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Predicting Respiratory Diseases from Lung Sounds Using Machine 

Learning 

Abstract: 

Respiratory diseases are a leading cause of death worldwide. Using machine learning for 

diagnosis could significantly reduce costs and radiation exposure due to X-ray and CT scans, 

and improve accessibility to places with limited technology or less-experienced staff. While 

similar technologies have been successfully applied in the medical field before, sound signal 

analysis is still in its early stages with significant potential.  

This thesis’s goal was to create a codebase to help researchers enter and advance the field 

of respiratory sound analysis. In total, six experiments were conducted with four classical 

machine learning and one deep learning algorithm. The aim was to classify six classes (five 

respiratory diseases and one class for healthy patients) using a database of respiratory sounds 

and patient data. Test results, which used macro-averaged F1-scores as the primary evalua-

tion metric, showed that SVM and decision tree models worked best (scores 0.62 and 0.54), 

while the convolutional neural network models performed worst (best score 0.3). The diffe-

rences in the models’ performances were most likely affected by the dataset’s noisiness and 

umbalancedness. Further research and better data would be required for any conclusive re-

sults. 

The source code for this thesis is publicly available in a Github repository [1]. 

Keywords: Machine learning, deep learning, audio signal analysis, respiratory diseases 

CERCS: P170 Computer science, numerical analysis, systems, control 

Kopsuhelide kasutamine hingamisteede haiguste ennustamiseks 

masinõppe abil 

Lühikokkuvõte: 

Hingamisteede haigused on kogu maailmas üks peamiseid surma põhjustajaid. Masinõppe 

kasutamine diagnoosimiseks võib oluliselt vähendada röntgen- ja kompuutertomograafia 

tõttu tekkivaid kulusid ja kiiritust, samuti parandada ligipääsu piiratud tehnoloogiaga või 

vähem kogenud personaliga kohtadele. Kuigi sarnaseid tehnoloogiaid on meditsiinivaldkon-

nas varemgi edukalt rakendatud, on helisignaalide analüüs endiselt varases staadiumis ning 

märkimisväärse potentsiaaliga. 
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Selle lõputöö eesmärk oli luua koodibaas, mis aitaks teadlastel siseneda ja edendada hinga-

misteede heli analüüsi valdkonda. Kokku viidi läbi kuus katset nelja klassikalise masinõppe 

ja ühe süvaõppe algoritmiga. Eesmärk oli klassifitseerida kuus klassi (viis hingamisteede 

haigust ning üks tervete patsientide klass), kasutades andmebaasi hingamisteede helidest ja 

patsientide andmetest. Testitulemused, milles põhilise hindamismõõdikuna kasutati makro-

keskmistatud F1-skoori, näitasid, et kõige paremini töötasid SVM ja otsustuspuu mudelid 

(hinded 0,62 ja 0,54), halvemini konvolutsioonilise närvivõrgu (CNN) mudelid (parim 

tulemus 0,3). Mudelite jõudluse erinevusi mõjutas tõenäoliselt mürased andmete ja klasside 

erinevad andmemahud. Lõplike tulemuste saamiseks oleks vaja täiendavaid uuringuid ja 

paremaid andmeid. 

Lõputöö lähtekood on avalikult kättesaadav Github’i repositooriumis [1]. 

Võtmesõnad: Masinõpe, süvaõpe, helitöötlus, kopsuhaigused 

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-

teooria) 
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1 Introduction 

Respiratory diseases account for more than 4 million premature deaths each year [2]. After 

cardiovascular diseases, they are the largest contributors to the global disease burden [2]. 

The recent coronavirus pandemic has further brought into public discussion the importance 

of accessible and accurate respiratory disease diagnosis. 

Currently, chest X-ray and computed tomography (CT) scans are often used to diagnose 

patients. These scans, however, are costly and increase the risk of cancer due to radiation 

[3]. Stethoscopes are also used to listen to the patient’s lungs, but it is not enough to make 

a reliable diagnosis [4]. Using machine learning (ML) to diagnose patients would mitigate 

radiation risks and decrease costs. It would also make accurate predictions more accessible 

to developing countries or remote geographical locations—places that do not have expe-

rienced staff or necessary funds for expensive equipment. 

There is reason to believe this could be possible. Machine learning has already been suc-

cessfully applied in various medical contexts, such as detecting heart disease [5] and using 

medical imagery to find signs of skin cancer [6] or tuberculosis [7]. While these have often 

resulted from advanced computer vision technologies, lung sound analysis is still in its early 

stages, and existing small-scale studies show great potential [8]. Lung disease classification 

algorithms still require much further research and attention to reach wide use in the clinical 

setting. 

The purpose of the thesis is to boost the field of lung sound analysis by creating and sharing 

a codebase that includes experiments with various machine learning models on a database 

of lung sounds. While similar research has mostly focused on binary classification, this the-

sis will classify six different classes (five respiratory diseases and one class for “healthy”). 

Six experiments will be conducted: 3 of which with four machine learning models and three 

on a convolutional neural network (CNN). 

The “Background” chapter describes the relevant medical and sound signal background. 

The machine learning models used in this thesis, information about the dataset, evaluation 

methods, frameworks, and computational resources are described in “Methods”. Specifics 

about preprocessing and training for the machine learning models are described in “Expe-

riments”. In “Results”, the findings of the previous chapter are described and analysed. The 

“Conclusions” chapter summarises the essential findings and lists ideas for future work. 

https://www.zotero.org/google-docs/?3ZItBx
https://www.zotero.org/google-docs/?eGQmlq
https://www.zotero.org/google-docs/?TTRzsn
https://www.zotero.org/google-docs/?cllxK7
https://www.zotero.org/google-docs/?KnL94B
https://www.zotero.org/google-docs/?25fODs
https://www.zotero.org/google-docs/?wh6pEJ
https://www.zotero.org/google-docs/?V36eJE


7 

 

2 Background 

This chapter describes the relevant background information to this thesis in two parts. First, 

the medical background focuses on the human respiratory system under normal conditions 

and during infection. The sound signal background chapter describes how sound works and 

how sound features can be extracted for machine learning purposes. 

2.1 Medical background 

Breathing is common to all humans. However, most of it happens without our conscious 

awareness or control. To understand lung sounds and lung diseases, it is essential to know 

how the human respiratory system works under normal conditions. This chapter will explain 

that, followed by a description of how the system can malfunction and cause abnormal 

sounds. Finally, all the respiratory diseases covered in this thesis are introduced. 

2.1.1 The human respiratory system 

The human body’s respiratory system is responsible for getting oxygen into the body and 

getting carbon dioxide out. This process is known as breathing. When a person breathes in, 

air particles move from their nose to their lungs. Inside the lungs, there is a network of 

branching airways (Figure 1). 

 

Figure 1. Simplified diagram of the human respiratory system [9]. 
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This network begins with the trachea and branches into smaller and smaller segments (bron-

chi and bronchioli), ending with the alveoli. These small and hollow alveoli are responsible 

for exchanging oxygen and carbon dioxide, the respiratory system’s primary function. 

2.1.2 Crackles and wheezes 

Under normal conditions, air movement in the lungs produces no noticeable sounds. How-

ever, when foreign particles (tobacco smoke) or pathogens (fungi, bacteria, viruses, para-

sites) infect or cause damage to a part of the respiratory system, the immune system sends 

out a response with the intention of neutralising the threat. This response results in noticea-

ble symptoms in the affected area, such as a congested nose, sore throat, or abnormal lung 

sounds. 

There are many types of abnormal (adventitious) lung sounds, two of which are crackles 

and wheezes. Crackles can be heard when air movements open blocked airways or make 

liquids in the alveoli bubble [10]. They can be described as discontinuous crackling or rat-

tling sounds (Figure 2). On the other hand, wheezes are longer in duration and have a whis-

tling quality [10] (Figure 3). They occur when airways in the lung are contracted or when 

air paths are obstructed [10]. These sounds are mostly not present in healthy people. Thus 

they are abnormal. 

 

Figure 2. Crackles in time and time-frequency domains [10]. 
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Figure 3. Wheezes in time and time-frequency domains [10]. 

Both wheezes and crackles are easily detected by listening to the patient’s lungs with a 

stethoscope [10]. However, knowing that a patient has these sounds is not enough to know 

what treatment is necessary. Minute differences in the coarseness of crackles or wheezes’ 

intensity can influence the disease’s severity and, thus, the correct approach to curing it [10]. 

That is why diagnosing patients by their lung sounds is often complicated. 

2.1.3 Respiratory diseases 

The aforementioned abnormal sounds can be caused by various respiratory diseases [11], 

but only five are relevant to this thesis. These five are listed below. 

1. If the upper part of the respiratory system (from the nose to the larynx) is infected, 

it causes an illness called the upper respiratory tract infection (URTI) [11]. This 

is often referred to as the common cold. URTI mostly causes mild symptoms, like a 

sore throat or a blocked nose [11]. It does not cause wheezing or crackles—these 

sounds are related to the lower part of the respiratory system. 

2. When the lung’s large airways (major bronchi) are infected, the resulting condition 

is called bronchiectasis [11]. Due to the immune system’s attempt at fighting the 

infection, the bronchi are inflamed with mucus and have smaller air paths than usual, 

causing wheezing [10]. A high-resolution computer tomography (HRCT) of the pa-

tient’s chest is required to diagnose the patient correctly [4]. This requires exposing 

the patient to X-radiation.  

3. Bronchiolitis is an infection of the lungs’ small airways (bronchioles) [11]. It hap-

pens mostly to young children under the age of 2, and, similarly to bronchiectasis, it 

can cause wheezing because the airways in the lungs are inflamed [11]. 
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4. In the case of pneumonia, the infection has gotten to the very end of the air paths: 

bronchioles and alveoli [11]. This causes the immune system to fight the disease by 

causing inflammation and partially filling the alveoli with secretion, thus obstructing 

normal functioning and causing crackling sounds when breathing [11]. Wheezing 

can also occur, though it is less common [12]. 

5. Chronic obstructive pulmonary disease (COPD) is different from the others be-

cause it is caused by tobacco smoke, air pollution, toxic fumes, or other foreign par-

ticles rather than pathogens [11]. It is a common disease and a general term used to 

characterise many different conditions. Because it usually causes inflammation in 

some parts of the lung, wheezing can be heard [13]. 

Next, an overview of sound and useful sound features is provided. 

2.2 Sound signal background 

To predict respiratory diseases, sounds can be used to identify and categorise them. This 

chapter describes how sound works, lists some common methods for visualising sound, and 

introduces the sound features used in this thesis. 

2.2.1 Time-amplitude domain 

When a person claps, the air pressure around their hands changes and ripples outward as 

waves. When these waves reach their ears, it is perceived as sound. If these waves reach a 

microphone, they are converted into changes in voltage [14]. This produces a digital sound 

file and can be represented as a time-amplitude graph called a waveform.  

A waveform sound file can be thought of as a list of numbers, each number describing the 

amplitude of the soundwave at a certain point in time. The more numbers (more commonly 

“samples”) there are describing these waves, the more information there is about the sound. 

2.2.2 Time-frequency domain 

The waveform of a sound only describes the amplitude over time. However, the Fourier 

transform (FT) applied to the waveform gives information about frequencies and their in-

tensities (in dB, for instance) [14]. If the FT is used multiple times on each small segment 

of the original sound, the resulting matrix also gives information about how frequencies 
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change over time. This matrix is called a spectrogram [14]. Because the result is a 2-dimen-

sional array, much like an image, it can be used on deep learning models specialised for 

image recognition, such as a convolutional neural network. 

However, the sound representation described above, in which frequencies range from very 

low to too high, may be redundant. For example, the human ear is more evolved to distin-

guish lower frequencies than higher ones better. For this reason, it often would not make 

sense to include many high frequencies in the spectrogram [15]. Therefore, the logarithm 

representation of a spectrogram (log-spectrogram) is often used. 

Alternatively, the mel-frequency cepstral coefficients (MFCCs) can also be used. Just like 

spectrograms, they give information about frequencies and their intensities in time. How-

ever, MFCCs are distinguished by their feature ranges. Instead of spectrograms, MFCCs are 

designed to imitate the human ear’s functioning even closer than log-spectrograms [15]. The 

lower frequency ranges increase linearly, and higher ranges increase logarithmically [15]. 

2.2.3 Additional sound features 

Numerous features can be extracted from a sound. The following features were used in this 

thesis: 

1. Spectral entropy indicates the uniformity or randomness of frequencies present in 

the sound [16]. 

2. Spectral rolloff describes the frequency below which some percentage of spectral 

energy (intensities of frequencies) is contained [17]. For instance, spectral rolloff 85 

is the frequency below which 85% of the sound intensity comes from.  

3. Root mean square is a method of calculating the average intensity of a sound [18].  

4. Spectral centroid has been shown to differentiate between bright and sharp timbre in 

sounds [14]. 

5. Zero crossing rate is the rate at which the waveform changes sign (crosses the 0 line) 

[14]. If the value is high, it can indicate that the sound contains many high frequen-

cies or is very noisy [14]. 

6. Spectral flatness is a feature that describes how much the sound resembles white 

noise [19].  

In the next chapter, the relevant machine learning models and implementation details are 

presented. 
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3 Methods 

“Machine learning is the systematic study of algorithms and systems that improve their 

knowledge or performance with experience [21:3].” In this chapter, the five such methods 

are introduced in two separate sections. The first focuses on classical machine learning mo-

dels. These are easily interpretable and relatively simple models that are widely used. A 

newer and more complex algorithm XGBoost is also included in this section because it is 

based on other classical models, like the decision tree (DT). The second section focuses on 

a popular and powerful deep learning-based method: the convolutional neural network. Ad-

ditionally, this chapter describes the dataset, evaluation methods, frameworks, and compu-

tational resources used in this thesis. 

3.1 Classical machine learning methods 

Here, four classical machine learning models used in this thesis are reviewed: decision tree, 

random forest (RF), XGBoost, and support vector machine (SVM). 

Decision tree is a popular machine learning model used for classification and regression, 

dating back to the 1960s [22]. It is a tree-based model, consisting of a root node, decision 

nodes, and leaf nodes. Classifying a data sample involves starting from the root node, mo-

ving through the if-else conditions in the decision nodes, and arriving at a leaf node, which 

represents the predicted class (Figure 4).  

As seen in Figure 4, all the decision tree details can be easily interpreted and understood. 

This is a major advantage of the model, as it makes it easier to gather insights into the pre-

diction process and find possible mistakes in the model. Decision trees are also said to be 

robust to outliers, skewed data, and missing values [22], which makes them perform well 

even with noisy data. Its disadvantages include its relative simplicity, as many newer 

machine learning algorithms provide major improvements. Additionally, it can easily over-

or underfit, especially if there are not enough data points [22]. 

Decision trees have been used in sound analysis and medical research before, for instance, 

diagnosing patients based on their symptoms [23], classifying marine animal sounds [24], 

and classifying common cardiovascular conditions problems using hearth sounds [25]. 
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Figure 4. An example of a decision tree. The root node is “y=0,1”, and leaf nodes are na-

med “R1” to “R5” [22]. 

Random forest is another popular machine learning method, first introduced in 1995 by 

Tim Kan Ho [26]. It works by creating multiple decision trees with a random subset of 

features and data rows. Outputs are the mean or the mode of those predictions. Compared 

to decision trees, a random forest model is less interpretable, as it may often consist of hund-

reds of individual trees. However, random forest models generally have higher performance 

and overfit less than individual decision trees [27]. 

XGBoost, initially released in 2014, is an efficient implementation of the gradient boosting 

method [28]. Gradient boosting is a machine learning technique which involves training 

multiple “weak” models (like decision trees) one by one sequentially. While training, the 

algorithm updates the weights of new models based on earlier models’ misclassified data 

points. It would be expected that XGBoost will outperform other tree-based models, such 

as decision trees and random forest because XGBoost has won many recent machine lear-

ning competitions [29] and its use of gradient boosting combines the prediction power of 

individual trees. 
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Support vector machine was chosen to contrast the other models, which are all based on 

decision trees. It can do binary classification by finding a hyperplane (a point for 2-D space, 

a line for 3-D space, etc.) at the maximal distance from both classes without being overly 

sensitive to outliers in the data. For data that is more difficult to classify (e.g., there are 

considerable overlaps between classes or the data cannot be linearly separated), SVMs can 

use an approach called the kernel trick, which maps the data into a higher-dimensional space 

without actually constructing it. The kernel trick makes it easier to separate even non-li-

nearly separable data classes. A review article from 2018 notes that, together with neural 

networks, SVMs are one of the most commonly used methods to classify abnormal lung 

sounds [8]. 

Based on the complexity of the four models and performance reported in the previous stu-

dies, one might expect that the XGBoost or SVM will perform best in this thesis, followed 

by random forest, followed then by the decision tree. 

3.2 Deep learning methods 

Deep learning methods hold a lot of promise and have been shown to set new state-of-the-

art results across various domains and problems, including sound classification. One of the 

most prominent deep learning methods used to date is the convolution neural network, 

which was also used in this thesis. It differs from other deep learning methods in its use of 

convolutional layers. The purpose of these layers is to find simple patterns of an input image 

(e.g., vertical lines) and then combine these patterns to recognise complex shapes such as 

the face of a dog or a person (Figure 5). 

Figure 5. A visual representation of what images might look like on three CNN layers trai-

ned for image classification [30]. 

While CNNs are most commonly used for image recognition, they can also be applied to 

sound classification tasks, provided that the sound file has been transformed into an image 
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before being used as input (e.g. MFCCs). Existing applications of CNNs include classifying 

cough sounds [31], lung sounds [32], heart sounds [33], or audio scene modelling [34].  

Several small-scale studies have shown promising results in the field of lung sound analysis, 

but many improvements still need to be made to reach wider use [8]. A review done in 2017 

notes that most researchers have simplified the task to only predict two or three classes (e.g. 

“healthy” / “not healthy”; “healthy” / “chronic disease” / “non-chronic disease”) or to focus 

only on detecting abnormal lung sounds rather than respiratory diseases [32]. Studies done 

after 2017 seem to follow a similar trend [35–37]. Few studies were found that attempt at 

predicting six or more classes, such as this thesis. One notable exception is an experiment 

with 78 sound classes, achieving 62% test accuracy with a CNN and SVM model [32]. This 

suggests the novelty of this thesis while also hinting that predicting more than three classes 

is a challenging task that may require significant knowledge of the field and large amounts 

of data. 

In addition to CNNs, recurrent neural networks (RNNs) and convolutional recurrent neural 

networks (CRNNs) have been used in sound signal analysis. RNNs have been used to clas-

sify cardiac arrhythmias (heart rhythm problems) [38] and to recognise speech [39–41]. 

CRNNs have been used for the classification of sound events (e.g. baby crying, gunshot) 

[42], for real-time speech enhancement [43,44] and for detecting multiple sounds and their 

directions from a single sound file [45,46]. While using RNNs and CRNNs is out of this 

thesis’s scope, they would serve as an interesting comparison for the other models. 

3.3 Dataset 

The dataset used for experiments in this thesis was put together by researchers based in 

Greece and Portugal [47]. It contains 920 recordings of 126 patients’ breathing. Each recor-

ding has information about each breathing cycle’s start and end times and whether crackles 

or wheezes were present in each cycle. 

In addition to recordings, the dataset contains the following data about patients: patient num-

ber, age, sex, BMI (for adults), weight (for children), height (for children), diagnosis. This 

data is stored in a tabular form. 
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Figure 6. Database distribution of diseases across patients and sound files. The two least 

frequent classes (asthma and LRTI) are omitted from the figures because they were not 

used in this thesis. 

Patient diagnosis can be one of 8 possible options: healthy, asthma, COPD, bronchiectasis, 

bronchiolitis, lower respiratory tract infection (LRTI), pneumonia, or upper respiratory tract 

infection (URTI). It is important to note that the distribution of diagnoses across patients 

and sound files is not uniform but rather heavily unbalanced, as shown in Figure 6. This 

makes it more challenging for models to correctly classify diagnoses. 

3.4 Evaluation methods 

The chosen metric for describing model performance is the macro-average F1-score. F1-

score is the harmonic mean of precision and recall and was used because it combines both 

of those scores in a single metric. The macro-average is simply the arithmetic mean of F1-

scores per each class. It was used because the dataset is highly unbalanced, and the macro-
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average considers each class equally. If a model only predicted the majority class correctly, 

the macro-averaged F1-score would be low. 

Measures were taken to ensure that the deep learning results would be comparable to clas-

sical machine learning ones. Because deep learning models were trained on sound files and 

the rest on patient data with sound file statistics, the former would give diagnosis predictions 

for each sound, while the latter would give predictions for each patient. This made it more 

difficult to compare results. To fix this issue, the CNN model results were aggregated such 

that they would give predictions for each patient instead. This was achieved by looking at 

each patient’s sounds, letting the CNN model predict each sound file’s diagnosis, and then 

using the most frequent prediction as the output.  

Because there were not enough patients to create one test set, which could accurately repre-

sent the entire dataset, cross-validation was used. Using this technique, a more reliable esti-

mate of model performances can be captured even with a small dataset. Cross-validation 

works by splitting the data randomly into a training and testing set, training the model on 

the first one, testing on the other, and then repeating the process multiple times, afterwards 

combining the results. For each experiment, this was done in total 50 times to get the most 

reliable and robust results (i.e. 5-fold cross-validation was used ten times). 

3.5 Frameworks 

The two noteworthy libraries used in this thesis were Keras and Librosa. Keras is a high-

level deep learning library. Its version 2.3.1 was used for training and evaluating the CNN 

models. Librosa is a python package made for audio and music analysis. Its version 0.7.2 

was used for extracting sound features. Version 0.22.1 of a machine learning library Scikit-

learn was used for building, training and evaluating the classical machine learning models. 

Numpy version 1.18.4 and pandas version 1.0.3 were used for data analysis, manipulation, 

and processing.  

3.6 Computational resources 

Initial work for this thesis was done using Google Colaboratory—a free online Python prog-

ramming environment. However, this solution proved to be too slow for deep learning ex-

periments. Thus, all experiments presented in this work were instead done in Jupyter note-

books that ran on the resources of the High Performance Computing Centre of the University 

of Tartu. 
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4 Experiments 

In this chapter, the preprocessing and training details are provided for all experiments. This 

is split into two categories: classical machine learning and deep learning. A visual overview 

of the pipelines is provided in Figure 7.  

 

Figure 7. A high-level overview of the classical machine learning and deep learning pipe-

lines. 

In the classical machine learning pipeline, patient data and specific sound features were used 

as inputs to four different models. In the deep learning pipeline, only sound data was used. 

The sound files were converted into a visual representation of frequencies over time, which 

was then used as input for the deep learning model.  

4.1 Classical machine learning pipeline 

4.1.1 Preprocessing 

Given the tabular patient data, the first task was discarding or replacing missing values. 

First, one patient was discarded, because they had missing sex and age values. Second, the 

BMI values for children had to be calculated. A few additional values were filled in using 

the values of patients with similar sex, age (+/- 5 years) and diagnosis. The two patients that 

still have some missing values were discarded.  
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In addition, since the distribution of diagnoses was far from uniform, the two diagnoses with 

the lowest frequency of occurence (2 LRTI patients and 1 asthma patient) were discarded. 

The height and weight columns were also discarded, since their information was already 

contained in the BMI column. In the end, 121 of the 126 patients remained, including data 

about their sex, BMI and diagnosis. This stage of preprocessing was inspired by a publicly 

available notebook on the same dataset [48]. 

The second task was extracting sound features. Firstly, using the recording annotations, in-

formation about the average number of crackles and wheezes per second was included. This 

intended to help differentiate between the healthy and the sick, as well as patients with pneu-

monia (which mainly causes crackles) and other diseases (which mainly cause wheezes).  

Secondly, a set of 7 sound features (and their statistics) were chosen because they have been 

successfully used in sound classification tasks before [17,49]. The following features were 

extracted using the Librosa package and averaged over all sound files for each patient: 

1. zero-crossing rate, 

2. spectral centroid (mean, median, standard deviation (std)), 

3. root mean square (mean, median, std), 

4. spectral rolloff at 85% (mean, median, std), 

5. spectral rolloff at 75% (mean, median, std), 

6. spectral flatness (mean, median, std), and 

7. spectral entropy. 

The total number of features was 22, including 17 sound features, crackles and wheezes per 

second, BMI, sex, and age. 

4.1.2 Training 

The classical machine learning models used for training were the following: DT, RF, SVM, 

and XGBoost. The training was split into the following three experiments: 

1. In Experiment 1 (“Original model”), the models were run on all of the data. It would 

be expected that the models are prone to overfitting and thus mostly predict the ma-

jority class.  

2. In Experiment 2 (“Class weights”), class weights were introduced, making the mo-

dels value each class equally during training. This was intended to make the models 

predict the minority classes more accurately. 
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3. In Experiment 3 (“Fewer features”), the models were trained on seven features ins-

tead of 22. These features were chosen by using principal component analysis to 

view the data in 2-dimensions and by choosing the feature set in which classes were 

best separated. Principal component analysis is the process of decreasing the dimen-

sionality of the data (decreasing the number of features), while preserving as much 

information as possible. The following seven features were chosen: "wheezes", 

"crackles", "age", "root_mean_square_mean", "spectral_entropy", "spectral_flat-

ness_mean" and "zero_crossing_rate". 

Because the test results fluctuated due to randomness, each experiment was conducted 10 

times for each model. This increased the robustness of the results. Since each training run 

consisted of 5-fold cross-validation, there are in total 50 results for each experiment and for 

each model.  

4.2 Deep learning pipeline 

The deep learning pipeline was split into two phases: preprocessing and training. In the 

preprocessing phase, features were extracted from the original data and packed together into 

a format suitable for the CNN model. Three experiments were conducted, numbered 4 to 6. 

4.2.1 Preprocessing 

The preprocessing phase of the deep learning pipeline was as follows. 

First, the LRTI and asthma patients’ sound files were discarded, as was done in the classical 

machine learning pipeline. This was because those classes contained too few patients and 

sound files. After that, each sound file was loaded into memory with a sample rate of 11 025 

(samples per second). This was chosen after some experimentation showed that because 

sample rates above that did not increase results, but did considerably increase the data size. 

After that, each sound file was cut or randomly padded to be exactly 20 seconds long. 20 

seconds was chosen because only a few sound files were longer, so minimal data was lost. 

After cutting or padding, every 512 samples of audio was converted into 40 MFCCs co-

vering the frequency in a range of 50–2000 Hz. This range was chosen because respiratory 

sounds fall in this range and lower ranges would contain unnecessary information, such as 

heartbeats [50]. As a result, MFCCs of size 431x40 were extracted from each of 917 sound 

files.  
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For experiment number 6, an additional step was added to the preprocessing phase: data 

augmentation. Because the diagnosis distribution for sounds was even more unbalanced than 

for patients data augmentation was used to correct for this skew. The augmentation was 

done in the following way: 

1. For COPD patients, MFCCs were extracted as normal. 

2. For others, the sound file was split in pieces based on the respiratory cycles included 

in the annotations. 

3. After that, the respiratory cycles were shuffled, creating a new sound file. MFCCs 

were extracted from that sound file as normal.  

4. The number of new sound files created depended on the number of existing sounds 

such that the diagnosis distribution would be uniform in the end. For example, 20 

new sounds had to be created for each pneumonia sound and 60 new sounds for each 

bronchiolitis sound. 

 

 

Figure 8. Distribution of diseases across sound files before and after augmentation. 

In the end, 4491 sounds were created from the original 917 sounds, and the diagnosis dist-

ribution was much more uniform as a result (Figure 8). 
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4.2.2 Training 

In the training phase, three experiments were conducted: 

1. Experiment 4 (“Original model”) was for baseline results. 

2. In Experiment 5 (“Class weights”), class weights were used to counter the unbalan-

ced distribution of classes. 

3. In Experiment 6 (“Augmented data”), a method of data augmentation was used to 

generate additional sound files for the minority classes. 

The CNN model used on all three experiments had three 2-D convolutional layers, fully-

connected layers, pooling layers and dropout layers. The Adam optimiser was used for op-

timisation, and the loss function was categorical cross-entropy. Different optimisation algo-

rithms were tried out, including RMSprop and Adagrad, but Adam seemed to give the best 

results. Different parameters were also tried out for the dropout layer, varying from 0.1 to 

0.9, however, 0.4 seemed to be the best fit. A detailed summary of the model can be seen in 

Appendix 1. 

All of the experiments were conducted with a batch size of 64, with 700 epochs and with a 

validation set which was 20% the size of the training set. The test set was roughly 20% of 

the entire dataset. 

Just like with classical machine learning, 5-fold cross-validation runs were performed ten 

times in each experiment to increase robustness, resulting in 50 individual results. 
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5 Results 

In this chapter, the experiment results are presented. The findings are explained, analysed, 

and the difficulties of predicting certain diseases on this particular dataset are brought out. 

5.1 Classical machine learning results 

A comparison of the macro-averaged F1-scores on test sets for classical ML algorithms is 

presented in Table 1, which shows the average and the standard deviation of 50 test results. 

Table 1. Classical machine learning test results. The best result for every model is indica-

ted in bold. 

 SVM DT XGBoost RF 

Original model 0.4856 +/- 0.12 0.4869 +/- 0.1 0.4801 +/- 0.12 0.3597 +/- 0.08 

Class weights 0.4918 +/- 0.11 0.5277 +/- 0.11 0.4571 +/- 0.11 0.4052 +/- 0.1 

Fewer features 0.6189 +/- 0.13 0.5410 +/- 0.1 0.5091 +/- 0.13 0.4644 +/- 0.13 

Several notable conclusions can be made from these results. Firstly, SVM seems to perform 

the best. The performance difference between the best SVM model and the next best model 

(DT with fewer features) is 0.0779 (7.8%). This is not too surprising since the model has 

performed successfully in similar experiments before [8]. However, some aspects of the 

experiments might have artificially inflated this result. This needs to be pointed out for 

transparency. One possible reason for the high SVM scores is that during preprocessing, 

some information from the validation sets of each cross-validation run may have ended up 

in the training sets due to using normalisation, parameter tuning, and feature selection on 

the entire dataset. Even so, the results suggest SVM might have promise in future applica-

tions. 

A surprising find is that RF and XGBoost have, on average, inferior performance compared 

to relatively simpler models (DT and SVM). They might have poor results because very few 

features were actually required to predict well. Since they select a random subset of features 

for each sub-tree, some trees might have been left with only poor features, which brought 

the overall performance down. Evidence for this is apparent when looking at feature impor-

tances for random forest and decision tree models (Figure 9). DT gives a lot of importance 

to ‘age’, whereas RF uses other features more often. 
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In the case of all these results, it is important to note that the macro-averaged F1-score is 

used, which weighs all classes equally. In fact, when each sample is weighted equally, the 

results are much different and less unexpected: in that case, XGBoost and RF do get better 

scores than DT (Table 2). 

Table 2. Best micro- and macro-averaged results for classical machine learning models. 

 SVM DT XGBoost RF 

Best micro-averaged F1-

score 
0.8050 +/- 

0.06 

0.7166 +/- 

0.06 

0.7685 +/- 

0.06 

0.7653 +/- 

0.04 

Best macro-averaged F1-

score 
0.6189 +/- 

0.13 

0.5410 +/- 0.1 0.5091 +/- 

0.13 

0.4644 +/- 

0.13 

No matter which metric to look at, DT, RF, and SVM models all improved with class 

weights, as is expected. Adding class weights increased the importance of minority classes 

for the models, which in turn improved the results. The only exception here is XGBoost, 

which surprisingly decreased with class weights, though by fairly little. 

Also evident from the results is the fact that all models improved after decreasing the num-

ber of features. This indicates that the initial set of features contained much unnecessary 

information, while the second set of features was chosen more wisely. 

Figure 9. Feature importance for the decision tree and random forest. The six most impor-

tant features are presented. 
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Figure 10. Classical machine learning test results. Each violin plot shows 50 results for 

each model. The “majority class baseline” at 0.1 indicates results from just predicting 

“COPD”. 
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Finally, it is important to note that the difference between the three best performing models 

(SVM, DT, XGBoost) all fall within a single standard deviation range. In fact, the results 

had very large standard deviations in general: each individual cross-validation run gave 

varying results even with the same model and dataset. This can be visually seen in Figure 

10. These wide fluctuations in results suggest that more data would be required to give con-

clusive results. 

5.2 Deep learning results 

A comparison of the macro-averaged F1-scores on test sets for the convolutional neural 

network models is presented in Table 3, together with the best and worst-performing clas-

sical ML methods. The table shows the average and the standard deviation of 50 individual 

results. 

Table 3. Deep learning test results compared with SVM and RF test results. The best result 

for each method is indicated in bold. “N/A” indicates that such an experiment was not per-

formed on that model. 

 CNN SVM RF 

Original model 0.2416 +/- 0.09 0.4856 +/- 0.12 0.3597 +/- 0.08 

Class weights 0.3041 +/- 0.11 0.4918 +/- 0.11 0.4052 +/- 0.10 

Augmented data 0.2120 +/- 0.08 N/A N/A 

Fewer features N/A 0.6189 +/- 0.13 0.4644 +/- 0.13 

Since the number of data points for each class (other than COPD) was less than 100, it was 

expected that deep neural networks would struggle with classification. The experiment re-

sults confirmed this intuition—even the worst-performing ML model achieved 52% better 

results than the best CNN model. 

There are several possible causes for such poor results. One clear factor was that the dataset 

used for deep learning (sound files) was even more unbalanced than the one used for 

machine learning (patient data with sound features). The difference between the first two 

most frequent classes was more than 10-fold (almost 800 for COPD and less than 80 for 

healthy patients). This made it very challenging to train the model, as it mostly just predicted 

COPD for the diagnosis. This is evident from a sample confusion matrix in Figure 11. It 

seems that there just was not enough data points for the minority classes. 
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Figure 11. Confusion matrix for a CNN model of a single cross-validation fold. 

Two measures against this unbalancedness were taken: class weights and augmented data. 

Predictably, class weights did improve the results considerably. However, they still fell short 

of any classical ML results. 

But, the results from augmented data were surprising. They were in fact worse than the 

original CNN model with no class weights or augmentation. Several key factors may have 

influenced this. First, inappropriate augmentation may have harmed the performance. It may 

be possible that the attempted augmentation algorithm was adding noise to the data instead 

of additional data. The algorithm shuffled breathing cycles around to create new breathing 

sounds. This particular augmentation may not be acceptable for this kind of data. The precise 

sequence of breathing cycles might have contained useful information that was lost during 

shuffling and made it more difficult to predict diagnoses. Another possible reason is that the 

breathing cycles were annotated incorrectly and as a result, after being reshuffled, this 

procedure produced unnatural and therefore fruitless recordings. 

There are several alternative approaches to the augmentation employed in this thesis: 

1. a portion of COPD could be discarded, 

2. minority class sound files could be duplicated, 

3. the original sound could be amplified and 

4. pitch and speed can be changed. 
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It is plausible that some combination of these alternative approaches could give better re-

sults, however, this seems unlikely that they would exceed the results from classical machine 

learning models on this particular dataset. 

Another problem which made classification more tricky was the high level of data noise. 

Some sound files had loud irrelevant noises on the background (e.g. human speech and 

ticking clocks). Measures were taken to reduce this (for example, limiting the frequency 

range to 50-2000 Hz), but it may not have been enough. To improve the results, it would be 

best to consider more advanced algorithms to extract only the important breathing sounds 

from the data. This could be done by training another algorithm to recognise common ab-

normal breathing sounds (crackles and wheezes) and to discard all other information from 

the sound. 

Finally, it might be unfair to directly compare ML models with CNN because the former 

had more data: information about each patient, such as their age and BMI. In fact, the 

decision tree made a significant amount of decisions just based on the patient’s age. Perhaps 

if the ML models had been trained on just sound data, the deep learning model would have 

come out ahead. 

5.3 Challenges of disease prediction 

Most of the difficulties in classifying diseases on this dataset become apparent when looking 

at the principal component analysis (PCA) plot (Figure 12).  

It seems that by using sound features, it easy to differentiate between COPD and healthy 

patients, as healthy people should have no crackles or wheezes, but COPD patients do. It 

also seems to be easy to tell apart bronchiolitis patients from others, as bronchiolitis is 

mostly only diagnosed for patients under the age of two, and the tabular data contains the 

age of the patient. In fact, “age” was by far the most important feature for the decision tree. 

However, it seems to be much more difficult to differentiate between bronchiectasis, pneu-

monia and COPD patients. As bronchiectasis can be the result of COPD, the similarities 

make sense. Confusing pneumonia with other diseases makes less sense because pneumonia 

should mainly cause crackles, while others should mainly cause wheezes.  
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Figure 12. Scatterplot for two principal components on data with seven sound features. 

URTI was by far the most difficult to classify, naturally because the lungs of URTI patients 

and healthy patients should sound identical. The infection for URTI patients is not in the 

lungs but in the upper respiratory tract (nose, sinuses), as the name would suggest. 

Therefore, the easiest improvements could likely be made in differentiating pneumonia 

patients from others. This could be done by taking into account the location of the sounds 

in the lung (as pneumonia mostly affects alveoli). When recording new sounds, including 

the physical position of the patient during breathing might help too. Different patient posi-

tions can play a role in how well lung sounds can be heard [12]. 
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6 Conclusion 

In this chapter, a summary of the results is presented, and a list of possible improvements 

upon this work is listed. 

6.1 Results summary 

The purpose of this thesis was to create a codebase for predicting respiratory diseases using 

lung sounds. This is important because these diseases (including COVID-19) are one of the 

leading causes of death globally. Improved accessibility and accuracy of diagnoses could 

significantly decrease the global disease burden. This codebase would help future re-

searchers get started with medical machine learning in the future with less effort and less 

time.  

A comprehensive comparison between classical machine learning and deep learning on a 

dataset of lung sounds was presented. In total, six experiments were carried out with five 

methods: four classical machine learning methods (DT, RF, SVM and XGBoost) and one 

deep learning method (CNN). 

The test results showed that simple classical machine learning methods, like support vector 

machine and decision tree, performed best when looking at all prediction classes equally 

(i.e. using the macro-averaged F1-score as the primary metric). Using class weights and 

decreasing the number of features improved results. The best scores overall were achieved 

by SVM and decision tree models with decreased features (0.62 and 0.54). The convolutio-

nal neural network models achieved very poor results compared to others (best score 0.3). 

A novel data augmentation method was used to improve performance, but it failed to do so. 

Various poor features of the dataset made accurate predicting more challenging: it is highly 

unbalanced, contains a small number of patient data points, and the sound data is often noisy. 

Because of these reasons, it can be concluded that more and better quality data should be 

added before making substantial claims on the overall usefulness of the models. 

All the goals of this thesis were achieved, and the source code is publicly available in a 

Github repository [1]. 

6.2 Future work 

Here are a few ideas on how to improve upon this work: 
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1. Using information about the patient’s position during breathing or the location of the 

stethoscope on the patient’s chest might help distinguish certain diseases from others 

(such as pneumonia). 

2. Additional methods for visually representing sounds might work better than MFCCs. 

Options include discrete wavelet transform (DWT), chromatograms, scalograms or 

spectrograms.  

3. Alternatives to convolutional neural networks might achieve better results. Recur-

rent neural networks (RNN) or convolutional recurrent neural networks (CRNN) 

could be used. 

4. URTI patients should be excluded from the dataset because their disease produces 

no lung sounds and they are indistinguishable from healthy people.  

5. Using more advanced algorithms for noise reduction or for extracting abnormal 

breathing sounds from the data is suggested. 

6. Alternative methods for data augmentation might produce better results. 

However, the easiest improvement would be to find a larger and more balanced database or 

attempt at classifying something more simple, such as the healthy and the sick or crackles 

and wheezes. 
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