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Aligning contextual vector spaces between independent neural trans-
lation systems

Abstract:
Numerous pre-trained machine translation models are available for translating between

different languages. However, these models are limited to a fixed set of languages they

were trained for. When there is no translation model available for a specific language

pair, we need to translate to one or more intermediate languages, which can result in

reduced translation quality. We investigate the possibility of combining two translation

models by aligning the vector spaces between them using a simple regressor. We explore

the effectiveness of various regression methods for achieving this alignment and evaluate

their performance. We show that combining two different translation models is possible,

although doing so leads to a decrease in translation quality.
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Kontekstuaalsete vektorruumide joondamine erinevate neuromasin-
tõlke süsteemide vahel

Lühikokkuvõte:
Erinevate keelte vahel tõlkimiseks on saadaval arvukalt eeltreenitud masintõlke mudeleid.

Need mudelid on aga piiratud kindla keelte komplektiga, mille jaoks nad on treeniti.

Kui konkreetse keelepaari jaoks pole tõlkemudelit saadaval, peame tõlkima ühte või

mitmesse vahepealsesse keelde, mis võib põhjustada tõlkekvaliteedi halvenemist. Uurime

kahe tõlkemudeli kombineerimise võimalust, joondades nendevahelised vektorruumid

lihtsa regressori abil. Uurime erinevate regressiooni meetodite tõhusust selle joondamise

saavutamiseks ja hindame nende effektiivsust. Näitame, et kaht erinevat tõlkemudelit on

tõepoolest võimalik kombineerida, kuigi see viib tõlkekvaliteedi languseni.

Võtmesõnad:
loomuliku keele töötlus, tehisnärvivõrkudel põhinev masintõlge, vektorruumi teisendused

CERCS: P176 Tehisintellekt
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1 Introduction

Machine translation (MT) is used to translate text from one language to another. Although

human translators can offer superior translations in terms of quality, MT systems are

faster and cheaper. Modern MT solutions are based on transformers [1], which consist of

an encoder and a decoder and have shown much better results than previous approaches.

These systems consist of a tokenizer and a transformer-based model. Tokenizer splits the

text to be translated into tokens, which are given to the transformer-based model. The

model’s encoder produces embeddings for the tokens, which are used to generate the

translated text. There are many pre-trained neural machine translation (NMT) models

freely available; for example, at the time of writing, the Hugging Face [2] open-source

library and community has over 2000 transformer-based NMT models.

When no translation model is available for a specific language pair, we need to

translate to one or more intermediate languages, which can result in reduced translation

quality. We investigate the possibility of combining two translation models by aligning

the vector spaces between them using a simple regressor.

The aim of this thesis is to see if we can combine the encoder from one transformer-

based model with the decoder of another model by training a simple regressor to align

the token embeddings. We take the token embeddings from one model produced by one

model encoder, transform them with our regressor and then generate the translated text

using the decoder from a different model.

Training these MT models is time-consuming and requires powerful hardware and

a lot of training data. If it is possible to combine transformer models encoders and

decoders in this way, then it allows us to easily create new MT models for specific cases

by combining different pre-trained models. This would allow us to save on training time

because we do not need to train a new translation model.

Our aim is to create a system for generating the matching token embeddings between

two transformer-based NMT systems. Then, we will use these matching token embed-

dings to train different regression methods. We will conduct experiments to find the best

regression model, and measure the performance in different situations. Finally, we will

use the best regression method to transform token embeddings from one model encoder

and then generate the translation with these transformed embeddings using the decoder

from a different model.
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We are searching for answers to the following questions.

• How well do different regression models (linear regression, orthogonal regression

and multi-layer perceptron) work for mapping the token embeddings?

• How well does the aligning work on know languages and unknown languages and

between models with different architecture?

• How much translation quality do we lose with this mapping?

In the next chapter, we give a brief overview of the concepts and technologies we

are going to use. Chapter 3 goes over the regressor training data generation process, the

different regression methods we are going to use and finally, how we will generate the

translated text with the aligned token embeddings. In chapter 4, we will go over the data

and models we used and aim to answer the questions we proposed here with experiments.

Finally, in chapter 5 we will discuss our results and ideas for future work.
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2 Background and Related Work

This chapter gives a short overview of the concepts and technologies used in this thesis.

We will explain what transformers are and why they are used for MT. We will go over

different tokenization methods, Byte-Pair Encoding (BPE), Unigram and SentencePiece,

and explain why tokenization is used in natural language processing (NLP). In addition

to this, we explain how the similarity between vectors is measured and how is the quality

of translations measured. And finally, we will go over adapters, which could also be used

to combine the encoder from one model with the decoder from a different model.

2.1 Transformers

The current state-of-the-art MT models are based on the transformer architecture intro-

duced by Ashish Vaswani et al. [1]. In the Seventh Conference on Machine Transla-

tion [3], all of the winning MT models were based on some variation of transformers

[4, 5, 6, 7, 8, 9]. The previous approaches for MT used recurrent neural networks (RNNs)

and long short-term memory (LSTM), but these systems process the input sequentially,

which becomes a problem with longer sequence lengths [1]. The architecture of the

transformers is shown in Figure 1.

The transformers consist of these key components: encoder and decoder, multi-head

attention, positional encoding and transformer layers.

The transformers consist of an encoder and a decoder. The encoder takes the tokenized

input sentence and outputs a list of vector embeddings [10]. Then the decoder uses these

vector embeddings to generate the output one token at a time until the end-of-sentence

symbol (EOS) is produced [10].

Ashish Vaswani et al. explain that transformers use multi-head attention. Using

multi-head attention, the model can attend to information from multiple representation

subspaces at different positions simultaneously. The multi-head attention is used in

transformers in three different ways. Firstly it is used in the encoder-decoder attention

layers, where the queries come from previous decoder layers while the memory keys

and values are obtained from the encoder’s output. This setup enables each position

within the decoder to attend to all positions present in the input sequence. Secondly,

multi-head attention is used in the self-attention layers of the encoder. In the encoder,
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Figure 1. The Transformer - model architecture. [1]

the self-attention mechanism allows the encoder in each position to attend to all of the

positions in the previous layer. Thirdly, multi-head attention is used in the self-attention

layers of the decoder. In the decoder, self-attention enables each position in the decoder

to attend to all positions up to and including its own position. The authors explain that

this is done to maintain the auto-regressive property; it is necessary to restrict the flow of

information leftward in the decoder.

According to its authors [1], the positional encoding is added to the inputs at the start

of the encoder and decoder stacks. The authors explain that because transformers can

process the sequence in parallel, it is important to add positional encoding, so the model
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can make use of the order of tokens in the sequence.

Transformer’s authors [1] explains that the encoder and decoder both consist of

a stack of transformer layers. In the encoder, each transformer layer consists of two

sub-layers, the first is the multi-head self-attention mechanism, and the second is a fully

connected feed-forward network. After each of these sub-layers, there is a residual

connection and layer normalization. The transformer layers in the decoder consist of

three sub-layers: the multi-head self-attention mechanism, fully connected feed-forward

network and multi-head attention over the output of the encoder. The authors explain

that, similarly to the encoder, there is residual connection and layer normalization after

each sub-layer in the decoder layers.

Transformers have revolutionized the field of MT by enabling faster and more efficient

processing of text data. Along with the use for MT, transformers are also widely used in

other NLP tasks, computer vision (CV) [11] and audio processing [12].

2.2 Tokenizers

An essential pre-processing step for NLP is tokenization, which splits text into small

units called tokens [13]. There are multiple ways to tokenize text. Earlier approaches

focused on word-level tokenisation, splitting text into tokens, where each token is a word

[14].

Sabrina J. Mielke et al. [14] explained that early word-level tokenizers saw words

as "space-separated sub-strings", but this causes problems for words with punctuation,

for example, the word "don’t". If we split on punctuation, we get three tokens "don",

"’", "t", but a alternative way to tokenize it would be tokens "don" and "’t". Authors

explained that in recent years, this type of tokenization has fallen out of favour because

many neural language models such as BERT require a fixed size vocabulary and word

level tokenization with fixed size vocabulary will replace unknown words with new token

UNK (unknown) and the features of the unknown word will be lost.

Sub-word-based tokenization aims to solve the fixed vocabulary problem by splitting

rare and unknown words as sequences of sub-word units [15]. One approach is BPE,

introduced by Rico Sennrich et al. [15]. The authors [15] explain that BPE works by

first initialising the symbol vocabulary with the character vocabulary. This way, each

word is represented as a sequence of characters and a special end-of-word symbol to be
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able to restore the original sentence. Now we iterate over the training data and count all

of the symbol pairs and replace each occurrence of the most frequent pair ("A", "B")

with a new symbol "AB". This process is repeated until we reach the predefined symbol

vocabulary size. Authors describe that with this approach, common words will be one

token and unknown words will be represented by sub-words and features of the unknown

word will not be lost.

According to Taku Kudo [16], the main flaw with BPE is that the same sentence can

be encoded in different ways, and this can cause issues for NMT. The word "Hello" could

be encoded in different ways, for example, it could be represented by the sub-words:

"Hell/o/", "H/ello" and "He/llo/". To solve this problem, author [16] proposed a new

tokenization algorithm called Unigram. Taku Kudo [16] explains that this algorithm

works by initializing a large base vocabulary containing all of the characters and the most

frequent sub-strings in the training corpus. Then, for each sub-word in the vocabulary,

it is computed how much the overall loss would increase if the sub-word was removed.

After this, the sub-words in the vocabulary are sorted by their loss value, and the top

n % (usually 80 %) are kept, and the rest are deleted. The one-character sub-words

are never removed to avoid not being able to tokenize some unknown words. This

process is repeated until we reach the desired vocabulary size. The author [16] says

that unigram tokenizers perform better than BPE, especially for low-resource and open-

domain settings.

All of the above-mentioned tokenization methods have been focused on languages

where words are separated by whitespaces, but words are not separated by whitespaces

in all languages, for example, Japanese, Korean and Chinese [17]. This can be solved

by pre-processing the text with language-specific tokenizers to split the text into words

and then using the pre-possessed text as input for the tokenization method [18]. But

this kind of approach creates additional complexity, as it requires pre-processing and

post-processing the text and managing multiple tokenizers for different languages [17].

SentencePiece tokenizer proposed by Taku Kudo et al. [17] combines the BPE and

Unigram to create an end-to-end system that does not need any language-specific pre or

post-processing. The authors of SentencePiece [17] describe that this tokenizer consists

of four parts: normalizer, trainer, encoder, and decoder. The normalizer normalizes the

Unicode characters into canonical forms in the corpus. Then the normalized corpus

9



is used by the trainer to train the sub-word segmentation model. The encoder uses

the normalizer and the sub-word segmentation model to tokenize the input, and the

decoder is used to detokenize. The authors [17] explain that SentencePiece is a self-

contained tokenizer that can be used for any combination of languages and provides

perfect repeatability of the sub-word segmentation.

All of the MT models used in this thesis use the SentencePiece tokenizer.

2.3 Measuring Vector Similarity

One of the most popular ways to measure the similarity of two vectors is cosine similarity.

It is used in different natural language processing tasks such as information retrieval

[19], text classification [20] and text clustering [21]. Cosine similarity is calculated by

measuring the cosine angle between two vectors [22]. Given two vectors A and B, the

cosine similarity is measured by using the following formula:

Cosine(A,B) =
A ·B

∥A∥∥B∥
=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(1)

Cosine similarity has several desirable properties that make it useful for comparing

vectors in high-dimensional spaces. Firstly, cosine similarity only depends on the

direction of the vectors, not their length [21]. This property is particularly useful in

natural language processing tasks, where the length of the vectors may vary.

Secondly, cosine similarity is bounded between -1 and 1; if the similarity between

vectors is -1, they are opposite of each other; if the similarity is 0, they are orthogonal,

and if the similarity is 1, they have the same direction [22]. This makes interpreting the

cosine similarity score easy and a good measure of similarity between vectors.

Finally, cosine similarity is computationally efficient and easy to compute, which

makes it a popular choice for many natural language processing tasks [20].

Another way to measure vector similarity is Euclidean distance. Euclidean distance

is used for many different applications, for example, image recognition[23], language

feature extraction[24], and face recognition[25].

The Euclidean distance is not affected by how far the vectors are from zero; for

example, the distance between a vector [1, 1, 1] and vector [2, 2, 2] will be 1.732, but the
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distance between vectors [100, 100, 100] and [200, 200, 200] is 173.205, which is much

larger. If we want the Euclidean distance to be relative to how far the vectors are from

the zero point, we can divide the distances between the two vectors by the distance

from one vector to the zero vector. By doing this, the relative distance between the

pair of vectors [1, 1, 1], [2, 2, 2] and [100, 100, 100], [200, 200, 200] will be the same. The

relative Euclidean distance is calculated by the following formula:

RelativeEuclideanDistance(A,B) =
∥A−B∥
∥A− 0⃗∥

(2)

If two vectors are the same, then the Euclidean distance between them would be

zero; if the vectors are not the same, then the smaller the distance between the vectors,

the more similar they are. While the cosine similarity is bounded between -1 and 1, the

Euclidean distance has no bound; its values can be from 0 to infinity. Because of this

reason, in the experiments, we used cosine similarity as the main similarity metric.

2.4 Translation Quality Evaluation

An important step in developing MT systems is evaluating the translation quality. Human

evaluation can provide the necessary feedback, but it can be time-consuming, expensive

and subjective [26]. Because of these drawbacks, human evaluation is only feasible on a

small scale. To provide more consistent, quicker and cheaper feedback on the translation

quality, many automatic evaluation metrics have been developed [26].

One of the most popular automatic evaluation metrics is BLEU [27]. According to

its authors [27], BLEU uses modified n-gram precision to evaluate translation quality

against one or multiple reference translations. The precision is calculated by counting the

n-gram in a reference translation and then clipping the total count of the n-gram in the

candidate translation to the maximum reference count and then divided by the candidate

translation’s total n-gram count. This is done to penalize the repeating of n-grams in

the candidate translation. The n-gram precision already penalizes candidate translations

that are longer than reference translation, but it does not penalize shorter translations.

The authors explain that to mitigate this, there is a brevity penalty factor to ensure that a

high-scoring candidate translation matches the candidate translation in length.

Deborah Coughlin [26] found that the BLEU score correlates with human evaluations,
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especially on larger datasets. With BLEU, we can reliably and easily validate the

translation quality for the MT system.

2.5 Related Work

One approach to change the embedding of a trained transformer model is adapters

proposed by Neil Houlsby et al. [28]. Adapters are new transformer layers added

between layers of a pre-trained network. When the adapters are tuned, the other layers are

frozen, meaning they won’t be changed. This means we have to train fewer parameters,

so the models are smaller and need less training data. Its authors explain that adapters are

useful when we need to train a model to be suitable for multiple different downstream

tasks because we can just have one copy of the model and then adapters for each task.

Mikel Artetxe et al. [29] showed that it is possible to use adapters to transform

a transformer-based model to a different language by learning an embedding matrix.

Adapters were not used in this thesis to see if it is possible to transform embeddings with

a simple regression model.
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3 Method

This chapter gives an overview of how the token embeddings were obtained for training

the regressor to transform the embeddings, which regressors were used and how the

translated text was generated using the transformed embeddings. This process consists

of three main steps, obtaining the training data, training the regressor and translating.

Firstly, we find the tokens that are split the same way between the tokenizers and

then extract the token embeddings from the encoders for these matching tokens. Then

using these token embeddings, we train a regressor to transform embeddings from model

A to be more similar to model B embeddings. And finally, to translate a sentence with

our trained regressor, we tokenize the sentence with model A tokenizer and use these

tokens to obtain the token embeddings model A encoder. Then these token embeddings

are transformed using our trained regressor, and then using the transformed embeddings,

we generate the translated text using the model B decoder. An overview of the translation

process using the transformed embeddings is shown in Figure 2.

Figure 2. Translating text with the Model A embedding transformed to Model B embed-

dings with the regressor.
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3.1 Getting the Training Data

To be able to train and evaluate regression models to transform one model embeddings

into a different model embedding, we need to find tokens that are the same for both

models. The process used to obtain the training data is shown in the Figure 3.

Tokenizers split the input string into tokens and some words might consist of multiple

tokens. Because of this, independently trained tokenizers might split the same word in a

different way; for example, the Swedish word "ordet" is split into two tokens "or", "det"

by opus-mt-NORTH_EU-NORTH_EU1 model tokenizer, but opus-mt-SCANDINAVIA-

SCANDINAVIA2 model tokenizer encodes the word into one token "ordet"

To be able to train models to convert embeddings obtained from model A to be

potentially compatible with model B, we need to find the tokens that are split the same

way by both models A and model B tokenizers.

We tokenize a sentence and then look at how each word is split into tokens. Then we

iterate over the tokens to find the id-s of the matching tokens; these id-s are later used to

extract the correct embeddings. If tokens do not match, we discard that and the rest of

the tokens in that word.

After we have obtained the id-s of the tokens that are the same for both tokenizers,

we give the full tokenized sentence to both models and the list of id-s to extract the

correct embeddings. We now perform a forward pass for both models, and the sentence

embedding is extracted from the last hidden layer of the encoder. From the sentence

embedding, we can extract the matching token embeddings from both models using the

id-s we got from the earlier step.

Now we have the embeddings from model A and model B from one sentence that are

from the same tokens. This process is repeated to get the desired amount of embeddings

for training the regressor.

1opus-mt-NORTH_EU-NORTH_EU webpage: https://huggingface.co/Helsinki-NLP/

opus-mt-NORTH_EU-NORTH_EU
2opus-mt-SCANDINAVIA-SCANDINAVIA webpage: https://huggingface.co/Helsinki-NLP/

opus-mt-SCANDINAVIA-SCANDINAVIA
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Figure 3. Overview of the regressor training data obtaining process.
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3.2 Transforming the Embeddings

To transform the embeddings, three different regression algorithms were chosen: linear

regression, orthogonal regression and multi-layer perceptron.

Linear regression was chosen to see if there is a linear relationship between token em-

bedding from different models. Linear regression is a common method for transforming

vectors into a different vector space. Linear regression is a simple and efficient method

that can capture linear relationships between variables. The scikit-learn3 implementation

of linear regression was used in this thesis.

Orthogonal regression is a linear regression with the additional constraint that the

weight matrix must be an orthogonal matrix/projection. Chao Xing et al. [30] found

that using orthogonal transformations on word vectors performed better than using linear

transformations. Orthogonal regression was chosen to see if the word embeddings

transformations also improve when using orthogonal regression when compared to linear

regression. The scikit-matter4 implementation of orthogonal regression was used in this

thesis.

Multi-layer perceptron was chosen because linear transformations may not be suitable

for word embedding transformation because it assumes a linear relationship between the

input and output variables. In contrast, a multi-layer perceptron (MLP) is a neural network

model that can capture non-linear relationships between input and output variables. The

scikit-learn5 implementation of MLP was used in this thesis.

3.3 Generating Translated Text with Decoder

After we have trained a regressor to transform model A token embeddings to model B
token embeddings, we can start translating.

Firstly we need to tokenize the sentence with model A tokenizer and pass the tok-

enized sentence to the encoder and perform the forward pass. After this, we can extract

3scikit-learn linear regression webpage: https://scikit-learn.org/stable/modules/

generated/sklearn.linear_model.LinearRegression.html
4scikit-matte orthogonal regression webpage: https://scikit-cosmo.readthedocs.io/en/

latest/linear_models.html#orthogonal-regression
5scikit-learn MLP webpage: https://scikit-learn.org/stable/modules/generated/sklearn.

neural_network.MLPRegressor.html
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the embeddings from the encoder’s last hidden layer.

Then these embeddings obtained from model A encoder are transformed to model B
compatible embedding using the trained regressor. The model-specific special tokens,

like the target language token and EOS, are not transformed with the regressor. These

special tokens are obtained by passing the tokenized sentence to model B and performing

the forward pass to obtain these embeddings from the last hidden layer of the model B
encoder. Then the sentence embeddings obtained from the regressor are combined with

the special token embeddings to form the token embeddings used as the input for the

decoder.

Now we start generating the translated text using the greedy generation algorithm.

We give the token embeddings to the decoder, set the decoder input id-s to the beginning-

of-sequence (BOS) token, and perform a forward pass. After this, we extract the last

hidden state of the decoder and give it to the model head to obtain the scores for each

token. From the model head output, we take the token with the highest score and add it

to the list of decoder input id-s.

Now we repeat the process with the new decoder input id-s until we generate EOS

token or reach the arbitrary iteration limit set by the model configuration.

In natural language processing, beam search is a popular method for generating text

in a more diverse and accurate manner than a greedy generation. However, for this thesis,

greedy generation was chosen over beam search due to ease of implementation.

One of the main advantages of greedy generation over beam search is that it is a

simpler and more straightforward method; it simply selects the word with the highest

probability at each step of generation without considering any other possible options.

[31] This makes it easy to implement and requires fewer computational resources, which

can be particularly beneficial when working with limited computing power.

3.4 Tools used for writing this thesis

In this thesis, Grammarly6 was used to fix grammatical mistakes and improve sentence

structure. It reviews spelling, punctuation, grammar, clarity and delivery mistakes in the

text.

6Grammarly is a cloud-based typing assistant. Grammarly’s webpage: https://grammarly.com
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4 Experiments

In this section, we aim to answer the questions proposed in the introduction:

• How well do different regression models (linear regression, orthogonal regression

and multi-layer perceptron) work for mapping the token embeddings?

• How well does the aligning work on know languages and unknown languages and

between models with different architecture?

• How much translation quality do we lose with this mapping?

4.1 Choosing the Best Regression Method

To be able to evaluate different regressors’ performance, we need to make sure we

have sufficiently trained the different regressors. We can be sure that the regressor

is sufficiently trained when increasing the training data amount does not improve the

performance of the model.

For these experiments, the OPUS-MT [32] machine translation models opus-mt-

NORTH_EU-NORTH_EU7 and opus-mt-SCANDINAVIA-SCANDINAVIA8 were used

with the OpenSubtitles open-source parallel corpora from movie and TV subtitles[33]

using the Swedish sentences from the Danish-Swedish corpus. Both of these models are

multi-lingual and share the Swedish language.

From the OpenSubtitles Danish-Swedish corpus [33], 500 thousand sentences were

used to generate the training data. For both of the machine translation models, the

embeddings of tokens that were split the same way between both of the models were

extracted. After this process, 2.14 million token embeddings were obtained.

For each amount of training data, we randomly took n amount of token embeddings

for the training set and 10 000 token embeddings as a testing set, making sure the test and

train set do not overlap. Then we trained the regressor with the training set and evaluated

its performance on the test set using cosine similarity. This process was repeated ten

7opus-mt-NORTH_EU-NORTH_EU webpage: https://huggingface.co/Helsinki-NLP/

opus-mt-NORTH_EU-NORTH_EU
8opus-mt-SCANDINAVIA-SCANDINAVIA webpage: https://huggingface.co/Helsinki-NLP/

opus-mt-SCANDINAVIA-SCANDINAVIA
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times for each train data amount, and the average from all of the runs was taken. This

was done to avoid random variance on different train and test sets. These experiments

were run on the University of Tartu high-performance computing centre [34].

4.1.1 Linear and Orthogonal Regression

Linear and Orthogonal regressors stopped improving their score meaningfully after being

trained on 6 400, as shown in Figure 4. These results mean that these regressors can

be fully trained with only token embeddings obtained from 1 500 sentences. From this

experiment, we can also see that the orthogonal regressor performs better when we have

very little amount of training data, but the linear regressor starts to outperform it from

800 tokens.

Figure 4. Training data amount effect on Linear Regression and Orthogonal Regression.

Linear regression performs better than orthogonal regression when we have more

than 800 tokens to train the regressor. When both of these regressors are fully trained,

the Linear regression outperforms the orthogonal regression by 6% when using cosine

similarity as the performance measure, from orthogonal regression cosine similarity

score of about 0.83 to linear regressions cosine similarity score of about 0.88.
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4.1.2 Multi-Layer Perceptron

For Multi-Layer perceptron based regressors, we need to find out how many hidden

layers we need and how many neurons in each of them. We train the different regressors

with varying amounts of training data as described above.

Firstly we find out how many neurons we need for MLP with one hidden layer. We

test six different MLP regressors with one hidden layer consisting of 256, 512, 1024,

2048, 4096 and 8192 neurons. Both input and output vector lengths are 512, so for

the first regressor, the hidden layer size is half of the input and output size, the second

regressor’s hidden layer size is the same as the input and output, and the third model’s

hidden layer size is twice the input and output and so on.

Figure 5. Effect of training data amount on MLP regressors with one hidden layer of

varying size.

In the Figure 5, we can see the result for MLP regressors with one hidden layer. From

this, we can see that larger hidden layer size results in better performance, even when
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Table 1. One layer MLP regressors with different hidden layer sizes performance when

training with 1 638 400 tokens.

Hidden layer size Cosine similarity
256 0.897

512 0.920

1024 0.935

2048 0.945

4096 0.951

8192 0.953

the amount of training data is low. From the Table 1, we can see that the performance

difference between the smaller hidden layers is quite noticeable, but the differences in

performance between the two largest are minuscule. Because of this, it was decided not

to test out larger hidden layer sizes. We can also see that the models stop improving when

the amount of tokens used for training exceeds one million, so they were not trained

further with more training data.

Table 2. MLP regressors with different amounts of hidden layers performance when

training with 1 638 400 tokens.

Hidden layer size Cosine similarity
One hidden layer (8192) 0.953

Two hidden layers (2420, 2420) 0.949

Three hidden layers (1800, 1800, 1800) 0.946

Secondly, we found out how will having multiple hidden layers affect the performance.

The MLP regressor with one hidden layer with 8192 neurons has about 8.3 million

parameters. The hidden layer size for the regressor with two hidden layers was chosen

so that the parameter count would also be 8.3 million, and the same approach was used

for the regressor with three hidden layers.

The results of this experiment are in the Figure 6. We can see that the one-layer MLP

performed better than one and two-layer MLP on all training sizes. From the Table 2, we

can see that the MLP regressor with one hidden layer achieved an increase of about 0.1
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Figure 6. Effect of training data amount on MLP regressors with different amounts of

hidden layers.

when compared to the regressors with two or three hidden layers.

4.1.3 Best Regression Method

From these experiments, we can see that the best regression method for transforming the

embeddings is MLP. From the Figure 7 we can see that MLP outperformed linear and

orthogonal regression on all different training data amounts. The Table 3 shows that the

difference between the best results of MLP and linear and orthogonal regression is large,

from average cosine similarity on testing data of 0.884 for linear regression and 0.831

for orthogonal regression to 0.953 for MLP.

We can also see that the average relative Euclidean distance measures correlate

with the cosine similarity scores, the orthogonal regression showed the largest average

distance, the linear regression distance scores were slightly lower, and the MLP average
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Figure 7. Different regression methods performance compared when training with

different amounts of data.

Table 3. The best cosine similarity and relative Euclidean distance for all regression

models.

Regressor type Cosine similarity Relative Euclidean distance
Linear regression 0.884 0.505

Orthogonal regression 0.831 0.537

MLP regression 0.953 0.292

relative Euclidean distance was the smallest. Based on these results, we used MLP

regressor with one hidden layer with 8192 neurons trained with 1.6 million tokens for

the rest of the experiments.
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4.2 Aligning Embeddings

After finding out the best regression method for aligning the token embeddings, we can

test the transformation quality on the language we used for training the regressor and on

languages that are unknown for the regressor and test if the transformation quality will

be affected when transforming between models with different architectures.

In these experiments, MLP regressor with one hidden layer with 8192 neurons was

used to transform the model A token embedding and then calculate the cosine similarity

between the transformed embedding and the embedding from model B. For accessing

the token embedding transforming quality, we used the FLORES-200 [35] dataset. For

each language, we found the tokens that are the same between both of the models and

used them to find the average cosine similarity for that language.

4.2.1 Known and Unknown Languages

To find out how the embedding transformation works on known and unknown languages,

we used the same models from OPUS-MT [32] as in the previous chapter, the opus-

mt-NORTH_EU-NORTH_EU9 and opus-mt-SCANDINAVIA-SCANDINAVIA10. The

regressor used in this experiment was trained using 1,6 million tokens obtained from

Swedish sentences from the Danish-Swedish corpus of the OpenSubtitles open-source

parallel corpora [33].

From the Table 4, we can see that the regressor performed the best on the Swedish

language, which is expected, as the regressor was trained on tokens obtained from

Swedish sentences. The regressor achieved an average cosine similarity of 0.896 on

Swedish, which is 5.9 % higher than the second-best result of 0.846, which was achieved

on the Norwegian Bokmål language. We can see from the results that the languages

can be split into two groups based on the regressor performance. One group consists of

Swedish, Danish, Norwegian Bokmål and Norwegian Nynorsk, and the second group is

Faroese and Icelandic.

Anders Holmberg et al. [36] says that Scandinavian languages fall into two groups by

9opus-mt-NORTH_EU-NORTH_EU webpage: https://huggingface.co/Helsinki-NLP/

opus-mt-NORTH_EU-NORTH_EU
10opus-mt-SCANDINAVIA-SCANDINAVIA webpage: https://huggingface.co/Helsinki-NLP/

opus-mt-SCANDINAVIA-SCANDINAVIA
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Table 4. Embedding transformation performance when using MLP regressor trained on

Swedish language and tested on FLORES-200 dataset.

Language
Cosine similarity
with Standard deviation

Euclidean distance

Swedish 0.896± 0.075 0.493± 0.217

Danish 0.843± 0.109 0.641± 0.318

Norwegian Bokmål 0.846± 0.108 0.645± 0.335

Norwegian Nynorsk 0.829± 0.117 0.686± 0.343

Faroese 0.726± 0.128 0.963± 0.360

Icelandic 0.717± 0.132 0.996± 0.360

Average 0.782± 0.137 0.813± 0.387

their syntax one is Danish, Norwegian and Swedish, and the second group is Icelandic,

Old Scandinavian and Faroese. There are many syntactic differences between these

languages, for example, Danish, Norwegian and Swedish have a system of subject-verb

agreement morphology, while the Icelandic, Old Scandinavian and Faroese have no such

system. The authors describe that the languages in the first group also have a rich system

of case morphology, while the languages in the second group have an impoverished

system of case morphology.

These syntax differences can explain the grouping of the languages in the Table

4. The regressor was trained using the Swedish language, so it makes sense that the

languages Danish, Norwegian Bokmål and Norwegian Nynorsk that are syntactically

more close to Swedish and transform better with our regressor.

From this experiment, we can also see that the type of text will also affect the

performance. The regressor was trained on OpenSubtitles open-source parallel corpora

from movie and TV subtitles [33] using the Swedish sentences from the Danish-Swedish

corpus and from the Table 3 we can see, that the MLP regressor achieved average cosine

similarity of 0.953. From the table 4, we can see that on the FLORES-200 [35] Swedish

dataset, which contains sentences from web articles, the MLP regressor achieved an

average cosine similarity of 0.896.

We can conclude that the aligning embeddings work better on known languages and

on similar types of text. For unknown languages, the performance of the aligning will be
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affected by how similar the language is to the language used for training.

4.2.2 Aligning Between models with different architecture

To find out how using models with different architecture affect the embedding trans-

formation performance, we used the M2M100 418M [37] model and the OPUS-MT

[32] opus-mt-NORTH_EU-NORTH_EU model. These models have a different amount

of transformer layers, and the M2M100 418M model token embedding length is 1024,

while the opus-mt-NORTH_EU-NORTH_EU token embedding length is 512.

Same as in the previous chapter, we trained the regressor using 1,6 million tokens

obtained from Swedish sentences from the Danish-Swedish corpus of the OpenSubtitles

open-source parallel corpora [33].

Table 5. Embedding transformation performance when transforming from m2m100

418M to opus-mt-NORTH_EU-NORTH_EU using MLP regressor trained on Swedish

language and tested on FLORES-200 dataset. The performance difference is between

the opus-mt-NORTH_EU-NORTH_EU to opus-mt-SCANDINAVIA-SCANDINAVIA

transformation and m2m100 418M to opus-mt-NORTH_EU-NORTH_EU transformation

Language
Cosine similarity
with Standard deviation

Performance difference

Swedish 0.821± 0.123 −8.370%

Danish 0.722± 0.207 −14.353%

Norwegian Bokmål 0.750± 0.196 −11.348%

Norwegian Nynorsk 0.708± 0.208 −14.596%

Faroese 0.653± 0.203 −10.055%

Icelandic 0.627± 0.238 −12.552%

Average 0.712± 0.208 −8.951%

From the table 5, we can see that when aligning between the m2m100 418M to

opus-mt-NORTH_EU-NORTH_EU models, we lose on average about 8.951 % in cosine

similarity when compared to aligning between opus-mt-NORTH_EU-NORTH_EU to

opus-mt-SCANDINAVIA-SCANDINAVIA. There is also a bigger performance loss

on the unknown languages (Danish, Norwegian Bokmål, Norwegian Nynorsk, Faroese,
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Icelandic) compared to the known language (Swedish). We can also see a similar

grouping of languages based on the cosine similarity scores as in the previous experiment.

There is a clear performance decrease when aligning embedding between models

with different architecture compared to models with the same architecture. One potential

reason for the performance decrease might be that because of the different architecture,

the embeddings are more different. Another potential reason might be that the m2m100

418M model token embedding length is 1024, compared to the opus-mt-NORTH_EU-

NORTH_EU model token embedding length of 512. This means the MLP regressor has

12.6 million trainable parameters instead of 8.3 million as in the previous experiment.

4.3 Translation

So far, we have just compared how similar the embeddings are, but in this section, we

will use the transformed embeddings to generate translations and validate the translation

quality. For evaluating the translation quality, we use the most popular implementation of

the BLEU score, SacreBLEU [38]. For the text generation, we use our implementation

of greedy generation described in Chapter 3.3. We used the OpenSubtitles Swedish -

Danish corpus [33], and the FLORES-200 [35] dataset for measuring the translation

quality.

We used the OPUS-MT [32] models opus-mt-NORTH_EU-NORTH_EU and opus-

mt-SCANDINAVIA-SCANDINAVIA and the same MLP regressor as in the Chapter 4.2.

We translated from Swedish to Danish to test embedding aligning on a known language

for the regressor and from Danish to Swedish to test embedding aligning on an unknown

language for the regressor. For each translation direction, we tested with sentences

from the OpenSubtitles corpus [33] and the FLORES-200 [35] dataset. We used our

generation implementation to translate using the opus-mt-NORTH_EU-NORTH_EU

model, opus-mt-SCANDINAVIA-SCANDINAVIA model and our Embedding aligning

model, which used the encoder from opus-mt-NORTH_EU-NORTH_EU model, decoder

from opus-mt-SCANDINAVIA-SCANDINAVIA model and our MLP regressor.

From the Table 6, we can see that on every test set, the models opus-mt-NORTH_EU-

NORTH_EU and opus-mt-SCANDINAVIA-SCANDINAVIA performed very similarly.

The difference in BLEU score between these two models on all test sets was on average

just 1.2 %. Using our embedding aligning model when translating on the language and
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the dataset the regressor was trained, the BLEU score is 23.84, which is about 38.1 %

lower than the other models. From the Table 7, we can see that the translations can have

mistakes, but the end result is legible.

Table 6. Using greedy generation to translate from Swedish to Danish and vice versa

on two different test sets. The Embedding aligning model uses opus-mt-NORTH_EU-

NORTH_EU encoder to obtain the embeddings, then uses the MLP regressor with one

hidden layer with 8192 neurons trained on OpenSubtitles Swedish dataset and uses the

decoder of opus-mt-SCANDINAVIA-SCANDINAVIA.

Direction Test Set Model BLEU

sv → da

OpenSubtitles

n = 1012

opus-mt-NORTH_EU-NORTH_EU 38.22

opus-mt-SCANDINAVIA-SCANDINAVIA 38.79

Embedding aligning model 23.84

FLORES-200

n = 1012

opus-mt-NORTH_EU-NORTH_EU 33.08

opus-mt-SCANDINAVIA-SCANDINAVIA 33.29

Embedding aligning model 7.00

da → sv

OpenSubtitles

n = 1012

opus-mt-NORTH_EU-NORTH_EU 36.96

opus-mt-SCANDINAVIA-SCANDINAVIA 36.91

Embedding aligning model 10.85

FLORES-200

n = 1012

opus-mt-NORTH_EU-NORTH_EU 32.00

opus-mt-SCANDINAVIA-SCANDINAVIA 32.50

Embedding aligning model 2.55
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Table 7. Translating from Swedish to Danish with sentences from OpenSubtitles and

FLORES-200 when using our embedding aligning model.

OpenSubtitles

Source: Nej, jag bryr mig inte.

Reference: Det bryder jeg mig ikke om.

Predicted: Jeg er ligeglad.

Source: Vad hände med din gamla laptop?

Reference: Hvad er der med din gamle laptop?

Predicted: Hvad skete der med din gamle nar?

Source: Det är inte vår värld därute.

Reference: Det er ikke vores verden.

Predicted: Det er ikke vores verden.

FLORES-200

Source:
Det har gett oss tåget, bilen och många andra

transportmedel.

Reference:
Det har givet os toget, bilen og mange andre

transportmidler.

Predicted:
Det gav mig to, to, to, to, to, to, to, to, to, to, to, to,

to, to, to, to, to, to, to - repeats till generation limit

Source:
I början var kläder starkt influerade av den

bysantinska kulturen i öst.

Reference:
I starten var tøjet i høj grad inspireret af den

byzantinske kultur i østen.

Predicted:
begyndelsen var der en stor indflydelse på den

bymæssige verden.

Source:
Satelliten i rymden får signalen och reflekterar

tillbaka den ned nästan omedelbart.

Reference:
Satellitten i rummet modtager opkaldet og reflekterer

det ned igen næsten med det samme.

Predicted:
Sadel i rummet får vi fat i det og vender tilbage

til det.

Translating from Swedish to Danish on the FLORES-200 [35] dataset with our

embedding aligning model, the results are much worse than the other models. While

29



the opus-mt-NORTH_EU-NORTH_EU and opus-mt-SCANDINAVIA-SCANDINAVIA

model achieved BLEU scores of 33.08 and 33.29 respectively, our embedding aligning

model achieved a BLEU score of 7. Translation samples are shown in Table 7, from there

we can see that when using the FLORES-200 dataset, there are much more mistakes,

and in some cases, the decoder does not generate the EOS token, which leads to many

repeating tokens being generated until the generation limit is reached.

When we translate from Danish to Swedish, then the source language is unknown

for our regressor, so it makes sense that the BLEU scores are lower for our embedding

aligning model in this translation direction. Compared to the other models, our model’s

performance is about 70.6 % lower on the OpenSubtitles corpus [33] and 92.1 % lower

on the FLORES-200 [35] dataset.

From this experiment, we can see that when we transform embeddings on a language

and type of text we use to train the regressor, we can perform a translation with these

transformed embedding with some loss of quality. In cases the language is unknown to

the regressor or the language domain is too different, the resulting translation quality is

too poor to be useful. We have shown that translating with transformed embeddings is

possible, but an MLP regressor might not be enough to achieve good translation quality.
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5 Conclusion

In this thesis, we explored if it is possible to transform token embeddings from one

machine translation model encoder so they would be similar to the embeddings of

another machine translation model. For this, we developed a system to extract matching

token embeddings from two translation models and a system to use these transformed

embeddings with a decoder of another machine translation model.

We stated three main research questions in the introduction. Firstly, we wanted to find

out the best regression method for transforming the token embeddings. We tested three

different regression methods: linear regression, orthogonal regression and multi-layer

perceptron. From our test, we concluded that the multi-layer perceptron achieved the best

results, so we performed experiments to find out the optimal size and amount of hidden

layers. We concluded that multi-layer perception, one hidden layer of 8192 neurons

trained on 1.6 million tokens, achieved the best cosine similarity scores in our tests, so

we used that regressor for transforming the embeddings.

Secondly, we wanted to see how well the aligning works on known languages and

unknown languages and between models with different architecture. The aligning worked

the best on language known to the regressor, for unknown languages, the performance

was affected by how closely the languages were related to the language that was used

for training the regressor. The languages that were more closely related to the regressor

training language achieved better similarity scores. The aligning of embedding between

models with different architectures resulted in a lower performance when compared to

aligning between models with the same architecture.

Finally, we wanted to find out how much translation quality we lose with this mapping.

When we translated on known language for the regressor and on the same dataset that

was used to train the regressor, the translation BLEU score was 38.1 % lower than when

using the original model. When we translated on unknown language or on different

datasets, the BLEU score was much lower, 70 - 90 % decrease in BLEU score when

compared to the original models.

In conclusion, we showed that embedding transforming with a simple regressor is

possible, but the performance loss is quite large. To be practical, this approach needs

to be improved, for example, use some more complicated neural network instead of the

multi-layer perceptron with one hidden layer.
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Appendix

I. Source Code Repository

Scripts developed for this thesis are openly accessible at the following code repository:

https://github.com/hzuppur/Aligning-contextual-vector-spaces/
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