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Effects of Data Distributions and Distance Measures in Representa-
tional Similarity Analysis

Abstract:
Representational Similarity Analysis (RSA) is an analysis technique often used in

Computational Neuroscience. In the context of measured brain data, it allows us to get
representations of various stimuli in the brain and compare these representations between
different brain regions, between different species and different modalities of measured
data. Comparing data gathered using different modalities is a particularly challenging
task in neuroscience because it would require us to perform mapping between modalities
in question, which in some cases can be ill-defined. The task of comparing brain-activity
data with computational or behavioral models might be even more challenging. RSA
addresses all mentioned issues.

One question that arises is how much linear correlations get distorted after apply-
ing RSA, which is addressed in this study. We consider in detail how correlations
between two arrays of underlying data influence correlations between corresponding
representations after applying RSA.

Results show that in all cases rank correlations in processed data are lower or equal
than linear correlations in initial data. This effect is particularly noticeable for intermedi-
ate values of linear correlation (0.3-0.6). The implication is that RSA underestimates
linear correlations captured by underlying data. In other words, correlations in initial
data tend to be higher or equal compared to the ones calculated through RSA. Since
some brain studies involving RSA make conclusions about dependence structure in data
based on correlations between calculated representations, it is be useful to know how the
real correlation structure gets distorted. In a broader perspective, it might influence what
we consider a "high" or "low" correlation in the context of RSA and when correlation is
significant enough for us to conclude that two arrays of data are interdependent.

Keywords:
Representational similarity analysis, generation of correlated data, probability distribu-
tions, distance measures

CERCS: P170 Computer science, numerical analysis, systems, control
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Andmete jäotuste ja kauguste mõõdute mõjud esindusliku sarnasuse
analüüsis
Lühikokkuvõte:

Esindusliku sarnasuse analüüsis (RSA) on analüüsimise töörist sageli kasutatav arvu-
tuslikus neuroteaduses. Ajust mõõdetud andmete kontekstis see annab meile võimaluse
saada erinevate stiimulite esindusi ajus ning võrrelda neid esindusi erinevate aju alade,
erinevate loomuliikide ja erinevate modaalsuste vahel. Erinevate modaalsuste kaudu
kogutud andmete võrdlemine on eriti raske neuroteaduse ülesanne sest see vajab meilt
mingil viisil seostada neid moodalsusi omavahel, mis mõnikord võib olla ebatriviaalne
ülesanne. Ajust kogutud andmete arvutusliku või käitumise mudelitega võib olla veelgi
raskem. RSA tegeleb mainitud probleemidega.

Üks küsimus mis tekkib on kui palju lineaarsed korrelatsioonid muutuvad pärast RSA
kasutamist, mis on selles tööd uuritud. Meie vaatleme detailselt kuidas korrelatsioonid
kahe algmassiivi vahel mõjutavad korrelatsioone vastavate esinduste vahel pärast RSA
kasutamist.

Tulemused näitavad, et kõigil juthudel järgu korrelatsioonid töödeldud andmetel
on väiksem või samad kui lineaarsed korrelatsioonid algandmetes. See effekt on eritiv
nähtav kui lineaarne korrelatsioon kuulub vahepealsete väärtuste hulka (0.3-0.6). Järel-
dus on see, et RSA hindab alla lineaarseid korrelatsioone algandmetes. Teistes sõnades,
korrelatsioonid algandmetes on tavaliselt suurem või samad võrreldes RSA kaudu arvu-
tatud korrelatsioonidega. Sellepärast, et mõned aju uuritused mis kasutavad RSA teevad
järeldusi sõltuvuse struktuurist võrreldes arvutatud representatsioone, teadmine sellest,
kuidas tegelik korrelatsioonide struktuur moonutatakse oleks väga kasulik. Laiemas
perspektiivis, see võib mõjutada meie arusaamist sellest, mis on suur või väike korrelat-
sioon RSA kontekstis ning millal korrelatsioon on piisavalt märkimisväärne selleks, et
järeldada et kaks andmete massiivi are omavahel sõltuvad.

Võtmesõnad:
esinduslik sarnasuse analüüs, korreleeritud andmete generatsioon, tõenäosusjäotused,
kauguse mõõdud

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
Representational Similarity Analysis is a popular framework for analyzing data in neu-
roscience. RSA was developed as a way to relate data from different branches of
neuroscience: measured data, computational models and behavior (figure 1). Even if
we consider only brain activity measurement, RSA can be very useful by giving us
a possibility to easily relate data gathered between different brain regions, between
different individuals, between different species and between different modalities (such as
singe-cell recordings, fMRI, EEG and others).

Figure 1. Problems that RSA was designed to address. Image taken from [KMB08].

RSA is based on a principle of a second-order dissimilarity: instead of comparing
data gathered under two different circumstances directly, perhaps by creating some
correspondence between them, we instead compare the differences between each pair
of experimental conditions. Practically speaking, if we have a series of arrays of data
with each array corresponding to an experimental condition, we compare how these
arrays are different for given circumstances, and then compare it with differences in
arrays collected under different circumstances. By calculating these differences between
each pair of experimental conditions, we get a symmetric n × n matrix, which is
called Representational Dissimilarity Matrix (figure 2). RDM captures how a series of
experimental conditions is represented in a region of interest in a brain.

By applying RSA, we can compare representations of data across different brain
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Figure 2. Second-order dissimilarity and construction of RDM. Image taken from
[NWW+14].

regions or across species. However, application of RSA may bring changes to correlations
between two arrays of initially measured data.

An example: the original RSA article mentions a comparison of signals of different
modalities elicited in human and monkey ITs [KMB08]. The resulting correlation
between the two RDMs is 0.49. Is neuroscience, such correlation is considered high
enough to make conclusions that two regions are somehow related. However, if "real"
correlation between two datasets (implying one of them is mapped to another in some
way so that we have same dimensionality of data) is lower, meaning that application
of RSA results in inflated correlations, then there will be a need to reassess previous
applications of RSA to correlated data.

In this thesis, we check how Pearson (linear) correlation between two arrays of data
can influence Kendall-tau (rank) correlation in processed data. We do this by generating
correlated data by sampling it from different distributions, varying dimensionality of
data and changing distance measures when calculating each RDM entry. The work
includes implementing generation of data with given Pearson correlation coefficient and
distribution of each of these correlated arrays, implementing the pipeline of RSA from
scratch, implementing calculation of various distance measures, and finally, checking
how varying initial distributions, distance measures and dimensionality of initial data
changes final correlation between RDMs.

An important part is that in this thesis data is generated with ground truth already
known. The analysis won’t be influenced by possible noise in measured data.

Section "Methods and Materials" describes the process of generating data with
predefined correlation and the details of applying RSA. In section "Results", the figures,
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made by varying initial distributions of data, dissimilarity measures and dimensionality
of initial data, are analyzed, and influence of correlations between final RDMs is checked.
In the "Discussion" section, the results are interpreted and possiblities of further research
are discussed.
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2 Methods and Materials
The main workflow of this thesis is split into two parts – generating correlated data and
applying RSA to it. The workflow diagrams are presented on figures 3 and 4.

Figure 3. Workflow diagram of a single experiment. We define desired correlation, dis-
tribution, distance measure and dimensionality of data. Two correlated one-dimensional
samples are generated from distribution of our choice. In case data is multidimensional,
we generate several one-dimensional arrays and stack them together. Two arrays of data
are then used to construct RDMs using desired dissimilarity measure. Then, similarity
between RDMs is calculated.

In terms of algorithms, generation of data and RSA are independent from each
other. To generate two arrays of data, we need to choose Pearson correlation coefficient,
dimensionality of data n, size of a sample m and a distribution. Size of a sample and
parameters of distributions are fixed in advance and remain the same for each experiment.
As a result, we get two arrays X, Y ∈ Rm×n. To apply RSA, we need two arrays of data,
choose a dissimilarity metric for RDM construction and a similarity metric to calculate
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Figure 4. Workflow diagram for a series of experiments. We vary Pearson correlation
coefficient, while keeping other parameters fixed. As a result, we get several correspond-
ing values of Kendall-tau correlations after applying RSA. Each pair of values results in
a point on the plot. After plot is constructed, we change one of the parameters and repeat
the procedure, which allows us to see how different parameters influence the graph.

similarity between RDMs. As a similarity measure for comparison of RDMs, we use
Kendall-tau correlation; this measure remains fixed over the course of experiments. We
perform RSA on each of arrays of data and compare two resulting RDMs. As a result,
we get Kendall-tau correlation τ .

The workflow described forms an algorithm for one experiment. By fixing distribution
of initial data, its dimensionality and distance measure and then varying input Pearson
correlation and getting different corresponding values for output Kendall-tau correlation,
we perform a series of experiments. For such series we get a graph, on which we can see
how linear correlations in initial data and rank correlations obtained through RSA are
related.

2.1 Generation of Data With Given Correlation
We want to test how sampling data from different distributions affects the result after
applying RSA. In each case we generate two arrays of data. In each case we have some
desired correlation between two arrays. In this thesis, we check the influence of two
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normally distributed correlated samples, two uniformly distributed correlated samples
and of two bimodal distributed samples.

Inversion method Typically every case of random number generation is based on
assumption that we can have a source of uniform random variable U(0, 1). If we want to
sample data from other distributions, we first draw a sample from uniform distribution
and then apply various transformations. A method which is considered to be universal
for generation of random variables with custom distributions is inversion method.

Assume that we want to generate a sample from random variable X with CDF FX(p).
Then we can first draw a sample (y1, y2, . . . ym) from uniform distribution U(0, 1) and
then calculate values xi = F−1

X (yi), which will have desired distribution of X . F−1(p)
is called inverse distirbution function, also known as quantile function or percent-point
function (PPF). Proof of the method and more details can be found in [Dev86].

The problem with inversion method is that not it’s not always possible to calculate
inverse of a CDF in a closed form. In fact, even normal distribution doesn’t have
inverse CDF in closed form and relies on so-called error function, which can’t be solved
analytically. Often numerical solutions or approximations by other functions are applied.

In this thesis, we use inversion method explicitly only during generation of bimodal
data. This method (or other methods) can be used without our knowledge when using
numerical packages for generation of non-uniform data.

Generation of multidimensional data To generate two arrays of data with dimension-
ality n, we simply generate two one-dimensional arrays n times, followed by stacking
data together over dimensions for each of those arrays. Such procedure is equivalent
to sampling from 2n-dimensional random variable, which covariance matrix is a block-
diagonal matrix (equation 1), and then using odd marginal samples as marginals of the
first array and even ones as the second array.

Σ =


Σ1 O . . . O
O Σ2 . . . O
...

... . . . ...
O O . . . Σn

 ∈ R(2n×2n), Σi =

(
ρi 0
0 ρi

)
, O =

(
0 0
0 0

)
(1)

Assume that Z ∈ R2n×m is a sample of size m from 2n-dimensional random variable
with covariance matrix Σ, defined as in equation 1. Then, two arrays X, Y ∈ Rn×m will
be constructed as:

X(i) = Z(2i−1), Y (i) = Z(2i); i = 1 . . . n/2 (2)

,
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where S(i) is an i-th row vector of sample S.
Once again, note that in our construction we explicitly define correlations only

between row vectors X(i), Y (i), i = 1 . . . n; we do not define correlations between
different dimensions (when i ̸= j). However, since we do not define any dependence
between them, we can safely assume that these correlations are expected to be zero.

Kolmogorov-Smirnov test To verify that two arrays of data indeed have the desired
correlation, we calculate correlation as a value between samples. To verify that an array
has the desired distribution, we use Kolmogorov-Smirnov test (KS-test) [Mas51]. It is
a nonparametric test of statistical significance that allows us to check whether a given
sample is taken from specified distribution (one-sided test) or, alternatively, whether two
samples are taken from the same, undefined, distribution (two-sided test). In this thesis
we check only whether samples have required distribution, so we use only one-sided test.

Assume that distribution X has CDF FX(x) and a sample has empirical CDF calcu-
lated as SN(x) = k/N , where N is size of a sample and k is amount of observations less
than or equal to x. Then KS-test statistic is calculated as:

d = max
x

|FX(x)− SN(x)| (3)

The intuition behind it is that we find the highest deviation of distribution’s CDF
from empirical (sample’s) CDF and use it as test statistic. This is depicted on figure 5.

p-value can be calculated as p = 1−FK(d
√
n), where FK(x) is CDF of Kolmogorov

distribution. If p < α, where α is level of significance, we reject the null-hypothesis (we
conclude that distribution of a sample is different from distribution we were checking
for).

There are existing packages which implement calculation of test statistic and p-value.
We use implementation from scipy package.

For each statistical hypothesis test in this thesis, we use statistical significance level
α = 0.01. That is, we reject the null-hypothesis only if p ≤ 0.01.

2.1.1 Normal Distribution

Multivariate Normal Distribution is a generalization of normal distribution onto several
dimensions. n-dimensional distribution of such type has two variables – mean µ ∈ Rn

and covariance Σ ∈ Rn×n. The special case when n = 2 is called bivariate normal
distribution. If in addition to only having two dimensions we have µ = 0 and σ = 1, we
have a standard bivariate normal distribution. The density functon is that case is

f(x1, x2) =
1

2π
√

1− ρ2
exp

{
−

1

2(1− ρ2)
(x2

1 + 2ρx1x2 + x2
2)

}
, where ρ is a correlation between its two components.
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Figure 5. Illustration of Kolmogorov-Smirnov test. Red line depicts distribution’s CDF,
blue – sample’s CDF; distance depicted by black is test statistic.

Each component (marginal distribution) is distributed normally. In addition, parame-
ter ρ allows us to define correlation between marginal distributions. That means that by
fixing ρ and drawing m samples from bivariate standard normal distribution, we get two
arrays of length m with mean 0 and variance 1, which are also correlated.

To generate a sample from multivariate normal distribution using uniform distribution
U(0, 1), we need to use Cholesky decomposition. Given a symmetric positive-definite
matrix A ∈ Mat(R), its Cholesky decomposition is defined as A = LLT , where L is
a lower triangular matrix with positive diagonal entries. Such decomposition can be
calculated, for example, through eigendecomposition:

A = QΛQ−1 = QΛ
1
2Λ

1
2Q−1 = QΛ

1
2 (Λ

1
2 )−1Q−1 = QΛ

1
2 (Λ

1
2 )TQT =

QΛ
1
2 (QΛ

1
2 )T = LLT

, which holds because Λ is diagonal and Q is unitary.
Decomposing covariance matrix Σ = LLT and then multiplying L by a vector of

independent random variables, which are normally distributed, gives us a vector of
correlated random variables, i.e. a multivariate random variable. In two-dimensional
case:
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X = LZ =

(
1 0

ρ
√
1− ρ2

)
Z

, i.e. x1 = z1, x2 = ρz1 +
√

1− ρ2z2. Correlation between x1 and x2 in this case is
ρ.

In this thesis, we use function multivariate_normal from Python’s numpy package.
This way, we only need to define distribution’s parameters to draw samples.

An example of generated data is shown on figure 6.

Figure 6. An example of normally generated data for different values of preferred
correlation (0, 0.5 and 0.9, correspondingly)

To test how close sample correlations of generated arrays would be to the desired
correlation, the generator was tested for values of correlation between 0 and 1 with step
0.1. On each run, 500 points were generated and for each value of desired correlation real
correlation was averaged over 400 attempts. To test the spread of correlations between
generated samples, the generator was launched 500 times, with 500 points generated for
each pair of arrays. Results are presented on figures 8 and 7.

2.1.2 Uniform Distribution

Generating two arrays such that both would be uniformly distributed and correlated to
a predefined degree is more challenging, compared to the normal distribution case. To
do that, we would need to sample data from a copula ([Sch07]). Copulas are useful
when we want to handle marginal distributions and dependence structure between then
independently, which fits the goal of this thesis perfectly.

Copula is a function C : [0, 1]n → [0, 1], which satisfies properties of cumulative
distribution function and each marginals of which is distributed uniformly.

Sklar’s theorem states that for any n-dimensional CDF F with marginal distributions
F1, . . . , Fn there exists a copula C, such that
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Figure 7. Comparison of generated and desired correlation. On the left – overview for
all tested values. On the right – enlarged image for intermediate values of correlation
(0.4-0.8).

Figure 8. Distribution of sample correlation for normally distributed arrays for different
values of preferred correlation

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

By defining ui = Fi(xi) and taking into account that xi = F−1(ui) we get the
following formula:

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un))

Note that ui ∈ [0, 1], i = 1, . . . , n.
There are different copulae which are generated using different means. In this thesis

we use Gaussian copula.
If we define Fi(xi) = Φ(xi) (CDF of standard normal distribution) and

F (x1, . . . , xn) = ΦΣ(x1, . . . , xn) (CDF of multivaraite standard normal distribution with

14



correlation matrix Σ), then C is called Gaussian copula. Formula for such copula is
defined by

CGauss
Σ (u1, . . . , un) = ΦΣ(Φ

−1(u1), . . . ,Φ
−1(un)) (4)

Since in bivariate case correlation matrix is defiend by

Σ =

(
1 ρ
ρ 1

)
, we Gaussian copula for bivariate case can be defined by

CGauss
ρ (u1, u2) = ΦΣ(Φ

−1(u1),Φ
−1(u2)) (5)

, where ρ is the only parameter in correlation matrix Σ.
Required function for sampling from Gaussian copula was found in statsmodels

package, which is used in this thesis. The function accepts correlation correlation value
as an input, simplifying our calculations.

An example of arrays generated from Gaussian copula is shown on figure 9. Kolmogorov-
Smirnov test has shown that both arrays are indeed distributed uniformly.

Figure 9. An example of uniformly generated data for different values of preferred
correlation (from left to right: 0, 0.5, 0.9)

To test how close sample correlations of generated arrays would be to the desired
correlation, the generator was tested for values of correlation between 0 and 1 with step
0.1. On each run, 500 points were generated and for each value of desired correlation real
correlation was averaged over 400 attempts. To test the spread of correlations between
generated samples, the generator was launched 500 times, with 500 points generated for
each pair of arrays. Results are presented on figures 11 and 10.

KS-test has shown that both components are indeed distributed uniformly. Calculating
Pearson correlation between them has revealed that correlations are close to the ones
defined in correlation matrix.
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Figure 10. Comparison of generated and desired correlation. On the left – overview for
all tested values. On the right – enlarged image for values of correlation (0.4-0.8).

Figure 11. Distribution of sample correlation for uniformly distributed arrays for different
values of preferred correlation

2.1.3 Bimodal Distribution

Multimodal distribution is a distribution with more than one mode. If a distribution has
exactly two modes, it is called bimodal distribution.

Bimodal distribution used in this thesis is bimodal normal distribution [GDSCO21].
Its PDF is given by

f(x, µ, σ, α) =
1

√
2πσ2

exp

−1

2

(
x− µ

σ

)2

−
α2

2

 cosh

[
α

(
x− µ

σ

)]

Distribution’s CDF is given by
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F (x;µ, σ, α) =
1

4

[
2 + erf

(
x− µ− ασ

σ
√
2

)
+ erf

(
x− µ+ ασ

σ
√
2

)]
This distribution has two modes when |α| > 1. In this thesis, we use parameters

µ = 0, σ = 1, α = 2.
Despite this distribution having a bivariate version, there is no closed form for

inducing a correlation structure between marginal distributions. Therefore, we use
an inversion method to generate two correlated samples, each having bimodal normal
distribution.

Since there is no easy way to find the inverse of bivariate normal distribution’s CDF,
we will approximate it numerically.

First, we calculate values of CDF at large number of points. Then, by inverting the
axes, we have values of the quantile function. Then, we fit a polynomial curve onto these
points (in our case, we used polynomial of degree 17). The resulting polynomial is an
explicit approximation of quantile function. Analytic and induced PDFs are presented on
figure 12.

Polynomial that approximates the quantile function is defined in standard basis and
can be calculated as:

F−1
BN(x) ≈ p(x) =

n∑
i=0

cix
i

Similar to the case with uniform distribution, we can sample data from Gaussian
copula. That way, we have two ararys of uniformly distributed data with correlation close
to the desired one. By taking each of resulting marginal samples (which are uniform
distributions U [0, 1]) and calculating values of the approximated quantile function at these
values, we get two samples which have bimodal normal distribution and are correlated.

Examples of generated data are presented on figure 13.
To test how close sample correlations of generated arrays would be to the desired

correlation, the generator was tested for values of correlation between 0 and 1 with step
0.1. On each run, 500 points were generated and for each value of desired correlation real
correlation was averaged over 400 attempts. To test the spread of correlations between
generated samples, the generator was launched 500 times, with 500 points generated for
each pair of arrays. Results are presented on figure s15 and 14.

As we can see, the correlation in generated data is slightly lower than the desired one.
According to [Sch07], it is to be expected since using Pearson correlation as a measure
of dependence for non-elliptic distributions (such as normal distribution or mixtures of
normal distributions, to which our transformed distribution apparently doesn’t belong
to) leads to many fallacies. It is also stated in [KLW23] that in general case Pearson
correlation is not invariate under marginal transforms, specifically under non-linear
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Figure 12. PDFs of BN normal distribution built analytically and induced from an
approximated quantile function. Blue graph is built using kernel density estimation on
generated data. Orange is an analytical PDF.

strictly increasing transformations. Possible workaround is to calculate a predistorted
correlation and generate a sample from bivariate normal distribution with this value,
which will be higher, in which case we’ll get the desired correlation after the transform
[LH75]. In this thesis, however, we do not need strictly matching correlations to make
required figures, so we do not perform these calculations.
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Figure 13. An example of generated data with bimodal distribution for different values
of preferred correlation (from left to right: 0, 0.5, 0.9)

2.2 Applying RSA to generated data
After generating two correlated arrays from chosen distribution, we apply RSA to each
array and receive two Representational Dissimilatiry Matrices (RDM). While during data
generation, we vary distributions and dimensionality, in the process of RSA itself we
vary dissimilarity measures and see how they influence the results.

The code for RSA that we used was written from scratch. Later we compare how it
behaves compared to an existing RSA toolbox [NWW+14].

2.2.1 Dissimilarity measures

In the context of RSA, "dissimilarity" is often synonymous with the term "distance",
sometimes also called "distance metric". However, some dissimilarities are not qualified
as distances. It is also worth noting that quite often distances have equivalent norms, but
having an equivalent norm is not a necessary requirement for a distance measure.

Mathematically speaking, if M ⊂ Rn and x, y, z ∈ M and d : M ×M → R and d
satisfies the axioms:

1. d(x, y) ≥ 0 with d(x, y) = 0 ⇔ x = y (non-negativity)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

then d is a distance measure.
In this thesis, we consider three distance measures: Euclidean, cosine and geodesic

graph distance. Other distances often used in neuroscience include correlation distance
and Mahalanobis distance.
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Figure 14. Comparison of generated and desired correlation. On the left – overview for
all tested values. On the right – enlarged image for values of correlation (0.4-0.8).

Figure 15. Distribution of sample correlation for uniformly distributed arrays for different
values of preferred correlation

Euclidean distance Euclidean distance is a widely used metric and what is often
thought of intuitively when using the term "distance". If x, y ∈ Rn, then Euclidean
distance is defined by

dEucl(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2 =

(
n∑

i=1

(xi − yi)
2

) 1
2

where xi, yi are i-th components of vectors x and y, correspondingly.
Euclidean distance is often used in Machine Learning to measure distances between

embeddings.

Cosine distance Cosine distance is another distance metric, which is notorious for its
use in Natural Language Processing. In this thesis, we tested its application in RSA. If
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x, y ∈ Rn, then the formula for cosine distance is:

d(x, y) = 1− s(x, y) = 1−
x · y

||x||2||y||2
= 1−

√
x1y1 + . . . xnyn√

x2
1 + . . .+ x2

n

√
y21 + . . .+ y2n

(6)

where x · y is a dot product of x, y and || · ||2 is a Euclidean norm of a vector. Quantity
s(x, y) is called cosine similarity and represents an angle between vectors x and y.

Geodesic graph distance Geodesic graph distance is a distance measure derived from
the first step of Isomap algorithm [TdSL00]. The principle is illustrated on figure 16.
First, we have a set of points (block A). For each point, we either find k nearest points,
where k is some fixed number, or find all points in some fixed radius from given point,
after which we calculate Euclidean distances from given point to all nearest points (block
B). After that, we can build a weighted graph and calculate distance between any two
points given initially by using any algorithm for calculating graph distance (such as
Floyd-Warshall algorithm [Flo62] [War62]).

Calculating geodesic graph distance is a first step of popular dimensionality reduction
algorithms such as Isomap. Therefore, Geodesic graph distance is especially useful
in cases when we have data which is located on some manifold. For example, if we
have n-dimensional set of points that are located on some manifold (i.e., their positions
can be defined parametrically by less than n numbers), then calculating the distance
across the manifold (plain blue line, figure 16) would make more sense than calculating
direct Euclidean distance (dashed blue line, figure 16). This distance is approximated by
building a graph using points presumably located on a manifold (red line, blocks B and
C, figure 16).

In this thesis, building the graph is performed by connecting each vertex to its k = 4
neighbors. Algorithm that calculates shortest paths between each pair of vertices is
Floyd-Warshall algorithm. Distance between each pair of points (i.e. weights of a graph)
is measured by Euclidean distance.

2.2.2 Comparing RDMs

After calculating dissimilarity between each pair of experimental conditions, for both
of correlated arrays, we get two RDMs. We want to compare how these two matrices
are correlated, and ultimately, check how correlation between matrices is different from
correlation between initial arrays of observed (or, in our case, generated) data.

When we have two RDMs on our hands, one possible way to compare them is by
first normalizing them (e.g. using rank-transform) and then using a common distance
measure (e.g. Euclidean). However, we can calculate correlation between directly – in
that case, normalization is done implicitly. If we expect linear correspondence between
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Figure 16. Visualization of Isomap algorithm (taken from [TdSL00])

dissimilarity values in the two matrices, we can use Pearson correlation coefficient. If
we can expect only ordinal correspondence or a nonlinear but monotonic relationship, it
is better to use rank correlation coefficient. [KMB08]

Further research had shown that for comparing RDMs not all rank correlation coeffi-
cients are equally good either. It is preferred to use Kendall-tau correlation coefficient to
Spearman correlation [NWW+14]. Despite the fact that Spearman correlation coefficient
is still a good alternative if there are no conceptual models in use (meaning there are no
ties), we use Kendall-tau coefficient for consistency and to avoid possible confusion.
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3 Results
In this thesis, an experiment is defined as a process that includes generating data with
chosen desired correlation, performing RSA and then measuring Kendall-tau correlation
between resulting RDMs. Such procedure is done when three properties – distribution
of initial data, distance measure and number of dimensions – are fixed. A series of
experiments includes varying correlation in input data and calculating corresponding
output correlations, i.e. each series is represented by one graph. Each figure in this
section has multiple series’ of experiments (typically 2 or 3), which allows us to compare
how varying different properties influences dependence between the input correlation
(linear dependency of the generated data) and output correlation (as measured by RSA).
In a sense, we are interested in measuring how the data processing in RSA distorts
the linear dependencies between original data, and how those effects depend on data
distribution and dimensionality.

Each point on the graph represents an arithmetic mean among 5 experiments, for
both coordinates. For each point the first coordinate is average for sample mean and
the second is an average for the resulting Kendall-tau correlation between RDMs. The
desired correlation was changed in steps of 0.1, in range [−1, 1].

3.1 Varying Distribution of Initial Data
Here the dissimilarity is fixed to be either Euclidean or cosine distance and then 10-
dimensional data is generated for various initial distributions. The results are represented
on figures 17 and 18. Varying distribution of initial data doesn’t seem to affect correlation
much. However, it seems that for bimodal distribution there are slightly higher losses in
correlation structure compared to other distributions.

3.2 Varying Dissimilarity Measures
Here we fix distribution as normal and data as 10-dimensional and varied dissimilarity
measures. The results are represented on figures 19, 20 and 21. We can see an abnormality
on figure 20 – when using uniform distribution and cosine distance, corresponding output
correlation for negative values of input correlation are much lower than for Euclidean
distance. The graph for cosine distance is also non-symmetric. Another finding is
that application of geodesic graph distance in RSA severely distorts correlation values,
making them lower (specifically for intermediate values between 0 and 1).

3.3 Varying Dimensionality of Initial Data
For each figure in this section we fix distribution of initial data and distance measure and
plot how different dimensionalities lead to different results (figures 22, 23, 24). Varying
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Figure 17. Comparison of correlations in initial and processed data (Euclidean + 10
dimensions)

dimensionality of data doesn’t seem to affect correlation much, except that data of lower
dimensionality seems to be worse at preserving correlation structure.

3.4 Deeper Analysis
The majority of functions for generation of correlated data and performing RSA were
written from scratch. External functions include those for numerical computations
(numpy), plotting (matplotlib), statistics (scipy).

Comparison of results for functions written from scratch with those from the existing
toolbox [NWW+14] had been performed. Comparison of final Kendall-tau correlation
for functions from toolbox and functions written from scratch is plotted on figure 28.
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Figure 18. Comparison of correlations in initial and processed data (cosine + 10 dimen-
sions)

Figure 19. Comparison of correlations in initial and processed data (normal distribution
+ 10 dimensions)
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Figure 20. Comparison of correlations in initial and processed data (uniform distribution
+ 10 dimensions)

Figure 21. Comparison of correlations in initial and processed data (bimodal distribution
+ 10 dimensions)
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Figure 22. Comparison of correlations in initial and processed data (uniform + Euclidean)

Figure 23. Comparison of correlations in initial and processed data (normal + Euclidean)

27



Figure 24. Comparison of correlations in initial and processed data (bimodal + Euclidean)

Figure 25. Comparison of correlations in initial and processed data (uniform + cosine)
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Figure 26. Comparison of correlations in initial and processed data (normal + cosine)

Figure 27. Comparison of correlations in initial and processed data (bimodal + cosine)
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Figure 28. Comparison of final Kendall-tau correlations after using local functions and
after using the toolbox
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4 Discussion
Results show that correlations between two arrays of initial data becomes lower after
processing them using RSA. In particular, the effect is more noticeable for intermediate
values of the linear correlation coefficient (0.3-0.6). The relation between initial cor-
relation (as predefined in the generated data) and the correlation between RDMs after
processing forms a convex function. Generally, this indicates that RSA will tend to
underestimate linear dependencies in the data.

It is also worth noting that if correlation between two initial arrays is negative, it
becomes positive after applying RSA. One possible explanation is that distance measures
used in RSA are always non-negative, but for a definitive answer further investigation is
required.

Another finding of current work is how linear correlation in underlying data becomes
distorted when two arrays are distributed uniformly and negatively correlated, while
using cosine distance as dissimilarity measure. Rank correlation after application of RSA
in that case becomes much lower compared cases with positive correlation, in which
case figures of rank correlation in processed data plotted against linear correlations in
underlying data become severely asymmetric. At the moment, it is unknown what causes
this phenomenon and further investigation is required.

An interesting future direction might be to study the effect that noise can have on our
observed relations between linear dependencies in the underlying data and the correlation
captured by RSA. In particular, since RSA understimates linear correlations it seems
crucial to test whether noise can hide the linear correlation to the point that is not
detectable by RSA (although present in the underlying noisy data).

Another possible direction for further research is applying ideas from this thesis to
other dissimilarity measures between activity patterns (such as Mahalanobis distance or
correlation distance) and checking other distributions of initial data.

One particular research ([SSAN21]) suggests that under certain circumstances, RDMs
can lie on a Riemann mainfold, in which case it might be a good idea to approximate
Riemann distances using geodesic graph distance mentioned in this thesis.
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5 Conclusion
In this thesis, we researched how correlations and data distribution between two arrays of
initial data influence correlations between two corresponding RDMs after application of
RSA. The work included generation of correlated data and writing RSA functions from
scratch.

Our results indicate that RSA generally underestimates linear dependencies in the
underlying data. This might be also natural given that most distance measures include
some non-linearity in their definition which might distort linear measures of dependencies.
Further analysis is needed to fully explore the relation between the dependencies in the
original data and the correlations captured by RSA.
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Appendix

I. Glossary
Dissimilarity Measure – a mathematical measure that satisfies several axioms; intu-
itively, an inverse of a similarity measure – the less similar two entities are, the higher
this measure is

Experimental Environment – a combination of circumstances that theoretically,
when unchanged, under the same experimental conditions, should produce the same re-
sponse patterns; in our setting, it is a combination of a predefined brain region, measuring
modality and an individual undergoing the experiment

Experimental Condition – a distinct and discrete part of an experiment which elicits
a distinct response pattern in a brain; for example, when an idea of experiment is to show
subject a series of images and measure responses in the brain, an experimental condition
would be one image

Experiment – a set of experimental conditions
RDM – see Representational Dissimilarity Matrix
Representation – how some real-life object or phenomenon is represented in a brain;

in our setting representation is synonymous with representational dissimilarity matrix,
which utilizes so-called second-order dissimilarity

Representational Dissimilarity Matrix – a square matrix which entries show dis-
similarity between two experimental conditions on intersection of each row and column;
a matrix shows how a given set of experimental conditions is represented in a given brain
region measured by some given modality

RSA – see Representational Similarity Analysis
Representational Similarity Analysis – a technique in neuroscience that allows us

to compare representations using second-order dissimilarities
Second-Order Dissimilarity – an idea that allows us, instead of comparing two

sets of response patterns elicited by two different experimental conditions directly, to
calculate dissimilarity among these patterns under each set of experimental conditions
and then compare the dissimilarities themselves
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II. Repository
Repository with code and supplementary notebook used for calculations in this thesis
will be available at the following link:

https://github.com/Corvu/rsa-thesis
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