
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Mathias Are

Monitoring of the microservice
architecture: Ridango case study

Bachelor’s Thesis (9 ECTS)

Supervisor: Chinmaya Kumar Dehury, Ph.D.

Tartu 2022

Monitoring of the microservice architecture: Ridango case study
Abstract:
Monitoring is an essential part of the software production lifecycle, as it provides
feedback about the state and well-being of the observed system, allowing to detect
issues and to make informed decisions based on the gathered data. Whether a system
is sufficiently monitored depends mostly on its purpose, but often also on its general
architecture and structure. In recent years, microservice architecture (MA) has been a
common choice for IT systems of all sizes, favored for the various benefits it provides that
streamline the development and deployment of modern applications. The MA, however,
is significantly more difficult to monitor than most of its predecessors due to the inherent
complexity of its distributed and dynamically changing structure, requiring the user to
navigate through the various levels of virtualization and correlate the gathered metrics
between a service and the rest of the system’s components. Observability tools which
have also gained popularity among the software engineering community, aim to solve
this problem by combining the monitoring data of metrics, logs, and traces into a single
platform while providing real-time analysis of the incoming data with the help of AI
models. In this study, we compare three observability tools: New Relic, IBM Instana,
and Datadog in their ability to monitor microservices in a self-hosted Kubernetes cluster
of a mid-sized IT firm Ridango based on the gathered requirements from a conducted
user requirements analysis. Finally, we describe a proposed monitoring solution for the
company that is adjusted to its business requirements and the particularities of monitoring
the MA.

Keywords:
Software engineering, monitoring, software architecture, microservice architecture

CERCS: P170 Computer science, numerical analysis, systems, control

2

Mikronteenuste arhitektuuri monitoorimine Ridango näitel
Lühikokkuvõte:
Monitoorimine on oluline osa tarkvaraarenduse protsessist - see võimaldab saada vahetut
tagasisidet jälgitava süsteemi seisundi ja heaolu kohta. Samuti võimaldab monitoori-
mine tuvastada tarkvarateenustes leiduvaid vigu ning teha teadlike otsuseid süsteemi
parendamiseks. Küllaldase monitoorimise lahenduse loomiseks on tarvilik arvestada
jälgitava süsteemi eesmärkidega, kuid tihti ka selle arhitektuurist tulenevate erisustega.
Mikroteenuste arhitektuur (MA) on saanud viimaste aastate vältel järjest populaarsemaks
valikuks infotehnoloogiliste süsteemide kujundamisel oma mitmete kasulike omaduste
tõttu, mis võimaldavad kiirendada uute tarkvaraliste funktsionaalsuste arendamist ja
väljastamist. Seevastu on mikroteenuste arhitektuuri oluliselt keerulisem monitoorida kui
mitmeid selle alternatiive. Põhjuseks on MA hajus ja dünaamiliselt muutuv struktuur,
milles on süsteemi jälgijal keeruline orienteeruda ning ühelt komponendilt kogutud
andmeid kogu ülejäänud süsteemiga vastavusse viia. Tarkvaraarenduse kogukonna seas
populaarsust kogunud jälgitavuse tööriistad (ingl k observability tools) üritavad seda
probleemi lahendada tehnoloogiate abil, mis koguvad eri liiki monitoorimise andmed
ning analüüsivad neid reaalajas masinõppe mudelite või tehisnärvivõrkude abil. Antud
bakalaureusetöö raamest katsetatakse kolme jälgitavuse platvormi: New Relic, IBM Insta-
na ja Datadog, ning võrreldakse nende suutlikust monitoorida tarkvaraettevõtte Ridango
lokaalselt majutatud Kubernetese klastrit ning sellel töötavaid mikroteenuseid. Koostatud
võrdluse aluseks on eelnevalt läbi viidud ettevõtte sisene kasutajanõuete analüüs (ingl k
user requirements analysis). Lisaks on bakalaureusetöös esitletud Ridango ärivajadusi
ning MA erisusi arvestavat monitoorimislahendust, mis on loodud Datadog’i platvormi
põhjal.

Võtmesõnad:
Tarkvaratehnika, tarkvaraarendus, monitoorimine, tarkvara arhitektuur, mikroteenused,
mikroteenuste arhitektuur

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll

3

Contents
1 Introduction 6

1.1 Motivation . 6
1.2 Goal . 7
1.3 Contributions . 7
1.4 Thesis outline . 7

2 Background 8
2.1 The Microservice Architecture . 8
2.2 Monitoring . 9
2.3 Observability . 9
2.4 About Ridango . 10
2.5 Microservices and monitoring setup in Ridango 11

2.5.1 Zabbix (Zab) . 12
2.5.2 Prometheus and Grafana (PG) 12
2.5.3 Elasticsearch, FluentD and Kibana (EFK) 12
2.5.4 Sentry . 13
2.5.5 Kubernetes and Kubernetes Dashboard 13

2.6 Other related technologies . 13

3 User requirements analysis 14
3.1 Methodology . 14

3.1.1 Information gathering . 14
3.1.2 User needs identification . 15
3.1.3 Evaluation and requirements specification 16

3.2 Summary of the findings . 16
3.2.1 Defined stakeholders . 16
3.2.2 Task analysis . 17
3.2.3 Usage of the existing tools . 19
3.2.4 Defined requirements . 20
3.2.5 Potential for saving developer time 21
3.2.6 Missing practices of monitoring 21

4 Comparison of monitoring tools 24
4.1 Methodology . 24
4.2 Architecture . 25
4.3 Feature comparison . 32

4.3.1 General features and attributes 36
4.3.2 Application performance monitoring (APM) 36
4.3.3 Alerting . 37

4

4.3.4 Logs . 38
4.3.5 Infrastructure . 39
4.3.6 Integrations . 40
4.3.7 Configuration . 40
4.3.8 Performance and resource usage 41
4.3.9 Management features . 41
4.3.10 Coverage of the requirements 42

4.4 Cost of maintenance . 42
4.5 Return of investment . 44
4.6 Summary of the findings . 45

5 The adopted monitoring solution 45
5.1 Description of the setup . 46

5.1.1 Set of tools . 46
5.1.2 Integrating technologies and other tools 47
5.1.3 Customization and business-oriented monitoring 48

5.2 Integration . 49
5.3 Proposed monitoring conventions and workflows 50

5.3.1 Unified naming . 50
5.3.2 Efficient alerts and notifications 50
5.3.3 Introducing optimization . 51

6 Conclusion and future work 54

References 56

Appendix 57
I. List of Acronyms . 57
II. Licence . 58

5

1 Introduction
The practices of developing and releasing software have changed significantly over the
last few decades. The dominating mindset of a maintenance-only approach in software
development with infrequent release cycles and rarely changing architectural design has
been gradually replaced by paradigms like agile development, DevOps, and microservice
architecture (MA) [17]. These new methodologies allow faster implementation of new
features as they reduce the risk of failure while also allowing to simplify and automate
most of the deployment and version integration processes. The MA, in particular, has
had a considerable impact on this progress since it has allowed the development teams to
decouple large applications into smaller, more maintainable chunks of code where they
can introduce changes or adopt new technologies without concerning themselves with
dependencies from other parts of the product [15]. Along with the virtualization tools
like Docker containers and Kubernetes, the MA has become a popular choice among
cloud and locally hosted systems. However, the level of complexity that the MA provides
through the numerous instances of microservices all coexisting and communicating in
the production environment poses a new kind of problem in the context of monitoring
[15]. The total number of microservices and layers of virtualization makes it increasingly
difficult to detect and mitigate errors compared to the traditional monolithic architecture
of software applications. Accordingly, conventional monitoring tools designed to observe
monoliths are often insufficient for monitoring MA because they provide data only about
the individual components of the system and lack vital information about the transactions
between them that form a cohesive application [18].

1.1 Motivation
Internal observations in the company of Ridango1 indicate that a similar situation is
taking place with their server-side microservice environments. Development teams take
full advantage of the MA by decoupling services, frequently deploying new versions
of software, and choosing their preferred technologies. Still, the toolset of monitoring
has remained to serve the needs of traditional monolithic applications. Our primary
motivation for this study is to find the tools and practices that consider the particularities
of the MA and improve the monitoring setup in the firm. Observability tools have
become a recent trend among the IT firms and enterprises as they offer a convenient
SaaS platform to bring all the monitoring data into a single tool while providing a wide
range of features and AI capabilities to actively detect issues and faults in the system.
However, due to their relatively high pricing, it is hard to justify adopting them without
relying on some kind of proof of concept or conducted research. Several studies have
been conducted with a focus on the separate features of these tools, but there is a limited

1https://ridango.com/

6

number of published works that assess and compare these tools in a complete scope. The
second motivation of this study is to test these tools on an actual technology stack and
compare them with the existing monitoring setup in Ridango to better understand their
value and usage scenarios.

1.2 Goal
In order to detect critical errors in their systems, increase the reliability and speed of
deploying new versions of software and guarantee better visibility into the state and
health of its products, many of the modern IT firms that decide to adopt the MA face
the necessity to improve their monitoring solution to better address the complexity of a
distributed system architecture. The goal of this thesis is to describe this kind of process
as a case study within an Estonian IT company Ridango to provide an example and
research material for monitoring solution redesign.

1.3 Contributions
The contributions of this thesis can be summarized as follows:

1. Conduct a stakeholder identification and user requirements analysis to map the
requirements along with their priorities for all the involved parties in order to
understand the internal monitoring needs within the company.

2. Test and compare 3 more widely used observability tools along the currently used
monitoring tools in Ridango.

3. Construct a proposed monitoring setup for Ridango using the selected set of tools
from part 2.

4. Provide an example case study of a monitoring solution redesign.

1.4 Thesis outline
The contents of this thesis are structured as follows. In this section we gave a brief
overview for this thesis and introduction to the general subjects discussed in the study.
Section 2 presents the background on related tools and concepts. Section 3 provides
the results of the user requirements analysis. Section 4 describes the methodology
and conclusions of the monitoring tools comparison. Section 5 describes the proposed
monitoring setup for Ridango and proposes new workflows and conventions to maximize
the value of the monitoring setup. Finally, section 6 provides the conclusion and discusses
the possibilities for future work of this thesis.

7

2 Background
This section introduces the general concepts of monitoring, observability, observability
tools, and the MA. Finally, the section gives a short overview of the IT firm Ridango and
its server-side environment of microservices in Kubernetes, which is the primary focus
of this case study.

2.1 The Microservice Architecture

Figure 1. Monolithic application and the Microservice architecture

Microservice architecture is a software architecture paradigm that uses virtualization
concepts like containerization and communication protocols like HTTP to divide an
application into smaller components that together provide all the functionalities that the
equivalent application is supposed to have [15]. Compared to the traditional monolithic
architecture (Figure 1), which usually has its functionalities separated into functions
and/or classes, the MA has its business logic in separately runnable microservices. These
microservices contain only a minimal set of classes and functions designed to complete a
single step in a larger chain of events that is needed to complete a task [15].

The benefits of MA are usually associated with the implementation and deployment
stages of software development as the aspect of separation makes it easier to upgrade or
replace a microservice than to refactor a monolithic application. The authors [15] also
mention the possibility of using different languages and technologies for each microser-
vice, allowing development teams to use their own preferences for each functionality
they create. However, there is an added complexity to MA on the account of the neces-

8

sary communications that often need to handle a large volume of traffic and numerous
simultaneous processes happening in the background.

2.2 Monitoring
Monitoring is a practice in software maintenance and operations that provides immediate
feedback about the state and quality of the monitored component. In “The Art of
Monitoring” [20] James Turnbull states that the primary goal of monitoring is to translate
metrics about the monitored application into useful information that contains valuable
knowledge to the business that allows being reacted upon - for example, to further invest
into the product in order to improve its usability or fix detected bugs and issues.

2.3 Observability
Observability is a unit of measure that describes how well a state of the system can
be determined by its external outputs [19]. Observability is often associated with the
qualitative features that a modern monitoring solution should possess. Complete observ-
ability is achieved by combining the three forms of data that are collected for monitoring
applications: metrics, logs and traces [19]. All of these have a purpose that enable the
observer to understand the state of the system better. Metrics, as the name suggests, allow
to measure the quality of the system by defined numerical data points. It is up to the
observer to define the meaning and boundaries behind each metric to make sense of them,
but in most cases the monitoring tools available help to track them constantly when the
necessary setup is configured. Logs on the other hand provide insight to the code level
logic in a level of detail that metrics cannot give. A log is a text-based record of a past
event that is completed with a timestamp that indicates when it occurred and a payload
that offers context about what exactly happened [7]. The readability and usefulness of
logs depend heavily on how logging is implemented in the code of the software. A trace is
a relatively new type of monitoring data introduced mainly for monitoring microservices
and other kinds of distributed systems. Traces are representations about a complete chain
of transactions from a single point of beginning. These traces can encapsulate actions
in multiple microservices, databases and other software components and hold useful
temporal metadata like timestamps and duration that allow them to be associated with
metrics and logs that were collected at the same time as the trace itself [7]

Observability tools in this thesis are defined as monitoring tools that combine these
forms of monitoring data into a single platform and correlate it for the user to provide a
better observability of the monitored system.

9

Figure 2. Ridango AFC

2.4 About Ridango
Ridango2 is an Estonian company founded in 2009. Its primary focus is to provide public
transportation management solutions such as automated fare collection and realtime
passenger information systems [1]. The company’s primary clients are municipalities
and cities, but also private transportation providers around Europe. Ridango’s biggest
clients are currently the cities of Kiev and Tallinn which have a combined total of 3.2
million habitants that can all access the public transportation that Ridango’s services are
catering to.

The technology stack of Ridango has changed over time, but the general architecture
has mostly remained the same. The organization uses Android devices on the public
transport vehicles connected to back-end services over a standard API, which provides
the necessary business functionalities and persisting the data in PostgreSQL databases.
Ridango also hosts its own websites for back-office management and customer portals
for online ticket sales. Historically these customer portals have been implemented as
a monolithic PHP Laravel application, but in recent years the web team has refactored
them into more lightweight and separate Angular websites. Additionally, in order to scale
for bigger clients, technologies like Kubernetes, Redis, and numerous functionalities
from the Amazon Web Services (AWS) platform have been included to Ridango’s
technological toolkit.

2https://ridango.com/

10

2.5 Microservices and monitoring setup in Ridango

Figure 3. Monitoring solution of Ridango

Since 2019 with the adoption of self-hosted Kubernetes, Ridango has shifted consid-
erably towards utilizing the microservice architecture. This has helped the company to
reduce the time and complexity of releasing new versions of software, but more impor-
tantly, to make its services available without any downtimes and operational delays. This
is a crucial benefit for the domain of public transport since most of these organizations
have their vehicles operating for most of the 24 hours. However, there are still a few
central applications in Ridango that can be considered monolithic in nature. The most
significant for Ridango are a few Java Spring applications that essentially act as internal
APIs between primary databases and all the other components that need access to them.
These projects have over 400 000 lines of code and are responsible for the most common
services a modern ticketing solution provides: ticket validation, sales, providing and
storing data about user activities and transactions etc. The mentioned applications are
progressively decoupled as the development continues, but the time to reach a complete

11

microservice setup for Ridango can still take some time.
In terms of monitoring, Ridango has never had any strict policies associated with it.

Each development team is responsible for a set of services or projects, including their
sufficient monitoring. This means that a developement team decides what it deems to be
valuable enough to monitor and what should be done to achieve a sufficient monitoring
setup for the team. The only aspect of monitoring that is decided at the management
level is the set of tools that are available for use: the reason is that usually, these tools
have some kind of cost of maintenance and implementation which needs to be approved.

Currently, the development teams have the following tools available:

2.5.1 Zabbix (Zab)

Zabbix is an open-source monitoring tool for collecting and visualizing metrics from
servers, networks, virtual machines, and cloud services [8]. In Ridango, it is used to
observe the state of on-premise servers, virtual machines, and Kubernetes nodes.

2.5.2 Prometheus and Grafana (PG)

Prometheus is a widely used metrics collector software known for its multi-dimensional
data model and pulls model of the agents [6]. It has very flexible and powerful built-in
API-s that allow it to be integrated with many other technologies. Ridango has coupled
it with a popular visualization and dashboarding tool Grafana. This setup is hosted in
the firm’s AWS cloud and monitors our entire server stack - including infrastructure,
virtual machines, Kubernetes, and all the microservices hosted on them. Development
teams have implemented their own automatic alerting system and custom metrics that
are specific to Ridango’s services.

2.5.3 Elasticsearch, FluentD and Kibana (EFK)

Elasticsearch is essentially a search engine and analytics software that allows the alloca-
tion of the necessary information with a minimal delay for text-based search [3]. FluentD
is an log collection agent software that is used in Ridango to parse logs and forward them
to the Elasticsearch cluster. Kibana is a data visualization UI tool that is mostly used
to create an environment where Elasticsearch can be accessed by users [4]. The EFK
is a combination of the three tools that together provide a complete and open-source
version for a modern search engine tool. As is the case in Ridango, it is often used as
logs’ storage and querying solution. At the time of writing this thesis, all of the logs
of the server stack(defined under Prometheus and Grafana) can be queried through this
interface.

12

2.5.4 Sentry

Sentry is a SaaS (Software as a Service) solution for automated runtime crash and fault
detection for various types of software applications [14]. At the time of writing this thesis,
Sentry is used in Ridango by the web and device development teams for monitoring
erroneous behavior in websites and android applications. We decided not to include
Sentry in the scope of the user requirements analysis and the monitoring tools comparison
of this study as it is not directly related to monitoring the server-side microservices of
the firm.

2.5.5 Kubernetes and Kubernetes Dashboard

Kubernetes is an open-source container orchestration platform. Its primary purpose is
to manage the deployment of multiple containers that are needed to provide a service
without downtimes and provide a dynamically adapting environment that can handle
hundreds of containers simultaneously [12]. Kubernetes dashboard (K8sD) is a web UI
for managing, monitoring and troubleshooting the components in the Kubernetes cluster.
It enables the user to view simple metrics, execute commands, and view configuration
files and logs of the applications running in the Kubernetes environment [11].

2.6 Other related technologies
Docker is an open-source containerization technology that enables to isolate applications
from other processes on the same host with a lightweight virtualization mechanism that
uses the kernel of the host’s OS [19]. These containers are used to automate and simplify
the process of software deployment.

Ansible is an automation tool used to create automatic pipelines for application
deployment, manage configurations, and orchestration between services. It uses a simple
format in YAML files called Playbooks to define a step-by-step task execution process
[5].

13

3 User requirements analysis
The decision to conduct a user requirements analysis (URA) in Ridango as a part of
the research was driven by the lack of awareness about the needs of all the internal
stakeholders and the state of the current monitoring solution. Additionally, there was an
apparent necessity to identify the stakeholders and roles regarding monitoring to gather
their feedback as input in the monitoring tool comparison stage of this thesis (Section 4).
The contents of this section describe the methodology and the results of the conducted
URA.

3.1 Methodology
The user requirements analysis was conducted following the methodology described
by Martin Maguire and Nigel Bevan in “User Requirements Analysis: A Review of
Supporting Methods” [16]. The mentioned approach consists of 4 phases:

1. Information gathering

2. User needs identification

3. Envisioning and evaluation

4. Requirements specification

Phases 3 and 4 are combined in this study as phase 3 was more of an aid (that was
undocumented) in analyzing the gathered data to list the final requirements in the final
stage of the study.

3.1.1 Information gathering

Stakeholder identification
Using the described methodology, the preliminary step before carrying out any ob-

servation or inquiry is to identify the “users” addressed in the URA, in this case, the
stakeholders of the internal software monitoring solution. There were multiple possible
options and categorization patterns for defining the stakeholders. The two approaches
that we considered the most were: team-based division and role-based division. The idea
behind the team-based approach was that stakeholders would be derived from each team
in Ridango, for example, “Member of Realtime team”. This solution would address the
situation that each team uses monitoring tools differently and has its own configuration
for them. This logic would also include positions like product owners and project man-
agers since they belong to their respective teams as well. The negative aspect of this
approach would be that in the development teams, there are many roles such as developer,

14

QA engineer, engineering manager, etc. that can have completely different requirements
for the monitoring tool that they use. These requirements might get mixed or ignored
in the data analysis of the study. To address this issue the second categorization option
was chosen: the role-based approach. This method defines the stakeholders by their role
or position within Ridango. An example would be “DevOps Engineer” or “Software
Developer”. As in many cases, this approach for some internal roles would be too
abstract (e.g. Developer) and it would ignore the team-based differences that were priorly
discussed, we decided to split the more general roles by the example of the team-based
approach. The initial “Developer” role, for instance, was divided to “Backend developer”,
“Web developer” and “Device developer” to understand the differences between each of
them in the later steps of this research. Additionally, there was the question about the
number of stakeholders that would be reasonable to define, as there were many minor
stakeholders who would be affected only in the slightest margins. Following an internal
debate, the decision was taken to focus more on technical roles for whom the monitoring
tools are integral in their regular workflows.

Task Analysis
Task analysis is also an important part of this research as it enables one to understand

the system’s existing state and the issues that are met with each task, which often reveal
opportunities to address the user’s needs[1]. The task analysis was performed with the
information gathered about monitoring use cases during the initial stakeholder interviews.

3.1.2 User needs identification

The user needs identification stage was performed in the format of interviews with the
users/stakeholders defined in the previous phase.The stakeholder interviews were all
performed in video calls in which all members of a stakeholder group who volunteered
to participate in the survey were present. There were at least 5 participants present for
each stakeholder group, which should be a sufficient sample size considering there are
about 10-15 employees in each engineering team. The participants were all asked to give
an answer to each question provided below. After the initial interviews, participants were
also asked to watch introductory videos for Datadog, New Relic, and Instana and answer
three additional questions about the observability tools in written form.

The questions provided in the interviews:

1. Name and describe the primary situations that require monitoring in your work.

2. What tools are you mostly using at the moment for monitoring? What functionali-
ties do they serve?

3. What are the negatives with the monitoring tools you are currently using?

15

4. What are the positive aspects and useful features of the monitoring tools you are
currently using?

5. What are the requirements that a complete monitoring solution should have to
support your use cases of monitoring?

After introducing and familiarizing stakeholders with Observability tools:

6. What is the most important/useful feature for you in the presented tool?

7. In your estimation, how much of your time would this tool save you per-incident
or bug-fix task?

8. By the initial impression, which tool seems to be the most potent to you?

3.1.3 Evaluation and requirements specification

The requirements were formulated based on the information gathered from the stake-
holder interviews and further consulting with the technical management board of the
company (to specify the organizational requirements as well). The requirements were
categorized as follows:

• User requirements - functional requirements that allow users to perform necessary
tasks

• Usability requirements - non-functional requirements that contribute towards the
effectiveness of using the software and the satisfaction of the users who are
operating with it.

• Organizational requirements - general requirements that support the policies and
structure of the organization.

3.2 Summary of the findings
This subsection contains the summary and conclusions of the internal stakeholder analysis
of monitoring in Ridango. In the original data analysis document, the results were
grouped by each stakeholder but then converted to a more concise format for the thesis.

3.2.1 Defined stakeholders

The involved stakeholders were defined as follows:

• DevOps Engineer/System administrator

• Backend Developer

16

• Web Developer

• Device Developer

• Support Engineer.

3.2.2 Task analysis

The following workflows and usage scenarios of the defined users were gathered as result
of the task analysis phase:

Error detection and investigation
Related stakeholders: Support engineer, Sysadmin/DevOps engineer
This scenario describes the situation when an error has been reported automatically

by a configured alert of a monitoring tool or by any member of the technical staff.
The usual process:

1. An issue is spotted with an automatic alert or manual observation by support staff
or other employees.

2. Affected clients are notified that there is currently an issue (if needed).

3. Top-down mitigation process is conducted: investigator tries to understand which
functionalities and clients are affected and narrow down the issue to a more specific
cause.

4. A task is created with as much useful information about the problem as possible
and assigned to a developer of the responsible team.

Monitoring is needed to detect the error or fault with the automatic alerts or manual
observation. Also, the top-down mitigation process requires more detailed monitoring
data, usually the investigation of recorded logs.

Report from a client
Related stakeholder(s): Support engineer
Currently, most of the incidents and errors from the live environment are reported

by the clients of Ridango. The clients are encouraged to create an issue ticket in the
firm’s support website or contact them directly via email or phone, communicating with
the support engineers. The support engineers generally try to investigate the issue as
thoroughly as possible to reduce the time it takes for the developer to apply a fix to the
given issue.

The usual process:

17

1. An issue is reported by a client with some details of how the error happened and
what is the nature of it. Usually, the level of detail is not very high.

2. Similar top-down mitigation process as with “Error detection”.

3. Other affected clients are notified.

4. A task is created with as much useful information about the problem as possible
and assigned to a developer of the responsible team.

In this scenario, most of the details about the error are provided by the client, but for a
more comprehensive and technical overview monitoring tools are still needed as an aid
and also for the error mitigation process.

Bug or Incident Management task
Related stakeholders: Backend developer, Web developer, Device developer
According to the interviews and the time usage statistics of Ridango’s technical staff,

this use case is by far the most commonly occurring and time-consuming process that
depends on monitoring tools.

The usual process:

1. The developer tries to understand the problem described in the received task
description, asks for further details from the support staff or product owner if
needed

2. The developer tries to reproduce the issue (if possible).

3. The developer tries to narrow down the process to a root cause.

4. The developer tries to find and apply a fix to the root cause.

For this scenario, monitoring is required for step 3 in locating the root cause. This
requires usually either the ability to replicate the problem or some detailed monitoring
data such as error stack traces and other retained logs.

In the case of web developers and device developers, these tasks are often only
related to the client-side of Ridango’s services, but since they depend on many server-
side microservices in fetching and storing data, for example, clear visibility into the
backend services is also required.

Software deployment
Related stakeholders: Backend developer, Web developer, Device developer
Deploying new versions of software is the responsibility of developers in Ridango.

Especially considering microservices, this process has become much faster and easier

18

thanks to the heavy emphasis that has been put into developing automated tests and
pipelines. Additionally, the rolling update of Kubernetes removes the pod running the
previous version of the service only when the new service has passed all the health checks
and does not crash on start.

The usual process:

1. After testing the new feature and integration tests a new release task is created.

2. The developer who is assigned with releasing the feature initiates the continuous
deployment pipeline for the live environment.

3. The developer observes and ensures the completion of the pipeline.

4. Developer monitors the if the new service is operational and assures that there are
no immediate problems with it.

Monitoring is needed for steps 3 and 4 in order to observe the completion of the
pipeline and that the newly deployed service is operational.

Infrastructure changes and deployments
Related stakeholders: DevOps Engineer/System administrator
Infrastructure management and updates are the responsibility of system administrators

and DevOps Engineers in the company. The changes and deployments on this level are
usually very delicate and have to be conducted during the least active times for the clients.
Since there is the possibility to test most of the changes in test environments, the risk
is minimized, but caution and close observation are required. Monitoring tools help to
observe the state of infrastructure, virtualization environments, and processes to ensure
that there are no issues or side effects with the deployment.

3.2.3 Usage of the existing tools

The data gathered from the stakeholder interviews suggested that since there are many
different scenarios that require monitoring (also listed in the previous paragraph), the
monitoring tools that are used often fulfill different monitoring needs and in many
situations are not used cohesively at all.

The ELK setup (Elasticsearch and Kibana) is the most used monitoring solution
across all the stakeholders and is mostly used in error mitigation scenarios in incident
and bug tasks (see “Bug or Incident Management task” page X) where logs provide
the most detailed information about the occurred incident. However, it is also worth
noting that most of the stakeholders also agree that ELK has a relatively high learning
curve and requires time to get used to it. Members of the web team have chosen to use
command-line tools such as grep instead for this reason.

19

Prometheus and Grafana is the second most frequently used monitoring tool. It is
often used to find the exact time of a disruption or a crash regarding a microservice. Some
of the interviewees mentioned checking the metrics about the underlying virtualization
components and hardware if there is the suspicion that an infrastructure-related issue
causes the error: CPU and memory overloads. Its primary contribution to the monitoring
ecosystem in Ridango seems to be more related to its automatic alerts feature that
is used to direct notifications to the support and engineering team’s communication
channels to allow them to react to any new incident related to the monitored services and
environment.

According to the URA, Zabbix is only used regularly by the Sysadmin/DevOps and
Support engineer stakeholders. Zabbix is used to collect and visualize performance
metrics related to server hardware, databases, virtual machines, and Kubernetes nodes.
Almost all of the functionality that Zabbix provides is covered by the Prometheus and
Grafana setup, but Zabbix is still used as a reliable alternative.

The Kubernetes dashboard is considered a centric tool for any stakeholder who is
regularly involved in deploying microservices in the Ridango’s self-hosted Kubernetes
clusters in test and development environments. It is primarily used for monitoring and
troubleshooting deployments.

3.2.4 Defined requirements

The requirements that were derived from the stakeholder interviews are listed in Table 1.

20

The defined requirements were later correlated with the features of the monitoring
tools that are assessed in the feature comparison in Section 3. This allowed us to calculate
a quality rating and coverage percentage of these requirements for each compared
monitoring tool. The full references to the feature identifiers in the "Correlated features"
column are listed in Table 2 and Table 3.

3.2.5 Potential for saving developer time

After the initial stakeholder interviews, participants were asked to watch introductory
videos about some of the observability tools discussed in this thesis and provide their
approximation on the amount of time these new tools could potentially save in their
daily work. The results of this inquiry were promising. For developers, even the most
pessimistic answers remained over 10% and some of the participants predicted that these
tools could save even over 35%. System administrators predicted their time saving on
infra issues would be around 8%. An interesting discovery in the study was that support
engineers predicted that their time consumption per incident would actually most likely
increase, as they would be able to analyze each error in a more detailed manner, often
finding the root cause by themselves thanks to the capabilities of an observability tool.

3.2.6 Missing practices of monitoring

In the course of the interviews, it became clear that the stakeholders from the development
teams did not know what to expect and value in terms of the features that are not
represented in the currently adopted monitoring tools in the company. Thus, in the
following testing phase of the observability tools, more emphasis was also put on
investigating their viability in the context of Ridango’s products and current practices of
monitoring.

These are the missing practices of monitoring that were identified in the course of
the study (provided with a brief explanation):

Version comparison and analytics
A monitoring tool feature that allows analyzing different versions of the same software

on multiple levels, such as general performance metrics, types of errors detected, response
times, thread count, etc.

Performance analysis of database queries
A feature that records and provides statistics about the specific database queries of

a microservice. This is used to optimize the speeds of slower queries to improve the
usability of the products.

21

Table 1. Monitoring requirements of Ridango

ID Requirement Correlated
features

User requirements
R1 Supports the process of Error mitigation - Time to find the cause of an error is minimal G6,G8,G9
R2 Supports the process of Performance issue mitigation - time to find the cause of performance issue

is minimal
G6,G9

R3 Supports the process of Error detection (automatic and manual) - time to detect error is minimal G7, F34, F64
R4 Supports the process of Performance issue detection - time to detect performance issue is minimal G7,G9
R5 Supports the process of software deployment F3,F6,F1, G7,

G8
R6 Supports the process of infrastructure deployment F61, F64 ,G7,

G8
R7 Has tools to perform Version comparison F36
R8 Enables the investigation of transactions between services F37
R9 Provides necessary metrics for each service and infrastructure that are available in the current

monitoring stack
F38, F59

R10 Has mapping tools to visualize the whole system and state of each component F40,F60
R11 Allows to define automatic alerts that notify the users F43
R12 Allows to configure the alerts based on logs and metrics F43,F49,F54
R13 Allows to calibrate the alerts to the correct treshold in order to guarantee their usability F44,F46
R14 Has he ability to view the state of the infrastructure at the time of any metric, trace or log was

gathered
F67

R15 Alerts can be sent to the support channels in Microsoft Teams or Slack F48
R16 Logs can be viewed and queried using the tool F53
R17 Logs of different formats are parsed correctly in the tool F58
R18 Logs can be viewed togheter with relevant traces and metrics F51
R19 Unuseful logs can be filtered out of the system F52
R20 The tool supports monitoring of Kubernetes and its underlying processes, pods, nodes etc. F59, F63, F65,

F66
R21 The tool support monitoring of Kafka and Zookeeper nodes F23
R22 The tool provides specific metrics for the language/technology used in the firm’s services and

databases
F17,F18,F20,
G4

R23 It is possible to create graphs and dashboards with the present metrics in the tool F42
R24 The tool supports monitoring of CI/CD tools existing in the company F24,F25.F26
R25 The tool provides automatic error detection and problem highlights F34,F35, F45,

F61, F64
Usability requirements

R26 The UI is intuitive and easy to use F1
R27 The learning curve of the tool is minimal F2
R28 The tool is fast for the user, load times for the 95th percentile should be below 1.5 seconds. F3
R29 It is possible to share the pages and graphs of the tool with other users. F4
R30 There are extensive documentation and guides available about the tool F5
R31 There is a tech support service available. F6
R32 The general depth of customization is high F7
R33 Time to add new monitored component is minimal F10, F11
R34 Time to configure a feature in the monitoring tool on the monitored components is minimal F12
R35 Amount of code needed to be added in each project is minimal F13
R36 The resource usage of the agent is minimal G3
R37 The monitoring tool is easily scalable G3
R38 The time to update and stop monitoring tool agents is minimal G13
R39 Time to configure alerts is minimal F44
R40 Alerts time to reach the support team is minimal F48
R41 The amount of false positives of the alerts is minimal F43,F45,F15,F8
R42 The logs are available in the system for at least 14 days F50
R43 The data is provided in real time about the monitored components F8

Organisational requirements
R44 An on-premises option excists for the tool F33
R45 User rights management feature excists for the tool F27,F28
R46 User’s actions can be logged F30
R47 Accounts can be made automatically with the Azure SSO M31
R48 Sensitive information for the company can be filtered out before displaying in the monitoring tool M32
R49 The ROI of the tool is greater for the company than its total maintenance cost. Decided in

ROI calcula-
tion

22

Anomaly detection with AI models
This feature is present in relatively few monitoring tools that are available today. It

requires a capable AI model with high accuracy to be reliable enough for detecting
anomalies, which are essentially mismatches in the general pattern of incoming metrics
in a certain period. These mismatches state that the service performs differently from its
usual routine, which suggests that there might be a faulty behavior occurring with the
given application.

23

4 Comparison of monitoring tools
One of the primary contributions of this thesis and the research for Ridango was to find
a way to improve the firm’s monitoring setup to address the particularities of the MA.
There was a clear expectation in the technical teams that an APM or Observability tool
would be adopted. Primarily, three observability tools were tested and compared in
this comparison: Datadog, New Relic, and IBM Instana. These tools were chosen to
be used in this comparison based on preliminary research of provided features, pricing
models, supported technologies and ratings form already published reviews [9] [10].
The initial plan was to also test Splunk Observability and Dynatrace observability tools
in this comparison, but we had to exclude them due to the time constraints of this
research. Since the primary objective was to conduct a comprehensive research that
would allow the board of Ridango to make an informed decision, the existing tools were
also represented in the comparison to identify if the newer observability tools were indeed
more capable alternatives. It is important to note that the existing monitoring tools were
represented in the comparison as they were configured already by Ridango. Some of
these existing tools have features that are marked as non-existing in the comparison, while
they might still exist as an additional feature for these technologies. This is because these
features were not implemented in the existing setup of the particular monitoring tool.
Consequently, this study does not qualify as a full comparison of these 7 technologies
but rather as a comparison of the 3 mentioned observability tools in the context of the
existing monitoring setup in Ridango.

4.1 Methodology
The general methodology that was used in comparing the monitoring tools was a generic
software evaluation method which compares the features of the software against the
requirements that were posed to it, in this case, the requirements defined in Table 1 in
Section 3. To simplify the process of grading the defined requirements for each tool,
we decided to list and compare the features of the monitoring tools and later map them
to the requirements that they are fulfilling. It is also important to note that most of
these requirements defined were not easily testable with a definitive result. Thus, many
objectively unquantifiable results are based on our opinionated justifications.

The process of the comparison can be described as follows:

1. All the features and subfeatures of the tools were graded with a quality rating of
0-5 which were then justified with a few sentences.

2. Each grade was then multiplied by the total coefficient of the importance rat-
ing from the stakeholders in the conducted URA to form a final grade for each
requirement per each tool.

24

3. For each solution, the final grades were then added together to calculate a total
rating of each tool.

4. Finally, the features were correlated with the requirements defined in section 3, to
measure the coverage of the requirements for each tool. The final ratings for the
fulfillment of each requirement per tool were derived by calculating the sum of
scores (calculated in step 2) of the correlated features for each requirement.

The architectures of these solutions were also compared as a preliminary step of this
research to better understand the limitations, risks, and technical requirements that these
solutions bring to Ridango’s server environments if we test or implement them.

4.2 Architecture

Figure 4. Kubernetes Dashboard

Kubernetes Dashboard
Kubernetes dashboard (Figure 4) is a web-based UI that is possible to setup with the

Kubernetes engine itself [11]. It can be deployed with the kubectl command-line tool on
the same host as kubernetes. After the installation and setting up a proxy for the tool, its

25

back-end starts to request and visualize data from the Kubernetes API server that access
the ETCD state storage databases in the master nodes. The ETCD itself is updated within
the Kubernetes environment with the all the metrics and logs that are sent by the nodes,
processes and pods in the Kubernetes cluster. Since the ETCD holds only the state of the
system and is a very lightweight storage, historical data is not persisted for a longer than
a few hours.

Figure 5. Zabbix

Zabbix
Zabbix uses a classical agent-based solution that supports both the pulling and pushing

mechanism for transmitting data to the Zabbix server (Figure 5). The agent uses the
pulling mechanism in a passive mode, which sends the data only when the server requests
it. The active mode, which takes advantage of the pushing mechanism, sends data
constantly within a specific interval. Additionally, data can be sent with the help of a
proxy, which should improve the stability and performance of the monitoring solution.
The lightweight Zabbix agent, written in the C language, can be deployed to various host
operating systems and even application environments to collect metrics. The Zabbix
server then parses the metrics for the Web UI, persists the data in a database, and allows
users to access and visualize the data with the help of the Web UI.

Prometheus and Grafana
Prometheus uses a simple pull-based architecture to collect metrics from all kinds of

hosts, services, and short-lived processes (Figure 6). Prometheus works especially well

26

Figure 6. Prometheus & Grafana

with Kubernetes since Kubernetes API and Kube-stat-metrics (KSM) service require
minimal configuration to implement it. The pull-based architecture of Prometheus allows
autodiscovery of all the microservices that are inside Kubernetes pods without requiring
any additional software agents. Prometheus server scrapes metrics from the pods that
have an endpoint and port available for requesting the data, which are both specified
in the Prometheus configuration file. The metrics from the services and Kubernetes
metrics from KSM and Kubernetes API are all pulled to the hosted Prometheus backend
server which processes the data and sends it to visualization platforms like Grafana. The
“Alerting manager” inside the Prometheus allows sending notifications about the alerts
that are defined in the Prometheus server. These alerts can be configured using Grafana
and other Web UIs.

27

Figure 7. EFK

EFK
The Elasticsearch & Kibana solution for logging allows different technologies to be

used for log collection. The two most frequently used technologies for doing this in
Kubernetes are Logstash and the Fluentd. On Figure 7, an architecture diagram with the
Fluentd technology is shown, as it is the logs collector that is currently implemented in
Ridango’s Kubernetes clusters. In this scenario, logs are collected by a locally deployed
Fluentbit service which is a lighter version of the Fluentd collector. The Fluentbit
collector sends the collected logs to the Fluentd service in the management server, further
aggregating the logs and adding tags to enable better quering when using Elasticsearch.
After the data is in a readable and searchable format, the logs are then stored in the
Elasticsearch engine in a manner that they can be fetched and queried within a minimal
time. The stored logs can be now accessed by using the Kibana UI, that allows to query
and define metrics or alerts based on the logs.

New Relic (NR)
The New Relic data collection architecture (Figure 8) is based on 2 types of compo-

nents. First is the host agent that collects metrics, logs, and traces from the infrastructure
hosts. The second component type is the APM agent that is installed on microservices
or the containers which are running them. These APM agents send the data directly to
the New Relic cloud without communicating with the Infrastructure agent on the same
host. Both types of agents use push-based logic. Notably, the log collection from the
microservices is done separately by the infrastructure agent which collects the logs from
container standard outputs or log files. There are many versions of infrastructure agents
and APM agents that support different technologies and language environments. The
New Relic platform can also collect data from other metric, log and trace collecting tech-
nologies which can change the logic of how the data is retrieved. For Kubernetes, New

28

Figure 8. New Relic - Architecture

Relic also recommends using a technology called Pixie that can instrument a Kubernetes
cluster with all its hosted microservices via a similar autodiscovery pattern described
for IBM Instana. Unfortunately this solution exceeded the resource usage limitations of
firm’s locally deployed Kuberenetes clusters and we were unable to use it while testing
the tool itself.

Instana (Ins)
Instana’s monitoring data collection architecture (Figure 9) is one of the biggest

strengths of this SaaS monitoring solution, because it allows an extremely fast deployment
without a significant overhead in terms of resource requirements. Instana uses a single
agent per host, which deploys micro-agents called sensors that locate and collect data
from all the services, applications, databases, and processes running on the host. The
discovery of these components is done continuously in the host agent. This works well
with the MA and Kubernetes environments where instances of the microservices are
constantly deployed and shut down. Unlike the New Relic APM agents, Instana’s sensors
send their data to the host agent, performing compression and relaying to the Instana
cloud backend.

29

Figure 9. IBM Instana - Architecture

Figure 10. Datadog - Architecture

Datadog (DD)
The telemetry data collection architecture of the Datadog platform (Figure 10) is almost

identical to the New Relic’s solution. The only notable difference is that Datadog APM
agents (that are called tracers) send their data to the host agent which then compresses it
to a smaller size and sends it over to the Datadog cloud. The APM agents and the host
agents need to be manually installed. The host agent uses a YAML file for configuration,
where it is possible to enable or disable features of the monitoring solution for the

30

specific host. Datadog has also many supported integrations with technologies that
collect monitoring data. However, none of them currently offer automatic discovery and
implementation of microservices.

31

Table 2. Feature comparison scores F1-F33

ID Feature name/Category Multip. NR Ins DD PG EFK K8sD Zab
G1 General features and attributes 2.1 72.5 62.7 77.7 70.2 64.5 59.6 54.5
F1 Quality of the UI 2.7 10.8 10.8 13.5 10.8 13.5 10.8 8.1
F2 Learning curve 2.2 8.8 11 8.8 6.6 6.6 11 8.8
F3 Speed of the website 2.5 7.5 7.5 10 12.5 7.5 10 10
F4 Data sharing 1.7 8.5 6.8 6.8 8.5 5.1 3.4 5.1
F5 Quality of Documentation 2.3 11.5 4.6 11.5 11.5 11.5 9.2 6.9
F6 Quality of Tech support 1.7 5.1 5.1 5.1 0 0 0 5.1
F7 General depth of customization options 1.7 6.8 3.4 8.5 6.8 6.8 1.7 5.1
F8 Real time data flow 2.7 13.5 13.5 13.5 13.5 13.5 13.5 5.4
F9 Ability to create custom dashboards 2.3 11.5 9.2 11.5 9.2 9.2 0 6.9
G2 Configuration 1 14 19 15 18 18 20 14
F10 Time to add new tech 1 2 5 3 4 3 5 3
F11 Time to add already conf.ed tech 1 4 5 4 4 5 5 4
F12 Code needed to be added within the component repo 1 3 4 3 5 5 5 3
F13 Scalability of the configuration solution 1 5 5 5 5 5 5 4
G3 Performance and resource usage 2.6 21.2 31.4 23.7 34.5 31.6 39.5 39.5
F14 Agent CPU usage 2.7 5.4 10.8 8.1 13.5 10.8 13.5 13.5
F15 Memory usage 2.7 10.8 8.1 8.1 13.5 10.8 13.5 13.5
F16 Amount of pods needed 2.5 5 12.5 7.5 7.5 10 12.5 12.5
G4 Integrations 2.56 100.5 106.5 115 106.5 90.5 0 106.5
F17 Integrates with Java Spring boot 2.8 14 14 14 14 14 0 14
F18 Integrates with PHP - fpm, phalcon, laravel 2.8 14 14 14 14 14 0 14
F19 Nginx 2.2 11 11 11 11 11 0 11
F20 NodeJS 2.2 11 11 11 11 11 0 11
F21 PostgreSQL 2.8 14 14 14 14 14 0 14
F22 Redis 2.8 14 14 14 14 14 0 14
F23 Kafka & Zookeeper 2.5 12.5 12.5 12.5 12.5 12.5 0 12.5
F24 Bitbucket 1.7 0 0 8.5 0 0 0 0
F25 Ansible 2 10 10 10 10 0 0 10
F26 Jenkins 1.2 0 6 6 6 0 0 6
G5 Management 1 28 28 27 24 24 24 24
F27 Role based user rights management 1 5 5 4 3 3 3 3
F28 User management 1 5 5 5 3 3 3 3
F29 Billing controls 1 5 5 5 5 5 5 5
F30 Audit Log 1 5 5 5 5 5 5 5
F31 Single-Sign On 1 5 5 5 5 5 5 5
F32 Privacy configurations 1 3 3 3 3 3 3 3
F33 On prem available 1 0 5 0 5 5 5 5

4.3 Feature comparison
This subsection contains the results of the conducted feature comparison. The results
are marked in Table 2, Table 3, 4 and visualized on Figure 11. The results are then
summarized and explained by each defined feature category in the following paragraphs.

32

Table 3. Feature comparison scores F34-F67

ID Feature name/Category Multip. NR Ins DD PG EFK K8sD Zab
G6 APM 2.4 84 61.8 90 19.2 0 18.9 0
F34 Automatic error detection 2.7 10.8 8.1 13.5 0 0 10.8 0
F35 Performance issue detection 2.7 10.8 8.1 13.5 0 0 0 0
F36 Version comparison 2.2 8.8 4.4 11 0 0 0 0
F37 Tracing 2.5 7.5 10 12.5 0 0 0 0
F38 Software metrics 2.3 11.5 4.6 9.2 9.2 0 0 0
F39 Release monitoring 2.7 10.8 8.1 13.5 0 0 8.1 0
F40 MA dependecy maps 1.7 6.8 8.5 6.8 0 0 0 0
F41 Retention time for metrics and traces 2 6 10 10 10 0 0 0
F42 Code analysis 0 0 0 0 0 0 0
G7 Alerting 2.3 73.6 66.6 78.1 25.2 26 0 35.1
F43 Ability to define alerts 3 12 12 15 12 9 0 12
F44 Synthetic monitoring 2 8 6 10 6 8 0 8
F45 Anomaly detection 2.2 8.8 8.8 11 0 0 0 0
F46 Calibrations of alerts 2.7 13.5 8.1 10.8 0 0 0 0
F47 Preconfigured alerts 2.2 8.8 11 8.8 0 0 0 0
F48 Channels supported (Slack, Teams, Mail) 1.8 9 7.2 9 7.2 9 0 9
F49 Alerts for endpoints 2.7 13.5 13.5 13.5 0 0 0 0
G8 Logs 2.06 72.5 53.5 83.3 0 65 2.3 0
F50 History/retention of logs 1.7 8.5 5.1 6.8 0 8.5 0 0
F51 In context with traces and metrics 2.3 11.5 11.5 11.5 0 0 0 0
F52 Log filtering based on rules 2.2 11 6.6 11 0 11 0 0
F53 Log display and quering 2.3 11.5 6.9 11.5 0 11.5 2.3 0
F54 Alerts and anomaly detection based on logs 1.8 0 0 9 0 9 0 0
F55 Log pattern recognition 1.2 6 2.4 6 0 0 0 0
F56 Metrics generation based on logs 1.5 6 0 7.5 0 0 0 0
F57 Log archiving and retention from archive 2 6 6 8 0 10 0 0
F58 Ability to parse logs in different formats used in Ridango 3 12 15 12 0 15 0 0
G9 Infrastructure 2.42 91 95 96.1 44.8 0 46.2 42.3
F59 Infrastructure and Kubernetes metrics 2.7 13.5 8.1 13.5 13.5 0 13.5 10.8
F60 Host maps 1.8 7.2 9 5.4 0 0 0 0
F61 Problem highlights/warnings 3 12 15 12 0 0 6 9
F62 Infrastructure problems correlation with software 2.3 6.9 11.5 9.2 0 0 0 0
F63 Kubernetes maps and dashboards 2.3 9.2 9.2 11.5 6.9 0 6.9 6.9
F64 Automatic health checks 2.8 14 14 14 11.2 0 8.4 8.4
F65 Container monitoring 2 10 10 10 6 0 6 0
F66 Process monitoring 1.8 9 9 9 7.2 0 5.4 7.2
F67 Ability to see infrastructure state in context of APM 2.3 9.2 9.2 11.5 0 0 0 0

33

Table 4. Total feature category scores

ID Feature name/Category NR Ins DD PG EFK K8sD Zab
G1 General features and attributes 72.5 62.7 77.7 70.2 64.5 59.6 54.5
G2 Configuration 14 19 15 18 18 20 14
G3 Performance and resource usage 21.2 31.4 23.7 34.5 31.6 39.5 39.5
G4 Integrations 100.5 106.5 115 106.5 90.5 0 106.5
G5 Management 28 28 27 24 24 24 24
G6 APM 84 61.8 90 19.2 0 18.9 0
G7 Alerting 73.6 66.6 78.1 25.2 26 0 35.1
G8 Logs 72.5 53.5 83.3 0 65 2.3 0
G9 Infrastructure 91 95 96.1 44.8 0 46.2 42.3
T Total scores 557.3 524.5 605.9 342.4 319.6 210.5 315.9

34

Fi
gu

re
11

.C
om

pa
ri

so
n

of
fe

at
ur

e
ca

te
go

ri
es

35

4.3.1 General features and attributes

This feature category is focused on the fundamental qualities and attributes that are
represented in the monitoring tool. These are not associated with exact features and
mostly cover some of the usability requirements.

New Relic and Datadog are the highest-rated tools in this category, justified by the
quality of their UIs, good documentation, and customizability of every feature and page
in their platforms. Datadog is only slightly higher rated because of the placement and
layout of the pages which are more intuitive. The tools from the existing monitoring setup
and IBM Instana are not too far behind in the score rating, as all of them have modernized
UIs that allow a smooth user experience in performing their supported functionalities.
In terms of the onboarding experience and the learning process, most of these tools are
difficult to use at first: Elasticsearch and Prometheus, which depend on effective usage of
their own defined query languages to find the necessary information. IBM Instana seems
to have the most shallow learning curve, as it follows a consistent design pattern, offers
explanations, and has an interactive tutorial. However, due to the questionable quality of
the documentation and its smaller variety of configuration options in its features, Instana
has a lower score in this category than Datadog and New Relic.

4.3.2 Application performance monitoring (APM)

This category tests the abilities of the monitoring tools to analyze the performance
of the software in the context of time, version deployments, and other changes in the
environment. In order to have a more accurate comparison for this category, we used 3
different mock scenarios to assess the effectiveness of the monitoring tools. Each of the
scenarios contained a different performance issue or error that simultaneously affected
multiple microservices.

Figure 12. Erroneous behavior and root cause in microservice architecture

As depicted in figure 12, the idea was to create incidents where a fault in a backend
microservice causes erroneous behavior in the frontend applications. These experiments

36

allowed us to compare tracing, automatic error/performance issue detection, version
comparison, and all the other sub-features of APM tools to better understand what
benefits can these new features bring in terms of monitoring the microservice architecture
as almost none of them were represented in the existing monitoring tools in Ridango.

The results from these tests indicated that the existing monitoring tools were not
designed to perform an in-depth investigation to assess problems with software per-
formance by themselves. These tools rather provide visibility into these applications,
allowing users to manually search for them and investigate them by figuratively “asking
the right questions”. Observability tools take this process one step further and already
perform the analysis for the user, knowing what are the data points that the user might be
interested in and how to visualize them. This is crucial for monitoring the microservice
architecture, as its complex structure is hard to traverse and investigate with just the
manual investigation of metrics and logs.

The APM feature of the three observability tools proved to be similar in the sense of
the functionalities they provided, but the experience in using them was quite different.
Datadog seems to have the most intuitive workflow when used to find root causes for the
mock errors we created. Every step of the process was just a single click away in most
cases, displaying detailed data about the affected services, related transactions, logs, and
infrastructure associated with the incident. The other major strength of Datadog are its
version comparison tools that automatically notify if new errors are detected or if the
latency (or some other metric) has become worse after the latest release. New Relic’s
most powerful feature was its variety of performance metrics and intuitive querying
language that allowed to find most of the necessary traces and logs in a relatively short
time. Instana’s most useful feature seems to be its well-designed 3D infrastructure map
that also contains all the underlying services highlighted if an issue is detected. This
feature allows a smooth top-down mitigation process that can easily pinpoint which
services are affected by an issue. However, as we tried to find the root causes for the
mock scenarios with all of the tools in this comparison, Datadog proved to enable the
shortest time to detect (TTD) and time to mitigate (TTM) for the user in all 3 scenarios,
thus being the highest rated tool in this category.

4.3.3 Alerting

According to the gathered requirements from the stakeholder interviews, alerting was one
of the most requested features that the firm’s monitoring tool should have. The ability
to configure automatically triggered alerts is a feature that enables support engineers,
system administrators, and developers to detect erroneous behavior in a much shorter
response time. This is crucial to ensure that the clients of Ridango are able to perform
their mission-critical tasks without any major disturbances. In this category, we compared
the monitoring platforms’ functionalities of creating, modifying, and calibrating alerts
and the options these tools offer for setting thresholds and triggers for the them. For

37

example, if the tool enables to define alerts based on certain logs or traces as well.
The existing tools besides the Kubernetes dashboard, which does not have an alerting

feature, performed reasonably well in this category in terms of the mere ability to set
automatic alerts sent to the notification channels in Microsoft Teams. They were all rela-
tively equal in terms of options they offered. Zabbix had a slightly more intuitive UI and
configuration processs for alerts than Prometheus & Grafana and EFK setups.However,
the problem with the existing alerts setup is that it is distributed between 3 different tools
requiring the alerting feature to be maintained in all of them. Additionally, the currently
used tools do not support anomaly detection with AI models, which proved to be a useful
feature in the observability tools.

The observability tools ranked higher in this category mainly because of the more
extensive set of options to define alerts. These features encouraged the user to think
more about the mission-critical processes that exist for the company, providing ways to
monitor them in an end-to-end fashion. Datadog had the widest variety of parameters
and options for defining alerts. For example, its unique feature was to define forecast
monitoring alerts, which uses the abilities of its machine learning models to predict if a
threshold is being surpassed in the future according to the recent trends. The tool also
enabled to define synthetic tests for browsers by just recording the browser journey of
the user who is configuring the alert. Instana and New Relic both supported synthetic
monitoring, but they required the programmatic approach where the configurer must
define each step of the test manually. IBM Instana’s advantage was its large library of
predefined alerts for different technologies it detects in the system. These alerts proved
to be valuable, as some of them were able to find problems that the developers would
have hardly noticed. New Relic had the best set of features to calibrate the alerts based
on how often these alerts have been triggered in the past. This helps to avoid the situation
where one of the alerts starts triggering too often and loses its credibility. Also, New
Relic had the option to define groups of alerts that correspond to each team of users
that is defined in the platform. This enables to easily delegate which team should react
to an alert that has been set off. Ultimately, the deciding factor that made Datadog the
highest-rated tool for this category was the ease of configuration and wide variety in the
alerting feature. However, Instana and New Relic were still almost equal to Datadog in
terms of the quality they provided.

4.3.4 Logs

This category compares the functionalities to collect logs from all of the microservices
and components inside the Kubernetes cluster, display them in a user-friendly UI and
filter them according to rules specified by the user. The logs feature was included in
only five of the seven tools compared in this study. Kubernetes dashboard allows to
monitor logs that the services send to the standard output or log files, but it does not
have any features to query or filter them. Instana allows to collect and display only error

38

and warning level logs, thus ranking lower in this study than Datadog, New Relic, and
EFK. The EFK setup of Ridango is a powerful tool to find logs with querying, but it does
not have the means to detect log patterns and anomalies with AI or to show logs in the
context of metrics and traces because these data types are not collected by it. Datadog
is the highest rated tool in this category, as it has all of the mentioned features, and
compared to New Relic, it allows users to define a more sophisticated pipeline in the
service website that can be used to configure ingestion, indexing, retention and archiving
the logs to the cloud. This level of configuration is not necessary for every solution, but
this allows to filter the unnecessary logs from being sent to the system and add additional
metadata to further improve the logging setup’s value. During the assignment of priority
ratings, we found it hard to predict the importance of logs compared to traces, which
often contain even more useful information that allows the user to understand the cause
of a problem or performance issue. The developers ranked the logs feature relatively
high, but it would be interesting to see if this remains true when they have already gotten
used to the tracing feature.

4.3.5 Infrastructure

This category was used to primarily measure the monitoring tools’ abilities to provide
infrastructure data in the context of monitoring microservices as this would allow the
software developers to also take advantage of the feature, using the infrastructure moni-
toring data to mitigate problems with the software running on it. We also considered the
visualization tools and maps of these solutions to be an important aspect of this category
since the complexity of infrastructure in the microservice architecture is usually much
more layered and complex than the monolithic approach. Thus, it seemed almost manda-
tory that the monitoring tool should be able to observe and visualize the state of physical
hardware, virtual machines, Kubernetes clusters, nodes, pods, and the containers running
inside them. As the results indicated, the existing monitoring tools were mostly equal in
terms of providing relevant metrics for the infrastructure but did not offer the necessary
visual maps and correlation with their hosted software components. The observability
tools provided interactive maps and simple navigation between different types of related
infrastructure and microservices. This allowed to clearly see if the issue with the software
is related to infrastructure or, in some cases, if the software itself is affecting the state of
an infrastructure component. A similar result in some situations would be achievable
with Prometheus, as it collects metrics from both software and infrastructure components.
Nevertheless, this would mean a significant amount of manual configuration and creating
graphs for each combination of microservice and its host, which would be predictably
unmaintainable in a longer period.

The observability tools in this category were almost equal in terms of the quality of
their features for infrastructure monitoring. Instana had the most interactive visual map
that enables the user to observe virtual machines and Kubernetes nodes in tower-like

39

structures which contain all of the detected services running on them. This allowed
understanding the impact area of a problem fast without too much manual work by the
users themselves. Datadog had the feature to combine infrastructure monitoring data
on graphs on the page for observing individual traces. This was again extremely useful,
as the coupled data can give a lot of insight into the whole system when some kind of
behavior is being investigated. For New Relic, there were similar features present, but
they were usually available in separate tabs and therefore required slightly more effort
from the user.

4.3.6 Integrations

The “Integrations” category was graded in a more objective manner, approaching this
subject with a binary question: “Does the integration for this technology exist for the
tool?” (grading 5 for positive and 0 in the case of a negative answer). There is an argument
that certain integrations provide a better user experience, but during the study, it became
clear that the other criteria for comparison already reflect that difference. Importantly,
this comparison does not measure the complete variety of integrations that these tools
offer, but it rather focuses on the technologies that are currently used in Ridango.With
this in mind, certain integrations were clearly more significant to the stakeholder groups,
incentivizing us to continue using the priority multipliers in this category.

Datadog had the highest overall coverage of 100% for the required integrations that
are needed to monitor the entire self-hosted Kubernetes environment of Ridango. New
Relic, Instana, Prometheus, and Zabbix missed the integrations for some of the CI/CD
and management tools (Bitbucket and Jenkins), which had the lowest priority of all the
integrations that were listed in the comparison. This means that the final score was only
slightly better for Datadog and this category did not have a considerable impact on the
differences in total quality scores.

4.3.7 Configuration

The “Configuration” category compares the process of integrating the monitoring tools
on Ridango’s server stack. Since the process of configuration cannot be considered
exactly a feature of the monitoring tool, we decided to add the lowest possible priority
value of 1 to each attribute in this category. In terms of results, the existing monitoring
tools were ranked higher, as they offered an easier process of configuration for each
added software component and technology. The problem with Datadog and New Relics
configuration is that they both require the installation of host agents and APM agents
that have versions for monitoring different technologies that constantly get updates and
patches applied to them. Fortunately, we were able to perform most of the configuration
steps in Ansible playbooks which significantly simplified these processes. Nevertheless,
Datadog and New Relic required at least 4 to 5 full workdays to configure properly.

40

In contrast, Instana’s automatic instrumentation required running a single command to
set up 90% of the platform’s functionalities on all components and microservices (only
needing a few additional environment variables and permission allowances to be set for
some technologies). In conclusion, Instana’s configuration score was the highest among
the observability tools. The only tool that was easier to configure than Instana in this
comparison is the Kubernetes Dashboard which is a built-in feature for the Kubernetes
platform and can be configured with a few simple commands.

4.3.8 Performance and resource usage

This category compares the monitoring tools in terms of the performance and resource
usage metrics gathered from the hosting infrastructure components. The aspects that were
compared were CPU usage (number of CPU cores used), memory utilization, and the
number of pods needed from the Kubernetes cluster 3. Generally, the existing tools used
considerably fewer resources and were ranked accordingly higher in this category than
the observability tools. However, Instana was surprisingly conservative in its resource
usage - seemingly due to the lightweight “sensors” and the fact that it collects fewer logs.
Datadog and New Relic both had a high overhead, depending heavily on the number
of features that were enabled for the platforms. The exact results of the measurements
in this category are given in Table 5. The results are averaged over a period of 1 week.
The measurements were made by using the Kubernetes Dashboard and Prometheus
monitoring tools and calculating the average between their displayed metrics.

Table 5. Resource usage comparison

Metric NR Ins DD PG EFK K8sD Zab
Average nr. of CPU cores used 1.7 1 1.2 0.017 1 0.06 0.2
Average memory usage (GiB) 1.5 2.1 2.5 0.12 1.5 0.12 0.4
Average nr. of pods needed 12 3 9 9 6 3 2

4.3.9 Management features

The “Management features” category covers all of the functionalities in the monitoring
tool that enable to manage the solution and the users who can access it. This is necessary
for the company to guarantee that the monitoring data is protected from outside attacks
and intrusions of privacy, manage the maintenance costs for the monitoring tool and
ensure that only the qualified users can modify the existing configuration. We decided to

3Importantly, Zabbix did not use any pods in the Kubernetes cluster, but since it used 2 processes on
the host VM we considered them equivalent.

41

use a priority rating of “1” for each of the features in this category because these features
are not necessary to the defined stakeholders themselves.

As it is common with many enterprise-level SaaS applications, the observability
tools have built-in tools for the user, organization, and billing management. For all of
the existing tools, there are third-party integrations available to perform these actions,
which gave them a slightly lower score, because of the required effort that is needed
to implement these integrations. Since some of the existing tools are also open-source
software and hosted in the company’s cloud server, the billing management comparison
would not directly apply to them. Therefore, a maximal grade was given to the open-
source tools for the "Billing controls" subfeature, as their maintenance cost can be easily
derived from the monthly cost of the hosting cloud servers. To summarize the results,
there were no significant differences in this category, as the biggest score difference was
only 6 points. However, Instana had an advantage over the rest of the observability tools,
because of its option to use it as an on-premises monitoring tool and the overall quality
of its built-in management features.

4.3.10 Coverage of the requirements

The coverage and the total score for each requirement are represented in Table 6. We
concluded from the final results that we should consider adopting one of the observability
tools as they have at least two times higher requirement coverage scores and at least
16.4% higher requirement coverage percentage. IBM Instana was the only tool with
100% requirement coverage because of the “on-premises option requirement” (R44) that
was missing for New Relic and Datadog. After consulting with the technical management
board in Ridango, we decided that this requirement is not mandatory, and it does not
eliminate the other observability tools for being adopted. However, the quality scores
indicated that Datadog is the highest rated tool in the requirements comparison, leading
in both the user requirements and usability requirements categories.

4.4 Cost of maintenance
Figure 13 compares the predicted monthly expenses of the observability tools and the
cost of maintenance for the current setup. Plot #1 presents the extent of the total monthly
cost of each monitoring tool compared to the current monitoring setup. The set of
features of each tool that is included in the price is selected on the basis of the stakeholder
requirements, covering the maximal amount of them while staying in the undisclosed
budget that was presented by the board of the company. Since Instana’s platform does
not enable to retain other than error and warning level logs, it means that we cannot
substitute EFK with the solution, thus it is better to compare Instana combined with EFK
with the other 2 observability tools (shown in plot #2) which have the logging feature
included in their estimated price. The results indicated that Instana’s significantly lower

42

Table 6. Total scores and coverage of the requirements

Req. ID NR Ins DD PG EFK K8sD Zab
C1 1383.7 1226.8 1515.8 477.4 441.2 308.6 461.6
R1 247.5 210.3 269.4 64 65 67.4 42.3
R2 175 156.8 186.1 64 0 65.1 42.3
R3 98.4 88.7 105.6 36.4 26 19.2 43.5
R4 164.6 161.6 174.2 70 26 46.2 77.4
R5 176.5 140.7 199.4 25.2 91 21.2 35.1
R6 172.1 149.1 187.4 36.4 91 16.7 52.5
R7 8.8 4.4 11 0 0 0 0
R8 7.5 10 12.5 0 0 0 0
R9 25 12.7 22.7 22.7 0 13.5 10.8
R10 14 17.5 12.2 0 0 0 0
R11 12 12 15 12 9 0 12
R12 25.5 25.5 37.5 12 18 0 12
R13 21.5 14.1 20.8 6 8 0 8
R14 9.2 9.2 11.5 0 0 0 0
R15 9 7.2 9 7.2 9 0 9
R16 11.5 6.9 11.5 0 11.5 2.3 0
R17 12 15 12 0 15 0 0
R18 11.5 11.5 11.5 0 0 0 0
R19 11 6.6 11 0 11 0 0
R20 41.7 36.3 44 33.6 0 31.8 24.9
R21 12.5 12.5 12.5 12.5 12.5 0 12.5
R22 39 39 39 39 39 0 39
R23 11.5 9.2 11.5 9.2 9.2 0 6.9
R24 10 16 24.5 16 0 0 16
R25 56.4 54 64 11.2 0 25.2 17.4
C2 202.7 209.3 219.4 208.1 207.7 177.1 194.9
R26 10.8 10.8 13.5 10.8 13.5 10.8 8.1
R27 8.8 11 8.8 6.6 6.6 11 8.8
R28 7.5 7.5 10 12.5 7.5 10 10
R29 8.5 6.8 6.8 8.5 5.1 3.4 5.1
R30 11.5 4.6 11.5 11.5 11.5 9.2 6.9
R31 5.1 5.1 5.1 0 0 0 5.1
R32 6.8 3.4 8.5 6.8 6.8 1.7 5.1
R33 6 10 7 8 8 10 7
R34 3 4 3 5 5 5 3
R35 5 5 5 5 5 5 4
R36 21.2 31.4 23.7 34.5 31.6 39.5 39.5
R37 21.2 31.4 23.7 34.5 31.6 39.5 39.5
R38 5 5 5 5 5 5 4
R39 8 6 10 6 8 0 8
R40 9 7.2 9 7.2 9 0 9
R41 43.3 41.5 48.5 32.7 31.5 13.5 26.4
R42 8.5 5.1 6.8 0 8.5 0 0
R43 13.5 13.5 13.5 13.5 13.5 13.5 5.4
C3 23 28 22 24 24 24 24
R44 0 5 0 5 5 5 5
R45 10 10 9 6 6 6 6
R46 5 5 5 5 5 5 5
R47 5 5 5 5 5 5 5
R48 3 3 3 3 3 3 3
Total 1609.4 1464.1 1757.2 709.5 672.9 509.7 680.5
Coverage % 98% 100% 98% 81.60% 79.60% 65.30% 75.50%

43

Figure 13. Comparison - Cost of maintenance

pricing might be a very good argument to adopt it in Ridango’s monitoring stack. Also,
we came to the conclusion that the decision of preference between Datadog and New
Relic is not affected by their cost of maintenance, as their overall price would be very
similar when adopted for Ridango’s stack.

4.5 Return of investment
The ROIs for the tested observability tools were found in the following categories:

• Saving employees’ time in resolving issues

• Savings on replacing current monitoring tools

• Reduce infra requirements through optimization

• Increase in customer satisfaction

• Sustainability and better performance of Ridango’s software and services

44

The calculations of the total ROIs are based on the formula [13]:

ROI = Net Return on Investment / Cost of Investment · 100%

These results have to be taken with caution, as many of the savings and returns are
based on subjective estimations because of the absence of a definitive method to predict
these figures. For future work, it is necessary to confirm these predictions to better
understand the business value that these tools offer.

The final predictions for the ROIs 4 were:

• New Relic: 93.33%

• IBM Instana: 130.46%

• Datadog: 107.43%

The exact calculations for these figures are not included in this study, as it is consid-
ered sensitive information for Ridango.

4.6 Summary of the findings
According to the results that were presented in the feature comparison and ROI calcula-
tions, the observability tools would be a clear improvement to the tools in the existing
monitoring setup. They offer a wide range of functionalities to better observe microser-
vices and the infrastructure beneath them, understand the causes of erroneous behaviors,
and react to them sooner. The general quality of New Relic, Instana, and Datadog
platforms was high and in many situations almost indistinguishable. Datadog proved to
be the highest rated tool in the feature and requirements comparison while also having
the highest cost of maintenance. Instana was the observability platform with the lowest
score in feature comparison, but as the ROI calculations suggested, its competitive cost
makes it a still a very viable choice since the tool still enables most of the functionalities
that are present in the other two platforms.

5 The adopted monitoring solution
Based on the results from the feature comparison, requirements comparison, and ROI
calculations, the board of Ridango decided to adopt Datadog for a trial period of 6
months. Within this period, we are able to measure if the ROI predictions and cost

4Calculations are based on predicted monthly net return and cost of investment.

45

calculations were accurate. Regardless of the remarkable abilities that Datadog presented
in the research and comparison phases of this study, we are certain that the mentioned
ROIs cannot be achieved by merely installing the tool and starting to use it. Instead, it is
required to purposefully choose the features that are needed by the users and understand
how the new tool integrates with the existing ecosystem of technologies, tools, and
business logic of the company. Additionally, we concluded from the user requirements
analysis in Section 3 that a more active approach is required from the technical teams to
keep the monitoring solution updated and prepared for the next incident that might occur.
This section contains the proposed solution to Ridango’s management board about which
tools and features to use and how to integrate the observability tool into the development
and operations workflows more efficiently to maximize the ROI of the new setup.

5.1 Description of the setup
5.1.1 Set of tools

The adoption of Datadog incentivizes Ridango to replace many of the functionalities of
the existing monitoring tools with their equivalent features in Datadog to create a more
unified monitoring solution across all teams. The suggested setup takes this into account
and proposes the usage of the following setup for monitoring:

Datadog - is the primary monitoring tool for the production environment to cover
most use cases for the monitoring tools. The features of Datadog [2] that are proposed to
be used for Ridango’s setup are listed in Table 7 along with their primary targets.

Feature Targets
Infrastructure monitoring Kubernetes Live cluster, Database hosts,

Kafka and Zookeeper nodes
APM & Continuous Profiler All microservices in Kubernetes Live cluster
Log Management Infrastructure and APM targets’ logs
Database Monitoring PostgreSQL and Redis databases
Synthetic monitoring Most critical backend endpoints, customer

service portal websites
Real User Monitoring All web applications in the live environment

Table 7. Datadog features used for the suggested setup

Prometheus - will be still used as a metric provider for all of the development and
testing environments. we also integrate Prometheus with Datadog to send the already
defined custom metrics to the Datadog UI.

Kubernetes Dashboard - will be kept available (for all environments) for being able
to easily observe the Kubernetes clusters and execute commands.

46

The features of querying logs and monitoring infrastructure from EFK and Zabbix
will be completely replaced by Datadog.The new monitoring solution for Ridango is
depicted on Figure 14.

Figure 14. The proposed monitoring setup for Ridango

5.1.2 Integrating technologies and other tools

Datadog supports various technologies and developer tools to be integrated with the
monitoring platform to provide a more coherent behavior with the stack and support the
existing workflows within the company. However, many of these configurations can add
additional complexity to the tool, making the platform harder to learn and use efficiently.
Thus, it is important to consider each integration carefully, understand their purpose, and
test if they indeed improve the monitoring setup in reality. Table 8 lists the technology
and developer tool integrations to be considered and their purpose for this setup.

47

Table 8. Datadog integrations used for the suggested setup

Name of the integration Purpose
Java, PHP, Node.js Use more customized metrics, alerts and

dashboards to gain better observability.
Database integrations: PostgreSQL,
Redis

Monitor databases with more metrics and
visibility into the used queries.

Kafka, Zookeeper Monitor Kafka and Zookeeper nodes, use
more customized metrics and alerts for
these technologies.

Ansible Track the completion and failures of ansi-
ble pipelines.

Microsoft Teams Primary notification channel for the alerts.
Jira Incident management, creating tickets

from alerts.
Bitbucket Add code change markers to dashboards,

track deployment events
Prometheus Ingest already defined custom metrics

5.1.3 Customization and business-oriented monitoring

In addition to implementing the mentioned features and integrations, the new setup should
be also configured to observe the system from the view of mission-critical functionalities
that Ridango’s services provide. This would allow the users of the monitoring solution to
understand during incidents what is the exact area of impact and how it affects the firm’s
clients. Also, this type of data can be effectively used as a feedback statistic about the
products’ quality of service, allowing the management board to see which parts of the
system might need improvement and the additional investment of developer time. With
Datadog, it is possible to define custom metrics and alerts based on traces to achieve this
kind of configuration.

For Ridango the following functionalities are considered to be primary targets for
business-oriented monitoring:

• Ticket sales from vehicles

• Ticket sales in online customer portals

• Ticket validations

• Ticket inspection

• Real-time arrival predictions and location providing

48

5.2 Integration
The process of integrating Datadog and transforming the existing monitoring setup into
the proposed solution is a relatively simple task, but it contains many steps that need to
be planned and gradually carried out to achieve the expected end-goal. This subsection
contains the proposed plan to integrate Datadog with the stack of Ridango which is
presented in the following six phases:

Phase I - Preparations
Before the installation of agents and configuration of the Datadog platform starts, a

few preliminary tasks should be completed. In this phase, it is required to set up Jira
and Microsoft Teams to support the alerting workflow described in Subsection 5.3. Also,
it would be necessary to configure the Single-Sign-On feature for distributing Datadog
access to the employees of the firm and configure the creation of audit logs to guarantee
better internal security for the tool.

Phase II - Monitoring Kubernetes and microservices
In this phase, development teams should configure the monitoring setup for the Kuber-

netes production cluster infrastructure and the microservices on it. These configurations
can be made by referencing the Kubernetes deployment files and Ansible playbooks that
were created during this research. After the completion of this phase, all of the metrics,
logs, and traces of every infrastructure component (virtual machine, Kubernetes node,
pod, container), process, and microservice should be available in the Datadog UI.

Phase III - Monitoring Databases and Kafka
This phase consists of setting up monitoring for PostgreSQL and Redis databases

and the virtual machines that host them. Additionally, this should be done for Kafka and
Zookeeper nodes. The development teams should also look into the custom dashboards
provided for these technologies by the Datadog platform.

Phase IV - Integrating Prometheus, Ansible, and Bitbucket
In this phase Prometheus custom metrics are migrated to Datadog, and new dash-

boards are created for them. Ansible and Bitbucket integrations are further tested and
then integrated into the setup if they are deemed to be valuable to the monitoring setup.

Phase V - Team-based configurations
For this phase, the internal teams of the firm should configure additional dashboards

and team-based views for monitoring the software components that are in their area of
responsibility.

Phase VI - Shutting down replaced tools

49

In this phase the replaced tools of the current setup are uninstalled for the system to
save on resource consumption and the cost of maintaining these tools. Currently, the
replaced tools are considered to be Zabbix and EFK. This phase should be completed
after the evaluation period of Datadog, in the case it was successful.

Future plans
After the completion of the described integration plan, there are still some possi-

bilities that can be researched and explored in the future. The primary aspect that was
mostly uncovered during this study was the Real User Monitoring (RUM) feature for
the observability tools as this is not associated directly with monitoring microservices.
For future works, it would be valuable to test this feature further for web and device
applications and compare its capabilities to the current error detection software Sentry.
Additionally, as some of Ridango’s services depend on the AWS cloud platform, it
would be an opportune target for being added to the already existing Datadog monitoring
solution.

5.3 Proposed monitoring conventions and workflows
5.3.1 Unified naming

The practice of unified naming conventions is used throughout the field of software
engineering to improve the readability of code and to avoid misinterpretations. It
would be important to use this concept in naming custom metrics and alerts in order
to make them understandable for everyone, without the need of looking into the actual
configuration of the alert itself. This would be especially necessary for the support
staff, who need to react to the alerts or displayed graphs but do not configure them by
themselves. Datadog’s alert configuration allows defining special tags that can be later
used to filter the alerts or send alerts to correct notification channels. This would be
useful for the developing teams of Ridango, as they can create views that display the
alerts based on the category of a component or the team name.

5.3.2 Efficient alerts and notifications

Besides configuring and naming the alerts, there is always the question of who should
receive the alerts and how should the recipient act upon them. The reality with the
existing setup in Ridango has shown, that without a clearly defined and unified approach,
the monitoring tools get flooded with notifications of outdated alerts that have lost their
credibility. These notifications get ignored and eventually muted, which means the
coverage of these automatic alerts is low and insufficient to actually rely on them.

To counter this problem, there are a few universal rules that are proposed:

50

1. Every alert notification should be reacted to.

2. After every major change with a component, all of its alerts should be updated (if
required).

3. After every new component is added to the monitoring setup, at least the minimal
set of “Default alerts”5 needs to be added to the component.

Rule 1 means that even if the sent notification was a false positive, the recipient
should react to the alert by re-calibrating its thresholds.

To ensure that there is always a person to react to these notifications and to avoid
duplicate reactions the suggestion would be to use a strict protocol based on the severity
of these alerts. Datadog enables to define of alerts with five levels of severity: critical,
high, medium, low, and info. The alerting workflow depicted in Figure 15 using only
the critical, medium, and low levels. The idea behind the workflow is to send the
alert notifications to separate alert channels where the recipients are responsible to
react to them: support engineers react to critical alerts and Release Managers (RM) of
development teams react to medium and low level alerts 6.In the case of a false positive,
the investigator re-configures the alert with adjusted thresholds. Otherwise, a Jira ticket
is created for critical and medium level alerts. Low level alerts are already resolved
after the initial inquiry as these are mostly used as additional information during error
mitigation. The expected reaction time for the alerts is up to 2 hours for critical alerts, 8
hours for medium, and 3 workdays for low level alerts.

5.3.3 Introducing optimization

The final proposal for Ridango would be to introduce optimization patches to the work-
flow of deploying major and minor releases to their services. The development and
support teams of the company are used to reacting to drastic and noticeable changes in
the performance of the services in the live environment while most of the optimization is
performed in the testing phase of software production. With the added support of version
comparison and release monitoring features in Datadog, it would be a considerable im-
provement to the performance of these services to actively introduce optimization patches
after each major or minor release. This would also motivate developers to think more
about the quality and performance of their code from the start to avoid the additional
optimization tasks. The primary targets for this kind of patches would be endpoints
and database queries. Collective experience in the company has shown that these two

5defined in Ridango’s internal documentation
6Release Manager is a rotational on-call role in development teams in Ridango that is responsible for

solving ongoing incidents and deploying software releases.

51

mission-critical components of any back-end service are sometimes very difficult to
performance test because there is a significant difference in the amount of traffic and
data flow in the test- and production environments. Even with a large set of mock data,
sometimes these slight performance issues can be unnoticed and released to production
where they impact the user experience of the deployed services. The database monitoring
feature and synthetic endpoint checks of Datadog should help the developing teams to
catch these problems faster, reducing the negative impact on the customers’ satisfaction.

52

Figure 15. Proposed workflow for responding to triggered alerts

53

6 Conclusion and future work
The purpose of this section is to summarize the thesis and to discuss the possibilities for
future work. This thesis describes the process of redesigning a traditional monitoring
setup to better support the maintenance of a distributed microservice architecture system
in the example of Ridango’s self-hosted Kubernetes environment. In this study, we
conducted three following procedures to find a better monitoring solution for the company
of Ridango:

1. Internal stakeholder identification and user requirements analysis for monitoring.

2. A comprehensive comparison between three observability tools: New Relic, In-
stana, and Datadog; and four monitoring tools used in the existing monitoring
setup in the firm: Zabbix, Prometheus & Grafana, Kubernetes Dashboard, and
EFK (Elasticsearch, Fluentd and Kibana).

3. Description of the proposed monitoring setup to Ridango based on the Datadog
observability tool.

The results from the comparison of Section 4 imply that observability tools presented
in this study are indeed more capable of supporting the gathered monitoring requirements
and usage scenarios of the stakeholders within the company and are better adjusted
to the decoupled microservice architecture than the existing monitoring setup. The
observability platform of Datadog proved to be the most potent tool for monitoring
Ridango’s services by having the highest ROI score and saving the most amount of
developer time in the conducted tests. Another important finding from the conducted
research was that a more systematic and unified approach is needed to configure and
maintain the monitoring solution to increase its overall benefits. The proposed monitoring
setup in Section 5 addresses this issue by suggesting: a unified naming convention for
metrics and alerts, a new workflow and set of rules to deal with triggered alerts, methods
to monitor business-critical functionalities and to optimize software performance with
the support of the observability tool of Datadog. In terms of future work, there are several
limitations to this study that can be improved. Firstly, many aspects in the comparison
of the monitoring tools were evaluated using subjectively determined grades by testing
these tools in similar scenarios. This can be improved upon by gathering grades from
a larger sample of developers and experts on this subject or defining more objectively
measurable criteria. Secondly, it would be important to add more observability tools
to this comparison, especially open-source tools to provide a better general overview
of the state-of-the-art options for monitoring the microservice architecture. Finally, it
would be beneficial to gather data about the new monitoring setup that was proposed
in this study and measure if our predictions for the return of investment were accurate.
This would allow us to further understand the efficiency of the observability tools and
introduce additional changes to the monitoring solution.

54

References
[1] About Ridango. https://ridango.com/about-us/ (Last accessed 21.03.2022).

[2] Datadog pricing and list of features. https://www.datadoghq.com/pricing/
(Last accessed 04.05.2022).

[3] Elasticsearch: The Official Distributed Search & Analytics Engine. https://www.
elastic.co/elasticsearch (Last accessed 05.05.2022).

[4] Kibana: Explore, Visualize, Discover Data | Elastic. https://www.elastic.co/
kibana/ (Last accessed 18.04.2022).

[5] Overview, how Ansible works. https://www.ansible.com/overview/
how-ansible-works (Last accessed 08.05.2022).

[6] Overview: What is Prometheus? https://prometheus.io/docs/
introduction/overview/ (Last accessed 02.05.2022).

[7] What is Observability? A Beginner’s Guide. https://www.splunk.com/en_us/
data-insider/what-is-observability.html (Last accessed 02.04.2022).

[8] What is Zabbix? https://www.zabbix.com/documentation/5.4/en/manual/
introduction/about (Last accessed 05.05.2022).

[9] Magic quadrant for application performance monitoring, 2020. https://www.
gartner.com/doc/3983892 (Last accessed 02.03.2022).

[10] Best observability solution suites software, 2021. https://www.g2.com/
categories/observability-solution-suites (Last accessed 08.05.2022).

[11] Kubernetes components, 2022. https://kubernetes.io/docs/concepts/
overview/components/#web-ui-dashboard (Last accessed 09.05.2022).

[12] What is Kubernetes?, 2022. https://kubernetes.io/docs/concepts/
overview/what-is-kubernetes/ (Last accessed 08.05.2022).

[13] Andrew Beattie. A Guide to Calculating Return on Investment (ROI). https://www.
investopedia.com/articles/basics/10/guide-to-calculating-roi.asp
(Last accessed 27.04.2022).

[14] Nico Faraguna, Aime Anne Nisay, Adhiraj Somani, Carla Faraguna, Erin Scherfner,
Holden Page, Jude Gomila, Katrina-Kay Alaimo, Dawson Sewell, and Qwei
Cont. Sentry (software company) - Wiki. https://golden.com/wiki/Sentry_
(software_company)-EAAMVBX(Last accessed 01.05.2022).

55

https://ridango.com/about-us/
https://www.datadoghq.com/pricing/
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.elastic.co/kibana/
https://www.elastic.co/kibana/
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.splunk.com/en_us/data-insider/what-is-observability.html
https://www.splunk.com/en_us/data-insider/what-is-observability.html
https://www.zabbix.com/documentation/5.4/en/manual/introduction/about
https://www.zabbix.com/documentation/5.4/en/manual/introduction/about
https://www.gartner.com/doc/3983892
https://www.gartner.com/doc/3983892
https://www.g2.com/categories/observability-solution-suites
https://www.g2.com/categories/observability-solution-suites
https://kubernetes.io/docs/concepts/overview/components/#web-ui-dashboard
https://kubernetes.io/docs/concepts/overview/components/#web-ui-dashboard
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.investopedia.com/articles/basics/10/guide-to-calculating-roi.asp
https://www.investopedia.com/articles/basics/10/guide-to-calculating-roi.asp
https://golden.com/wiki/Sentry_(software_company)-EAAMVBX
https://golden.com/wiki/Sentry_(software_company)-EAAMVBX

[15] Martin Fowler and James Lewis. Microservices, March 2014. https:
//martinfowler.com/articles/microservices.html (Last accessed
05.05.2022).

[16] Martin Maguire and Nigel Bevan. User requirements analysis. In IFIP World
Computer Congress, TC 13, pages 133–148. Springer, 2002.

[17] Theo Schlossnagle. Monitoring in a DevOps world. Communications of the ACM,
61(3):58–61, 2018.

[18] Yuri Shkuro. Observability challenges in microservices and cloud-
native applications, 2019. https://medium.com/@YuriShkuro/
observability-challenges-in-microservices-and-cloud-native-applications-72857f9d03af
(Last accessed 04.05.2022).

[19] Jesper Simonsson, Long Zhang, Brice Morin, Benoit Baudry, and Martin Mon-
perrus. Observability and chaos engineering on system calls for containerized
applications in Docker. Future Generation Computer Systems, 122:117–129, 2021.

[20] James Turnbull. The art of monitoring. James Turnbull, 2014.

56

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://medium.com/@YuriShkuro/observability-challenges-in-microservices-and-cloud-native-applications-72857f9d03af
https://medium.com/@YuriShkuro/observability-challenges-in-microservices-and-cloud-native-applications-72857f9d03af

Appendix

I. List of Acronyms

Acronym Meaning
MA microservice architecture
VM virtual machine
OS operating system
AWS Amazon Web Services
Zab Zabbix
PG Prometheus and Grafana
EFK Elasticsearch, FluentD and Kibana
K8sD Kubernetes dashboard
NR New Relic
Ins IBM Instana
DD Datadog
URA user requirements analysis
Sysadmin System administrator
APM application performance monitoring
TTD time to detect
TTM time to mitigate
UI user interface
AI aritifical intelligence
CI continuous integration
CD continuous deployment
ROI return of investment
RM release manager

57

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Mathias Are,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Monitoring of the microservice architecture: Ridango case study,
(title of thesis)

supervised by Chinmaya Kumar Dehury.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Mathias Are
08.05.2022

58

	Introduction
	Motivation
	Goal
	Contributions
	Thesis outline

	Background
	The Microservice Architecture
	Monitoring
	Observability
	About Ridango
	Microservices and monitoring setup in Ridango
	Zabbix (Zab)
	Prometheus and Grafana (PG)
	Elasticsearch, FluentD and Kibana (EFK)
	Sentry
	Kubernetes and Kubernetes Dashboard

	Other related technologies

	User requirements analysis
	Methodology
	Information gathering
	User needs identification
	Evaluation and requirements specification

	Summary of the findings
	Defined stakeholders
	Task analysis
	Usage of the existing tools
	Defined requirements
	Potential for saving developer time
	Missing practices of monitoring

	Comparison of monitoring tools
	Methodology
	Architecture
	Feature comparison
	General features and attributes
	Application performance monitoring (APM)
	Alerting
	Logs
	Infrastructure
	Integrations
	Configuration
	Performance and resource usage
	Management features
	Coverage of the requirements

	Cost of maintenance
	Return of investment
	Summary of the findings

	The adopted monitoring solution
	Description of the setup
	Set of tools
	Integrating technologies and other tools
	Customization and business-oriented monitoring

	Integration
	Proposed monitoring conventions and workflows
	Unified naming
	Efficient alerts and notifications
	Introducing optimization

	Conclusion and future work
	References
	Appendix
	I. List of Acronyms
	II. Licence

