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Predicting the molecular mechanisms of genetic variants

Abstract:

Understanding the molecular pathways through which GWAS variants affect complex
traits is essential for uncovering disease mechanisms and aiding target prioritization.
Traditional molQTL mapping, commonly used to assign the variant’s mode of action,
often yields numerous false positives and struggles with low-frequency variants. To
address this issue, we investigated the use of machine learning models to predict the mode
of action (MoA) of variants. We compiled a dataset consisting of two classes of molQTLs:
splicing QTLs and gene expression QTLs influenced by chromatin accessibility (caQTLs).
We evaluated the performance of two deep learning models, Enformer and ChromBPNet,
which represent different approaches to predicting regulatory activity, on a set of fine-
mapped caQTLs, with ChromBPNet proving to be more precise. We then developed the
MoA model, integrating classic genomic features with predictions from single-task deep
learning models. This model achieved nearly 90% accuracy in distinguishing between
the two QTL classes, surpassing the 80% accuracy of a classifier based on scores from
a single large-scale multi-task model. Additionally, we applied the MoA model to
score QTLs from the eQTL catalogue, identified by either gene expression or Leafcutter
(commonly used to identify sQTLs) methods. Our analysis indicated that MoA model
predictions aligned well with gene expression QTLs, whereas most Leafcutter QTLs
were not classified as sQTLs.

In summary, this work introduces an original dataset for MoA model training and
evaluation, and presents a proof-of-concept MoA model that effectively classifies GWAS
variants into splicing QTLs and gene expression QTLs influenced by chromatin accessi-
bility.
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Genecetiliste variantide molekulaarsete mehhanismide ennustamine

Lithikokkuvote:

Haiguste mehhanismide avastamiseks ja uute ravimisihtmaérkide prioritiseerimise
holbustamiseks on vaja paremini moista neid molekulaarseid mehhanisme, mille kaudu
geneetiliste variandid mojutavad haiguseid ja teisi komplekstunnuseid. Tavaliselt kasuta-
takse variantide toimemehhanismide viljaselgitamiseks molekulaarsete kvantitatiivse
tunnuse lookuste (ingl k molecular quantitative trait locus, molQTL) uuringud, mis
peaksid aitama tuvastada, kas konkreetne geneetiline variant mojutab RNA splaissimist
(sQTL) voi geeniekspressiooni (eQTL). Kahjuks ei suuda aga molQTL meetodid tip-



selt vahet teha splaissimise ja geeniekspressiooni mehhanismidel ning lisaks ei ole neil
vOimekust tuvastada haruldaste variantide moju. Nende puuduste iiletamiseks uurisi-
me, kas ja kuidas oleks voimalik kasutada masindpet variantide toimemehhanismide
ennustamiseks. Esmalt koostasime me késitsi kureeritud treeningandmestiku, milles
olid kahte tiitipi molQTLid: splaissimist mdjutavad sQTLid ja 14bi kromatiini avatuse
geeniekspressiooni mojutavad eQTLid. Seejérel vordlesime kahe stivanédrvivorgumudeli
(Enformer ja ChromBPNet) voimet ennustada geneetilise variandi mdju kromatiini ava-
tusele ja leidsime, et ChromBPNet mudeli ennustused olid iildiselt tdpsemad. Jargmiseks
tootasime vilja geneetilise variandi toimemehhanismi ennustamise mudeli, mis tihendas
endas klassikalised genoomiiilesed tunnused erinevate siivadppemudelite ennustustega.
See mudel saavutas sQTL ja eQTL klasside eristamisel peaaegu 90% tipsuse, liletades
margatavalt ithe suure alusmudeli skooridel pohineva klassifikaatori 80%-list tdpsust.

Viimaks rakendasime toimemehhanismi ennustamise mudelit eQTL Catalogue and-
mebaasis olevat QTLid klassifitseerimiseks. Meie mudeli ennustused olid histi kooskdlas
geeniekspressiooni QTL-idega, kuid enamikku Leafcutteri meetodi poolt tuvastatud
voimalikke splaissimise seoseid ei klassifitseeritud sQTL-ideks. Kédesoleva t60 kédigus
loodud uudne andmekogum ja esialgne masindppemudel voimaldavad tulevikus paremini
ennustada haigusseoseliste geneetiliste variantide toimemehhanisme.”

Votmesonad:
QTL kaardistamine, geeniekspressioon, kromatiini avatus, masindpe, siivadpe

CERCS:
B110 Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika
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1 Introduction

Any two humans are known to share 99.5% of their DNA. What is hidden in the remaining
0.5% of the genetic code is responsible for the dramatic diversity of humans on Earth.
While some of the differences (variants) contribute to such factors as height, hair and
eye color, some other cause diseases. Disorders resulting from mutations in a single
gene are relatively well characterized, as these mutations typically alter the amino acid
sequence of a specific protein and follow predictable Mendelian inheritance patterns.
However, only 1% of genome codes for proteins [1]. The rest of the meaningful variance
is located in the regulatory regions of the genome which control gene expression in
different cell types. The language of gene regulation is both highly complex, and highly
context-specific: a particular sequence may be interpreted as an important regulatory
region in a liver cell, and completely ignored by a neuron [1]. Understanding the effect
of a particular variant in regulatory sequence in a particular context is an open research
question.

Genome-wide association studies (GWAS) are a widely used statistical approach
for studying the genetic variants associated with a particular trait (phenotype). How-
ever, GWAS does not reveal the underlying molecular mechanisms driving the observed
associations. Without understanding of the molecular mechanisms, it is hard to manipu-
late the expression of a trait of interest. One of the potential approaches to gain better
understanding of the molecular processes responsible for a genetic disorder, is to con-
duct a (mol)QTL study in conjunction with a GWAS. Molecular quantitative trait locus
(molQTL) is a general term for a variant with a genetic association for a quantitative level
of a molecular trait, such as gene expression (eQTL), chromatin accessibility (caQTL)
and splicing patterns (sQTL). Thus, the specific way in which the variant influences the
trait on a molecular level can be thought of as this variant’s mode of action.

Minikel et al. estimated that the probability of success for drug mechanisms with
genetic support is 2.6 greater than those without. This increase is even more prominent in
cases where the researchers are more confident about the causal gene that was associated
with the GWAS trait [2]. Protein-coding sequence (missense) and splice variants are
more likely to reveal target genes with high precision and could thus directly be used
to prioritise drug targets. In contrast, association studies [3, 4], and perturbation experi-
ments [5, 6] have found that variants regulating gene expression typically have an effect
on multiple neighbouring genes, making them less useful for target prioritisation. Thus,
one way to be more confident about causal genes is to prioritise SQTLs over eQTLs as
drug targets.

A wide variety of methods can be used to measure a molecular trait. For example,



total read count from RNA-seq data is commonly used to detect a change in gene
expression [7], while splicing patterns can be determined by txrevise [8] or Leafcutter [9].
In practice, distinguishing sQTLs from eQTLs is challenging because those methods
often find overlapping genetic associations without revealing mechanisms [7, 3, 10].

In general, due to differences in discovery [11], molQTLs typically explain only 50%
of the common variants associations detected in GWAS studies [3, 12, 4]. Secondly, as
GWAS studies scale up to include more than a million individuals, they will identify
more low-frequency associations that cannot be captured by the limited sample sizes
of current molQTL datasets. Thus, there is a pressing need for alternative strategies to
characterise and understand the mode of action of GWAS signals.

Over the last decade, machine learning (ML) methods have successfully infiltrated
various branches of industry and research. In genomics, ML models have been used for
variant calling and annotation [13], predicting the variant effect on gene expression [14,
15, 16], splicing [17, 18], polyadenylation [19], and chromatin accessibility [20], and
discovery of the sequence preferences of RNA- and DNA-binding proteins [21]. However,
they are notoriously hard to validate and interpret, especially in the field of genomics,
where sequencing data lack human-readable features and cues [22].

The goal of this work is to investigate the potential of machine learning for predicting
the mode of action of genetic variants. Specifically, we aim to develop a model that can
differentiate between eQTLs and sQTLs using sequence features. The approach involves
several key steps:

1. Building a dataset specifically for variant MoA analysis.

2. Validating the latest splicing and chromatin accessibility prediction models on a
manually curated set of variants

3. Developing a variant mode of action prediction model that incorporates both
traditional and neural features.

This thesis is divided into 7 broad parts. In Section 2, we provide a foundational
overview of genetic information, detailing the processes and mechanisms by which it is
encoded and interpreted, and also discuss the application of ML techniques in genomics
research. Then, in Section 3, we highlight the importance of this line of research and
share a case study on the new sickle cell anaemia drug. After that, we move on to
Section 4, where we describe the datasets, models, and technological tools that were used
in this thesis. Section 5 presents the study’s findings, including the datasets’ analyses,
comparisons between different models, and the evaluation of the MoA model. Next, in



Section 6, we discuss the significance of the results and their broader implications for
advancing the field of genetics and machine learning and propose potential directions
for future research. Section 7 concludes the thesis by reiterating the main results, their
implications, and limitations.



2 Background

In this section, we will give a short overview of the fundamental genomic concepts
and processes, methods used to study the associations between genetic variants and
phenotypes, and their limitations. We will also describe the working principles of
machine learning and its applications in genomics.

2.1 Genetic information
2.1.1 DNA

The code that is used to produce all life forms on Earth is stored in cells as DNA
(deoxyribonucleic acid) molecules. DNA is composed of two complementary strands that
twist into a double-helix structure. Each strand consists of nucleotides, which include one
of four nucleobases: adenine (A), thymine (T), guanine (G), or cytosine (C). These bases
are the fundamental components of DNA and are crucial for the complementary pairing
of the strands. Humans have diploid cells, meaning each chromosome has a counterpart
originating from one of the parents. Every human cell contains 23 chromosome pairs:
22 autosomal pairs and one pair of sex chromosomes. Due to this diploid arrangement,
each genetic variation in an individual’s genome may be present zero, one, or two times,
defining the person’s genotype. The human genome comprises about 3.2 billion base
pairs of adenine-thymine (AT) and guanine-cytosine (GC) sequences across a single set
of 23 chromosomes.

DNA is not stored loosely within the cell. Rather, it is intricately packaged into a
compact structure known as chromatin. This packaging is essential to fit the lengthy
DNA molecules into the relatively small nucleus of a cell and plays a crucial role in gene
regulation and protection of the genetic material. DNA is stored within nucleosomes,
which are the fundamental units of chromatin. A nucleosome is composed of a DNA
segment wound around a histone protein core. Each core consists of eight histone pro-
teins, which include two copies each of H2A, H2B, H3, and H4. Multiple nucleosomes
together form a more compact structure known as chromatin. Chromatin is not a passive
structure; it plays an active role in regulating gene expression [23]. The degree of packing
can influence whether genes are accessible to the machinery that synthesizes RNA (tran-
scription). Highly condensed chromatin, or heterochromatin, is usually transcriptionally
inactive, whereas less condensed chromatin, or euchromatin, is typically active. To study
chromatin accessibility and its underlying aspects, the regions of accessible chromatin
have to be detected. To find the open chromatin sequences, there are genome-wide
chromatin accessibility profiling methods available, such as DNASE-seq and ATAC-seq



(see Section 4.2). In each cell type, these methods typically identify 100,000-200,000
open chromatin regions covering 1%—-2% of the genome [24].
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Figure 1. Gene structure and the process of alternative splicing. [25]
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2.1.2 Encoding of biological information

The genome encodes two main types of information: what proteins to make (encoded in
genes) and how much of each protein to make, which is referred to as gene regulation [1].

A gene is a segment of DNA that contains the instructions for building a functional
product, such as a protein or an RNA molecule. Gene expression involves producing
a corresponding protein through a two-step process. First, the information in DNA
is transcribed into messenger RNA (mRNA) through transcription. During this step,
RNA polymerase II synthesizes a pre-mRNA molecule using the DNA sequence as a
template for complementary base-pairing. This pre-mRNA undergoes processing to
become mature mRNA. The mature mRNA, a single-stranded copy of the gene, is then
translated into a protein through the translation process. During translation, which is
the second major step in gene expression, the mRNA is "read" according to the genetic
code, which relates the DNA sequence to the amino acid sequence in proteins [26]. Each



group of three bases in mRNA constitutes a codon, and each codon specifies a particular
amino acid [26].

Another important process must occur before the mRNA can be translated into a
protein - RNA splicing, which involves the removal or "splicing out" of certain sequences
referred to as introns. The final mRNA thus consists of the remaining sequences, called
exons, which are connected to one another through the splicing process [27]. One
advantage of splicing is that it is possible to make different protein products from the
same gene by including or excluding different combinations of exons, or by using
different splice sites [1]. Figure 1 illustrates this process. This is known as alternative
splicing, and the different mRNA sequences assembled from the same gene are called
transcripts, while the different protein products are called isoforms. According to Wang et
al., more than 90% of human genes undergo alternative splicing [28]. Furthermore, most
alternative splicing, alternative cleavage and polyadenylation events vary between tissues,
providing an important element of support for the hypothesis that alternative splicing is a
principal contributor to the evolution of phenotypic complexity in mammals [28].

RNA-binding proteins (RBPs) are a diverse group of proteins that interact with RNA
molecules in cells to regulate various aspects of RNA metabolism [29]. These proteins
play crucial roles in RNAs’ processing, transport, localization, translation, and stability.
RBPs recognize specific RNA sequences or structural motifs, allowing them to bind to
target RNAs selectively. RBPs can be broadly classified into several functional classes:
RNA splicing factors, mRNA stability and degradation regulators, translation regulators,
RNA transport and localization factors, and RNA editing factors. RNA splicing factors
bind to specific sequences within the pre-mRNA, known as splice sites, to facilitate the
splicing process [29].

2.1.3 Gene regulation

The process of producing specific RNAs and proteins is known as gene expression, and
the mechanisms that control this expression are referred to as gene regulation. Gene
regulation is encoded within the genome, and this regulatory information is as important
as the protein-coding sequences themselves. The major focus of gene regulation is on
controlling transcription. The transcription rate is controlled by core promoter elements
and distant-acting regulatory elements such as enhancers, often called cis-regulatory
elements. In eukaryotes, several proteins, called general transcription factors, recognize
and bind to core promoters and form a pre-initiation complex. RNA polymerases
recognize these complexes and initiate the synthesis of RNAs [30].

On top of that, processes like histone modifications and/or DNA methylation have
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a crucial regulatory impact on transcription. If a region is not accessible for the tran-
scriptional machinery, e.g. in the case where the chromatin structure is compacted due
to the presence of specific histone modifications, or if the promoter DNA is methylated,
transcription may not start at all. Last but not least, gene activity is also controlled post-
transcriptionally by non-coding RNAs such as microRNAs (miRNAs), as well as by cell
signalling, resulting in protein modification or altered protein-protein interactions [31].
Those elements are a part of trans-regulatory machinery.

2.1.4 Genetic variation

Genetic variation refers to the differences in DNA sequences among individuals or
populations. It is estimated that any two humans share approximately 99.5% of their
DNA. Despite these high percentages of similarity, the absolute number of genetic
differences is substantial—over 100 million genetic variants exist among humans, leading
to a virtually limitless array of allele combinations (different versions of the same variant).
These variations primarily fall into three categories: single-nucleotide polymorphisms
(SNPs), insertion-deletion polymorphisms (INDELs), and structural variants (SVs). In a
typical human genome, there are between 4.1 to 5.0 million deviations from the reference
genome, with over 99.9% of these differences being SNPs and short INDELs [32]. The
less than 0.01% remaining comprises approximately 2,100 to 2,500 SVs, which, though
fewer in number, affect more bases overall—approximately 20 million bases of the
sequence.

2.2 Making sense of genetic information

Genome-wide association studies (GWAS) and quantitative trait loci (QTL) analyses are
two widely used techniques in genetics research [25].

2.2.1 GWAS

Genome-wide association studies (GWAS) aim to identify associations of genotypes with
phenotypes by testing for differences in the allele frequency of genetic variants between
individuals [33]. GWAS can consider copy-number variants or sequence variations in
the human genome, although the most commonly studied genetic variants in GWAS are
SNPs [33]. GWAS typically involve analysing millions of genetic variants across the
entire genome, which can be time-consuming and computationally intensive [25]. How-
ever, they do not clarify the molecular mechanisms underlying the observed associations.

11
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Figure 2. Modes of action of genetic variants.

Without a clear understanding of these mechanisms, it becomes challenging to intervene
in the expression process of a trait of interest.

2.2.2 QTL analysis

QTL studies offer a deeper understanding of how genetic variations contribute to complex
traits and diseases at a molecular level, as much of disease-associated variation is located
in non-coding regions with typically unknown putative gene regulatory effects [34].
The most commonly identified QTLs include the ones for levels of gene expression
(eQTLs), patterns of splicing (sQTLs), alternative polyadenylation (apaQTLs), promoter
usage (puQTLs), levels of methylation of CpG sites (meQTLs), chromatin accessibility
(caQTLs), levels of protein expression (pQTLs) and others. Each molQTL study typically
includes association analysis for tens or hundreds of thousands of molecular features
across the genome, such as all genes expressed in the studied biospecimen type [34].
QTL analysis can be performed in -cis and -trans, representing associations in
physically close or distant genomic regions, respectively. In practice, this means testing
for associations within a 100 kbp—1 Mbp window surrounding each studied QTL for
cis and outside the surrounding region (>5 Mbp away or in other chromosomes) for
trans. In this work, we focus only on cis associations. molQTL mapping consists
of identifying statistically significant associations between genotypes and molecular
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phenotypes, and thus involves computing a large number of tests: for ~1 * 107 common
variants and ~20,000 phenotypes, which are typical for eQTLs. This corresponds to
~2 % 10® associations for all variant—phenotype pairs in cis (assuming ~1 * 10* variants
in each cis window) [34]. To make this number of computations possible, phenotypes
are transformed to (approximately) follow a normal distribution (via log transform or
inverse normal transform, for example), such that the associations can be calculated
using linear regression. In this setup, the normalized molecular feature is treated as
the dependent variable, while the genotype dosages of each participant for a specific
genetic variant, along with covariates, serve as the independent variables. Because of the
large number of associations tested, the perhaps most critical step in molQTL mapping
is proper control of the false discovery rate (FDR), taking into account correlation
between variants due to linkage disequilibrium (LD), among other potential confounding
factors [34]. Linkage disequilibrium is a distinctive pattern of genetic data, when the
particular alleles at nearby SNPs appear together more often than expected by chance.
LD also has significant implications for genetic association studies, affecting both the
power and accuracy of these analyses. Specifically, LD complicates the identification of
the precise causal variants, as the observed association could be influenced by a nearby
causal variant which is in LD with the variant being tested [25]. Fine-mapping methods
address this issue by quantifying the probability of a variant being causal by considering
the latent causal configurations that best match the observed set of effect sizes and LD
between the variants [34]. In recent years, Bayesian methods have been specifically
tailored for fine-mapping [35]. They compute the posterior inclusion probabilities (PIP)
for each SNP as causal in a model and order the variants in decreasing order based on the
PIP values. The minimal set of SNPs in the given region that captures the probable causal
variant(s), known as a credible set, is then determined based on a pre-specified coverage
probability threshold, usually 95% [25]. The ranked PIP values are summed until the
cumulative probability exceeds the given threshold; the corresponding top variants are
considered to form a credible set [25]. The Sum of Single Effects Model (SuSiE) is an
example of such model [36]. However, fine-mapping is very sensitive to the quality of
genotyping or imputation and sample size [37] and cannot be used for variants with low
minor allele frequency. Besides, fine-mapping is not aware of cellular context.

Another way to think about QTL analysis is to treat the type of molecular trait
mapped to a variant as its molecular mode of action. Figure 2 illustrates the incomplete
set of possible modes of action, which are most relevant in the context of this work and
can be determined from RNA sequencing or chromatin accessibility assays. Note that
the modes of action are sorted according to the genomic distance over which they can
exert an effect.
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2.2.3 Genome sequencing

The above studies would not be possible without the technology for DNA sequencing,
which allows to read the nucleotide sequences of DNA molecules. DNA sequencing
typically can be performed in two ways - whole genome sequencing (WGS), when
the entire (or almost entire) genome of an individual is read, and genotyping, which
determines a person’s genotype at a specific set of pre-selected SNP positions. Current
commercial genotyping platforms measure between 500,000 and 2 million SNPs [1].

Besides, the unobserved genotypes can be inferred by purely computational methods
via the approach called genotype imputation. This process involves comparing samples
to haplotypes from a large reference panel, which includes whole genomes from a larger
population. Haplotypes, which are combinations of alleles inherited together, serve as
templates. Samples with missing genotypes are matched against multiple haplotypes,
and the best fitting combinations are imputed into the sample, filling in the gaps in the
genotype data [38]. GLIMPSE is one of the imputation methods developed to impute
low-coverage sequences from reference panels using a combination of SNP enrichment
and imputation methods [39].

2.3 Machine learning

Machine learning is a branch of artificial intelligence that uses statistical techniques to
enable computer systems to learn from and make predictions or decisions based on data.
Unlike traditional programming, where humans explicitly code all the rules and logic
needed for a task, machine learning allows systems to learn these rules by identifying
patterns in data. Machine learning is typically categorized into three classes: supervised
learning, unsupervised learning and reinforcement learning. Supervised learning involves
training a model on a labelled dataset, where the correct output (label) is provided for
each input example. The model learns to map inputs to the desired output so that when it
is given new examples, it can predict the corresponding outputs. The methods used with
this approach include linear and logistic regression, decision trees and neural networks.
In unsupervised learning, the data used to train the model is not labelled, meaning the
model must find patterns and relationships within the data on its own. The goal is often
to discover the underlying structure of the data, group similar data together, or reduce the
number of variables. Clustering, dimensionality reduction techniques and autoencoders
are used in this case. Finally, reinforcement learning is a type of machine learning where
an agent learns to behave in an environment by performing actions and seeing the results.

14



2.3.1 Deep learning

Deep learning is a subset of machine learning that involves a class of algorithms and
models known as artificial neural networks, particularly those with multiple layers or
"deep" networks. These networks are designed to simulate the way human brains operate,
allowing machines to process data in a complex hierarchy of layers and abstractions [40].

A typical neural network is composed of interconnected layers of nodes, or neurons.
The basic architecture includes three types of layers: the input layer which receives
the raw data and passes it to the next layer, hidden layers which perform various trans-
formations on the input data, enabling the network to learn complex patterns, and the
output layer that produces the final output of the network. The output layer might use a
softmax activation function to generate probabilities for each class, or in regression tasks,
it might produce a continuous value [41]. Convolutional Neural Networks (CNNs) are a
specialized type of neural network primarily used for processing structured grid data such
as images. The key components of CNNs include convolutional layers, pooling layers,
and fully connected layers [42]. Convolutional layers apply convolution operations
to the input data, using filters (or kernels) to detect specific features. Pooling layers
reduce the spatial dimensions of the feature maps, typically using operations like max
pooling or average pooling. Transformers represent a more recent advancement in deep
learning, particularly in the field of natural language processing (NLP) [43]. Unlike
CNNs, which are structured for spatial data, transformers excel at handling sequential
data through self-attention mechanisms [44]. The self-attention mechanism allows the
model to decide which elements in the sequence are the most important for a given task.
By computing attention scores for each element, transformers can capture dependencies
and relationships irrespective of their distance in the sequence.

Training a deep learning model involves optimizing the weights of the network
using gradient descent algorithm [45] to minimize a loss function, which calculates the
difference between the model’s predictions and the actual targets.

2.3.2 Deep learning in genomics

Deep neural networks have proven to be sufficiently complex and versatile to capture the
parameters of cis-regulation [46, 47, 15, 48, 49, 19, 16] as well trans-regulation [50, 21,
51, 20].

The transformer architecture is particularly useful for regulatory element effect
prediction due to its attention mechanism, which allows each position in the DNA
sequence to directly attend to all other positions [15]. This enables the model to capture
long-range dependencies and integrate information from distal regulatory elements, such
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as enhancers, that may be located far from the transcription start site (TSS). Unlike
convolutional layers, which require many successive layers to connect distant elements
due to their local receptive fields, transformers can effectively increase the receptive field
up to S00Kbp [16].

However, these models are generally unreliable for individual variants [52, 53], and
more reliable for promoter than for enhancer variants [52]. They successfully capture
major features contributing to gene expression and are valuable for many applications,
but still fall short of reliably detecting all weaker effects and accurately predicting variant
function. Given the complexity of cis-regulation and the large number of parameters
involved, building reliable quantitative models will require much more data [54].

Moreover, to our best knowledge, there are no studies which extensively benchmark
sequence-based deep learning models on predicting the effect of various molQTLs
(Karollus et al. tested Enformer on predicting the impact on gene expression of GTEx
eQTLs only [52]).
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3 Motivation

CRISPR-Cas9 [55] genome editing is a groundbreaking technology, but genome modifi-
cations require meticulous planning and robust evidence to ensure therapeutic benefit.
GWAS and molQTL analyses currently offer the most reliable targets for such precise
interventions. But only last year, the first CRISPR-Cas9 drug was approved by FDA !
for Transfusion-dependent [-thalassemia (TDT) and sickle cell disease (SCD), which
are both monogenic diseases caused by mutations in the haemoglobin 3 subunit gene
(HBB) [56].
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Figure 3. Therapeutic genome editing approach to induce fetal haemoglobin production
in patients with sickle-cell disease [57].

Haemoglobin, the oxygen-carrying protein which is the constituent of erythrocytes
(red blood cells), is a tetramer of globins. Whereas fetal haemoglobin contains two o and
two y-globins (a272), adult haemoglobin tetramer contains two « and two [-globins
(a2$2). The globin clusters undergo developmental regulation: during the latter two
trimesters of gestation in human beings, fetal haemoglobin is the prevalent haemoglobin.
Only after birth, in a process primarily driven by regulation of gene expression, is fetal
haemoglobin replaced by adult haemoglobin [57].

Thttps://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-
patients-sickle-cell-disease
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However, the revolutionary treatment does not target the HBB gene directly. It
implements a more complex approach. As early as 1948, there has been evidence that
fetal haemoglobin can ease many of the symptoms in patients with sickle-cell disease.
Then, GWAS led to the identification of the BCL11A locus as a most potent repressor
of fetal haemoglobin production in human beings. BCL11A gene encodes a zinc-finger
transcription factor. The major potential drawback to the targeting of BCLIA would
appear to be its key functions in non-erythroid lineages. BCLI 1A has important roles
in neuron development, B-cell lymphopoiesis, and dendritic cell fate, perhaps also in
haemopoietic stem cells, progenitor cells and pancreatic precursors. But later, the genome
editing studies have clarified that the deletion of the BCL11A erythroid enhancer results
in the loss of BCL11A expression in erythroid precursors only but not in other lineages
that depend on BCL1 1A such as neurons or B lymphocytes [57].

In the end, the CRISPR-Cas9 treatment deactivates the cell type-specific enhancer
of BCLIIA, which in turn stops repressing the expression of the gene coding for fetal
haemoglobin [56].

This story demonstrates the importance of understanding via which mechanisms
variants affect complex traits and has become a great inspiration for researchers working
in this field.
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4 Methods

4.1 eQTL Catalogue

eQTL Catalogue is a resource of quality-controlled, uniformly re-computed gene expres-
sion and splicing QTLs from 32 published studies [3]. It offers QTL summary statistics
and fine-mapping results from the uniformly re-processed individual level eQTL data.
The QTLs were identified at the level of gene expression, exon expression, transcript
usage and splicing. The methods used for quantification of each molecular trait are
shown in Figure 4. Gene expression was measured by counting how many reads (23 red

Gene expression (HISAT and featureCounts)

Transcript usage (Salmon)

L3

Shared exons
Unique exons

Promoter 1 } { } I 111
Promoter 2 | L5
Internal exon present | |1 | k2
Internal exon absent | — 11}3
Long3end [ | — 11
Short 3' end | } }3

Figure 4. Overview of the five molecular trait quantification methods used in the eQTL
catalogue [3].

rectangles in Figure 4) overlap the annotated exons of the gene. A similar approach was
used for exon expression, except that time, this was counted for each exon separately.
Transcript usage is a relative quantity - if one of the transcripts of a gene is highly
used, the rest are assigned lower usage, respectively. It was estimated by looking at the
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fractions of reads that map to each transcript. Transcriptional event usage is an approach
that overcomes the limitations of the previous method regarding alternative promoter and
3" end usage. It stratifies the reference transcripts into three events, namely promoter,
splicing and 3’ end events and then quantifies the usage separately (say something about
pu and apa?). Finally, splicing events are measured by counting the number of reads that
overlap exon-exon junctions.

While these methods provide a diverse set of ways to measure the molecular traits,
they cannot be entirely relied upon to uncover the mode of action of the associated
variants. To allow a more detailed inspection of the transcript-level associations, the
authors of the eQTL catalogue developed a visualization tool in the form of static QTL
coverage plots. These plots display normalised RNA-seq read coverage across all exons
of the gene, exon-level QTL effect sizes and standard errors, as well as the alternative
transcripts or splice junctions used in association testing [3]. The static QTL coverage
plots for all 1,716,482 independent signals are available at the eQTL Catalogue Browser 2.

4.2 Data

This thesis makes use of genomic data generated by three types of biochemical assays:
RNA sequencing (RNA-seq), Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-
seq).

RNA-seq is a powerful tool for studying gene expression and the transcriptional
landscape of biological systems [25]. RNA-seq involves several key steps, beginning
with mRNA extraction from a biological sample. The extracted mRNA is then processed
to create a sequencing library, which involves converting the mRNA to complementary
DNA (cDNA) using reverse transcription, fragmenting the cDNA into small fragments
and adding adapters to the fragments [58]. Following library preparation, high-throughput
sequencing technologies such as Illumina sequencing are employed to generate millions
of short reads with a read depth of 10-30 million reas per sample [58]. Typically,
these reads range from 50 to 500 base pairs in length and are aligned to a reference
genome or transcriptome to determine the specific genomic position in which each read
originated [58]. RNA-seq output is typically stored in either FASTA or FASTAQ file
formats. Alignment information, in turn, is stored in a separate SAM file, which is often
binarized for more effective storage and processing. The binary equivalent of SAM is
called BAM. RNA-seq data can be later used to quantify various molecular traits such as
gene expression, alternative splicing, and transcript usage in various biological contexts.

Zhttps://elixir.ut.ee/eqtl/
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ChIP-seq is a method for genome-wide profiling of DNA-binding proteins, histone
modifications, or nucleosomes [59]. It relies on chromatin immunoprecipitation, a
technique that isolates DNA fragments to which a specific protein or a particular class of
nucleosomes is bound. After that, the enriched DNA fragments are sequenced. ChIP-seq
assays can also be used to study open-chromatin regions, though less directly than ATAC-
seq assays, by identifying the genomic locations of the specific histone modifications.
These modifications occur on the amino acid residues of the histone tails and can influence
chromatin structure and function [60]. In particular, H3K4mel modification is typically
found at active enhancers [61], and H3K27ac is highly enriched at promoter regions
of transcriptionally active genes [62]. Thus, as active transcription can happen only in
open chromatin regions, these epigenetic markers are an indirect way to identify them.
Although, technically, ChIP-seq cannot be considered true chromatin accessibility assays.

Table 1. Overview of the chromatin QTL (cQTL) datasets included in the analysis. The
number of samples is the one after MBV.

# of
Dataset t(';le)i:l ?;;2}’ Saslirzgle variants / in Gseor:lortc);pe
peaks
Kumasaka LCL-1 ATAC-seq 100 1598 /897 | GLIMPSE
Kumasaka LCL-2 ATAC-seq 91 1413 /799 | GLIMPSE
Kumasaka LCL-3 ATAC-seq 91 1576 / 805 WGS
AFGR LCL-4 ATAC-seq 83 1485 / 895 WGS
AFGR LCL-5 ATAC-seq 83 1251/791 | GLIMPSE
AFGR LCL-6 ATAC-seq 100 1743 /112 | GLIMPSE
BLUEPRINT |naive T cells-1| ChIP H3K27ac | 142 1142 /581 WGS
BLUEPRINT |naive T cells-2|ChIP H3K4mel| 103 1222/ 579 WGS
Bossini-Castillo| reg T cells-1 | ChIP H3K27ac 92 365/ 167 | microarray
Bossini-Castillo| reg T cells-2 |ChIP H3K4mel 73 58 /31 microarray
1PSCORE 1PSCs ATAC-seq 64 136 /56 | microarray
BLUEPRINT | monocytes-1 | ChIP H3K27ac | 117 1035 /576 WGS
BLUEPRINT | monocytes-2 |ChIP H3K4mel 12 3602 /1940 WGS

ATAC-seq (and its predecessor DNASE-seq) are techniques for studying chromatin
accessibility and gene regulation landscape across different biological contexts. ATAC-
seq uses a highly active Tn5 transposase to insert sequencing adapters into open regions of
chromatin [63]. The resulting fragments are then sequenced and aligned to the reference
genome to identify the locations of the sequenced fragments. This allows for the mapping
of open chromatin regions across the genome. Next, the aligned reads are analyzed to
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call peaks, which represent areas of high accessibility. These peaks are then annotated by
the nearest genes or regulatory elements like promoters or enhancers and can be further
analyzed for motifs to identify binding sites for regulatory proteins [63].

In practice, peaks generated by ChIP-seq assays are typically several kilobases long,
while ATAC-seq produces more narrow (~ 1kb) peaks.

Called peaks are typically stored in a BED (Browser Extensible Data) file format. The
BED format is a simple text format consisting of one line per feature, each containing at
least three columns of data: chromosome, starting position, and ending position.

4.2.1 Datasets

The overview of datasets used as sources of chromatin QTLs in different cell types is
shown in Table 1. Column ’Genotype source’ indicates whether the genotypes were
obtained via whole genome sequencing, imputation from ATAC-seq data with GLIMPSE
or microarray genotyping followed by imputation.

The list below provides more details about each of the studies. Sample sizes in Table 1
reflect the number of donors left in the dataset after the quality control with Match BAM
to VCF(MBV) method [64], so they may differ from the ones initially reported in the
publications. Chromatin QTL data re-processing and quality control were performed by
Kristiina Kuningas.

1. Kumasaka, 2018

In 2018, Kumasaka et al. conducted an analysis of causal interactions between
regulatory elements using ATAC-seq data from 100 unrelated individuals of British
ancestry [65]. The assay was performed on lymphoblastoid cell lines (LCLs). LCLs
are human B cells infected by one of the most common human herpesvirus types,
Epstein-Barr virus (EBV) [66]. LCLs serve as an unlimited resource of human
genomic DNA, as the established cell lines apparently maintain the genome intact
through generations, regardless of the viral genome persisting intracellularly [67].
Kumasaka et al. performed 75-bp paired-end sequencing in 4.4 billion sequence
fragments on a HiSeq 2500 (Illumina). Whole genome sequencing data was present
for 91 out of 100 individuals from the 1000 Genomes Project 3. The genotypes
for the remaining 9 samples were imputed directly from ATAC-seq data using
GLIMPSE [39]. Data is available from the European Nucleotide Archive *.

2. African Functional Genomics Resource (AFGR)

3https://www.internationalgenome.org/
*https://www.ebi.ac.uk/ena/browser/view/PRJEB28318
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In order to lift the limitation of functional genome mapping usually being per-
formed on European-descendent population samples only, DeGorter et al. mea-
sured gene expression using RNA sequencing in LCLs from 599 individuals from
six African populations [68]. They also profiled chromatin accessibility using
ATAC-Seq in a subset of 100 representative individuals from those populations.
Samples were sequenced on an Illumina NextSeq using 75-bp paired-end reads.
Whole genome sequencing data was present for 83 out of 100 individuals from the
1000 Genomes Project. The genotypes for the remaining 17 samples were imputed
directly from ATAC-seq data using GLIMPSE [39]. The raw sequencing data is
available at ENCODE °.

3. BLUEPRINT

Chen et al. performed high-resolution genetic, epigenetic, and transcriptomic
profiling in three major human immune cell types (CD14+ monocytes, CD16+
neutrophils, and naive CD4+ T cells) from up to 197 individuals [69]. Monocytes
are a type of white blood cell, part of the human immune system. They circulate
in the bloodstream and function as part of the body’s first line of defence against
pathogens [70]. Neutrophil granulocytes, commonly known as neutrophils, are
essential blood cells in the innate immune and inflammatory response systems.
They rapidly migrate to infection sites, usually within minutes, in response to
signals from local tissue factors and resident macrophages. As a primary defence
against bacterial and fungal infections, they play a critical role during the acute
phase of inflammation [70]. Finally, CD4+ naive T cells are part of the adaptive
immune system, representing mature helper T cells that have yet to encounter
their specific antigen [70]. As a result of the study, high-resolution whole-genome
sequence, RNA-seq, DNA methylation, and histone modification datasets were
generated. In this thesis, we used the histone modification datasets, produced by
two types of ChIP-seq assays: H3K27ac and H3K4me3 at > 30 million reads per
sample and the corresponding WGS data. BLUEPRINT dataset is a part of the
eQTL catalogue, so it was also used as a source of eQTLs.

The study was carried out as a part of the BLUEPRINT epigenome project °.

4. Bossini-Castillo, 2019

In order to identify genetic variants that control gene expression regulation in regu-
latory T cells isolated from healthy blood donors, Bossini-Castillo et al. profiled

Shttps://www.encodeproject.org/search/?searchTerm=AFGR&type=Experiment
Shttps://projects.ensembl.org/blueprint/

23


https://www.encodeproject.org/search/?searchTerm=AFGR&type=Experiment
https://projects.ensembl.org/blueprint/

7.

the transcriptome using RNA-seq (124 individuals), chromatin accessibility using
ATAC-seq (73 individuals), promoters using H3K4me3 (88 individuals), and active
enhancer and promoter regions using H3K27ac (91 individuals) [71]. Regulatory
T cells (Tregs) are a specialized subpopulation of T cells that play a crucial role in
maintaining immune tolerance and preventing autoimmune disease. They function
primarily by suppressing the immune responses of other cells, thereby ensuring
the immune system does not mistakenly attack the body’s own tissues [70]. In this
thesis, we used raw sequencing data produced by H3K4me3 and H3K27ac assays
(initial tests suggested that the ATAC-seq data is of lower quality when compared
to other ATAC-seq datasets). This dataset is a part of the eQTL catalogue, so it
was also used as a source of eQTLs.

. IPSCORE

iPSCORE 7 is a collection of systematically derived and characterized iPSC lines
from 222 ethnically diverse individuals. iPSCs were systematically reprogrammed
from fibroblasts and analyzed for pluripotency and the presence and recurrence
of somatic copy-number variants (CNVs) [72]. Induced pluripotent stem cells
(iPSCs) are engineered from adult somatic cells through a process that induces
a pluripotent state, enabling them to differentiate into nearly any cell type. This
reprogramming is achieved by introducing specific transcription factors that revert
the cells to a state resembling embryonic stem cells [70]. Germline DNA has
been sequenced from blood or fibroblast samples for all 273 individuals, and other
genomic data (RNA-seq, DNA methylation, ATAC-seq and genotype arrays) has
been generated from the 222 iPSCs derived from a subset of these individuals.
In this work, we used ATAC-seq data from 64 unrelated donors and genotypes
imputed from microarray assays. This dataset is a part of the eQTL catalogue, so
it was also used as a source of eQTLs.

GEUVADIS

Lappalainen et al. performed sequencing and deep analysis of messenger RNA
and microRNA from lymphoblastoid cell lines of 462 individuals (5 different
populations) from the 1000 Genomes Project [73]. This dataset is a part of the
eQTL catalogue, so it was used as a source of eQTLs.

TwinsUK

"https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000924.

v4.pl
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Buil et al. conducted a study using RNA-seq on ~ 400 female twin pairs (about
800 individuals) from the TwinsUK cohort to assess genetic and environmental
influences on allele-specific expression. They analyzed mRNA from four tissue
types — fat, skin, blood, and LCLs. The sequencing was performed using 49-bp
paired-end sequencing on an Illumina HiSeq 2000 [74]. This dataset is a part of
the eQTL catalogue, so it was used as a source of eQTLs.

4.2.2 ChromBPNet training data

One of the goals of this work is to benchmark the relatively novel ChromBPNet model
on uniformly processed chromatin accessibility data. In pursuit of this goal, we trained

Table 2. ChromBPNet training data.

Experiment Cell type Assay Data size # of
type (# of peaks) | replicates
ENCSR868FGK | K562 (leukemia cells) | ATAC-seq | 269,718 3
ENCSR637XSC LCLs ATAC-seq | 277,907 3
ENCSR452COS naive CD4+ T cells ATAC-seq 153,470 2
ENCSRI59GFS | reg CD4+, CD25+ T cells | ATAC-seq 91,371 1
ENCSR485TLP iPSCs ATAC-seq | 283,143 3
ENCSROOOEPK CD14+ monocytes DNase-seq| 88,942 1

six ChromBPNet models to obtain cell type specific predictions for the cell types present
in caQTLs datasets. We used the ENCODE portal 8 as a source of ATAC-seq/DNASE-
seq experimental data. In those experiments, .bed files with called peaks were already
published, so there was no need to process any raw data. We also downloaded corre-
sponding .bam files with alignments. Table 2 presents a more detailed description of
each experiment.

4.2.3 MoA dataset

The Mode-of-Action (MoA) dataset was collected in three steps: manual labelling, caQTL
mapping and QTLs that affect gene expression via chromatin accessibility (ceQTLs)
definition.

During manual labelling, we reviewed RNA-seq QTL coverage plots and assigned
them to one of six categories: eQTL, sQTL, puQTL, apaQTL, mapping bias and ambigu-
ous. Figures 6 - 8 provide examples of plots that fall under each category.

8https://www.encodeproject.org/
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Figure 5. QTL classes distribution in the manually labelled part of the dataset.

Figure 6.a shows a coverage plot with large genotype-dependent differences across all
exons, which indicates a strong eQTL signal, while in Figure 6.b, the genotypes difference
in coverage is most prominent for one exon only, suggesting an sQTL. Figures 6.c and
6.d illustrate coverage plots from which alternative start and end sites of transcription can
be seen; therefore, these plots were assigned to puQTL and apaQTL classes respectively.

Figure7 displays a coverage plot for a QTL detected by the txrevise method. Here,
the stratified by genotype difference in expression of the fourth exon is also verified by
boxplots, which show that for the third genotype, the transcript with the fourth exon
spliced out has the highest TMP units count - is the most expressed under this genotype.

Finally, Figure 8 demonstrates two examples of coverage plots for which the mode
of action cannot be reliably identified. Specifically, Figure 8.b shows an example of
mapping to the reference genome bias with the characteristic genotype-dependent bulge
in read coverage in the middle of the exon.

For more coverage plot labelling examples, we refer the reader to the Supplementary
materials of Kerimov et al. paper [3].

Firstly, we labelled a subset of plots associated with the GWAS traits from studies
on plasma proteins [75] and metabolites (unpublished, from UK Biobank) because we
assumed since the variants are associated both with GWAS and molecular traits, their
effect might look more prominent on the plots. However, only 15% of the unique QTLs
were classified as sSQTLs. Therefore, we changed the strategy and selected all of the
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variants fine-mapped with Leafcutter [9] traits from GEUVADIS and BLEUPRINT
datasets with PIP > 0.8 . The distribution of labels in the dataset after this step is shown
in Figure 5. Even after filtering for variants enriched for high PIP and Leafcutter signal,
for 28% of variants, we were not able to assign a definitive mode of action based on
the coverage plots. Note that the single variant signal is usually repeated over several
datasets, so the decision is based on a couple of coverage plots. Finally, we added a set
of 692 disease-causing deep intronic variants affecting RNA splicing from the study by
Barbosa et al. [76].
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Figure 9. caQTL mapping pipeline. Credit: Kristiina Kuningas

Raw ATAC-seq/ChlP-seq data from the caQTL datasets was processed in a unified
manner using the same pipeline to obtain caQTLs. The complete pipeline is shown in
Figure 9. The pipeline was developed by Kristiina Kuningas.

Lastly, we selected variants fine-mapped with gene expression traits (PIP > 0.8) with
matching cell types as in caQTL datasets from the eQTL catalogue and computed the
overlap with the caQTLs obtained in the previous step. Our underlying assumption was
that if a variant is confidently fine-mapped both as an eQTL and as a caQTL, then it
is likely that it affects gene expression via chromatin activity, as opposed to splicing
or some other mechanisms. The results of this data manipulation are shown in Table 3.
This way, we secured a set of variants that affect gene expression by changing the
chromatin structure — ceQTL.

As a result, we collected the MoA dataset, where ceQTLs activity is mapped to a
particular cell type, whereas sQTLs are considered cell-type agnostic. This decision was
driven by the absence of cellular context information in the dataset curated by Barbosa et
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Table 3. Variants that affect gene expression by changing the chromatin structure

(ceQTL) datasets.
caQTL eQTL # of # of j’;ﬁiﬁ‘ﬁfﬂ
dataset dataset(s) caQTLs eQTLs peaks
LCLs-1 GEUVADIS, TwinsUK 1598 1876 95769
LCLs-2 GEUVADIS, TwinsUK 1413 1876 89/70
LCLs-3 GEUVADIS, TwinsUK 1576 1876 113/90
LCLs-4 GEUVADIS, TwinsUK 1485 1876 69 /57
LCLs-5 GEUVADIS, TwinsUK 1251 1876 521/46
LCLs-6 GEUVADIS, TwinsUK 1743 1876 67 /60
naive T cells-1 BLUEPRINT _t-cell 1142 950 170/ 111
naive T cells-2 BLUEPRINT _t-cell 1222 950 117763
reg T cells-1 Bossini-Castillo_2019 365 216 32/20
reg T cells-2 Bossini-Castillo_2019 58 216 8/7
iPSCs iPSCORE, HipSci, PhLiPS 136 445 4/4
monocytes-1 | BLUEPRINT_monocyte 1035 1061 170/110
monocytes-2 | BLUEPRINT_monocyte 3602 1061 205/ 106

al. and the fact that deep learning models for splicing prediction are currently cell-type
agnostic as well. While there exists evidence that the degree of sharing for sQTLs
between cell types is higher than for eQTLs [7, 77], more research is required in this
direction.

While initially, we planned to include four classes of QTLs in the MoA dataset, the
version presented in this thesis includes only ceQTLs and sQTLs. The motivation for
this decision is two-fold. Firstly, we simply were not able to collect enough samples
for puQTL and apaQTL classes. Secondly, if the reader were to imagine a type of QTL
as a spectrum, sQTLs and ceQTLs would be placed at opposite ends owing to the very
distinct molecular mechanisms that drive these processes, making them relatively easy to
tell apart. In the meantime, eQTLs are more tricky to predict and require the integration
of multiple strands of evidence [3]. Furthermore, eQTLs are often defined as changing
the steady-state total RNA read count [7]. But there exist multiple mechanisms which
affect the total read count:

1. Enhancer variants that increase the rate of transcription, which are imperfectly
proxied by caQTLs or cQTLs (chromatin QTLs) (~30-55% of all eQTLs) [78].

2. Splicing QTLs that reduce RNA stability (e.g. via NMD), resulting in reduced
total read count [10].
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3. Splicing QTLs that exclude a long exon, resulting in a slight decrease in total read
count.

4. apaQTLs, since the 3’ untranslated regions are typically long (~50% of the tran-
scribed region), and change in their length can affect total read count. apaQTLs
can also change stability by adding or removing RBP binding sites [79].

5. Other sequence variants that change stability by changing RBP binding or miRNA
binding [29].

6. puQTLs that change transcript length and or stability mechanism [8].

As aresult, in practice, when we want to detect an eQTL, we need to consider a whole
batch of molecular mechanisms that can affect gene expression, rendering the term
’eQTL’ not useful.

4.3 Models

SpliceAl [17] is a deep learning-based tool developed to predict splice sites in genomic
DNA sequences using pre-mRNA sequence as input. Its architecture primarily relies on
a convolutional neural network (CNN) designed to detect patterns determining where
splicing occurs in the genome. SpliceAl uses dilated convolutions to capture long-
range dependencies in DNA sequences effectively. This technique allows the model
to have a wider receptive field, thus incorporating information from distant parts of
the sequence without drastically increasing computational complexity. The authors
provide Splice AI-80nt, Splice AI-400nt, Splice Al-2k, and Splice AI-10k architectures,
with the features from the final convolutional layer spanning 80, 400, 2K and 10K
neighbouring nucleotides, respectively. The model outputs three scores which sum to
one, corresponding to the probability of the position of interest being a splice acceptor,
splice donor, and neither. Then, to evaluate the splice-altering effect of a mutation,
SpliceAl predicts these probabilities at each position in the pre-mRNA sequence of the
gene with and without the mutation. The A score value for the mutation is the largest
change in splice prediction scores in a window around the variant (Figure 10). The
size of the sequence window is a hyperparameter, with the maximum value being equal
to the input sequence length. In this work, we set it to 1000bp. For network training,
authors used GENCODE-annotated pre-mRNA transcript sequences [80] on a subset of
the human chromosomes and transcripts on the remaining chromosomes, with paralogs
excluded, to test the network’s predictions.
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Figure 10. Schematic of using SpliceAl for accessing the splice-altering effect of a
mutation [17].

Pangolin [18] is another deep-learning based tool for modelling splicing from the
raw sequence. It improves over SpliceAl by predicting splicing in four tissues - heart,
liver, brain and testis - separately and can predict the usage of a splice site in addition to
the probability that it is spliced. Pangolin’s architecture is similar to that of SpliceAl,
enabling it to model features from up to 5K nucleotides both upstream and downstream
of each targeted splice site. Training data for Pangolin was also collected differently. The
authors processed RNA-seq data from four species (human, rhesus macaque, mouse, and
rat). Then, they labelled every position within a gene body as spliced or not spliced and
measured the usage of each splice site. Specifically, they marked all sites within gene
bodies supported by one split read in at least 2 samples each as spliced, and all other sites
as unspliced. They did not label the splice sites as donor or acceptor. Splice site usage
was estimated with SpliSER [81]. We were not interested in tissue-specific predictions
in this work, so we used the aggregated score.

Enformer is a Transformer-like deep learning model which predicts gene expression
and chromatin states in humans and mice from DNA sequence. Using transformer layers
allowed authors to significantly increase the receptive field, covering distal regulatory
elements up to 100kb away while still being able to integrate their information effectively.
Enformer takes as input DNA sequence of length 196,608bp and predicts 5,313 genomic
tracks(transcription factors (TF) ChIP-seq, histone modification ChIP-seq, DNASE-
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Figure 11. Enformer architecture. By using transformer architecture instead of dilated
convolutions, it achieves a receptive field that detects sequence elements 100kb
away [15].

seq and CAGE for gene expression) for the human genome and 1,643 tracks for the
mouse genome, each of length 896 corresponding to 114,688bp aggregated into 128-bp
bins (Figure 11).

ChromBPNet [20] is a fully convolutional neural network that employs dilated
convolutions combined with residual connections to predict the chromatin accessibility
profiles. This design allows it to have large receptive fields while using parameters
efficiently. Additionally, it automatically corrects assay bias in a two-step process.
Initially, it develops a simple model based on chromatin background, which accounts
for enzyme effects. Subsequently, this model is used to remove the influence of the
enzyme from the ATAC-seq/DNASE-seq profiles. This dual-step approach ensures
that the ChromBPNet model’s sequence-focused part (TF Model) does not incorporate
enzymatic bias. ChromBPNet predicts the base-resolution base counts (unlike Enformer
and Borzoi) and a sum of all counts in a 1000bp window from the input DNA sequence
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Figure 12. ChromBPNet architecture. It uses a bias model to factor out the enzymatic
effect from ATAC-seq/DNASE-seq profiles [20].

of length 2114bp (Figure 12). The model requires aligned ATAC-seq/ChIP-seq reads and
open chromatin peak coordinates for training. During training, it also performs sampling
of negative (not accessible) regions with the same GC content (fraction of G/C bases in
a sequence) as the accessible ones. Negative samples are sampled with a ratio of 0.1.
A more detailed description of the data we used for training ChromBPNet models for
different cell types can be found in Section 4.2.2.

Borzoi [16], Enformer’s successor, is a Transformer-like deep learning model, which
learns to predict cell- and tissue-specific RNA-seq coverage from DNA sequence. Borzoi
uses the core Enformer architecture and employs U-net architecture with upsampling
blocks to increase the output resolution to 32bp (Figure 13). For training, the authors
chose to use uniformly processed RNA-seq data from the ENCODE project, which
includes 900 human and 600 mouse datasets [82]. Additionally, they incorporated 2-3
replicates from each GTEXx tissue, processed by the recount3 project [83]. To aid in
identifying distal regulatory elements, they combined this data with thousands of training
datasets from the Enformer model, featuring CAGE, DNase, ATAC, and ChIP-seq tracks.

To access the variant effect on gene expression, the 524 kb input window is centered
on the SNP of interest and the model predicts coverage y™) = M (2(0) 4@ =
M (@) ¢ R16:384xT611 for the reference and variant patterns. Then, the L2 score is
computed separately for each track across the output vector of size 16,384:
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i=1
The authors used a similar approach for predicting the splicing effect of a variant, but

across the gene span only:
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The indices by, and b4 in the above equation refer to the bins in y overlapping the
start- and end positions of the gene span.

In our analysis, we included L2 and splicing scores calculated from all available
RNA-seq tracks and a single DNASE track for each of the five cell types.
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Figure 13. Borzoi model architecture. It directly predicts RNA-seq coverage and uses
U-net architecture to increase the final resolution from 128bp to 32bp [16].
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4.4 MoA model

MoA model is a simple binary classifier - logistic regression or decision tree - which uses
a set of classic and neural features to predict the mode of action of a variant: whether
it acts as a splicing QTL or gene expression QTL with effect on chromatin structure.
Obviously, these two classes do not cover all of the spectrum of possible molecular
mechanisms (most notably missense or loss-of-function mutations) via which the variant
can affect the complex trait, so it cannot be employed as a sole decision maker for an
arbitrary set of GWAS variants. However, it can be used for refining fine-mapping results
or as an additional signal in a more complex analysis.

Gene expression is primarily regulated by transcription factors (TFs) that bind to
DNA at promoters or enhancers [1]. This binding can be inferred from chromatin
accessibility measurements, indicating potential transcription factor activity. Splicing is
primarily regulated by splicing factors and RNA Binding Proteins (RBP) that bind to the
transcribed pre-mRNA molecule [84]. TF binding events at enhancers are further away
from the gene body and splice junctions than the binding sites of most RBPs and splicing
factors. Given these distinctions, we selected the following ’classic’ variant features for
our model:

1. Binary variable indicating whether the variant is located within the gene body

2. Distance from the variant to the closest annotated splice junction (GENCODE v39
annotation [80])

3. Number of overlaps with open chromatin regions in 5 cell types. We used the same
ENCODE DNASE/ATAC-seq experiments on which ChromBPNet models were
trained.

4. Number of overlaps with binding sites of RNA binding proteins. We took the
binding sites of 211 RBPs, identified by Nostrand et al. [85].

Neural features combine the predictions of three classes of deep learning models:

1. Splicing scores from SpliceAl and Pangolin. Each model produces two scores:
maximum increase and decrease in the probability of a site being a splice junction
in a 1000bp window around the variant.

2. Enformer SAD scores for five CAGE tracks (gene expression) and five DNASE
tracks. SAD score is a difference between Enformer predictions for reference
and alternative alleles, averaged over the eight flanking bins representing 1000bp
window.
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3. ChromBPNet difference scores for five cell types. Difference score is computed as
loga(sum_count,y | sum_count,.y).

We used sklearn’s implementation of Logistic Regression and Random Forest clas-
sifiers. For Logistic Regression, we used the L2 penalty with C=0.8. Random Forest
models were fitted with the following hyperparameters: n_estimators=200, max_depth=8,
min_samples_leaf=6, min_samples_split=4, max_samples=0.9.

4.5 Technology

All model training and memory-intensive data processing was run on the University of
Tartu’s high-performance computing centre (HPC). SpliceAl, ChromBPNet, Enformer,
and Borzoi are open-source models implemented using TensorFlow [86], while Pangolin
is written in PyTorch [87]. Genomic features were computed using R. The features for
the MoA model can be obtained by running a single Nextflow [88] workflow, which
combines together all bash scripts required to run the inference. The workflow can be
found here https://github.com/DzvinkaYarish/qtl-moa-prediction.
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5 Results

5.1 MoA dataset

Figures 14 and 15 show the MoA dataset statistics. There were no common variants
between our manually labelled set and sQTLs from Barbosa et al., and only 33 of those
sQTLs are discoverable via Open Targets Genetics platform [89].

0.5% (5 out of 905) of sQTLs and 26% (163 out of 624) ceQTLs localize outside of
the gene body.

Ultimately, the ceQTL class was underrepresented, so we oversampled it when
training the MoA model.
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Figure 15. Classes and cell types

Figure 14. Sources of variants in the MoA distribution in the MoA dataset.

dataset.

5.2 SpliceAl and Pangolin evaluation

Figure 16 visualizes SpliceAl and Pangolin predictions on the set of manually picked
sQTLs. Out of 213 variants, both models missed the effect of 30 variants. For this evalu-
ation, we used threshold = 0.01, while the threshold = 0.2, as suggested in the Splice Al
paper, appeared too stringent. Notably, Pangolin appears to be more conservative in its
predictions than SpliceAl. Besides, models predicted a non-zero splicing effect for 17
out of 40 SNPs for which the closest annotated splice junction is outside the model’s
prediction window. As can be seen from the figure, splicing scores are mostly positive
for those variants, so the models effectively identified novel splice junctions.

38



087 | Recall: 0.86
‘ Recall {threshold=0.2): 0.34

'l| ‘

Hl“ ' "

Max scoring
! distance

0.6 1
0.4 4

0.2

i M|

Jn

0.4
I

| SpllceAI gain

I Pangolin gain

Hl SpliceAl loss

| Pangolin loss

—0.6

A splicing score between REF and ALT alleles

0 10 15 20 24 31 30 53 68 81 109 144 205 288 415 747 1240 1491
Distance to the closest annotated splice junction

Figure 16. SpliceAl and Pangolin scores for hand-labelled set of sQTLs. Max scoring
distance - length of variant left/right flanking sequences for which the scores are
predicted.

5.3 ChromBPNet vs Enformer

Enformer and its successors represent a class of general-purpose (one can even say
foundational) models with a large number of parameters which aspire to predict as many
genomic tracks from the DNA sequence as possible. On the contrary, ChromBPNet is
a specialized model which was designed with the specifics of chromatin accessibility
assays in mind and is much easier and faster to train.

Table 4 compares the ChromBPNet and Enformer performances on detecting the
effect size of caQTLs from uniformly processed datasets. The last 7 rows show results
for subsets of caQTLs created by overlapping variants from two datasets. ChromBPNet
outperforms Enformer on all datasets except for naive T cells. It might be because of
the low quality of a particular ENCODE experiment with naive T cells ATAC-seq data
on which ChromBPNet was trained or due to the fact that naive T cells caQTLs were
detected from ChIP-seq assay, which produces broader peaks than DNASE/ATAC-seq.
Secondly, we can see that the genotype source mildly affects the predictions - LCL-
1,2,5,6 used genotypes imputed with GLIMPSE, while LCL-3 and LCL-4 were processed
with the whole genome sequencing data.
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Table 4. Performance of ChromBPNet and Enformer on caQTL datasets.

r¢ for variants in peaks r¢ for variants outside peaks

Dataset CBPNet Enformer CBPNet [CBPNet Enformer CBPNet
x effect x effect x Enformer| x effect x effect x Enformer

LCL-1 0.727 0.623 0.725 0.009  0.061 0.212
LCL-2 0.735 0.594 0.704 0.032  0.095 0.233
LCL-3 0.778  0.658 0.731 -0.06 0.006 0.218
LCL-4 0.802 0.74 0.778 0.006 0.041 0.245
LCL-5 0.775  0.705 0.746 0.074  0.015 0.301
LCL-6 0.775 0.69 0.754 0.02 0.022 0.224

naive T cells-1 0.687  0.742 0.74 0.028  0.136 0.163
naive T cells-2 | 0.669  0.705 0.732 0.062 0.141 0.235
reg T cells-1 0.705  0.734 0.816 0.107  0.056 0.14
reg T cells-2 0.838 0.73 0.851 0.18  -0.011 0.671
iPSCs 0.75 0.743 0.818 -0.03  -0.011 0.461
monocytes-1 0.742  0.651 0.743 0.277  0.316 0.441
monocytes-2 0.767  0.625 0.647 0.24 0.128 0.359
LCL-2 &5 0.749  0.607 0.747 - - -
LCL-3& 4 0.78 0.663 0.764 - - -
LCL-2 & 4 0.741  0.631 0.736 - - -
LCL-3&5 0.798 0.633 0.725 - - -
naive T cells-1 & 2| 0.664  0.706 0.706 - - -
reg Tcells-1&2 | 0.703  0.805 0.824 - - -
monocytes-1 &2 | 0.749  0.652 0.738 - - -

Fine-mapping of chromatin accessibility associated variants with a testing window of
400Kbp resulted in roughly half of the caQTLs detected outside of the peaks (see Table 1).
These results are consistent with the other caQTL studies [90, 91], so we did not exclude
the variants outside of peaks from our analysis. However, the ChromBPNet authors
designed the model’s default architecture to have a receptive field of 1000bp, an average
width of the peak detected by DNASE/ATAC-seq methods. So, we did not expect to see
a non-zero effect predicted for variants located outside of peaks. Conversely, Enformer
boasts a 200Kbp receptive field. But, as can be seen from the right part of Table 4, the
correlation between measured and predicted effect size is low. Evidently, the simple
scalar score used to evaluate the variant effect from tracks predicted by Enformer cannot
capture the long-distance effect. In addition to this, no variants outside the peaks are
shared between two same cell type datasets, suggesting that many of these variants could
be fine-mapping false positives (i.e. variants with high posterior inclusion probabilities
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that are actually not causal).

Figures 17 and 18 offer a more detailed view of ChromBPNet predictions. Variants
outside of peaks show almost zero effect, while variants inside peaks demonstrate high
concordance with the measured effect sign. As illustrated by Figure 18, a relatively low
fraction of caQTLs inside of peaks were missed by ChromBPNet, and for many variants,
the effect size was overestimated.

Table 5. Spearman correlation between measured and predicted effect for different cell
type ChromBPNet models for caQTL datasets.

CBPNet model
reg T naive . leukemia
Dataset monocytes ce%ls T cells iPSCs LCLs cells
LCL-1 0.551 0543 057 0294 0.708 0.373
LCL-2 0.55 0.557 059 0282 0.711  0.348
LCL-3 0.607 0.601 0.623 033 0.755 0.381
LCL-4 0.689 0.66 0.713 0309 0.792 0.444
LCL-5 0.663 0.658 0.697 0292 0.77 0.439
LCL-6 0.649 0.615 0.659 0274 0.771 0.43

naive T cells-1| 0.517  0.689 0.678 0.365 0.618 0.477
naive T cells-2| 0.499  0.665 0.658 0.215 0.629 0421
reg T cells-1 0.607 0.7 0.693 0.328 0.73 0.568
reg T cells-2 0.754 0825 0.811 0.276 0.773  0.694
iPSCs 0.356 0355 0465 0.737 0.448 0.456
monocytes-1 0.74 0473 0.624 0.215 0.527 0.477
monocytes-2 | 0.764 0411 0.63 0.165 0.538 0.439

Lastly, since open chromatin regions are highly cell type specific [92], we wanted
to study to what extent this specificity would be captured by ChromBPNet. Therefore,
we proceeded to perform caQTLs scoring for each cell type with all six ChromBPNet
models. The results are gathered in Table 5. As expected, the correct cell type model
produced the highest correlation with the experimental effect size (except for naive T
cells), and since iPSCs differ the most from the rest of the cell types, other cell type
models fail to predict chromatin activity in them.

5.4 MoA model

We evaluated the MoA model in two stages: firstly, we performed 5-fold cross-validation
on the MoA dataset and compared the metrics with the classifiers trained with Borzoi
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scores only. After that, we scored the variants from the eQTL catalogue, quantified either
by gene expression or Leafcutter method.

Table 6 presents f1 scores for logistic regression and random forest classifiers trained
with different sets of features. We also trained separate models for the cell types with
a sufficient number of ceQTLs. We can observe a clear improvement in accuracy after
combining classic and neural features. Besides, there is no significant difference in
accuracy between models which use cell type specific features and those which use all
available features.

In Borzoi paper, the authors demonstrate its ability to distinguish between sQTLs,
eQTLs and matched set of negatives [16]. Therefore, we decided to contrast our compos-
ite MoA model against a monolithic unified model such as Borzoi. As shown in Table 7,
our MoA model with combined features from single-task neural networks consistently
outperforms Borzoi-based classifiers even without the classic genomic features.

Table 6. MoA model evaluation on the MoA dataset (f1 score).

Logistic Regression Random Forest
Cell All (cell All (cell
type Classic Neural All type Classic Neural All type
specific) specific)
All 0.675 0.848 0.846 0.751 0.865 0.867 -

LCL 0.702 0.814 0.832 0.847 0.771 0.864 0.86  0.88
monocytes | 0.67  0.837 0.867 0.864 0.734 0.885 0.881 0.87
naive T cells| 0.74  0.851 0.866 0.873 0.836  0.803 0.875 0.87

Table 7. Comparison of MoA model and Borzoi-based classifiers (f1 score)
* - cell type specific features are used.

Cell Logistic Regression Random Forest
t ee Borzoi MoA Borzoi* MoA Borzoi MoA Borzoi* MoA
yp (Neural) (Neural)* (Neural) (Neural)*

All 0.71  0.848 - - 0.8 0.865 - -
LCL 0.637 0.814 0.604 0.847 |0.825 0.864 0.827 0.88
monocytes | 0.614 0.837 0.588  0.864 | 0.819 0.885 0.774 0.87
naive T cells| 0.577 0.851 0.648  0.873 | 0.829 0.803 0.786 0.87

Although the MoA dataset serves as a decent high-confidence benchmark, we also
wanted to test the MoA model in a less controlled environment. For that purpose, we
selected all QTLs from the eQTL catalogue, which were detected by gene expression
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Figure 19. Distribution of the MoA model probabilities for eQTL catalogue QTLs.
* - cell type/tissue not present in the MoA dataset.

(total read count) (alleged eQTLs) or Leafcutter (alleged sQTLs) methods with PIP > 0.8
in five cell types present in the MoA dataset plus fibroblasts, neutrophils and blood. We
then excluded those QTLs which are present in the MoA dataset. Figure 19 depicts the
distribution of the MoA model probabilities of a variant being an sQTL for each cell type.
While for eQTLs we can observe a bimodal distribution, shifted towards lower sQTLs
probabilities (so higher ceQTL probability), this is not the case for QTLs quantified with
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Leafcutter. In most cases, the model is unsure about the Leafcutter sQTls, suggesting
that the classification of QTLs based on the quantification method only is unreliable.

5.5 Feature analysis

In order to understand the interactions between features and their contributions to the
final model score, we conducted an extensive feature analysis. Figure 20 displays the
correlation pattern between features. We can observe distinct clusters of high correla-
tions for Enformer, ChromBPNet and SpliceAl/Pangolin predictions. Interestingly, the
correlations between Enformer DNASE and ChromBPNet scores are not higher than 0.5.
Regarding the classic features, number of peak overlaps is negatively correlated with the
SpliceAl scores, and number of RBP sites exhibits the highest degree of independence
relative to the other features analyzed.
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Figure 20. Spearman correlation between the MoA model features.
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SHAP (SHapley Additive exPlanations) values [93] are derived from cooperative
game theory and provide interpretability to ML models by quantifying the contribution of
each feature to the prediction output. These values offer both local explanations, relevant
for individual predictions, and global insights that illuminate the overall importance of
features across a model.
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Figure 21. SHAP values plot, displaying a summary of how the top features impact the
MoA model’s (Random Forest) output. Each dot on each row represents one variant
from the test set.

Figure 21 illustrates the top 17 features used by the Random Forest MoA model,
the features are ordered by the mean absolute value of SHAP values for each feature.
All features were scaled to fall into the [0, 1] range. As a result, for Enformer and
ChromBPNet scores, which are negative when the alternative allele makes the peak
shrink and positive otherwise, scaled feature values near 0.5 indicate no effect. The plot
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was created with respect to the probability of a variant being a sQTL, so positive SHAP
values reflect the contribution of a feature to the increase in sQTL probability, while
negative values translate into the higher probability of a variant classified as ceQTL.
We can immediately see that Splice Al/Pangolin features are the most impactful, as well
as the number of chromatin peak overlaps and distance to the closest splice junction.
Interestingly, the decrease in the Pangolin score is far less significant than the decrease
in the SpliceAl score. Additionally, Enformer DNASE features tend to have a marginally
greater effect than the ChromBPNet scores, but the difference is minor. Notably, for
ChromBPNet the increase in the accessibility of a genomic region under the alternative
allele has more impact than a decrease, whereas for Enformer the inverse relationship
holds. Besides, ChromBPNet scores are sorted according to the fraction of a particular
cell type QTLs in the dataset, indicating better alignment of scores to the specific cell

type.
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Figure 22. SHAP values plot, displaying a summary of how the top features impact the
Random Forest classifier fitted on Borzoi features. Each dot on each row represents one
variant from the test set.
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Figure 22 shows the SHAP values for genomic features obtained from the Borzoi
model. At this point, we would like to remind the reader that the practical difference
between the L2 score and the splice score is that the splice score is calculated within the
gene boundaries. The SHAP plot analysis shows that higher values of DNASE-related
features are associated with predictions aligning more closely with the ceQTL class.
Conversely, higher splice scores, derived from RNA coverage tracks, are influential in
classifying a variant as an sQTL. The main difference with our model is the fact that for
our model, the most influential are splicing predictions, while the Borzoi-based classifier
most relies on DNASE tracks prediction scores.

Finally, we performed a PCA analysis of the MoA model features for the MoA
dataset and selected eQTL catalogue QTLs (Figures 23, 24 and 25). From Figure 23, we
can readily observe a cluster of ceQTLs located outside of gene boundaries and another
cluster on the left with the Splice Al splicing score equal to 0. Overall, it is evident that
the PCA dimensions closely align with the SpliceAl predictions.

In the analysis of the eQTL catalogue variants, the picture is not that clear. Notably,
some of the Leafcutter variants are clustered with those located outside of gene bound-
aries, and gene expression QTLs are characterized by high SpliceAl scores, indicating a
significant splicing effect.

Overall, the results demonstrate that with the biochemical assays available today, it
is evident that specialized, single-task genomic models either match or surpass the per-
formance of large-scale multi-task models, as shown by benchmarking on high-quality
datasets. This highlights the effectiveness of tailored approaches in genomic analy-
sis. Sequence-based neural network architectures benefit considerably from integrating
dataset-specific features and understanding the limitations inherent in biochemical as-
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Figure 24. Second and third PCA components derived from the MoA model features in
the eQTL catalogue variants set. Samples are coloured by the SpliceAl increase feature.
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Figure 25. Second and third PCA components derived from the MoA model features in
the eQTL catalogue variants set. Samples are coloured by the Splice Al decrease feature.

says, as shown by the ChromBPNet models. Additionally, modelling multiple regulatory
layers concurrently poses significant challenges in the architecture design and training of
multi-task models.

The reliance on purely deep learning-based scoring of variants is problematic, often
proving to be fickle and unstable. Therefore, the scoring has to be backed up by solid
biological or sequence features. The combination of the two types of features allows to
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distinguish between two very different modes of action of genetic variants (splicing and
gene expression change under altered chromatin structure) with almost 90% accuracy,
which is not achievable with only classic or only neural features.

Finally, QTL mapping alone as a tool for determining a variant’s mode of action is
unreliable, frequently resulting in numerous false positives.
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6 Discussion

In this study, a significant portion of time was dedicated to the manual labelling of
coverage plots for the MoA dataset. Despite these efforts, the number of labelled samples
remained too small to effectively train deep learning models. Despite the fact that
automated methods have not yet achieved the level of complex decision-making and
reasoning that human experts offer, Future efforts could benefit from semi-supervised
learning techniques such as pseudo-labelling to mitigate this issue.

In addition to that, we developed the MoA model using biological and deep learning
intuition and did not perform any feature engineering based on the MoA dataset, thus
demonstrating that the MoA model can successfully tell apart sQTLs and ceQTLs.
However, we are well aware that the results are transferable only to QTLs listed in the
eQTL catalogue and detected as causal with the fine-mapping and visualization methods
used in it. Ideally, an expanded testing set would be necessary to eliminate potential
biases and improve model generalization.

Another challenge in genomic research is the complexity and indecipherability of
genomic data to humans. As a result, researchers must depend on statistical methods to
obtain samples and labels for developing machine learning models. Nonetheless, these
methods are susceptible to errors and possess inherent limitations. It is important to
remember this fact, especially when ML models trained on the data produced by these
methods are later used to refine the results.

One might argue that even though Borzoi scores showed less discriminative power
than a hand-crafted set of features, using a single model for predictions is a more
convenient and less error-prone approach than juggling a whole collection of models.
However, as these models are significantly smaller in size, they can be easily adapted to
new cell types or datasets by fine-tuning or training from scratch. Meanwhile, as reported
by the Borzoi authors, it took them 25 days and 2 Nvidia A100 GPUs to train a single
model.

To evaluate their model on sQTL classification task, the authors of Borzoi constructed
a set of sQTLs out of the eQTL catalogue by selecting QTLs detected as txrevise
contained event. However, as we showed in this work, QTL mapping is prone to
producing a lot of false positives. Therefore, there is a need for more refined high-
confidence benchmarking datasets, which is becoming more dire as new, even larger
scale and more complex models enter the game. With this work, we made a first step
towards that goal.

sQTLs and ceQTLs are, of course, not the only possible molecular mechanisms
through which a variant can affect complex phenotypes. Some of them, such as puQTL
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or apaQTL, can be detected by the quantification methods used in the eQTL catalogue,
while some, such as methylation QTL, histone modification QTL, or protein abundance
QTL, require different types of assays and methods. Besides, molQTLs can also be
shared, as in strong eQTL affecting local splicing or histone modifications affecting
gene expression. Finally, some of the effect pathways cannot be explained by any of
the most common molecular modalities. Thus, the MoA model serves more like a
proof-of-concept method and the set of features used in it is not extensive enough to
indicate variants which are not causal or with ambiguous mode of action. So, it is
crucial that future studies in this direction continue to expand the set of modes of action
detected while still maintaining the possibility of the GWAS variant being assigned to
the unknown or ambiguous QTL class.

Lastly, while in this work we adopted an assumption of sQTLs being cell-type
agnostic (because of the available datasets), this is not entirely the case. Cellular context
is important, and we hope to add it in future work.

6.1 Future work

First of all, we would like to extend the MoA dataset with new molecular traits and cell
type specific sQTLs.

Secondly, it would be beneficial to augment the MoA model with the ability to detect
variants with indeterminate mode of action. To that end, we can use some anomaly
detection techniques or equip the model to express uncertainty in its predictions.

Thirdly, we would like to further explore the cell type specific approach advocated
by ChromBPNet. A promising direction is to train ChromBPNet models for more cell
types and then map the prediction to a common latent space, where we can explore the
similarities and differences in chromatin structure between different cell types, akin to
the work by Chen et al. [48].

Finally, to refine our understanding of the associations between genetic variants and
molecular traits and build higher-quality benchmarking datasets, we plan to integrate
allelic fold change measurements with the already calculated effect sizes and Posterior
Inclusion Probabilities (PIPs). This integration can improve the precision in pinpointing
functionally significant alleles.
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7 Conclusion

Understanding the molecular pathways via which the GWAS variant affects the complex
trait can provide useful information about the mechanisms behind various diseases and
aid in target prioritization. However, molQTL mapping, which is typically used to
assign the variant mode of action, produces numerous false positives and does not work
with low-frequency variants. Therefore, in this work, we explored the possibility of
using machine learning models to predict the variant’s mode of action. We collected
the MoA dataset, which includes two classes of molQTLs: splicing QTL and gene
expression influenced by chromatin accessibility QTL. In parallel, we compared the
performance of two deep learning models, Enformer and ChromBPNet, which represent
two opposite approaches to predicting regulatory activity, on a set of fine-mapped
chromatin activity QTLs. ChromBPNet proved to be more precise in predicting the
caQTLs effect. Finally, we built the MoA model, combining classic genomic features
and predictions of single-task deep learning models. The model demonstrated nearly
90% accuracy in distinguishing between the two QTL classes, compared to the 80%
accuracy achieved by a classifier based on scores from a single large-scale foundational
model. Finally, we scored the QTLs from the eQTL catalogue, detected by either gene
expression or Leafcutter methods, with our model. This analysis revealed that while
predictions from the MoA model more or less align with gene expression QTLs, most of
the Leafcutter QTLs are not classified as sQTLs.

All in all, this thesis presented an original dataset for training and evaluation of the
mode of action prediction models and a proof-of-concept MoA model, classifying GWAS
variants into two classes: splicing QTLs and gene expression affected by chromatin
accessibility QTLs.
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