neurons; and if the sum of incoming signals is below the threshold, the 

neuron stays inactive [13]. 

2.1.3 Perceptron 

The first architecture of an ANN, called perceptron, was introduced in 1958 by 

Rosenblatt. Perceptron involves three types of neuron layers – input layer, hidden layer 

and output layer. The neurons (nodes) on the input layer allocate the input signals to the 

processing layers [13]. The first processing layer is the hidden layer (called hidden 

because of no external connections – they only receive input from other processing units 

and generate output to other processing units) which performs a significant role in the 

neural network since it captures the pattern in the input data and carries out a complex 

mapping between the input and output neurons [15]. The nodes on the second 

processing layer – the output layer – send out the received signals to the outer world. In 

a classic perceptron, only the connection strengths between the hidden nodes and the 

output nodes are modifiable; the connection strengths between the input nodes and the 

hidden nodes have to be preset before the training [13]. The neuron layers of 

a perceptron are illustrated on Figure 4. 

Figure 4. Three-layered perceptron structure [15]. 
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At first, there was a keen interest in perceptrons, but soon problems began to arise – it 

became evident that with the growth of the scope of the task set complexity of the 

network grew exponentially. At first, the prospect was that real problems could be 

solved without maximal complexity, but Minsky and Papert demonstrated that the 

solutions to many basic problems require a full number of neurons. One solution seemed 

to be to add new layers of weights to the perceptron and train them, but no algorithm 

could be found that would allow that. That is why after the research of Minsky and 

Papert the attraction to ANNs abated for a couple of decades [13]. 

The reason for not finding a working training method for the three-layered perceptron 

came out to be using the hard threshold as an activation function of the neurons [13].  

The activation function (also called transfer function) is a mathematical formula that 

takes the input signal of the neuron and calculates the output [9]. To obtain a training 

method that would work on the perceptron, a continuous function (for example, a 

sigmoidal function or a hyperbolic tangent function) should be used instead of the hard 

threshold [13]. The most common activation functions used in ANNs are 

 sigmoid (logistic) function:      
 

     
 , 

 hyperbolic tangent function:             

 sine or cosine function:           or           [15]. 

The most frequently used one of these is the sigmoid function, which is also used in the 

practical implementation of the current thesis (described in Chapter 3). 

2.1.4 Architectures 

Based on their architecture, ANNs can be classified into two categories: 

 feed-forward networks; 

 recurrent (feedback) networks [12]. 

In a feed-forward network, sending a signal from one neuron to another can only occur 

one way – in a feed-forward manner; this means no backward connections (loops) exist 

[11]. Feed-forward networks produce only one set of output values from a given input 

since their response to a new input pattern is independent of the previous state [12]. 
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Contrary to feed-forward networks, in recurrent networks the signals can be sent either 

way between the neurons because of loops in the network [16]. When a new input 

pattern is introduced, the neuron outputs are computed and due to feedback 

connections the weights of each connection can be modified, leading the network to 

enter a new state [12]. 

2.1.5 Learning methods 

One of the major advantages of ANNs over traditional systems is that instead of 

following rules specified by humans, they learn the rules automatically from 

representative examples – training patterns. The learning (also called training) process 

in ANNs means adjusting the connection weights of artificial neurons to achieve efficient 

results when performing a specific task [12]. Since the computation of a neuron varies 

depending on the weights, we can accomplish the desired output by adjusting the 

weights of the neuron. As the network may contain a large number of neurons, it is 

difficult to find the necessary weights by hand. To simplify the process, there are certain 

training algorithms for ANNs that can adjust the weights of the neurons to receive better 

results [17]. 

The learning paradigms in ANNs can be divided into two major categories: supervised 

learning and unsupervised learning [16]. The difference between the two methods is 

that supervised learning involves an external teacher that controls the learning process 

in the network by providing the desired responses for each output node, whereas 

unsupervised learning has no external teacher [11]. 

In supervised learning, an external teacher provides the input vector with training 

examples to the input layer together with a set of expected outcomes from the output 

layer. To regulate the connection weight changes in the ANN, the errors between the 

desired and the actual result of each node in the output layer are found [11]. Supervised 

learning methods usually work off-line which means that learning and operating are 

carried out separately, not at the same time like in on-line learning [9]. One of the most 

common training algorithms of supervised learning, also used in the practical 

implementation part of the present thesis, is back-propagation algorithm. An overview 

of this algorithm is given in Chapter 2.2 of the thesis.  
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Contrary to supervised learning, in unsupervised learning there is no previously known 

set of categories into which the patterns are supposed to be classified. Instead, the ANN 

is trained to respond to patterns within the input vector and has to develop its own 

representation of the input [11]. Unsupervised learning is also called self-organization 

since it self-organizes the provided data into similar classes. Examples of unsupervised 

learning algorithms are Hebbian learning and competitive learning [16]. 

Neural networks can be trained in two modes: online and offline (batch mode). Online 

learning means that the network learns and operates at the same time [9] – the weights 

of each input sample are calculated and modified after each sample [11]. In the batch 

training mode the learning phase and the operating phase are separated – the weight 

changes are calculated after each input sample, but they are accumulated until the end of 

one pass through the whole training set, called an epoch. After each epoch, the 

contributions of the nodes are added up and the weights are adjusted with the 

compound value [11]. 

2.1.6 Applications 

Artificial neural networks can be used in various fields because of their adaptive nature 

of learning by examples and the ability to treat complicated problems with ease. In 

addition to modeling real neural networks, for example to study the behavior of animals 

[17], these characteristics make ANNs widely usable in the area of classification and 

prediction (pattern recognition, forecasting) where understanding of the problem to be 

solved is insufficient but the training data is available [9]. 

2.2 Error back-propagation 

Back-propagation is the most widely used supervised learning algorithm in feed-

forward multi-layer neural networks [16]. The algorithm was first introduced by Bryson 

and Ho in 1969 and independently rediscovered by Werbos in 1974, by Parker in the 

middle of the 1980s and by Rumelhart and Williams in 1985 [18]. The back-propagation 

algorithm had a substantial influence in the reappearance of neural networks in the 

middle of the 1980s after the decrease of interest in them in the 1960s [16].  
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The goal of training a back-propagation neural network is to retrieve a desired output 

when feeding a certain input to the network [17]. This is done by measuring the error 

between the acquired result and the desired result and reducing this error to a 

minimum – the smaller the error, the better the network (a perfect network would have 

an error of size zero) [10]. 

In back-propagation neural networks, the neurons are arranged into layers – the 

training data is received by the input layer and the output is delivered by the neurons on 

the output layer. The training vector of expected results on the output layer is provided 

by the external teacher. There can be one or more hidden layers [17] – the more hidden 

layers there are, the more complicated the network gets [16].  

The first step in training the network is setting all connection weights in the ANN to 

small random numbers [10]. The example patterns are passed forward from the input 

layer to the output layer, producing an output pattern based on the random connection 

weights [16]. The next step is measuring the error – the difference between the received 

outcome and the expected outcome. In the back-propagation step these errors are 

passed back through the neural network and the connection weights are modified, based 

on the calculated contribution of each hidden node and determination of the necessary 

adjustments [16]. The adjustment of weights is repeated many times to successively 

reduce the error until it no longer changes [10]. As a result, the neural network has been 

trained to learn from examples. 
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3 Practical implementation of ANNs 

The practical implementation of the current thesis includes creating ANNs, training and 

visualizing them and comparing the results. Predictions are made about the support 

coefficients based on the natural frequencies of the vibrating beams. An overview of the 

results received is provided in two sections – Chapter 3.1 shows the results of vibrating 

beams having elastic supports at the boundaries and Chapter 3.2 outlines the results of 

beams with intermediate elastic support. 

The ANNs for the predictions are created in MATLAB programming environment. 

MATLAB is extensively used for solving technical computational problems. It can be 

used to perform numerical calculations, develop different algorithms, analyze and 

visualize data [19]. Extending MATLAB with Neural Network Toolbox adds functions 

and graphical tools for designing, training, simulating and visualizing artificial neural 

networks [20]. 

To evaluate and compare the effectiveness of the artificial neural networks created, the 

mean absolute error (MAE), the variance account for (VAF) and the coefficient of 

determination (R2) are calculated. 

The mean absolute error is a measurement of difference between the predicted values 

and the acquired values. The mean absolute error over all the patterns is expressed by 

the following equation: 

     
 

 
          

 

   

  (3.1) 

where   is the number of patterns in the test set,    is the measured value and    is the 

predicted value [21]. 

The coefficient of determination is used to measure the reliability of the prediction of 

future outcomes, based on related examples. This value can be calculated using the 

equation 
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  (3.2) 

where   is the mean of target values     [22]: 

    
 

 
    

 

   

  (3.3) 

The variance account for is expressed with the following equation: 

       

 
 
              
   

 
 
         

  
   

  (3.4) 

where   is the mean of target values (equation (3.3)) and   is the mean variance 

between the expected value and the predicted value: 

   
 

 
          

 
 

   

  (3.5) 

The values of VAF and R2 are between 0 and 1. In ideal situations, MAE would be equal 

to 0, and VAF and R2 would be equal to 1. 

All computations of the neural networks are performed on a computer with AMD 

Athlon™ II X4 640 Processor (3.00 GHz) and 8GB of installed RAM. 

3.1 Cases of beams with elastic supports at the boundaries 

The objective of this section is to provide an overview of the test results received by 

training the neural networks to predict the translational or rotational spring coefficients 

on one end of vibrating beams. The analysis includes the comparison of MAE, VAF, R2 

and training time based on the number of the natural frequencies (three, four, five, six, 

or nine). The number of neurons in the hidden layer of the neural network in all cases is 

equal to the number of patterns in the training set. 

The total data available is allocated into two sets – one used for training the neural 

network and the other used for testing. To prevent the neural network from “knowing” 
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the answers rather than “learning” them, the two sets do not have an intersection. The 

training set consists of 500 patterns and the test set consists of 50 patterns.  

The cases of boundary conditions of the beams studied are: 

1. clamped at left end and sliding with translational spring at right end, 

2. clamped at left end and free with translational spring at right end, 

3. clamped at left end and with a translational and a rotational spring at right end, 

4. simply supported at left end and sliding with translational spring at right end, 

5. simply supported at left end and free with translational spring at right end, 

6. simply supported at left end and with a translational and a rotational spring at 

right end, and 

7. translational and rotational springs at both ends. 

Each of these cases is analyzed in detail in the following subsections. 

The stiffness coefficients of the left end are fixed in all cases and the coefficients of the 

right end are varied. For a beam with translational and rotational springs at both ends 

the spring coefficients of left and right end are symmetric – the rotational coefficient of 

both ends is fixed and the predictions are made about the varying translational 

coefficient parameter. 

3.1.1 Clamped – sliding with translational spring 

For a beam clamped at left end and sliding with translational spring at right end, the 

accuracy parameters of prediction of the rotational right end support condition 

coefficient are displayed in Table 2. The parameters are pointed out for each number of 

frequencies. 
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Table 2. Efficiency results of beam clamped at left end and sliding with translational spring at right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,999825 0,916434 0,103546 8,676860 

4 0,999981 0,998978 0,076899 10,082575 

5 0,999993 0,999858 0,050281 11,818164 

6 0,999995 0,999941 0,049185 11,743470 

9 0,999999 0,999997 0,020143 44,427214 

 

The results show that the efficiency is the best when using four, five, six or nine 

frequencies as the input of the neural network and slightly lower when using three 

frequencies. This indicated that adding more frequencies to the input does not 

noticeably improve the quality of the predictions. 

3.1.2 Clamped – free with translational spring 

Table 3 presents the accuracy parameters of the test results of a beam clamped at left 

end and free with translational spring at right end.  

Table 3. Accuracy of predictions for beam clamped at left end and free with translational spring at right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,994821 – 0,360189 18,862208 

4 0,999652 0,707948 0,003869 20,038095 

5 0,999987 0,999576 0,035884 16,045238 

6 0,999944 0,992450 0,101045 14,899730 

9 0,999980 0,999050 0,094972 20,194107 

 

The VAF results are close to perfect when using five, six or nine frequencies (VAF > 0.99). 

In case of four frequencies the result is 0.7 and in case of three frequencies the value of 
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VAF did not fit in the range [0, 1] and is therefore discarded from the table. The 

unqualified VAF values means that there are some patterns in the training or test sets 

which could be considered as “noise”. When a training set contains too distinct or too 

similar values, the neural network may rather “remember” them instead of “learning”, 

and is therefore unable to produce reasonable results on unseen data [23]. The results of 

training the neural network illustrated on Figure 5 indicate that there is a pattern in the 

training set that the neural network is incapable of learning. 

 

Figure 5. Training results of a beam clamped at left end and free with translational spring at right end. 

Due to the failure of learning some pattern in the training set, the test results are also 

distorted. 

3.1.3 Clamped – translational and rotational spring 

The parameters of test results of a beam clamped at left end and translationally and 

rotationally supported at right end are demonstrated in Table 4. 
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Table 4. Prediction of the support parameter at right end of a beam clamped at left end and translationally 

and rotationally restrained at right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,998256 0,997710 0,446440 9,566218 

4 0,999984 0,999984 0,071364 12,114586 

5 0,999707 0,999693 0,117893 18,538891 

6 0,998838 0,998388 0,265321 11,157478 

9 0,999998 0,999997 0,035793 46,864194 

 

The values of R2 and VAF have a similar trend in the sense of the number of frequencies. 

The similarity of the trend of the results is illustrated on Figure 6. 

 

Figure 6. Comparison of the trends of VAF and R
2
 in case of a beam clamped at left end and translationally 

and rotationally supported at right end. 

As can be seen from Table 4 and Figure 6, the accuracies of VAF and R2 are the highest 

when using four or nine frequencies, and the lowest with three frequencies. 

3.1.4 Simply supported – sliding with translational spring 

The accuracy parameters for a beam simply supported at left end and sliding with a 

translational spring at right end are outlined in Table 5. 
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Table 5. Prediction of the support parameter at right end of a beam simply supported at left end and sliding 

with translational spring at right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,970940 – 0,748432 9,341914 

4 0,999943 0,991377 0,110054 9,841985 

5 0,999984 0,999304 0,099334 14,758124 

6 0,999997 0,999977 0,032079 18,002236 

9 0,999997 0,999968 0,046501 26,690434 

 

The results are quite similar and stable when using four, five, six or nine frequencies. 

Only when using three frequencies, the outcomes are not as satisfactory – the variance 

account for does not fit in the expected region, and the ratio of mean absolute error and 

the maximum expected result is 0.75% (as opposed to the values of 0.03 to 0.11 in the 

other cases). 

3.1.5 Simply supported – free with translational spring 

Table 6 indicates the values of prediction of the right end coefficient in case of a beam 

simply supported at left end and free with translational spring at right end. 

Table 6. Prediction of the support parameter at right end of a beam simply supported at left end and free 

with translational spring at right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,656743 – 2,576485 42,847447 

4 0,976297 – 0,881612 19,646157 

5 0,766862 – 2,078920 12,000257 

6 0,930134 – 1,174855 11,678558 

9 0,998340 – 0,263396 19,624027 
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In all cases, the value of VAF is left out of the table since it was inadequate in the sense of 

the efficiency comparison. The anomaly of the values of VAF could become evident when 

there are some patterns in either training set that make the prediction of the neural 

network propose random values of the outcome on the test data. Figures 7 and 8 

respectively show the training and test results of the beam simply supported at left end 

and free with translational spring at right end when using three input frequencies. 

Figure 7. Training results of a beam simply supported at left end and free with translational spring at right 

end using three frequencies. 

Figure 7 indicates that there exists a pattern in the training data that the neural network 

is not capable of learning. Thus, some value from the test set is not predicted correctly 

either, as can be seen on Figure 8. 
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3.1.6 Simply supported – translational and rotational spring 

The prediction efficiency parameters of a beam that is simply supported at left end and 

has a translational and rotational spring at right end are revealed in Table 7. 

Table 7. Prediction of the support parameter at right end of a beam simply supported at left end and 

translationally and rotationally restrained at right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,999654 0,999626 0,17734 10,108303 

4 0,997630 0,997297 1,218785 13,645111 

5 0,999064 0,998755 0,194191 15,642321 

6 0,999971 0,999968 0,121235 14,310933 

9 0,999981 0,999981 0,099666 25,621451 

 

Figure 8. Test results of a beam simply supported at left end and free with translational spring at right 

end using three frequencies. 
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The shape of the trend of the values of VAF and R2 over different numbers of frequency is 

similar, analogously to the beam described in Chapter 3.1.3 (clamped – translational and 

rotational spring). This can be seen on Figure 5. 

 

Figure 9. Comparison the trends of VAF and R
2
 in case of a simply supported at left end and translationally 

and rotationally supported at right end. 

In this case, the worst results are received when using four frequencies, and the best 

results are received when using six or nine frequencies. 

3.1.7 Translational and rotational spring – translational and rotational spring 

For a beam with translational and rotational restraints at both ends, the parameters of 

left and right end are symmetric. The predictions are made about the translational 

parameter coefficient and the accuracy measurements are displayed in Table 8. 

Table 8. Prediction of the translational parameter at right end of a beam translationally and rotationally 

restrained at both ends. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,929910 – 1,227524 32,497530 

4 0,977716 – 0,921568 13,662677 

5 0,998894 – 0,251842 14,227158 

6 0,999981 0,999040 0,054800 12,162234 

9 0,999991 0,999752 0,073718 19,569463 
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The values of VAF are discarded from the comparison table in cases of three, four and 

five frequencies. The VAF values for six and nine frequencies on the other hand are 

significantly close to perfect (VAF > 0.999). 

The ratio of MAE and the maximum expected result is around 1% in case of three and 

four frequencies. With six and nine frequencies it is quite close to 0 (0.055 and 0.074 

respectively).  

3.1.8 Conclusions 

Chapters 3.1.1 to 3.1.7 gave an overview of the test results of predicting either the 

translational or rotational spring coefficients on one end of the examined cases of 

vibrating beams. The accuracy parameters were compared among different numbers of 

input frequencies for each case. 

The overall results were rather pleasant in most of the cases, but the most accurate 

predictions based on the comparison of VAF and R2 were made in the cases of beams 

clamped or simply supported at left end and translationally and rotationally supported 

at right end. 

Figures 10 and 11 show the comparison of VAF and R2 values for each case of a beam 

elastically restrained at the boundary conditions. The cases marked with 1-5, 1-7, 1-8, 2-

5, 2-7, 2-8 and 8-8 are respectively the cases of beams analyzed in chapters 3.1.1 to 3.2.7.  

 

Figure 10. Comparison of VAF results among beams with different support conditions. 
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Figure 10 indicates that the gained VAF values that fit in the desired interval of  

[0, 1] are relatively uniform in most of the cases – only the cases of beams clamped or 

simply supported at left end and translationally and rotationally supported at right end 

show some deviation from the rest of the results. 

 

Figure 11. Comparison of R
2
 results among beams with different support conditions. 

On Figure 11, it can be seen that the results of R2 are rather uniform and close to 1 in 

most cases. The only exception is in case of a beam simply supported at left end and with 

a translational and rotational spring at right end – for some frequencies, the value of R2 

drops down to between around 0.65 and 0.75. 

Based on the analysis of the gained test results, the usage of neural networks for 

predicting the elastic support coefficients on one end of a beam with elastic supports at 

the boundaries is fairly justified. 

3.2 Cases of beams with intermediate elastic support 

Current chapter presents the test results of training neural networks to predict the 

rotational spring coefficients at the intermediate point of a beam with intermediate 

elastic support. Similarly to the previous section, the accuracy parameters under study 

are VAF, R2, the ratio of MAE and the maximal expected result, and neural network 
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training time. Four different cases of input frequencies are investigated – three, four, five 

and six.  

The input data is divided into two portions – size of the training set is 110 patterns and 

size of the test set is 15 patterns. The amount of data is smaller than in case of beams 

elastically restrained at the boundaries, since the calculation of the input data for a beam 

with intermediate support is significantly more time consuming. 

The beams under investigation have the following support conditions: 

1. clamped at left end, translational and rotational spring at intermediate support,  

clamped at right end; 

2. clamped at left end, translational and rotational spring at intermediate support,  

free at right end; 

3. simply supported at left end, translational and rotational spring at intermediate 

support, simply supported at right end; 

4. sliding at left end, a translational and a rotational spring at intermediate support 

and at the right end.  

The following four subsections give an overview of each of these cases at length. 

The placement of the intermediate support can vary along the length of the beam. In all 

the studied cases the intermediate support is such that the left part of the beam forms 

0.2 of the length of the beam and the right part is 0.8 of it. In the case of the beam 

clamped at both ends (characterized in Chapter 3.2.1) another example is performed 

where the placement of the intermediate support is such that the left part of the beam is 

0.6 of the length of the beam. 

For each case, the value of the rotational stiffness is varied by 10 at each step (starting 

from the value 10); whereas the translational parameter stiffness of the intermediate 

support and the stiffness coefficients of both end all have a fixed value of 10. 

3.2.1 Clamped – translational and rotational spring – clamped 

The vibrations of a beam clamped at both ends and translationally and rotationally 

restrained at the intermediate support are discussed in two parts. In the first example 
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the intermediate support is such that the left part of the beam forms 0.2 of the length of 

the beam, and in the second example, the according length is 0.6. The results of the 

accuracy criterions are compared on the terms of the lengths of the left and right part of 

the beam, and the number of input frequencies. 

The calculated data includes some patterns where the frequencies are substantially 

different from the rest. These patterns are retained in the training set, but discarded 

from the test set. The results of the prediction efficiency measurements are displayed in 

Table 9. 

Table 9. Prediction accuracy measurements for a beam clamped at both ends and with translational and 

rotational spring support along the span. Length of the left part of the beam is 0.2 of the beam length. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,899566 – 7,424009 5,011460 

4 0,977833 – 3,497116 28,664304 

5 0,921434 – 6,813843 32,815058 

6 0,831708 – 9,765779 10,080591 

 

The results of VAF are in all cases out of the boundaries of the region of the expected 

value; hence they are marked with the “–” sign. The values of the ratio of MAE and the 

maximum expected result are not very outstanding – varying from 3.5% to 9.8%. On the 

other hand, the values of the multiple coefficient of determination are considerably high 

– varying from 0.83 to 0.98. Better results are received when using four of five input 

frequencies; however, in these cases the training of the neural network takes 

significantly more time (on average, around 30 seconds), as opposed to 5 to 10 seconds 

in the other cases. 

In Table 10, the results of the prediction of the intermediate rotational spring 

coefficients for a beam clamped at both ends and the length of the left part of the beam 

being 0.6 of the length of the beam are depicted. 
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Table 10. Prediction accuracy measurements for a beam clamped at both ends and with translational and 

rotational spring support along the span. Length of the left part of the beam is 0.6 of the beam length. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,999630 0,980841 0,457090 5,290129 

4 0,999908 0,998835 0,235176% 16,517292 

5 0,997454 0,083723 1,316335 7,293741 

6 0,999891 0,998221 0,252580 10,970367 

 

From Table 10 it can be seen that the predictions in this case are much better than in 

case of the beam where the length of the left part is 0.2. The values of variance account 

for all fit in the desired range of [0, 1], whereas when using three, four or six frequencies 

the VAF is actually quite high – over 0.98. The only exception is when using five 

frequencies (VAF = 0.084). Also the values of R2 are incredibly high – in most cases above 

0.999 and in one case 0.997. 

The results displayed in tables 9 and 10 indicate that the position of the intermediate 

support plays a quite substantial role in the parameter coefficient identification – when 

the placement of the intermediate support is close to the boundary, the accuracy of the 

prediction is lower than with the intermediate support placed closer to the middle point 

of the beam. 

3.2.2 Clamped – translational and rotational spring – free 

The results of the measured efficiency parameters of a cantilever beam with an 

intermediate support are displayed in Table 11.  
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Table 11. Comparison of efficiency parameters of a cantilever beam with translational and rotational 

intermediate support. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 – – 1452,780136 10,795572 

4 – – 1458,280199 14,416095 

5 – – 501,611082 21,008090 

6 0,931531 – 7,221825 8,267138 

 

When using three, four or five frequencies, the values of VAF and R2 were extensively out 

of the boundaries of the interval [0, 1] where they should be, and in these cases the 

results are marked with the “–” sign. The ratio of MAE and the maximum expected 

outcome was enormous in these cases (1453%, 1458% and 502% respectively). 

The only case that produced meaningful results was when using nine frequencies as the 

input. The R2 in this case is 0.93 and the ratio of MAE and the maximum expected result 

is 7.2%. 

The reason behind the anomaly of the accuracy parameters of the cantilever beam with 

intermediate elastic support is that the training and test sets contain some patterns 

which are significantly different from other patterns. This causes overtraining – in some 

cases if the training set contains errors or very distinct values, or on the contrary, has 

very similar training patterns, the network may adapt to this noise and the capability of 

generalization may decrease, therefore producing random output for unseen inputs 

[23]. 

In the case of a beam clamped at both ends (described in Chapter 3.2.1) the test set was 

compiled so that it would not contain “alien” patterns, but in case of the cantilever beam, 

the test patterns were chosen randomly by not paying attention to the contrast of the 

patterns. The efficiency of the prediction could be improved by removing the strongly 

distinct patterns from the test set, and by also removing them from the training set the 

results improve even more significantly. 
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3.2.3 Simply supported – translational and rotational spring – simply supported 

The results of the efficiency of training the neural networks to predict the rotational 

intermediate support coefficient of a beam simply supported at both ends and with 

translational and rotational springs as the intermediate support are presented in Table 

12. 

Table 12. Efficiency parameters of a beam simply supported at both ends, with translational and rotational 

spring at intermediate support. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 0,988805 – 2,137762 7,689307 

4 0,991339 – 2,233350 7,821255 

5 0,981170 – 3,278713 5,351338 

6 0,993917 – 1,997735 5,595005 

 

Similarly to the previous case, since the training and test sets contain some patterns 

with frequencies that are distinct from the others, the results of VAF are not acceptable 

in the analysis, which is why the VAF results are discarded from the table. 

The values of the ratio of MAE and the maximum expected result are not remarkably wonderful, 

varying from 2% to 3.3%. On the other hand, the values of R2 are sufficiently high (0.98 to 

0.99), and the training times of the neural networks are low quite stable (around 5 seconds to 8 

seconds). 

Analogously to the previous case, the results of the predictions of the beam simply supported at 

both ends and with intermediate elastic support could be improved by removing the patterns 

out of line with the other patterns from either the training set of the test set. 

3.2.4 Sliding – translational and rotational spring – translational and rotational spring 

Table 13 outlines the efficiency results of the prediction of the intermediate rotational 

parameter coefficient in case of a beam which is sliding at left end and has a 

translational and rotational spring at right end and as an intermediate support.  
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Table 13. Accuracy of prediction of rotational intermediate coefficient for a beam sliding at left end, 

translationally and rotationally supported along the span and at the right end. 

frequencies R2 VAF 
   

             
    Training time (s) 

3 – – 9,379086 4,956197 

4 0,906975 – 3,173953 5,754903 

5 0,989193 – 0,962713 24,194533 

6 0,877611 – 4,572388 7,033587 

 

Once again, the values of VAF did not fit in the expected range of accuracy and they are 

left out from the table. When using three frequencies as the input for training the neural 

network, the efficiency of the prediction is very low – the ratio of MAE and the maximum 

expected result is 9.4% which means that the identified results differ from the expected 

results quite heavily. 

The best results in the context of the present case are received when using five 

frequencies as an input – R2 is almost 0.99 and the ratio of mean absolute error and 

maximum expected result is below 1%. 

The results could be boosted the same way as for the previous two cases – by reviewing 

the test and training sets and removing patterns that contain “noise” in the sense of 

training the neural networks. 

3.2.5 Conclusions 

Chapters 3.2.1 to 3.2.4 provided an analysis of the test results of the prediction of the 

coefficient of the rotational spring parameter in cases of the vibrating Euler-Bernoulli 

beams with intermediate elastic support. The efficiency of the predictions was measured 

for four cases of beams with intermediate elastic support. The results were compared 

among different number of input frequencies for the artificial neural networks. 

The analysis of the prediction efficiency shows that the results depend heavily on the 

input data of training the neural network. If the training set contains noise (some 

patterns that are substantially distinct from the others), it can cause overtraining of the 
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artificial neural network and become unable to make reasonable predictions on the test 

set. To avoid this behavior, the training and test sets of the cases should be reviewed and 

modified where needed. These results show that in some cases the natural frequencies 

do not contain sufficient information for the identification of the parameters of non-

classical boundary conditions. This fact has also been noticed by other authors in the 

case of structural health detection [24]. Therefore, some additional data, e.g. mode 

shapes [25] could be applied to extract the important features for the parameter 

identification in vibrating systems, but this is out of the scope of the present thesis.  
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Conclusion 

In the present thesis, an overview of the Euler-Bernoulli beam theory and the basics of 

artificial neural networks were presented. The main emphasis was on the practical 

implementation of training the artificial neural networks for predicting the stiffness 

parameters of the support conditions of the vibrating beams. 

The main purpose of the current paper was to study the frequencies of vibrating Euler-

Bernoulli beams with different non-classical support conditions, and to analyze the 

efficiency of predicting the support condition coefficients (either translational or 

rotational). The calculated natural frequencies of the vibrating beams were used as the 

input for training the neural networks. The results were computed for various cases, 

using different numbers of input frequencies (three, four, five, six, or nine) besides the 

different support conditions. 

The results of the predictions were analyzed in two different parts: the efficiency of 

prediction in case of beams with elastic support at the boundaries, and the efficiency of 

prediction in case of beams with intermediate elastic support. 

The analysis of the efficiency of prediction in case of beams with elastic support at the 

boundaries showed that the overall efficiency of the predictions was substantially high 

and the identified results were quite similar to the expected outcomes. The best average 

results among all conditions were received with the beam clamped or simply supported 

at left end and translationally and rotationally restrained at right end. But even in the 

worst cases, most of the results were considerably nice. 

The analysis of the efficiency of predicting the rotational coefficient at the intermediate 

support in case of beams with intermediate elastic support showed that the results 

greatly depend on the generation of the training and test sets. If the training data 

contains noise, then the efficiency of the prediction is rather low, but it could be 

improved by modifying the training and test data sets. Also, alternative methods should 

be elaborated to extract features for parameter identification of vibrating systems.   
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Mitteklassikaliste kinnitustingimuste tuvastamine 
tehisnärvivõrkude abil 

Magistritöö (30 EAP) 

Mairit Vikat 

Resümee 

Käesolev magistritöö uurib mitteklassikaliste kinnitustingimustega elastsete Euler-

Bernoulli talade vabavõnkumise resonantssagedusi. Eesmärgiks on vaatluse all olevate 

tala mudelite korral hinnata ning võrrelda tehisnärvivõrkude abil identifitseeritud 

jäikuse parameetreid elastsete kinnitustingimuste korral. 

Vaatluse all on kahte tüüpi talad: tala elastse otsakinnitusega ning tala vahepealse 

elastse toega. Mõlema variandi kohta töötatakse läbi rida näiteid erinevate 

kinnitustingimustega. 

Kuna kinnituste jäikusparameetrite arvutamine võnkumise diferentsiaalvõrrandist ei 

ole analüütiliselt võimalik, siis on mõistlik otsida sellele alternatiivi. Ühe variandina 

pakutakse käesolevas töös välja tehisnärvivõrkude rakendamine. 

Tehisnärvivõrgud põhinevad bioloogilistel närvivõrkudel, nagu näiteks inimese aju. 

Tehisnärvivõrgu peamiseks eeliseks teiste meetodite ees on tema võime olemasolevate 

näidete põhjal õppida, mis tähendab, et närvivõrke on võimalik treenida sisendi abil 

soovitud tulemusi produtseerima. Seega, vajaliku ülesande lahendamiseks pole enam 

tarvis ise kõiki parameetrite koefitsiente arvutada, vaid piisab, kui meil on olemas 

teatud hulk näiteid oodatavate koefitsientide kohta, ning nende näidete abil treenitud 

tehisnärvivõrk on suuteline ülejäänud tulemusi ise identifitseerima. 

Käesolevas töös antakse ülevaade võnkuvatest Euler-Bernoulli taladest ja nende 

võimalikest kinnitustingimustest, ning tutvustatakse tehisnärvivõrkude peamisi 

omadusi. Töö peamine rõhk on asetatud praktilisele osale, kus uuritakse kahte tüüpi 

elastseid talasid (elastsete otsakinnitustega ja elastse vahekinnitusega) ning 
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analüüsitakse tehisnärvivõrkude abil saavutatud ennustuste tulemusi erinevatel 

juhtudel. 

Lisaks erinevatele kinnitustingimustele võrreldakse tulemusi erineva sisendsageduste 

arvu (kolm, neli, viis, kuus või üheksa sagedust) korral. Saadud tulemusi analüüsitakse ja 

võrreldakse teatud täpsusparameetrite põhjal. 

Läbiviidud arvutuste ning analüüsi põhjal selgub, et enamikel juhtudel on ennustuse teel 

saavutatud tulemused üpris ligilähedased oodatavatele tulemustele, seega on võnkuvate  

Euler-Bernoulli talade kinnitustingimuste jäikusparameetrite ennustamisel 

närvivõrkude rakendamine mõistlik. 
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Appendices 

Appendix 1 – CD: Inputs and outputs of neural networks 

The thesis includes a CD as an appendix. The CD contains two folders, called 

“supports-at-boundaries” and “intermediate-supports”. 

The folder “supports-at-boundaries” has seven subfolders: 

1. “1-5” (clamped at left end, sliding with translational spring at right end); 

2. “1-7” (clamped at left end, free with translational spring at right end); 

3. “1-8” (clamped at left end, translational and rotational spring at right end); 

4. “2-5” (simply supported at left end,  sliding with translational spring at right 

end); 

5. “2-7” (simply supported at left end, free with translational spring at right end); 

6. “2-8” (simply supported at left end, translational and rotational spring at right 

end); 

7. “8-8” (translational and rotational spring at both ends). 

The folder “intermediate-supports” consists of five subfolders: 

1. “1-8-1(0.2)” – beam clamped at both ends and with a translational and rotational 

intermediate support (the length of the left part of the beam is 0.2 of the whole 

length); 

2. “1-8-1(0.6)” – beam clamped at both ends and with a translational and rotational 

intermediate support (the length of the left part of the beam is 0.6 of the whole 

length); 

3. “1-8-3” – beam clamped at left end, free at right end, and translationally and 

rotationally restrained at intermediate support; 

4. “2-8-2” – beam simply supported at both ends and with a translational and 

rotational intermediate support; 

5. “4-8-8” – beam sliding at left end and translationally and rotationally restrained 

at intermediate support and right end.  
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Each of the above folders contains subfolders for each number of frequencies and a 

Microsoft Excel file that holds the information of the accuracy parameters. 

Inside the folder of each number of frequencies there are two input files: training and 

test sets; two output files: expected and identified results; and two images: an image of 

the test results and an image of the training results. 

 


