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Introduction

The free vibration of elastically restrained beams is a subject of practical engineering
interest that has been studied by various investigators over the years. One of the most

popular theories dealing with the vibration of beams is the Euler-Bernoulli beam theory.

In the current thesis, the frequency equations for the Euler-Bernoulli beams with non-
classical boundary conditions are considered. Two types of beams are studied: beams

with elastic supports at the boundaries, and beams with intermediate elastic support.

The elastic supports of beams play an important role in structural performance. In the
case of vibrating structures the frequencies of vibration depend on the stiffness
parameters of elastic supports. The stiffness characteristics of elastic supports can
change during the exploitation of structures due to environment conditions or damages,
and as a result, they can significantly influence the performance of the structures.

Therefore, it is important to identify these parameters online during the exploitation.

The calculation of the stiffness parameters of the support conditions from the governing
equations of the vibrating beams is an inverse problem and cannot be done analytically.
Therefore, some alternatives for reaching the goal of the task could be considered. One

option is to use artificial neural networks.

Artificial neural networks (ANNs) are a simulation of biological neural networks which
means that they are capable of learning by examples. Since ANNs are able to find
relationships between input and output data, they can be trained to produce a desired
output based on the input. In terms of the vibrating Euler-Bernoulli beams, this means
that all of the frequency equations needed to solve a task do not need to be computed or
measured anymore; instead, a smaller amount of obtained information is sufficient, and

the rest of the necessary data could be predicted by the artificial neural network.

The main goal of the current thesis is to study the free vibration of the Euler-Bernoulli
beams with non-classical boundary conditions and to analyze the efficiency of predicting
the support coefficients based on the calculated training data provided to the neural

networks. For both types of beams - beams with elastic supports at the boundaries and



beams with intermediate elastic support - several examples with different support

conditions are investigated.

The thesis is arranged into three main chapters. Chapter 1 provides an overview of the
Euler-Bernoulli theory and the Euler-Bernoulli beam model. The cases of possible
boundary conditions are introduced, and two examples of finding general solutions to

the beam models are provided.

In Chapter 2, the basics of artificial neural networks are presented. The section explains
the basic idea of a perceptron, and gives an overview of the architectures and learning
methods of artificial neural networks. The learning algorithm used in the practical
implementation of the current thesis - called the error back-propagation - is

characterized in detail.

The third chapter - the practical implementation of the thesis - focuses on two types of
beams: cases of beams with elastic supports at the boundaries, and cases of beams with
intermediate elastic support. For predicting the support coefficients of the beams,
artificial neural networks are created and trained in the MATLAB environment. For each
case, the acquired test results are compared to the expected results, and characterized

based on predefined efficiency parameters.



1 Euler-Bernoulli beam theory

1.1 Overview of the Euler-Bernoulli beam theory

A beam is a common structural element in structural and mechanical engineering -
some examples of beams are a bookshelf, the frame of a car, the plank of a seesaw [1].

Beams are capable of enduring vertical (sometimes also horizontal) load by bending [2].

The free vibration of beams is explored in attempt to simulate the dynamics of different

structural and mechanical components [3].

One of the theories that deal with the vibration of beams is the Euler-Bernoulli beam
theory. It is used for calculating the load-carrying and deflection characteristics of a
beam. The Euler-Bernoulli beam theory was first formed by Leonhard Euler and Daniel
Bernoulli in the middle of the 18th century, but it became the cornerstone of engineering

only after the construction of the Eiffel Tower and Ferris wheel in the late 19th century

[4].
The basic assumptions of the Euler-Bernoulli beam theory are:
1. The length of the beam is significantly larger than the width and thickness of the
beam.

2. The material of the beam is linear-elastic (strain is directly proportional to

stress).

3. Planes perpendicular to the neutral axis remain perpendicular after deformation

[5].

1.2 The Euler-Bernoulli beam model

In the present paper, the frequency equations for the Euler-Bernoulli beams with
elastically retrained end and intermediate supports are examined. The restraints are

provided by either a translational or rotational spring, or both.



Figure 1 represents a simple beam that is clamped at the left end and has a translational

and a rotational spring at the right end.
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Figure 1. Beam clamped at left end, rotationally and translationally restrained at right

end.

On Figure 1, w(x) is the deflection, x is the location at distance x along the length of the
beam L, Rr is the rotational spring constant at right end (x =L) and 7% is the
translational spring constant at right end (x = L). For the free vibration of the beam,
also E7- the flexural rigidity, A - the cross-sectional area of the beam, and p - density of

the material need to be considered.

The free vibrations of a beam are described by the equation [6]

W (x,t) 9?W (x,t)
= 1.1
El— G —+pA—73 0 (1.1
By dividing it with pA, we get
EI 0*W(x,t) 0*W(x,t
JWen WD _ (1.2)

pA  Ox* a2

The function W (x, t) depends on distance x and time t. For free vibrations the solution

can be sought in the form
W(x,t) = w(x) - sin(wt), (1.3)

where w is the natural frequency and w(x) is the mode shape of the beam. Substituting

(1.3) into (1.2) and eliminating the trivial solution sin(wt) = 0 we obtain
El-w!"(x) — pAw?w(x) = 0, (1.4)

where £ is Young’s modulus of elasticity, /is the moment of inertia, p is the material

mass density, and A is the cross-sectional area of the beam.



Introducing the non-dimensional quantities

x ., pAw’L* (1.5)
L’ EI "’

the equation of mode shapes can be presented as
wl” —k*w = 0. (1.6)
The general solution of the equation (1.6) is as follows:
w = ¢; sinké + cycos k& + c3 sinh k& + ¢, cosh k€. (1.7)

Here, c;, ¢c3 c3 c4are the integration constants, kis the natural frequency parameter we

are looking for,and w = w(¢§), & € [0,1].
1.2.1 Model of a beam with intermediate support

A beam with an intermediate support can be represented in a similar way. Figure 2
shows a beam that is clamped at left end, has a rotational and a translational spring at

right end, and a translational spring as an intermediate support.
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Figure 2. Beam clamped at left end, translationally supported in the center, rotationally and translationally

supported at right end.

In case of a beam with intermediate support, the beam is divided into two parts with
two different coordinate systems. The length of the left part of the beam is L;, whereas
the length of the right part of the beam is Z2 The general solution of the left part of the

beam can be expressed with the following equation:

wy = ¢ sink,& + cycos k& + c3 sinh k& + ¢4 cosh ki &;. (1.8)



In this case,

X1

w
$1= L_I:W1 = L_l'xl € [0, L,]. (1.9)

The frequency parameter we are looking for can be expressed as follows:

214 4
i =2k (1) e, (1.10)
where
214
Q2 = pAZjI L (1.11)

The equation for the general solution of the right part of the beam is

Wy = c5Sink,&; + cgcos k&5 + ¢; sinh ky &, + cg cosh k&5, (1.12)
where
Xy w
EZ =, Wy =7,X% € [OFLZ] (113)
L, L,

The frequency parameter in this case is

214 4
s PAWL; (Lz) )
= =(=£) 02 1.14
k, o ) (1.14)

Here, 22 is the same as in equation (1.11).

1.3 Cases of boundary conditions

In the present thesis, the following boundary conditions of a beam are considered on the

left end:
1. Clamped:
{W(O) =0
w'(0) =0



2. Simply supported:

{W(O) =0

w”(0)=0

3. Free:
{W”(O) =0
w'"'(0)=0

4. Guided/sliding:
{W’(O) =0
w'"'(0)=0

5. Sliding with translational spring:
{W”’(O) + Krw(0) =0
w'(0) =0
6. Free with translational spring:
{W’”(O) + Krpw(0) =0
w'(0) =0
7. Translational and rotational spring:

{W"'(O) + Kpw(0) = 0
w"(0) — Kp,w'(0) = 0

On the right end, the equations for the boundary conditions are analogous:

1. Clamped:
{W(l) =0
w'(1) =0

2. Simply supported:
{ w() =0
w'(1) =0

3. Free:
{W”(l) =0
Wlll(l) =0

4. Guided/sliding:
{w’(l) =0
w'" (1) =0



5. Sliding with translational spring:
{W”'(l) + Krpw(1) =0
wi(l)=0

6. Free with translational spring:
{W”’(l) - KTRW(].) = 0
w’'(1) =0
7. Translational and rotational spring:
{W”’(l) — Krgw(1) =0
W”(l) + KRRW,(]‘) = 0
In the boundary constraints the following dimensionless translational and rotational
stiffness coefficients at the ends of the beam have been introduced:

X _TLL3K _TRL3K _RLLK _ Rgl
L= gy ’"TR™ gy »7RL™ g 7RR™ pr-

For the following part - finding the constants in the general solution to the mode shape -

the first, second and third derivations of w(x) are needed:

w = cq sinké + ¢, cos k€ + c3 sinh k& + ¢4 cosh k&, (1.15)

w' = k(c; coské — ¢, sinké + c3 cosh k& + ¢4 sinh k§), (1.16)
w'" = Kk?(—c; sink& — ¢, cos k& + c5 sinh k& + ¢, cosh k&), (1.17)
w'" = k3(—c; cos k& + ¢, sink& + c5 cosh k& + ¢4 sinh k§). (1.18)

The equation and derivations on the left end of the beam are respectively the equation

and the derivations on the position x = 0:

w(0) =c, + ¢4 (1.19)
w'(0) = k(cy +¢3) (1.20)
w'(0) = k?(—c, + cy) (1.21)
w'"(0) = k3(—cq + ¢3) (1.22)

The equation and derivations on the right end are on the position x = 1:

w(1) = ¢y sink + ¢, cosk + c3 sinh k + ¢, coshk (1.23)
w'(1) = k(cy cosk — ¢, sink + c3 cosh k + ¢4 sinh k) (1.24)
w'' (1) = k?(—c; sink — ¢, cosk + c3 sinh k + ¢, cosh k) (1.25)
w'’(1) = k3(—c; cosk + ¢, sink + c3 coshk + ¢, sinh k) (1.26)

10



1.3.1 Beam clamped at the left end and having translational and rotational spring at the

right end

As an example, we are going to find a general solution for the beam which is clamped at

left end and has translational and rotational support at right end.

To find the frequencies, we need to construct a four by four matrix where the first two
rows each contain the four coefficients from the equations of the left end of the beam
and the following two rows each contain the four coefficients from the equations of the

right end of the beam.

According to the boundary condition of the left end - clamped - the equations of the left

end of the beam, using equations (1.19) and (1.20) are as follow:

{ w(0) =c;+c, =0 (1.27)
w'(0) =k(c; +¢c3)=0 (1.28)

On the right end, supported with a translational and rotational spring, we use equations

(1.23)-(1.26) and get

w'"(1) — Krgw(1) = k3(—c; cosk + ¢, sink + c3 coshk + ¢, sinh k) —

—Krg(cqy sink + ¢, cosk + c3 sinhk + ¢4 coshk) =0 (1.29)
w' (1) + Kggw'(1) = k?(—c; sink — ¢, cosk + c5 sinh k + ¢4 cosh k) + (1.30)
l +Kgr(ci cosk — ¢, sink + c3 coshk + ¢, sinhk) =0

Using the equations (1.27)-(1.30) we create a matrix D with the coefficients from these

equations:

0 1 0 1

0
p=| 1 0 1 , (1.31)
az1 A3z A3z dzg

Qg1 Q4 Qg3 Qg

where the coefficients denoted with a;; are respectively
asz, = —k3 cosk — KTR sin k, asp; = k3 Sin k— KTR COS k,

asz3z = k3 COSh k — KTR sinh k, a3y = k3 Sinh k— KTR cosh k,

11



ay = —k?sink + Kgprcosk, a4y = —k? cosk — Kgp sink,
ay3 = k? sinh k + Kgp coshk, agy = k’cosh 4+ Kgg sinh k

The determinant of the matrix D has to be equal to zero for a non-trivial solution to exist

in this homogeneous system [7].
1.3.2 Beam with intermediate support

Similarly to the previous example, the coefficients for the general solution for the beam
with intermediate support can be found. In this example, we consider a beam that has
sliding with translational spring at left end, a translational and a rotational spring as an

intermediate support, and is simply supported at the right end.

Similarly to simple supported beam, a matrix with the coefficients of the general
solution has to be constructed, but in this case the dimensions of the matrix are eight by

eight.

The first two rows of the matrix contain coefficients from the equations of the left end of
the beam; the next two rows contain coefficients from equations of the right end of the
beam. The following four rows contain coefficients from the equations of the

intermediate part of the beam.

The boundary condition at the left end of the beam is sliding with translational spring.

Using the equations (1.19), (1.20) and (1.22) we get the equations:

L3 L3
w;"""(0) + K7, (Tl) w;(0) = kl?’(_cl +¢3) + Ky, (Tl) (cy+¢) =0 (1.32)
wy'(0) = ky(c; +¢3) =0 (1.33)

By using equations (1.23) and (1.25) we get the equations for the simply supported right

end:

{ w(l) = cgsink, + cgcosk, + ¢; sinhk, + cgcoshk, =0 (1.34)
w' (1) = ky*(—cs sink, — cg cos ky + c; sinh ky + cg coshk,) = 0 (1.35)

12



For the equations on the intermediate part of the beam we get the following equations:

( wi (1) - %WZ(O) =0 (1.36)
1
wi(1) —w,'(0) =0 (1.37)
< KR%W{(l) + i—iw;'(n —-wy(0)=0 (1.38)
Ly (Ly\? L\ o (1.39)
K7 () m = (F2) w' @ +wi© =0

where Kj, is the rotational constant in the intermediate point and Ky is the translational

constant in the intermediate point.

Using equations (1.19)-(1.26) we get the following equations from (1.36)-(1.39):

L
¢y sinky + ¢ cos ky + c3 sinhky + ¢4 coshky — L—2 (cg +¢cg) =0 (1.40)
1
ki(cicosky —cysinky + czcoshky + ¢4 sinhky) —ky(cs +¢c;) =0 (1.41)
L
Ky Tzkl (cycosky — ¢y sinky + c3 coshky + ¢, sinhky) +
(1.42)
4 L
+L—2k12(—cl sink, — ¢, cos ky + c3 sinhky + ¢, coshky) — k,*(—cg + cg) = 0
1
Ly (Ly\? . .
Ky T (T) (¢, sinky + ¢y cos ky + c3 sinhky + ¢, cosh k) — (1.43)
L 2
- (L—Z) k13(—c1 cos ky + ¢y sinky + c3 coshky + ¢4 sinhky) + k23(—65 +c¢;)=0
1
Using equations (1.40)-(1.43) we create an eight by eight matrix of the coefficients:
a1 Q2 a3 a4 O 0 0 0
ay; 0 a3 0 0 0 0 0
0 0 0 0 azs aze az; dsg
D=| 0 0 0 0 a4 Qi Q47 Qug | (1.44)

dsy Qsy As3 Ase 0 asg 0 asg
de1 Qg2 Qg3 Qs Aes 0 ag; 0
az1 A7z Q73 a7z 0 az;g 0 agpg
agy Qgy Qagz QAgy ags 0 ag; O

where ajare as follows:

13



az = ki,

azs = sink,,
az; = sinh k,,
ays = —sink,,
ay; = sinhk,,
asq = sinky,

as3 = sinh k4,

L,

Acg = —
56 Ll’
g1 = k1 coS kl’
Qg3 = kq coshky,

Qg5 = _k2r

_ L Ly 5 .
a _KRTkl coskl—L—lkl sink;,

L, Ly 5 .
a73 = KRTkl cosh kl + L_lkl sinh kl'

A7¢ = kzz;
Ly (Ly\? L,\?
a81 = KTT:L(TZ) sin kl + (L_2> k13 cos kl'
1
Ly (L\* Ly\?
Qg3 = KTT (T) sinh kq — (L_1) k13 coshky,

3
Qgs = _k2 ,

The rest of the combinations of boundary conditions of the beams can be treated in a

similar way.

14

a3 = ki,

azg = cos ky,
azg = coshk,,
aus = —cos ky,
asg = coshk,
asy; = coS ky,

L,
asg =77
Ly
Agy = _k1 sin kl’

a64 = kl Slnh kl'

ag7 = —ky,

_ L, . Ly
a, =—Kp T kqsink, — I ki“cosky,

1

Ly, Ly 2
A74 = KR Tkl SlTlhkl + L_1k1 COShkl,

azg = —kzz'
Ly (Ly\? L\* 5 .
a82 = KT_<_) coS kl - <_> kl sin kl'
L Ly
Ly 2 L\? 5
agy = Kr— (—) coshk, — (—) k" sinh k4,
L Ly
ag7 = kz3

14



As an example, some numerical values of the frequencies calculated for a beam clamped
at left end and free at right end (called a cantilever beam), with translational and
rotational springs at the intermediate support are depicted in Table 1. The calculated
values of the rotational stiffness coefficients k- = {10, 100, 1000} are outlined along the
values reported by Lau [8], based on the fixed value of k: = 10 of translational stiffness
coefficient. The results are compared for modes three, four and five. The left column for
each mode contains the results acquired by the author of the current thesis, and the

right column contains results presented by Lau [8].

Table 1. Frequency parameters for a cantilever beam with translational and rotational intermediate support.

Comparison to the results reported by Lau [8].

mode =3 mode =4 mode =5
k- k:=10 k=10 [8] k:=10 k:=10 [8] k:=10 k:=10 [8]
10 8,023621 8,02362 11,002136 11,00212 14,205721 14,20572
100 8,423806 8,42381 11,008224  11,00821 14,355295 14,35528
1000 8,599826 8,59981 11,011199 11,01121 14,415894  14,41589

The values presented by Lau [8] and the values obtained with the present approach after
rounding the values to five decimal points are almost equal. Only in a few cases, there is

a slight difference of size 0.00001 or 0.00002.
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2 Artificial neural networks

Artificial neural networks have been influenced by the natural networks of biological
neurons in the (human) brain [9]. Data processing in the brain is carried out by highly
interconnected neurons which send out electric impulses through the neural network
[10]. Each neuron is a cell that uses biochemical reactions to receive, process, and
transmit information. Among the neurons there are dendrites (treelike networks of
nerve fibers connected to the cell body) and axons (a single long fiber extending from
the cell body) which are connected to other neurons through synapses [11] (the links
between one neuron’s axon and another’s dendrite [12]). The structure of a biological

neural network in the brain is shown on Figure 3.

//
\ J--’ /
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N\ —_~ - Cell Body
N , R

I Gl 2 =7

\‘\\ = .»—"’_-/ »

\‘_;__\\_/17 <
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‘>_/< N Synapse /}\ Dendrites
\«\?} b ToAN) e
, ~ L
g \/ N

Figure 3. Structure of biological neural network [13].

The transmission of impulses from one neuron to another is a complex chemical process
[11] in which signals are sent to other neurons along the axon and received through the
dendrites, and as a result, certain chemicals are released [12]. Since the information is
stored in the connection strengths between neurons in the brain [13], the synapses

manage the work of the brain and are in charge of human memory [14].
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2.1 Overview of artificial neural networks

Artificial neural networks (ANNs) can be created by simulating biological nervous
systems on a computer [10]. ANNs consist of simple computational units called artificial
neurons, or simply neurons. The synapses are represented by connection weights that

adjust the effect of input signals [11].
2.1.1 History

In the history of artificial neural networks research, there have been three periods of
considerable activity [12]. The first was in the 1940s after McCulloch and Pitts had
introduced simplified artificial neurons [11], the second took place in the 1960s with
Rosenblatt’s perceptron convergence theorem, and Minsky and Papert’s work showing
the limitations of a simple perceptron. As a result of Minsky and Papert’s work the
enthusiasm of most researchers in the computer science community was diminished. In
the 1980s, the interest in artificial neural networks began to rise again and artificial

neural networks have become the subject of more and more attraction ever since [12].
2.1.2 Computational model

A neuron receives n signals xy, ..., X, from other neurons through synapses:

X1
xn]

Each input is multiplied with a weight coefficient (called synaptic weight) which can be

X =

either positive or negative. The synaptic weights can be denoted with a W:
W=[wy - Wwg].

The values of inputs xj, ..., x»are multiplied with the corresponding weight coefficients to

get the weighted sum [14]:

X1
NET =W -X=[w; - Wn]-[5]=W1x1+---+ann.

17



If the total value NET is above a threshold £, the neuron fires an impulse that is carried
out to other neurons; and if the sum of incoming signals is below the threshold, the

neuron stays inactive [13].
2.1.3 Perceptron

The first architecture of an ANN, called perceptron, was introduced in 1958 by
Rosenblatt. Perceptron involves three types of neuron layers - input layer, hidden layer
and output layer. The neurons (nodes) on the input layer allocate the input signals to the
processing layers [13]. The first processing layer is the hidden layer (called hidden
because of no external connections - they only receive input from other processing units
and generate output to other processing units) which performs a significant role in the
neural network since it captures the pattern in the input data and carries out a complex
mapping between the input and output neurons [15]. The nodes on the second
processing layer - the output layer - send out the received signals to the outer world. In
a classic perceptron, only the connection strengths between the hidden nodes and the
output nodes are modifiable; the connection strengths between the input nodes and the
hidden nodes have to be preset before the training [13]. The neuron layers of

a perceptron are illustrated on Figure 4.

OUTPUT LAYER

HIDDEN LAYER

INPUT LAYER

Figure 4. Three-layered perceptron structure [15].

18



At first, there was a keen interest in perceptrons, but soon problems began to arise - it
became evident that with the growth of the scope of the task set complexity of the
network grew exponentially. At first, the prospect was that real problems could be
solved without maximal complexity, but Minsky and Papert demonstrated that the
solutions to many basic problems require a full number of neurons. One solution seemed
to be to add new layers of weights to the perceptron and train them, but no algorithm
could be found that would allow that. That is why after the research of Minsky and

Papert the attraction to ANNs abated for a couple of decades [13].

The reason for not finding a working training method for the three-layered perceptron
came out to be using the hard threshold as an activation function of the neurons [13].
The activation function (also called transfer function) is a mathematical formula that
takes the input signal of the neuron and calculates the output [9]. To obtain a training
method that would work on the perceptron, a continuous function (for example, a
sigmoidal function or a hyperbolic tangent function) should be used instead of the hard
threshold [13]. The most common activation functions used in ANNs are

1

e sigmoid (logistic) function: f(x) = T

e hyperbolic tangent function: f(x) = tanhx,

e sine or cosine function: f(x) = sinx or f(x) = cos x [15].

The most frequently used one of these is the sigmoid function, which is also used in the

practical implementation of the current thesis (described in Chapter 3).
2.1.4 Architectures
Based on their architecture, ANNs can be classified into two categories:

e feed-forward networks;

e recurrent (feedback) networks [12].

In a feed-forward network, sending a signal from one neuron to another can only occur
one way - in a feed-forward manner; this means no backward connections (loops) exist
[11]. Feed-forward networks produce only one set of output values from a given input

since their response to a new input pattern is independent of the previous state [12].

19



Contrary to feed-forward networks, in recurrent networks the signals can be sent either
way between the neurons because of loops in the network [16]. When a new input
pattern is introduced, the neuron outputs are computed and due to feedback
connections the weights of each connection can be modified, leading the network to

enter a new state [12].
2.1.5 Learning methods

One of the major advantages of ANNs over traditional systems is that instead of
following rules specified by humans, they learn the rules automatically from
representative examples - training patterns. The learning (also called training) process
in ANNs means adjusting the connection weights of artificial neurons to achieve efficient
results when performing a specific task [12]. Since the computation of a neuron varies
depending on the weights, we can accomplish the desired output by adjusting the
weights of the neuron. As the network may contain a large number of neurons, it is
difficult to find the necessary weights by hand. To simplify the process, there are certain
training algorithms for ANNs that can adjust the weights of the neurons to receive better

results [17].

The learning paradigms in ANNs can be divided into two major categories: supervised
learning and unsupervised learning [16]. The difference between the two methods is
that supervised learning involves an external teacher that controls the learning process
in the network by providing the desired responses for each output node, whereas

unsupervised learning has no external teacher [11].

In supervised learning, an external teacher provides the input vector with training
examples to the input layer together with a set of expected outcomes from the output
layer. To regulate the connection weight changes in the ANN, the errors between the
desired and the actual result of each node in the output layer are found [11]. Supervised
learning methods usually work off-line which means that learning and operating are
carried out separately, not at the same time like in on-line learning [9]. One of the most
common training algorithms of supervised learning, also used in the practical
implementation part of the present thesis, is back-propagation algorithm. An overview

of this algorithm is given in Chapter 2.2 of the thesis.
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Contrary to supervised learning, in unsupervised learning there is no previously known
set of categories into which the patterns are supposed to be classified. Instead, the ANN
is trained to respond to patterns within the input vector and has to develop its own
representation of the input [11]. Unsupervised learning is also called self-organization
since it self-organizes the provided data into similar classes. Examples of unsupervised

learning algorithms are Hebbian learning and competitive learning [16].

Neural networks can be trained in two modes: online and offline (batch mode). Online
learning means that the network learns and operates at the same time [9] - the weights
of each input sample are calculated and modified after each sample [11]. In the batch
training mode the learning phase and the operating phase are separated - the weight
changes are calculated after each input sample, but they are accumulated until the end of
one pass through the whole training set, called an epoch. After each epoch, the
contributions of the nodes are added up and the weights are adjusted with the

compound value [11].
2.1.6 Applications

Artificial neural networks can be used in various fields because of their adaptive nature
of learning by examples and the ability to treat complicated problems with ease. In
addition to modeling real neural networks, for example to study the behavior of animals
[17], these characteristics make ANNs widely usable in the area of classification and
prediction (pattern recognition, forecasting) where understanding of the problem to be

solved is insufficient but the training data is available [9].

2.2 Error back-propagation

Back-propagation is the most widely used supervised learning algorithm in feed-
forward multi-layer neural networks [16]. The algorithm was first introduced by Bryson
and Ho in 1969 and independently rediscovered by Werbos in 1974, by Parker in the
middle of the 1980s and by Rumelhart and Williams in 1985 [18]. The back-propagation
algorithm had a substantial influence in the reappearance of neural networks in the

middle of the 1980s after the decrease of interest in them in the 1960s [16].
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The goal of training a back-propagation neural network is to retrieve a desired output
when feeding a certain input to the network [17]. This is done by measuring the error
between the acquired result and the desired result and reducing this error to a
minimum - the smaller the error, the better the network (a perfect network would have

an error of size zero) [10].

In back-propagation neural networks, the neurons are arranged into layers - the
training data is received by the input layer and the output is delivered by the neurons on
the output layer. The training vector of expected results on the output layer is provided
by the external teacher. There can be one or more hidden layers [17] - the more hidden

layers there are, the more complicated the network gets [16].

The first step in training the network is setting all connection weights in the ANN to
small random numbers [10]. The example patterns are passed forward from the input
layer to the output layer, producing an output pattern based on the random connection
weights [16]. The next step is measuring the error - the difference between the received
outcome and the expected outcome. In the back-propagation step these errors are
passed back through the neural network and the connection weights are modified, based
on the calculated contribution of each hidden node and determination of the necessary
adjustments [16]. The adjustment of weights is repeated many times to successively
reduce the error until it no longer changes [10]. As a result, the neural network has been

trained to learn from examples.
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3 Practical implementation of ANNs

The practical implementation of the current thesis includes creating ANNSs, training and
visualizing them and comparing the results. Predictions are made about the support
coefficients based on the natural frequencies of the vibrating beams. An overview of the
results received is provided in two sections - Chapter 3.1 shows the results of vibrating
beams having elastic supports at the boundaries and Chapter 3.2 outlines the results of

beams with intermediate elastic support.

The ANNs for the predictions are created in MATLAB programming environment.
MATLAB is extensively used for solving technical computational problems. It can be
used to perform numerical calculations, develop different algorithms, analyze and
visualize data [19]. Extending MATLAB with Neural Network Toolbox adds functions
and graphical tools for designing, training, simulating and visualizing artificial neural

networks [20].

To evaluate and compare the effectiveness of the artificial neural networks created, the
mean absolute error (MAE), the variance account for (VAF) and the coefficient of

determination (R?) are calculated.

The mean absolute error is a measurement of difference between the predicted values
and the acquired values. The mean absolute error over all the patterns is expressed by

the following equation:

n
1
MAE = ;2|nti — ), (3.1)
i=1
where n is the number of patterns in the test set, n;is the measured value and n, is the
predicted value [21].

The coefficient of determination is used to measure the reliability of the prediction of
future outcomes, based on related examples. This value can be calculated using the

equation
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where n,,is the mean of target values n; [22]:

n

1
n, = ;z ng,. (3.3)

i=1
The variance a