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Vegetable Visual Quality Evaluation System Based on Artificial Intel-
ligence

Abstract:
Thanks to the rapid development of neural networks in recent decades, applications for
this technology have been found in various fields, from medicine to waste management.
The same applies to agriculture, where artificial intelligence enables agribusinesses to
make decisions based on objective statistical data and through that helps to increase
the productivity of the businesses. An example of precision agriculture is the visual
quality evaluation of vegetables with the use of machine learning based classifiers. This
thesis aims to make such tools more accessible and affordable for small agribusinesses as
existing solutions are generally too expensive or cannot be easily integrated into existing
processing lines. A new system, Vegeval, is designed and developed to overcome these
issues and to provide real-time statistics to agribusiness owners about the quality of their
produce. With the use of edge computing, it is shown that a relatively inexpensive system
can be built for a hassle-free adoption of precision agriculture processes in existing
vegetable processing lines. Consequently, based on the results of the thesis, it can be
observed that hardware with low computing resources can successfully be deployed for
fulfilling computer vision and object detection tasks in the discussed use cases. The latter
additionally indicates that applying artificial intelligence to make everyday tasks more
efficient does not necessarily have to come at a large expense.
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Tehisintellektil põhinev juurvilja visuaalse kvaliteedi hindamise süs-
teem

Lühikokkuvõte:
Tänu neurovõrkude kiirele arengule viimastel aastakümnetel on üha enam leitud sellele
tehnoloogiale rakendusi erinevates valdkondades, meditsiinist jäätmekäitluseni. Nii sa-
muti ka põllumajanduses, kus tehisintellekt võimaldab põllumajandusettevõtjatel teha ot-
suseid, mis põhinevad objektiivsetel statistilistel andmetel, ning aitab seeläbi suurendada
ettevõtete tootlikkust. Näide täppispõllumajandusest on juurviljade visuaalse kvaliteedi
hindamine masinõppel põhinevate klassifikaatorite abil. Selle töö eesmärk on muuta
taolised vahendid nii kättesaadavamaks kui ka taskukohasemaks väikepõllumajandus-
tootjatele, arvestades varasemate lahenduste kallidust ja ebapraktilisust olemasolevatesse
töötlusliinidesse integreerimisel. Uus süsteem, Vegeval, on loodud eesmärgiga nimetatud
probleemid lahendada ja pakkuda põllumajandustootjatele reaalajas koostatud statistikat
nende toodangu kvaliteedi kohta. Kasutades servtöötlust näidatakse, et on võimalik luua
suhteliselt taskukohane süsteem, mida saab vähese vaevaga integreerida ka olemasoleva-
tesse köögiviljatöötlusliinidesse. Sellest tulenevalt saab töö tulemuste põhjal täheldada,
et vaatluse all olnud kasutusvaldkondades saab tehisnägemist ja objektituvastust ra-
kendavaid ülesandeid edukalt lahendada ka väikese arvutusliku võimekusega riistvaral.
Viimane ühtlasi viitab sellele, et tehisintellekti rakendamisega igapäevaste ülesannete
efektiivsemaks täitmiseks ei pea tingimata kaasnema suuri kulutusi.

Võtmesõnad:
Juurvili, visuaalse kvaliteedi hindamine, tehisintellekt, tehisnägemine, objektituvastus,
servtöötlus

CERCS:
P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-teooria)
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1 Introduction
The process of evaluating the visual quality of a vegetable is based on classifying the
visual appearance of the vegetable into a predefined quality category or class, without
physically examining it. With the use of object detection models as a subset of artificial
intelligence, this process is automated and integrated into a system which provides
the end user with real-time statistical data about the quality of their vegetables under
evaluation.

Thanks to the rapid development of neural networks in recent decades, applications
for this technology have been found in various fields such as medicine [1], the automo-
tive industry [2] and waste management [3]. The same also applies to agriculture [4].
Precision agriculture, through machine learning, allows agribusinesses to make decisions
based on statistical data that is less prone to human error, thus helping to increase the
businesses’ productivity. One specific method for achieving this is the visual evaluation
of crop quality and planning subsequent actions in the production chain based on the
statistical results, such as sorting out unsuitable produce or reorganising some preceding
processes.

This thesis builds upon and adds to existing solutions by proposing a new all-in-one
system design and implementation for evaluating the visual quality of vegetables that
is cost and usability-wise more approachable for small agribusinesses than existing
solutions. The system consists of two subsystems, a user-friendly web application and
an on-premise Edge Device. From the end user’s point of view, the former is used
for managing and monitoring the output of the Edge Devices, while the Edge Devices
themselves use object detection models to detect and classify vegetables on a conveyor
line to generate statistical reports of the quality of the produce. A set of object detection
models is trained and compared on a custom dataset of potatoes as a proof of concept for
the solution.

In Section 2, an overview of the previous works along with a proposal for a new
system is given based on the observations made on the analysis. Section 3 continues to
describe the proposed system in detail by providing the functionality of the subsystems
and communication between them. The web application’s architecture is given in Section
4, where the structure of the frontend and backend are described along with the tools used
for developing the web application. In Section 5, the dataset and the training procedure
of the object detection models are described. Section 6 gives an overview of the system
metrics, such as the throughput capabilities of an edge device and the performance of the
object detection models. Finally, in Section 7, the work is concluded and thoughts for
future improvements are discussed.
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2 Related work and background
In order to get an overview of the existing solutions and their shortcomings, the related
work must be analysed. The following subsections provide an overview of two previously
developed machine learning based classification methods for visually evaluating veg-
etable quality and two conveyor-based object sorting systems. Based on the analysis of
the previous works and improvements in technology since their publishing, an alternative
new system is proposed.

2.1 Methods of visual vegetable quality evaluation
The research studies under review describe the possibilities of applying neural networks
to assess the quality of potatoes visually, without physically examining them [5, 6]. In
addition to describing the methods used for collecting data and training the classifica-
tion model in each of the research, the performance metrics of the trained models are
highlighted along with the authors’ ideas for further development. Specifically, models
trained for detecting and classifying potatoes are reviewed, as the proof of concept
vegetable quality Evaluation Module presented in Section 5 of this thesis is also based
on potatoes.

Detailed data from a depth camera. In 2020, a research group working on potato
quality assessment [5] proposed using a depth camera [7] for mapping the shape of
potatoes in order to capture irregularities on the surface of the potatoes in more detail
than a regular colour camera could. The same technology had previously been used
to calculate the length, width, height, and volume of potatoes for creating a 3D model
and predicting mass [8]. The authors of the study [5] mention that previous potato
classification models’ accuracy had largely been dependent on the external environment,
such as specific light sources, which highly influences the outcome of the input frames
and therefore require more work to achieve a similar result when the environment
changes. They point out that the results are also affected by the appearance and shape of
the potatoes, which can change over time, so taking all of this into account, it is necessary
for such a classification model to be updated and retrained periodically with new data.
The research group created two machine learning models for predicting potato quality: a
Softmax Regression (SR) model1 and a Convolutional Neural Network (CNN) model2.
For either of the models, the dataset was manually labelled into classes based on the
quality and mass of the potatoes:

1Softmax regression is a linear model that predicts the probabilities of different classes in a classification
problem using the softmax activation function, which takes the exponential of each element in the input
vector and normalizes the resulting values between 0 and 1.

2Convolutional neural network is a type of neural network model designed for image processing that
uses different layers to automatically learn complex patterns in image data.
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• „Abnormal Big“ (misshapen, damaged or sprouting with a mass of >=300 g),

• „Abnormal Medium“ (misshapen, damaged or sprouting with a mass of 100-300
g),

• „Abnormal Small“ (misshapen, damaged or sprouting with a mass of <100 g),

• „Normal Big“ (with a standard shape and a mass of >=300 g),

• „Normal Medium” (with a standard shape and a mass of 100-300 g),

• „Normal Small“ (with a standard shape and a mass of <100 g).

After processing and combining initial depth images using mean calculation, a total of
7084 depth images with a resolution of 200 by 200 pixels were obtained of 296 randomly
selected potatoes with different masses and appearances. In an attempt to improve
the accuracy of the models, data augmentation techniques such as random rotations,
reflections and translations were applied to existing images for all 500 training epochs
separately. Data augmentation is a technique commonly used in machine learning to
increase the size and diversity of the training dataset by generating modified versions of
existing data [9]. Next, 5691 images (80% of the dataset) were selected for training and
the other 1393 images (20% of the dataset) were left for validation. Among the models,
the best results were obtained from the CNN model with an overall accuracy of 86.6%
and a loss of 0.304 on the validation set after 500 epochs, while the SR model achieved
an accuracy of 67.2% and 0.777 loss. The models predicted the size of potatoes with
practically the same accuracy (94.5% for the CNN model and 94.4% for the SR model),
however, the CNN model was ahead in classifying the appearance (91.6% accuracy
compared to 70.6% for the SR model). It is important to note, however, that processing
the validation data took eight times longer for the CNN model than the SR model (56
and 7 seconds respectively). The authors [5] admit that the accuracy could likely be
increased with a larger dataset and using combined data from the depth and additional
colour images in the models.

Using object detection for classifying potatoes. In an article published a year later [6],
another research team using an industrial colour camera instead compared three different
Deep Convolutional Neural Network (DCNN) based object detection models pre-trained
on the Common Objects in Context (COCO) source dataset [10]. Transfer learning
[11] was used to achieve more accurate results with a small target dataset, essentially
building on top of an existing model trained on a source dataset as a starting point. The
approach described in the article [6] differs from the previous [5], in addition to using a
colour camera, by applying an object detection model on the input image instead of an
image classification model, with potatoes belonging to three appearance categories as
the objects:
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• "Normal" (yellow, undamaged, edible),

• "Scratch" (artificially scratched),

• "Sprout" (sprouting).

Although object detection was applied to individual potatoes in this particular study
[6], the same approach could be used to detect and classify a larger number of potatoes
on a single image, which is an advantage of object detection models over classification
models. To evaluate the three models, the research team captured 2770 images of 642
potatoes that were manually labelled into the before mentioned categories, reducing the
resolution of the images on the short side to 600 pixels and dividing them into training
and test sets in a ratio of 3:1. The models compared were Single Shot Detector (SSD)
Inception V2, Region-based Fully Convolutional Networks (RFCN) ResNet101, and
Faster Region-based Convolutional Neural Networks (RCNN) ResNet1013. From the
selected models, RFCN ResNet101 achieved the best balance between accuracy and
inference speed4, 95.6% and 28.5 Frames Per Second (FPS) respectively, and the rest
having similar accuracy, yet varying speed (with the smallest accuracy of 92.5% but the
highest speed of 51.3 FPS from SSD Inception V2 and accuracy of 98.7% and speed of
21.2 FPS from RCNN ResNet101).

Performance of the models [6] was measured on a workstation configured with an
Intel Core i7-8700 CPU, 16 GB of RAM and an Nvidia GeForce RTX 2070 GPU. The
accuracy of RFCN ResNet101 was also evaluated with an additional 642 potato images
collected from outside of the original dataset to see how the model would cope with data
that was completely different from what it had seen before. By analysing the test results,
it was found that it is important to capture the potatoes from different angles in order to
avoid situations where the appearance features required for objectively classifying the
objects are not visible. In addition, it was found that the quality of the image decreased
in too dark or bright environments, making it difficult to effectively find the patterns
sought from the images.

Observations. In conclusion, several useful observations can be made from the research
[5, 6]. For one, convolutional neural network based models prove to be a good choice
for accurately classifying potatoes of different size and appearance categories, while
achieving inference speeds of above 20 and up to 50 FPS when using above-average
performing hardware as in the case of the latter article. To achieve high model accuracies,
however, a large training dataset of at least several thousand instances or the use of

3The models compared were no longer publicly accessible from the original source at the time of
writing.

4Inference speed refers to the time it takes for a model to process an input image and generate a
prediction.

11



transfer learning techniques is required. What is more, object detection models can be
used to classify multiple objects at once, which is an effective means to increase the
throughput of objects in the classification stage. As mentioned in both of the studies [5, 6],
whenever colour images are used, it is essential to ensure that the lighting conditions are
sufficient for recognising distinctive patterns on objects and that the conditions remain
the same from the training to deployment stages of the model. The latter article also
suggests that in order to guarantee an objective evaluation of a potato, it must be captured
from different angles.

2.2 Conveyor-based object sorting systems
This subsection analyses research studies that propose two different conveyor-based
systems for sorting fruit [12] and a variety of different objects, including tomatoes
[13], respectively. In particular, the system architecture, the hardware used and the
communication between different system components are reviewed. Object detection
and classification in these systems only focus on the shape and colour of the objects and
are not performed using modern machine learning based methods as required by the
proposed system in Section 3 of this thesis.

High-speed fruit sorting. The authors of the article published in 2001 [12] were
driven to their work by the demand for a more modular and cost-effective solution for
sorting fruit than what was available and economically viable for small fruit packaging
companies in Spain at the time. The development of the project was partially funded by
an agricultural machinery company with other participants in the field. Architecturally,
the system consists of a central control unit, a user interface and storage unit, a number
of weight and vision modules as well as output control units. A high-level overview of
the system structure can be seen in Figure 1. As the name suggests, the central control
unit is at the centre of all the other components, being connected via a Controller Area
Network (CAN) bus. This network is used for any time-critical communication such as
control signals and classification data between the control unit and modules. Additional
connections from the central control unit to the user interface, vision modules and any
other components that do not require real-time communications are transmitted over
Local Area Network (LAN).
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Figure 1. System modules and connections [12].

The vision modules used in the system [12] are individual embedded computer
systems with their own operating system, each of which is used to capture images,
classify the colour properties and estimate the size of fruit on two separate conveyor lines
simultaneously. These systems can be configured to use different combinations of colour,
Infrared (IR) and Ultraviolet (UV) cameras at a time, based on the requirements and
budget of the end user. Results obtained from the vision modules are sent to the control
unit over the CAN bus, while instructions from the LAN can also be accepted. Images
of the fruit are captured in a synchronous manner when the fruit enters an illumination
chamber specially designed to evenly distribute light on the fruit surface. As the fruit
is singulated and rotated by transport rollers while moving through the illumination
chamber, up to four different images and angles of each fruit are captured to make an
objective decision about sorting the fruit by weight, size and colour. Another important
component of the fruit grading system is an arguably easy-to-use graphical user interface,
which amongst other features is used to perform an initial set up of the system, monitor
statistics, configure classification parameters and calibrate vision modules. The collected
statistical data appears to be stored locally, on-premise.

In terms of performance, the system [12] was measured to be able to process up to
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15 fruits per second on each of 10 conveyor belts simultaneously. The speed is said to be
mainly limited by the frame rate of the cameras used for capturing images, which is 30
FPS. Future improvements are focused on detecting and classifying smaller defects on
the fruit surface and therefore implementing more advanced image processing methods.

Using IoT to sort objects. Narzary and Ashok from the National Institute of Technol-
ogy in Calicut describe a similar system in their work published in 2019 [13], but on a
smaller scale by using Internet of Things (IoT) devices to sort boxes and tomatoes based
on a single characteristic such as their shape or colour. The use of IoT technology, as
opposed to specialised hardware, is reasoned by the flexibility in the end user’s location
in relation to the devices, as well as being able to add new devices without worrying
about wiring as the communication with other network devices is handled over WiFi.
With that in mind, the proposed system consists of a consumer-grade web camera (with
a 5 MP sensor), a Raspberry Pi 3 Model B+5 and the hardware necessary for running
the conveyor (a stepper motor and the conveyor belt itself). The total cost of the project
[13] is reported to be approximately 10000 rupees (converts to 110 euros at the time of
writing), where the conveyor belt and stepper motor make up the majority of the cost.

The Raspberry Pi [13], with the use of multithreading, is in charge of image capturing
and processing, controlling the conveyor belt as well as transmitting data to the internet
via an Message Queuing Telemetry Transport (MQTT)6 message broker (server). MQTT
is a widely used messaging protocol within networks of IoT devices due to its lightweight
publish/subscribe messaging transport model, allowing for small client size and low
network bandwidth. A simplistic Graphical User Interface (GUI) is used for operating
and monitoring the system [13]. The GUI provides a real-time overview of the Raspberry
Pi’s temperature, the number of objects detected as well as the speed of the conveyor (in
Revolutions Per Minute (RPM)). Additionally, the user interface provides buttons for
changing the direction of the conveyor rotation and halting it. A separate GUI is said
to be used for calibrating the colour profile and size criteria of the detection algorithms
used.

Both the Raspberry Pi and the main GUI are subscribed to relevant topics available on
the MQTT broker, waiting for messages to be published, while also acting as publishers
themselves when it is necessary to communicate with the other [13]. This procedure is
visualised in Figure 2. As multiple clients can be subscribed to and publish to the same
topics on the MQTT broker at the same time, it therefore allows multiple users to use
local copies of the GUI at the same time as well, irrespective of their location [13].

5https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
6https://mqtt.org/
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Figure 2. MQTT Communication [13].

The speed of the conveyor monitoring system’s [13] image processing is reported
to be 10–12 FPS with the resolution of input images set to 640 by 480 pixels. It is
noted that the speed could be increased by lowering the resolution to 320 by 240 pixels,
however, using a lower quality image would also increase the chance of false detections.
The system performance is additionally limited by the conveyor rotation speed, as with
a speed higher than 20–22 RPM the image is said to be too blurry for accurate object
detection.

Observations. While the systems described above [12, 13] differ drastically in the
number of components used, they were developed to serve a common purpose and with
that, they also have many similarities. For example, both systems are controlled via a
GUI for day-to-day operation and monitoring. This is essential for retrieving results
from the system and intervening when necessary. In both cases, a central control unit is
also required for routing and managing the communications between different system
components. While the first system [12] utilises dedicated computers (vision modules)
for capturing and processing images of fruit, in the latter [13] all of this is also handled
by the central control unit, the Raspberry Pi. The systems additionally differ in the
technologies used for communication between components, where one transmits its
messages over CAN or LAN, depending on the latency requirements of a message type,
while the other uses the lightweight MQTT protocol instead. Performance-wise, the two
sorting systems are not directly comparable due to their differences in methods used for
detecting and classifying objects. It is clear, however, that while the fruit sorting system
was built with flexibility in mind, it is still very tightly integrated into the conveyor belt
system when compared to the IoT based system. While the latter also has controls for
operating the conveyor belt in real-time, it does not appear to be a requirement of the
detection algorithm but rather a functionality for improving usability.
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2.3 Advancements on existing solutions
Based on the above research and advancements in technology since their publishing, a
new and improved system for real-time monitoring and virtual sorting of vegetables is
designed and developed. Previous works have focused on limited areas of such a system
and do not provide a suitable all-in-one solution. Additionally, existing commercial
products aimed at large agribusinesses are generally too complex and thereby expensive
for smaller producers to acquire. The purpose of the new system is to provide a cost-
effective alternative to small agribusinesses for gathering statistics on the quality of their
produce with the use of deep convolutional neural networks.

The concept of using an object detection model for classifying vegetables is applied
for high throughput of produce and easier adaptability to existing conveyor systems as
the objects under detection can appear anywhere in the frame and do not have to be
singulated. This is an improvement over solutions where a limited number of objects can
be classified at a time [5, 12]. Additionally, assuming that the objects under evaluation
are constantly rolling on the conveyor line (applicable for round vegetables and fruit, for
example) multiple angles of the objects can be captured for creating a detailed training
dataset and making objective classification decisions. While this method has previously
been used for classifying objects [12], capturing different angles of objects for training a
classification or object detection model has been carried out manually [5, 6]. Capturing
training data in an active work environment, therefore, reduces the time spent on creating
a suitable dataset.

Cost efficiency is achieved by using readily available consumer-grade technology
such as a colour web camera and a Raspberry Pi 4 as opposed to specialised hardware
configurations by today’s standard [12]. Statistics generated by the system are made
available to the relevant users within a user-friendly web application, where the system
can be controlled and monitored anytime and anywhere. Previous implementations of
control panels for sorting systems have either been accessible only locally on-premise
[12] or do not provide detailed statistics of the detections retrieved [13]. The new system
additionally provides an added feature that enables users to choose from a variety of
Evaluation Modules stored in the database and deploy them on their Edge Devices based
on their needs at the time, whereas with the reviewed solutions [12, 13], reconfiguring
the detection algorithm must be done manually. An in-depth overview of the system is
given in Section 3.
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3 Vegeval
The proposed system, Vegeval, for visually evaluating the quality of vegetables on a
conveyor line, is designed to be used as an assisting tool for agribusinesses of small to
medium size looking to integrate precision agriculture processes into their workflow.
Vegeval consists of two subsystems, an on-premise Edge Device for gathering vegetable
quality statistics in real-time and a web application in the role of a control and analytics
panel, as can be seen in Figure 3. While the figures related to the system architecture
present a single Edge Device, the system is in fact designed so that in theory, an unlimited
number of Edge Devices can be added to the system. The output and main value of the
system are the statistical data generated by the Evaluation Modules deployed on Edge
Devices, giving an insight into the quality of produce and with that allowing business
owners to make more accurate decisions. The name "Vegeval" is a derivation of the
words "vegetable" and "evaluation". All of the source code files related to the project are
available in a public GitHub repository [14]. The writing assistant software Grammarly7

was used to prevent typographical errors in the writing of this thesis.

Figure 3. High level architecture of the Vegeval system.

7https://www.grammarly.com/
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The following subsections describe the purpose as well as the core functionality of
the before-mentioned subsystems and the supporting cloud storage layer, including how
they operate separately but also in conjunction with each other to generate statistical
quality reports of the vegetables assessed and make the reports available to the end user.

3.1 On-premise Edge Device
In order to evaluate the visual quality of vegetables in real-time, one or more dedicated
physical devices are installed at a location where vegetables are normally processed
(e.g., sorting station at a warehouse facility). The on-premise Edge Device, a subsystem
of Vegeval, captures images from a web camera feed in real-time, applies an object
detection model on the video frames, and based on the detections retrieved from the
model, generates statistical data that is sent to the web application for analytical purposes.
Communication with the web application is handled over gRPC8, an open source Remote
Procedure Call (RPC) framework, for fast and lightweight messaging. New devices are
provisioned and configured for system users by administrators.

The Edge Device subsystem comprises a consumer-grade web camera Logitech
Streamcam9, a Raspberry Pi 4 Model B10 with 4 GB of RAM, a Coral USB Accelerator11,
and a Samsung Evo Plus 32 GB microSD card12, as shown in Figure 4. The Coral USB
Accelerator adds an Edge Tensor Processing Unit (TPU) to the subsystem, which is used
for running machine learning operations and shifting the processing load away from the
Raspberry Pi’s CPU. This is required for increased throughput of video frames within a
period of time when compared to object detection models running on solely the CPU.
It is important to note, however, that depending on the specific model’s design and its
compatibility with an Edge TPU, not all operations can be run on the Edge TPU and
such operations need to utilise the computing resource provided by the CPU.

8https://grpc.io/
9https://www.logitech.com/en-us/products/webcams/streamcam.html

10https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
11https://coral.ai/products/accelerator/
12https://www.samsung.com/uk/memory-storage/memory-card/

evo-plus-microsd-card-32gb-mb-mc32ga-eu/
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Figure 4. Architecture of the on-premise Edge Device.

Object detection models used for vegetable quality evaluation originate from a
dedicated S3 cloud object store based on the Edge Device configuration provided by the
system’s web application. More specifically, the object detection models are integrated
into Python Evaluation Modules, which include the supporting functions for object
detection models to provide statistics in the universal format accepted by the web
application. Additionally, if the Edge Device’s assigned owner (system user) has opted
for the device to save the captured raw images for later use, the images are automatically
uploaded to a dedicated S3 storage bucket. All the necessary credentials for accessing
external resources are configured for new devices by a system administrator. The cloud
storage functionality is described in further detail in Section 3.2.

3.1.1 Working principle of the Edge Device

Algorithmically, the Edge Device’s Python service agent13 by default boots to an idle
state, preceding which, an updated configuration is requested from the system’s web
application. Based on the configuration received, an Evaluation Module is retrieved from

13https://github.com/35grain/vegeval/tree/master/edge-agent
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the S3 module store, if no local copy is present, and the object detection model within the
module is loaded into memory for quick access at a later stage. While in the idle state,
the service agent sends a heartbeat message to the web application every five seconds,
letting the system know that the Edge Device is online and ready to accept commands.
When a command for starting object detection is received, the service agent switches
to the detection state, where input frames from the web camera are processed by the
object detection model and the results of which are used to keep track of the detected
objects and send relevant statistics to the web application over gRPC. In the detection
state, heartbeat messages are only sent when no statistics report has been sent for more
than five seconds. When a command for stopping object detection is received, the service
agent sends the remaining statistics to the web application and returns to the idle state.
A restart command first similarly switches the program to an idle state, if required, and
issues a reboot command for the Raspberry Pi so that a new configuration for the Edge
Device can be loaded or simply for troubleshooting an issue. The described processes
run in parallel with the use of multithreading.

The statistics reports generated in the example Evaluation Modules include amongst
others the final class name for each object that has passed the conveyor and is considered
a valid result (the object appeared in at least 10 frames). The final class name is retrieved
by selecting the class into which an object was on average classified the most, with
appropriate weight multipliers applied to the classes. The weight multiplier is required
in quality control to ensure that when one side of the object is considered low quality,
but the other appears to be high quality, a low quality object must not be classified as
high quality.

3.2 Cloud storage
Versions of deployable vegetable Evaluation Modules are kept in a dedicated S3-
compatible MinIO14 cloud object store bucket, readable by system users and their devices,
and modifiable by administrators and the web application. Optionally, the raw images
captured by the Edge Devices can also be uploaded to a cloud storage space divided into
private sections based on system users and their devices. This means that one user (if not
an administrator) cannot access another user’s data and one device does not have access
to another device’s storage bucket. The web application only has privileges for uploading
new versions of Evaluation Modules and creating new storage buckets for new device
registrations. All existing storage buckets must be deleted manually by an administrator,
if and when required.

Any communication with the MinIO server is handled over Hypertext Transfer
Protocol (HTTP) with Transport Layer Security (TLS) protocol encryption using the

14https://min.io/
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MinIO Software Development Kit (SDK)15 for Python and JavaScript. The object store
can be accessed either with a username and password combination, which is provided
for each system user by an administrator, or an Access Key and Secret Key pair for
programmatic access from the web application and Edge Devices, for the latter of which
a unique combination is generated for each device. Issuing separate credentials for
each user and device ensures that if one of the credential combinations were to be
compromised, it can simply be revoked and the rest of the system is not affected.

3.3 Web application
The web application acts as a control and analytics panel for operating and monitoring
statistics of the Vegeval system. Functionally, the web application provides registered
users with a list of available Evaluation Modules, their Edge Devices and the devices’
configurations, and statistics collected by the Edge Devices presented as graphs. Users
with the administrator role can additionally register new users, Evaluation Modules and
Edge Devices. System users are authenticated against the system by local authentication
(username and password combination), while Edge Devices are authorised access to the
web application based on an Access Key and Secret Key combination (separate from the
MinIO key pair). All authenticated users can change their password at any time (after
their first login, for example). Public registration for the application is not available. A
detailed description of the web application architecture is given in Section 4.

15https://min.io/docs/minio/linux/developers/minio-drivers.html

21

https://min.io/docs/minio/linux/developers/minio-drivers.html


4 Web application
On a high level, the web application is divided into a presentation layer (frontend)16

and a data access layer (backend)17, as shown in Figure 5. All web application data is
stored within a NoSQL (or key-value based) MongoDB18 database for quick retrieval of
stored records. The following is a detailed description of the inner workings of the web
application. Precisely, the technologies used for authenticating users and Edge Devices
are given and the tools used for developing the frontend and backend applications are
presented in regard to the web application functionality as a whole.

Figure 5. Architecture of the web application.

4.1 Authentication
For authenticating users and their Edge Devices, as well as authorising them access to
otherwise private system resources, an authentication layer is put in place on both the

16https://github.com/35grain/vegeval/tree/master/frontend
17https://github.com/35grain/vegeval/tree/master/backend
18https://www.mongodb.com/
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frontend and backend of the system. All passwords and Secret Keys that are used for
authenticating system users or devices are stored in the web application’s database in a
hashed format to mitigate the risk of user credentials being compromised in case of a
data breach. The credentials are hashed and verified with a random salt using the bcrypt
library19 for NodeJS. On the frontend, an authentication module nuxt-auth20 acts as a
middleman for forwarding local authentication requests from users to the backend and
retrieving the JSON Web Token (JWT) for convenient authorisation purposes in future
requests.

A JWT consists of three parts: a header describing the token type (in this case it is
always JWT) and the algorithm used for signing the token, the payload with data claims
about the authenticated user (in this case, the user’s ID, email and role), and the signature
for verifying that the message has not changed along the way. Precisely two JWT are
received upon successful local authentication against the backend server. The first JWT
acts as an Access Token that is stored within the nuxt-auth module’s session cookie
(which also uses the JWT format). The Access Token is used for accessing the backend
resources and services as an authorisation method and expires after 15 minutes of issuing
as a countermeasure for session hijacking attempts. Based on the role of a user stored in
the JWT Access Token, the user is either allowed or denied access to the administrative
views of the web application and related backend services. When a user logs out of the
web application, all session cookies and stored tokens are destroyed.

Due to the short lifetime of the Access Token, it must be renewed for a smooth
user experience. This is the core purpose of the second JWT, the Refresh Token. This
JWT is hashed and stored in the web application’s database as an alternative to local
authentication. The structure of the Refresh Token is identical to the Access Token,
however, the Refresh Token is valid for up to 24 hours after issuing. This means that
whenever the Access Token has expired but the Refresh Token is still valid, the Refresh
Token is used for authenticating against the backend server and issuing a new pair of
access and Refresh Tokens. In order to mitigate attempts of stealing the Refresh Token,
it is stored within the frontend application’s server-side session and all requests for
refreshing the tokens are sent to the backend server from the nuxt-auth module. The flow
of exchanging the tokens is visualised in Figure 6. Should the Refresh Token also expire,
the user is required to log in with their username and password.

19https://www.npmjs.com/package/bcrypt
20https://github.com/sidebase/nuxt-auth
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Figure 6. Flow of JWT Access and Refresh Tokens.

Edge Devices are granted or denied access to the web application services based on
an Access Key and Secret Key combination. The key pair is generated automatically
when a new device is registered and the Secret Key is displayed only once to the system
administrator in plaintext for proper configuration of the Edge Device and is stored in
the database in a hashed format. The Access Key is stored in the database as plaintext
and acts as an alternative identifier of the device. Incoming gRPC requests to the Edge
Device itself are accepted or rejected based on the web application’s TLS certificate
verification.

4.2 Frontend
The presentation layer of the web application is built using a Vue.js21 based JavaScript
framework Nuxt22. As the framework provides a component-based programming model
for building user interfaces, the Vegeval web application’s functionality is presented as
different pages (views) and components. Large components such as the navigation bar
or login form are built using and have been inspired by individual components such
as buttons or input fields from the DaisyUI Tailwind Cascading Style Sheets (CSS)

21https://vuejs.org/
22https://nuxt.com
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components library plugin23. Components and regular Hypertext Markup Language
(HTML) elements also make use of the wide range of utility classes of the CSS framework
Tailwind CSS 24. The use of such frameworks allows to build robust applications in less
time when compared to developing and testing the underlying logic from scratch. The
before-mentioned frameworks were chosen for this project as they are widely adopted
and therefore thoroughly tested modern tools, which also fulfil the requirements of the
web application.

Depending on a system user’s role ("user" or "admin"), some of the web application
pages are not accessible to all users due to insufficient privileges or will only display
data available in the scope of the user role. Unauthenticated (guest) users have access to
the default Landing page and the Login page. The pages accessible to all authenticated
system users are the following: User profile page, User edge devices page, Evaluation
modules page and Analytics page. Users with the administrator role are additionally
provided with an overview of all system users, all registered Edge Devices and the
functionality to register new Edge Devices and Evaluation Modules to the system. The
functionality offered by each page is described in the corresponding subsections below. In
order to easily distinguish the regular user pages from the administrative pages, a different
colour scheme is used on the sidebar navigation menu, as can be seen in Figure 7.

Figure 7. Sidebar on regular user pages (left) and sidebar on administrative pages (right).

23https://daisyui.com/
24https://tailwindcss.com/
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4.2.1 Landing page

At the root index of the web application is the Landing page, which provides a minimal
description of the application and points unauthenticated users toward the Login page
with call-to-action buttons "Get Started" in the main body of the page and "Login" on
the top navigation bar. In the background, there is a video of the output of one of the
object detection models playing, as shown in Figure 8.

Figure 8. The default Landing page of the web application.

4.2.2 Login page

The Login page provides a simple form with input fields for a username (email address)
and password along with a disabled "Register" button to indicate that public user reg-
istration is unavailable, and a "Login" button, as shown in Figure 9. Upon successful
authentication, the user is redirected to the Analytics page.
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Figure 9. The Login page with relevant input fields and buttons.

4.2.3 Analytics page

General system statistics and statistics generated by the Edge Devices are visualised and
displayed on the Analytics page of the web application and are updated automatically
every 10 seconds. General system statistics displayed to administrators can include,
for example, the number of statistical records collected in total, the total number of
users and the total number of Edge Devices registered to the system. Administrators
are additionally given an overview of the distribution of Evaluation Modules deployed
on Edge Devices as well as the number of statistics collected by each module in the
form of a graph. The graphs used for visualising data are generated using the Chart.js25

JavaScript library.
Users without administrative privileges are provided with an overview of the collected

statistics in the user’s scope, meaning that only data related to their devices can be seen.
Such statistics can include but are not limited to the observed class distribution of each
Evaluation Module with existing statistical records, the number of frames an object was
tracked for and the number of statistics collected by each device, as shown in Figure 10.

25https://www.chartjs.org/
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Figure 10. The Analytics page displayed to regular users.

4.2.4 Users page

The full list of system users can be read from the Users page, accessible to administrators
only. The page also offers the functionality for registering new users to the system via a
modal window with a syntactically valid email address and password combination, as
can be seen in Figure 11. The user password is required to be at least 16 characters long
as a precautionary measure against attempts of guessing a user’s password. If the user
has opted to upload the raw images collected by their Edge Devices to the MinIO cloud
storage, a MinIO user account must be created manually by a system administrator due
to the technical limitations of the system.
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Figure 11. The Users page with registration modal open in the foreground.

4.2.5 User profile page

The User profile page is populated with user-specific information, which currently is
limited to the user’s email address. The user can change their email address and password
of their own account from the Profile page, as shown in Figure 12. The same requirements
apply to the email and password values as in the user registration procedure and the
existing valid password must be provided in order to make changes to the account.

Figure 12. The User profile page.

The profile page can be accessed from the dropdown menu that is toggled when
clicking on the user avatar circle on the right-hand side of the top navigation bar. This
dropdown menu also contains navigational buttons to the Administrator panel (the button
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is only displayed to users with the "admin" role) and the Logout route (redirects to the
Login page once logged out).

4.2.6 Edge devices page

The Edge devices page displays a table of Edge Devices registered under the user
or all Edge Devices registered to the system in the case of users with administrative
privileges. Each row in the table represents a single device, for which its human-readable
identificatory label, current status (either "Offline", "Idle" or "Detecting"), deployed
Evaluation Module name, Access Key, Internet Protocol (IP) address and action buttons
are shown. Depending on the current state of a device, the action buttons allow the user
to start and stop the object detection model or restart the device. The table contents are
updated every 10 seconds to reflect the status of the Edge Devices, however, a separate
button for manually refreshing the table is also provided. In the case of administrator
users, for each device in the table, the user’s email address is displayed under whom the
device is registered. Administrators also have the ability to register new Edge Devices to
the system via a modal window, as shown in Figure 13.

Figure 13. Table of Edge Devices with the device registration modal open in the fore-
ground.

Upon successful registration of a new device, a new S3 storage bucket is automatically
created if the toggle for uploading raw images was turned on. The necessary connection
details to be used on the Edge Device for communicating with the rest of the system are
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displayed within a modal window, as can be seen in Figure 14. This includes the created
MinIO storage bucket name as well as the Access Key and Secret Key for authenticating
against the web application. Once the modal has been closed, the plaintext version of the
Secret Key can no longer be retrieved.

Figure 14. The connection details displayed on successful Edge Device registration.

4.2.7 Evaluation modules page

A full list of deployable modules is displayed on the Evaluation modules page, including
the name, version and date of publishing for each module. The system administrators
additionally can see the object name in the MinIO S3 modules storage bucket for each
module as well as have access to the module registration functionality via a modal
window for publishing new modules to the system, as can be seen in Figure 15. In order
to register a new module, the module’s descriptive name, version and a ZIP file archive
containing the module files must be provided. The file archive is automatically uploaded
to the S3 storage bucket for access by Edge Devices.
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Figure 15. List of Evaluation Modules with the module registration modal open in the
foreground.

4.3 Backend
For building the data access layer of the web application, the NodeJS (an open-source
JavaScript runtime environment)26 framework NestJS27 was used. NestJS was selected
for the backend development for its great customisability while providing detailed
documentation for common use cases. Additionally, having the frontend and backend
both written in the same language (JavaScript), makes it easier to navigate in code as
opposed to needing to switch back and forth between two or more languages. While the
majority of backend services are served from a REST API, in order to accept messages
from the Edge Devices, a gRPC server is also started together with the NestJS application
as a microservice.

4.3.1 Authentication guards

Both the Representational State Transfer (REST) Application Programming Interface
(API) and gRPC server make use of an authentication layer (or a number of "guards") to
prevent unauthorised access to system services, as seen in Figure 5. The "JWT guard"
and "JWT refresh guard" are in charge of JWT based authentication and authorization
as described previously. The "Local guard" verifies authentication requests using a

26https://nodejs.org/
27https://nestjs.com/
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username and password combination, while the "gRPC guard" authorises Edge Devices
access to system resources based on the Access and Secret key pair, and the "Throttle
guard" limits the number of requests allowed per client within a defined period of time.

4.3.2 Data transactions

For efficiently designing the database structure and querying the database in a type-
safe manner, the Prisma Object Relational Mapping (ORM) software28 for Node.js and
Typescript29 is used for accessing data from the service classes. For interacting with
the MinIO S3 storage server, a dedicated MinIO SDK client is called. Outgoing gRPC
messages are also sent out via a separate gRPC client.

All backend services are implemented using controllers as the endpoint for routing
authorised requests to the respective data access services and returning or updating
relevant data. The Users controller and service are in charge of serving all system users’
related data and registering or updating users. As the name suggests, the Authentication
controller and service ensure that only authorised users can log into the system, are safely
logged out of the system and are issued new Access Tokens. The Edge devices controller
and service enable the functionality for registering new and retrieving existing Edge
Devices as well as routing device-related commands to the gRPC client. Requests for
registering new Evaluation Modules or retrieving existing modules are handled by the
Evaluation modules controller and service. The gRPC controller accepts all incoming
gRPC messages for processing by the Edge devices service or Statistics service. All
outgoing gRPC requests are routed through the gRPC service, however, which forwards
the final requests to the gRPC client. Finally, the Statistics controller and service gather
various system statistics and data collected by edge devices into a suitable format for use
on the frontend, while also taking requests for adding new statistics to the database.

28https://www.prisma.io/
29https://www.typescriptlang.org/
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5 Vegetable detection models
In this thesis, the visual quality of a vegetable is considered as the difference or com-
pliance of the visual appearance of the vegetable with a standard. This is evaluated by
object detection models trained on a custom dataset of a specific vegetable type. Next, a
description of the dataset used to train the proof of concept models and the necessary
steps taken prior to training are given. Red Potatoes were chosen as the example vegeta-
bles under quality evaluation mainly due to their great availability and the opportunity
to access and use specialised industrial equipment set up for sorting potatoes in a real
work environment. The latter is consequently useful for improving the usability of the
designed system for its target users.

5.1 Dataset
The raw dataset comprises 597 images of red potatoes on a conveyor, captured from a
web camera feed with a resolution of 1280 by 720 pixels, where individual instances of
potatoes are on average approximately 75 pixels wide and 55 pixels tall. An example of
a raw image is shown in Figure 16.

Figure 16. A raw image of potatoes on the conveyor.

Both the potatoes and the industrial facilities (conveyor line, sorting station etc.
shown in Figure 17, excluding the hardware used to capture the images) required for
visually evaluating the potatoes were provided by the agribusiness Saaresepa OÜ located
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in Pärnu County, Estonia. While the results of this thesis may be integrated into the
workflow of the company in the future, it is important to note that the research and
development were conducted independently and without bias towards any particular
business agenda or outcome.

Figure 17. Vegetable sorting station at Saaresepa OÜ’s produce processing facility.

The dataset collected in this thesis will not be made publicly available as this has yet
to be agreed upon with Saaresepa OÜ at the time of writing, however, it can be provided
per request on an on-demand basis and upon approval of all related parties.

5.1.1 Data collection

For collecting images of potatoes on the conveyor line, an image capturing system
consisting of the Logitech Streamcam web camera, the Raspberry Pi 4 Model B with
4 GB of RAM and a USB flash drive Sony USM32GXB30 with 32 GB of storage was
used. The webcam was mounted on the aluminium ceiling of the sorting station to make

30Product has been discontinued.
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optimal use of the integrated fluorescent light as well as a suitable view angle, and the
Raspberry Pi 4 along with the flash drive were enclosed in a nearby electrical box, as
shown in Figure 18. The latter was mainly a precautionary measure for protecting the
devices against possible dust and moisture in the air.

Figure 18. Mounted webcam (left) and Raspberry Pi 4 with flash drive enclosed in the
electrical box (right).

Internally on the Raspberry Pi 4, a custom Python script31 was configured to run
at system boot. The script uses multi-threading to simultaneously detect motion in the
webcam feed and save frames to the USB flash drive when motion is detected. When no
motion has been detected for at least 5 minutes, the script automatically issues a system
command to shut down the Raspberry Pi. The system and algorithm structure can be
seen in Figure 19. Although the Raspberry Pi 4 could process a larger number of frames
within a given time period in terms of processing power, it was configured to save the
images to the flash drive at 10 FPS, as this speed was deemed sufficient for capturing
different angles of individual potatoes. Additionally, higher FPS appeared to have caused
the process to eventually crash, as the write speed of the flash drive was limited and the
system memory was gradually filling up. This custom image capturing system was used
instead of a commercial digital camera, for example, to allow for finer control over the
timing of frame capture and to keep the number of environmental variables, such as the
camera used, in the lifecycle32 of the object detection models at a minimum.

31https://github.com/35grain/vegeval/tree/master/data-collection
32A machine learning model’s lifecycle commonly consists of six main stages: data collection, data

preparation and analysis, model training, model testing, model deployment and model monitoring.
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Figure 19. Structure of the image capturing system and algorithm.

5.1.2 Data labelling

Data labelling (or annotation) is a process where individual unlabeled data points (text,
audio clips, images or other classifiable object types) in a candidate training dataset are
assigned a label (or class). In the case of an object detection or segmentation dataset, the
bounding box coordinates of the object of interest are also attached to the label. This
allows machine learning models to understand and learn into which class of a predefined
set of classes an object belongs to and what features identify it. In this case, instances of
potatoes in the captured images were categorised into three classes based on their visual
appearance ("Q" in the class names stands for Quality):

• "StandardQ" (uniform red colour, without mechanical injuries, sparsely distributed
small blemishes are allowed),

• "MediumQ" (densely distributed small to medium-sized blemishes covering the
minority of surface, slight discolouration allowed),

• "LowQ" (extensive discolouration, mechanically injured, majority of surface cov-
ered in medium to large-sized blemishes).
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Initially, the class names were "Edible", "Visual defects" and "Inedible" respectively,
however, the labels were renamed during the course of the project for clarity. An example
of an instance from each class in the dataset is shown in Figure 20.

StandardQ MediumQ LowQ

Figure 20. Instances of each dataset class.

The dataset used in this thesis was labelled using an open source data labelling plat-
form Label Studio Community Edition33 hosted on a private virtual machine. Labelling
was performed in a random sequence generated by the platform based on the uploaded
dataset consisting of 597 images. The first 50 images were labelled completely manually,
requiring the bounding boxes and classes to be assigned by hand as shown in Figure 21.

Figure 21. An image with labelled potatoes in Label Studio.

With 50 images labelled, an initial version of an object detection model was trained
using transfer learning on the YOLOv5n object detection model [15] with default settings.

33https://labelstud.io/
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The model training process is described in Section 5.2. The initial YOLOv5n model was
used to set up a machine learning backend34 for the Label Studio platform, which assists
in pre-labelling the images by providing predictions of the objects’ bounding boxes and
classes. In most cases, this means that the human annotator has to refine the predictions
where necessary and manual work is reduced as the model grows and becomes more
accurate in its decisions. The object detection model used in the machine learning
backend was thereafter re-trained with additional data every time a new batch of 100
images was labelled. The YOLOv5n model was replaced with the YOLOv8n pre-trained
object detection model35 at around 250 labelled images, however, the labelling and model
training process remained the same besides technical changes in code. The change was
made due to the improved output precision of YOLOv8n over YOLOv5n. Due to time
constraints of the thesis, 501 images (or 18169 instances of potatoes) were labelled out
of the total 597 images of the raw dataset.

5.2 Object detection models
In order to measure the capabilities of the Vegeval system and to find the best-performing
object detection model for evaluating the visual quality of vegetables, a number of modern
object detection models were trained and tested on the custom potatoes dataset, and the
results are compared. The following introduces the compared models and describes the
training and testing processes.

5.2.1 Model selection

The selection of object detection models under review was based on the requirement that
the model should be able to run in real-time on devices with low computational resources
while not losing a lot of performance in terms of detection precision. This, therefore,
calls for a balance between inference speed and accuracy from the models.

At the time of writing, most of the popular general-use and rapidly developing models
that fit the set criteria belong to the You Only Look Once (YOLO) model family. "You
Only Look Once" stands for the implementation of predicting results in the single neural
network of the model. As the name suggests, the neural network is passed only once
to predict the bounding boxes and class probabilities of objects all at the same time.
This is done by dividing the input image into a grid of cells, where for each cell the
bounding boxes, object class probabilities, and confidence scores are predicted. Based
on the confidence score of cells, the model indicates the likelihood of objects belonging
to a bounding box. Class probabilities, however, show how certain the model is about
an object belonging to a particular class. When compared to other model architectures,

34https://labelstud.io/guide/ml.html
35https://github.com/ultralytics/ultralytics
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where classifiers need to run hundreds of times or implement a two-stage algorithm to
first generate region proposals and then predict classes for these regions, the YOLO
architecture is able to achieve higher speeds while remaining accurate [16]. This does not
mean, however, that more accurate and faster models cannot exist, but the YOLO models
are undeniably highly competitive in terms of balance between speed and accuracy.

The first YOLO model was published in 2016 by Joseph Redmon et al. [17] and has
since been updated and revised in multiple versions, with the latest version, at the time of
writing, being the YOLOv8 model. It is important to note that only some of the published
model versions have common authors, while most do not. Four YOLO model versions
published in the last three years (2020–23) are compared in this thesis, where from each
version the mobile-oriented "nano" or "tiny" model was selected (with an input image
resolution of 640 pixels on the longer side). The compared YOLO models are:

• YOLOv8n (640 px);

• YOLOv7-tiny (640 px) [18];

• YOLOv6-N (640 px) [19];

• YOLOv5n (640 px).

Another set of object detection models that have previously proven to be comparably
fast and accurate on mobile devices belong to the EfficientDet-Lite model family devel-
oped by Google36. EfficientDet-Lite is a derivation from the EfficientDet architecture that
has been considered to achieve high accuracy with limited computational resources [20].
EfficientDet-Lite models are based on a two-stage detection process that first generates
a set of candidate object region proposals and then refines these proposals to improve
accuracy. From the EfficientDet-Lite family, the EfficientDet-Lite2 model (with an input
image resolution of 448 px on the longer side) was selected for comparison as it is the
largest of the models that fit into the memory of a single Edge TPU used for measuring
the model’s inference speed on the Edge Device of the Vegeval system.

5.2.2 Training and testing

The labelled dataset was randomly divided into a training and validation set by 80%
and 20% respectively. A separate test set was not used as this would have limited the
number of instances available for training, which is not a desirable tradeoff with a small
dataset. Due to the small size of the compared object detection models, the dataset
images are automatically downscaled to the respective resolutions (640 px or 448 px
on the longer side). The pre-trained object detection models under comparison were
re-trained using default parameters with the exception of the number epochs (training

36https://github.com/google/automl/tree/master/efficientdet
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iterations) set to 250 and batch size set to 32, as higher batch sizes gained accuracy at a
slower rate and no significant improvements were observed after 250 iterations. Some
of the models also implement early-stopping to automatically stop training when no
performance improvements are observed for a set number of epochs (e.g., 100). The
YOLO models additionally apply data augmentation techniques to the images on each
iteration of training. All compared models were pre-trained on the COCO dataset.

The results from the epoch with the best metrics are used in the comparison of the
models, where the industry standard Mean Average Precision (mAP) metric is used
for comparing the precision of object detection models. mAP is an average across the
Average Precision metric of all classes of a model, where the value ranges from 0 (all
predictions are incorrect) to 1 (all predictions are correct). The mAP is calculated at an
Intersection over Union (IoU) threshold of 0.5 (or 50%). IoU represents the required
amount of overlap between the predicted bounding box of an object and the ground truth
bounding box (the label). IoU is also often used as a standalone metric for measuring
how well a model is able to locate objects within an image. It is calculated by finding the
area where the bounding boxes overlap and diving it by the total area of both bounding
boxes combined. The models were trained on Google Colaboratory37, a hosted Jupyter
Notebook38 platform, using hardware acceleration from the NVIDIA A100-SXM4-40GB
GPU. The precision of the models was evaluated on the validation set.

For deploying models on the Edge TPU, they must first be converted to a TensorFlow
Lite (TFLite) 8-bit quantized format39, from which they are compiled40 for use on the
Edge TPU. The quantization conversion is commonly used for reducing the model size
with an expected degradation of accuracy as a tradeoff for reducing the object detection
latency. After converting and compiling the models into a suitable format, the models’
precision was evaluated again on the Google Colaboratory platform and the inference
speed was measured on the hardware of the Edge Device. Even though all compared
models were compiled into an Edge TPU compatible format, some did not successfully
run on the hardware and for such models, the relevant metrics are not provided in the
results section of the thesis.

As a proof of concept, only the YOLOv8n model combined with an integrated
ByteTrack[21] object tracker was used for building a deployable Evaluation Module41 to
be deployed on the Edge Device. The process of creating an Evaluation Module generally
follows the same procedure for all models and differs by the technical implementation.
The YOLOv8n model was chosen as it is the most straightforward of the models to
integrate into a fully functional module.

37https://colab.research.google.com/
38https://jupyter.org/
39https://www.tensorflow.org/lite/performance/quantization_spec
40https://coral.ai/docs/edgetpu/compiler/
41https://github.com/35grain/vegeval/tree/master/edge-agent/modules/

red-potato-yolov8n
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6 System performance
This section gives an overview of the measurable results of the set objectives and the
performance metrics of the system, including the throughput of an Edge Device as well
as the precision and speed of the compared object detection models.

Cost of Vegeval. With the assumption that Vegeval’s web application and cloud storage
solution are managed by a single organisation or enterprise, the total cost for an end user
(e.g., an agribusiness owner) looking to integrate the system into their workflow would,
as an example, consist of the cost of acquiring the necessary hardware for a set of Edge
Devices and presumably an added fixed monthly fee for compensating the operating costs
of the rest of the system. The total hardware costs for a single Edge Device in its exact
configuration at Manufacturer’s Suggested Retail Price (MSRP) is approximately 300
euros. However, largely impacted by the ongoing global semiconductor chip shortage
[22], the actual cost of the hardware purchased for the project is approximately 400 euros.
A large part of the total cost is taken up by the price of the Logitech Streamcam web
camera, which could be replaced with a cheaper alternative that is capable of outputting
a video stream with a minimum resolution of 640 by 640 pixels, as this is the maximum
resolution used in the compared object detection models.

Edge Device’s performance. Highly dependent on the inference speed of the object
detection models, the Edge Device subsystem presented in this thesis is able to process
and generate statistics from 9–11 input frames per second, where 50–60 objects can be
detected and tracked comfortably within a single frame when the objects are moving
down the conveyor line at a normal speed. This converts to about 150–180 potatoes that
can be processed per minute. In cases where an object temporarily moves at an increased
speed, the tracker often loses track of the object and a new identifier is assigned to the
object once stable. It is important to note, however, that the measured detectable number
of objects is limited by the collected dataset and the true maximum could be higher. It is
also possible that with highly optimised object detection models, the throughput could
be improved further on the same hardware.

Performance of object detection models. For each compared object detection model,
its name, precision (mAP) in its native format, number of model operations compiled
to be run on the Edge TPU, precision (mAP) in the TFLite int8 quantized format and
inference speed on the Edge Device hardware are provided in Table 1. The metrics that
were unobtainable without extensive research and coding or did not successfully run
in the testing environment are redacted from the results. It is valuable to note that the
YOLOv7-tiny and YOLOv6-N with missing values are also the only models from the
compared set with no official support for TFLite nor Edge TPU compatible formats.
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Model name Native
precision
(mAP@0.5
IoU)

Operations
compiled for
Edge TPU

TFLite int8
precision
(mAP@0.5
IoU)

Raspberry Pi
4 & Edge TPU
avg. inf. time

YOLOv8n
(640px)

0.8 231/257 =
89.9%

0.75 69 ms

YOLOv7-tiny
(640 px)

0.81 321/330 =
97%

No evaluation
script available

Did not run

YOLOv6-N
(640 px)

0.79 164/170 =
96%

No evaluation
script available

58.9 ms

YOLOv5n
(640 px)

0.74 258/261 =
99%

0.7 32.7 ms

EfficientDet-
Lite2 (448
px)

0.42 354/357 =
99%

0.31 189 ms

Table 1. Compared object detection model metrics.

Considering the small size of the dataset, the precision (mAP at IoU 0.5) for all
models, with the exception of EffiicientDet-Lite2, is satisfactory, with values at or around
0.8. When taking a closer look at the test results, it is clear that in the case of all models,
the average precision is brought down by the low precision of the "LowQ" class, which
is also a severely underrepresented class in the dataset. For comparison, in the case of
the YOLOv8n model, for example, the "StandardQ" and "MediumQ" classes achieved
precisions of 0.92 and 0.81 respectively, while the precision for "LowQ" was only 0.67.

The precision degrades slightly for all models with the relevant data when converted
to the TFLite int8 (8-bit quantized) format, however, this is also the expected behaviour
of the model size reduction process. In terms of inference speed on the Edge Device,
the YOLOv5n is ahead of all others with an average latency of 32.7 milliseconds. Do
note that the inference speeds measured do not include the added overhead of an object
tracker and other supporting services. The best balance between precision and inference
speed could be found with the YOLOv6-N or YOLOv5n model as the precision with the
TFLite int8 format for the former remains to be unknown, although based on the results
of other models, the expected value could be in the range of 0.7 to 0.75.
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7 Conclusion and future work
In this thesis, a new vegetable visual quality evaluation system was designed and devel-
oped. The new system, Vegeval, adds to and improves on previous solutions for virtually
sorting objects with the use of object detection models and edge computing.

Description of the developed system. Vegeval consists of two subsystems, the control
panel in the form of a web application and the Edge Device, as well as a supporting cloud
storage layer. The control panel provides system users with an analytical overview of the
quality of their produce in real-time and allows them to configure and control their Edge
Devices. Statistics about the quality of the produce are uploaded to the web application
from Edge Devices, which are deployed on-premise at the user’s vegetable processing
facility. The Edge Devices capture images of objects on a conveyor line using a web
camera and apply a preconfigured object detection model on the images to categorise the
objects and generate a statistical report based on the results. The raw images captured can
optionally be uploaded to an S3-compatible cloud storage server, where the deployable
Evaluation Modules are also stored. For training the object detection models, a custom
dataset of Red Potatoes was collected in collaboration with an agribusiness Saaresepa
OÜ and labelled into three quality classes.

Results. The output of the work is a functional vegetable quality evaluation tool
that implements a proof of concept Evaluation Module based on the YOLOv8n object
detection model with the integrated ByteTrack object tracker for deployment on Edge
Devices and displays the generated statistics within the web application. The current
implementation of the system was measured to be able to process up to 9–11 input frames
per second, where each frame may include 50–60 individual objects, however, the true
maximum throughput of the system could be higher and practically increased with a
well-optimised object detection model. The total cost of hardware for a single Edge
Device can range from 300 to 400 euros due to the ongoing semiconductor chip shortage.
The cost can be reduced, however, by opting for a cheaper alternative to the web camera.

Based on the described results, it can be observed that hardware with low computing
resources can successfully be deployed for fulfilling computer vision and object detection
tasks in the discussed use cases. The latter additionally indicates that applying artificial
intelligence to make everyday tasks more efficient does not necessarily have to come at a
large expense.

Future of Vegeval. Due to the time constraints of the project, there are many aspects
of the system with room for further development and improvement. First and foremost,
given sufficient resources, the precision of object detection models can be improved by
expanding the dataset and fine-tuning model parameters. Additionally, as this thesis
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presents an object detection model for only one vegetable type, models for other vegeta-
bles can similarly be trained and made available for use in the Vegeval system. What is
more, continuous training techniques could be implemented to create an automatic flow
for improving already existing and deployed models in time as the dataset grows [23].
Allowing users to opt into uploading the collected raw images from Edge Devices to a
cloud storage space is an example of the preconditions for this to be possible.

Another aspect of the system that can be improved is the fault tolerance of the Edge
Device service agent. With the current implementation, the Edge Device assumes that the
web application and MinIO storage server are always available and internet connectivity
is stable. This may not always be the case, however, and fallback methods should be
implemented to guarantee that the system can continue operating even when connectivity
between the subsystems is temporarily lost. One way to mitigate downtime would be to
save the collected statistics and raw images into local storage until a stable connection
is restored and the data can be offloaded to the web application and storage server. The
same applies to retrieving the Edge Device configuration from the web application on
boot, where the previously retrieved configuration could be saved locally.

In terms of object detection speed, alternative hardware solutions with built-in GPUs
should be considered for applications of the system where objects must be detected in
minimal time, as the Raspberry Pi 4 Model B paired with the Coral USB Accelerator
Edge TPU will only perform well with optimised object detection models. However,
multiple Edge TPUs can also be run in parallel for load distribution and increased
performance. A dedicated GPU, on the other hand, would allow the models to be run in
their native format and not become less accurate due to conversions as is the case with
most general-purpose models running on the Edge TPU. It would consequently greatly
reduce the amount of time spent on fiddling with runtime and model export settings to
get everything running as expected. As an example, one such alternative to consider is
the Nvidia Jetson Orin Nano Developer Kit42. It is important to bear in mind, though,
that increased performance also comes at an increased cost.

In the long term, in order to compensate for the operating costs of the system, it
could only exist as a commercialised product. For that, the system should additionally
be thoroughly tested and implement methods for scaling the system to increase the
throughput of user and Edge Device requests. As a starting point, however, the developed
system is a great fit.

42https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
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