
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Computer Science Curriculum

Sander Siim

Secure Multi-party Computation
Protocols from a High-Level

Programming Language

Bachelor’s Thesis (6 ECTS)

Supervisor: Dan Bogdanov, PhD

Supervisor: Sven Laur, PhD

Tartu 2014

Turvalise ühisarvutuse protokollid kõrgtaseme programmee-
rimiskeelest

Lühikokkuvõte: Turvalise ühisarvutuse abil on võimalik sooritada privaatsust
säilitavaid arvutusi mitmelt osapoolelt kogutud andmetega. Tänapäeva digitaalses
maailmas on andmete konfidentsiaalsuse tagamine üha raskemini teostatav. Tur-
valise ühisarvutuse meetodid nagu ühissalastus ja Yao sogastatud loogikaskeemid
võimaldavad teostada privaatsust säilitavaid arvutusprotokolle, mis ei lekita kon-
fidentsiaalseid sisendandmeid. Aditiivne ühissalastuse skeem on väga efektiivne al-
gebraliste ringide tehete sooritamiseks fikseeritud bitilaiusega andmetüüpide peal.
Samas on seda kasutades raske ehitada protokolle, mis nõuavad paindlikumaid biti-
taseme operatsioone. Yao sogastatud loogikaskeemide meetod töötab aga igasuguse
bitilaiusega andmete peal ja võimaldab väärtustada mistahes Boole’i funktsioone.
Neid kahte meetodit koos kasutades ehitame turvalise hübriidprotokolli, mis kuju-
tab endast üldist meetodit privaatsust säilitavate arvutuste teostamiseks bitikaupa
ühissalastatud andmete peal. Loogikaskeeme vajalikeks arvutusteks on lihtne saada
kahe kaasaegse turvalise ühisarvutuse jaoks mõeldud kompilaatori abil, mis muun-
davad C programmi loogikaskeemiks — PCF ja CBMC-GC. Meie hübriidprotokolli
prototüüp privaatsust säilitaval arvutusplatvormil Sharemind saavutab praktilisi
jõudlustulemusi, mis on võrreldavad teiste kaasaegsete lahendustega. Lisaks kahe
osapoolega arvutustele pakub meie prototüüp võimekust teostada mitmekesiseid
arvutusi üldises turvalise ühisarvutuse arvutusmudelis. Hübriidprotokoll ja loogi-
kaskeemide kompilaatorid võimaldavad koos kasutades lihtsalt ja efektiivselt luua
üldkasutatavaid turvalise ühisarvutuse protokolle mistahes Boole’i funktsioonide
väärtustamiseks.

Võtmesõnad: krüptograafia, krüptograafilised protokollid, andmete privaatsus,
turvaline ühisarvutus, Yao sogastatud loogikaskeemid, ühissalastus, kompilaatorid,
teostus, jõudlus

2

Secure Multi-party Computation Protocols from a High-Level
Programming Language

Abstract: Secure multi-party computation (SMC) enables privacy-preserving
computations on data originating from a number of parties. In today’s digital
world, data privacy is increasingly more difficult to provide. With SMC meth-
ods like secret sharing and Yao’s garbled circuits, it is possible to build privacy-
preserving computational protocols that do not leak confidential inputs to other
parties. The additive secret sharing scheme is very efficient for algebraic ring
operations on fixed bit-length data types. However, it is difficult to build proto-
cols that require robust bit-level manipulation. Yao’s garbled circuits approach,
in contrast, works on arbitrary bit-length data and allows the evaluation of any
Boolean function. Combining the two methods, we build a secure hybrid proto-
col, which provides a general method for building arbitrary secure computations
on bitwise secret-shared data. We are able to generate circuits for the protocol
easily by using two state-of-the-art C to circuit compilers designed for SMC appli-
cations — PCF and CBMC-GC. Our hybrid protocol prototype on the Sharemind
privacy-preserving computational platform achieves practical performance compa-
rable to other recent work. In addition to two-party computations, our prototype
provides the ability to perform a set of diverse computations in a generic SMC
computational model. The hybrid protocol together with the circuit compilers
provides a simple and efficient toolchain to build general-purpose SMC protocols
for evaluating any Boolean function.

Keywords: cryptography, cryptographic protocols, data privacy, secure multi-
party computation, Yao garbled circuits, secret sharing, compilers, implementa-
tion, performance

3

Contents
1 Introduction 5

2 Yao’s garbled circuits 7
2.1 General technique . 8
2.2 Comparison with other secure computation techniques 11

2.2.1 Secret sharing . 12
2.2.2 Homomorphic cryptography 14

3 Two compilers from C code to Boolean circuits 16
3.1 CBMC-GC . 17
3.2 PCF . 17
3.3 Comparison of two compilers . 19

4 Combining garbled circuits with secret sharing 22
4.1 Parts of the hybrid protocol . 24

4.1.1 Oblivious transfer . 25
4.1.2 Garbling . 26

4.2 Security proof sketch . 29
4.2.1 Simulatability of oblivious transfer 31
4.2.2 Security of the hybrid protocol 32

5 Implementation details 34
5.1 Using the protocol to implement complex primitive operations . . . 34
5.2 Circuit setup . 35
5.3 Optimizations . 36

6 Experimental results 37

7 Conclusion 42

References 44

4

1 Introduction
Secure multi-party computation (SMC) is a subfield of cryptography that studies
methods for enabling multiple parties to compute functions on their joint inputs
while preserving the privacy of those inputs. This can be achieved by building
computational protocols that work on some sort of encrypted form of data, rather
than computing on data directly.

The possible applications of such technology are wide, since privacy of data in
the digital world is an everyday issue. People do not want their sensitive personal
information being revealed and companies would like to protect their financial
data. However, in today’s world, we are often forced to make compromises be-
tween privacy and comfort. By using cryptographic privacy-preserving methods
to manipulate with data, we can be more confident, that our personal data does not
fall into unfriendly hands, while still being able to make use of the vast possibilities
that the modern digital age provides.

The first theoretical solutions for SMC first appeared in the 1980-s, but the
actual implementations have been far too inefficient for practical use, until recently.
In the past 10 years, many platforms and frameworks that provide general-purpose
SMC with viable performance have emerged [2, 19, 22, 33, 5]. Also, the first real-
world practical applications which use SMC to provide data privacy have appeared
in the past few years [10, 9]. It is clear that this new technology is developing fast
and will reach a mature stage sometime soon in the future, as already a large
number of real-world applications would benefit from using SMC technology.

Thus, it is important to constantly improve the state-of-the-art of SMC so-
lutions, so that frameworks and applications that provide data privacy could be
developed more easily and efficiently in the future. Not only are the provided theo-
retical security guarantees important, but also the efficiency and effort of building,
maintaining and using these new solutions.

In this thesis, we focus on combining different existing theoretical principles and
developed tools to easily build useful secure computation protocols with practical
performance. The topic of this thesis was largely motivated by Oleg Šelajev’s MSc
thesis [43], where a general secure two-party SMC protocol was introduced. In
this thesis, we build on the ideas of [43] to improve both the performance and
applicability of the proposed protocol. Our presented hybrid protocol leverages
many well-known optimizations from the literature and uses a more recent and
refined garbling scheme technique, resulting in greatly improved performance of
our implementation. Also, our protocol is designed to be used in a more generic
SMC computational model and provides potentially arbitrary secure computations
by using circuits generated with state-of-the-art circuit compilers. All together,
our solution presents an efficient way to build new general-purpose SMC protocols
in a semi-automated manner, requiring much less effort than it usually takes to

5

design such protocols.
Parts of this thesis have also been previously published in a recent research

report [41].

Contributions of the author. The author of the thesis did research on current
literature in the subject of Yao’s garbled circuits protocols to find efficient state-
of-the-art garbling methods and optimizations. Based on the findings, the author
then formulated the hybrid protocol described in this thesis and composed a proof
sketch of its security in the passive model. The author also implemented a complete
prototype of the described protocol in the Sharemind additive3pp protection
domain.

The author studied the state-of-the-art of automatic Boolean circuit generation
and acquired, evaluated and benchmarked two circuit compilers from C programs
— PCF and CBMC-GC. The author performed an analysis concerning the per-
formance, functional capability and field of application of both compilers. Also,
integration with the PCF circuit compiler was made to the hybrid protocol proto-
type by the author.

Finally, the author performed performance tests on the hybrid protocol proto-
type using different circuits and compared the results with other recent work in
the field.

Thesis outline. In Section 2, we introduce the setting of secure two-party com-
putation and present the widely used Yao’s garbled circuits method, which is the
first general solution for performing secure computations with multiple parties.
We also discuss a more generic SMC computational model with more than two
parties, and describe two other SMC methods that prove useful in this setting.

In Section 3, we compare two state-of-the-art Boolean circuit compilers - PCF
and CBMC-GC - which are very convenient tools for building protocols using the
garbled circuits method.

Then, combining two previously discussed SMC methods, we present an effi-
cient general-purpose SMC protocol inspired by the work of [43] in Section 4. We
also provide a proof sketch of the protocol’s security in the passive model.

In Section 5 we describe our prototype implementation of the presented pro-
tocol built on the Sharemind platform, and in Section 6, analyze its performance
and compare it to other similar results in the field.

6

2 Yao’s garbled circuits
Yao’s garbled circuits technique is a widely used and provably secure solution to
the two-party secure computation problem [32]. It was first introduced by Andrew
C.C. Yao in his seminal paper in 1982 [44]. Yao’s protocol allows two parties to
compute a function on their joint inputs without revealing one’s inputs to the
other.

In Yao’s protocol, the mathematical model of Boolean circuits is used to repre-
sent the computed functions. A Boolean circuit is a set of gates and wires. Wires
connect gates and transfer bit values between them. Each gate has a number of
input wires and output wires and performs an elementary Boolean logic operation.
If a gate has u input wires and v output wires, then the gate calculates a function
g : {0, 1}u → {0, 1}v. In practice, mostly 2-to-1 and 1-to-1 gates are used. The
gate calculates the function by receiving the input bits from its input wires and
sending the output to its output wires.

Boolean circuits can be used to describe any function f : {0, 1}n → {0, 1}m,
but a single circuit can calculate only one specific function. Formally, a circuit
with its gates and connecting wires forms a directed acyclic graph. A circuit is
given input through a number of external input wires, and the overall result is
sent to the circuit’s external output wires. Let Cf be a circuit which calculates the
function f : {0, 1}n → {0, 1}m. To calculate y = f(x), we feed the value x encoded
as a bitstring with length n to the circuit through its external input wires. Then
we traverse all of the circuit’s gates in a topological order while evaluating each
gate with inputs from previous gates or the external wires. The final result will
be sent to the circuit’s external output wires, where it can be read from.

An example of a Boolean circuit is illustrated in Figure 1, which calculates the
greater-than-or-equal function on one-bit values.

AND

XOR NOT

NOT
OR

Figure 1: An example of a Boolean circuit. Calculates z = a ≥ b

Using Yao’s protocol, two parties can compute virtually any function in a
privacy-preserving manner, provided that the Boolean circuit representation of the
required function is known. Building efficient implementations of Yao’s protocol
has been a significant challenge in the past, but Yao’s protocol has been much

7

refined since his 1982 paper and many succesful implementations have emerged in
the past years [34, 22, 24, 29].

2.1 General technique

We now describe the standard modern view of Yao’s protocol and how it succeeds
in performing secure two-party computation [32].

The idea of Yao’s protocol is to evaluate a Boolean circuit without actually
seeing the bit values that run through wires during evaluation. In the protocol,
the two parties assume different roles. One party will be the garbler and the other
the evaluator. Both of these parties can provide input to the calculation.

In a nutshell, the garbler’s task is to encrypt the chosen circuit so that it
could be evaluated obliviously by the evaluator. By obliviously, we mean that
the evaluator should not learn the other party’s input to the circuit, nor any
intermediate gate evaluation results. This is achieved in the protocol by three
main techniques:

• The rows of gates’ truth tables are randomly shuffled

• Instead of bit values, encryption scheme keys are transferred through wires
and used to encrypt the shuffled truth tables

• Oblivious transfer is used to securely send correct input keys for evaluation
to the evaluator

The setting for Yao’s two-party protocol is the following. Parties A and B
want to compute some function f on their respective secret inputs a and b. Both
parties want to learn the result f(a, b), but neither wants to disclose his input to
the other party. Let us assume both parties have access to a Boolean circuit Cf
which calculates the function f . Party A will take the role of the garbler and party
B the evaluator.

The essence of Yao’s protocol is that the garbler uses symmetric encryption or
pseudo-random functions to encrypt the truth table values of the circuit’s gates.
This process is called garbling. For each wire, the garbler generates two tokens
X0, X1 which represent the bit values of the wire — one token for bit value 0 and
one for bit value 1. However, the token itself is random and does not reveal the
bit that it maps to. The circuit can then be evaluated only if the evaluator knows
the secret tokens of the input wires that correspond to the given input bits.

Since garbling is the most important part in the protocol, we will illustrate
the process with an example of garbling an AND-gate. Consider the AND-gate in
Figure 2 with input wires a, b and output wire z.

8

Figure 2: Garbling an AND-gate

a b∗ z∗ = a ∧ b∗
0 0 1
0 1 1
1 0 0
1 1 1

Table 1: Shuffled AND-gate truth table
with wires b, z flipped

First, the garbler generates a token-pair for each wire, for example X0
a and X1

a

correspond to the 0-bit and 1-bit respectively for wire a. Then, the garbler shuffles
the truth table rows of the gate, so that the evaluator would not learn the result of
the gate’s computation during evaluation. If the rows were not shuffled, the index
of the truth table row would immediately betray the gate’s output during evalua-
tion. To shuffle, the garbler "flips" the semantics of each wire with probability 1

2
.

In our example, the semantics of wire b and z are flipped and we denote this as
b∗ and z∗. As we can see from Table 1, the 0 and 1 bit have flipped semantics for
wires b and z. However, although the evaluator is not told which wires have been
flipped, it can easily deduce this by looking at the truth table, since it knows that
the garbled gate is an AND-gate.

Therefore, the next step for garbling the gate is to encrypt the truth table
values. For this, the garbler uses an encryption scheme E, which can encrypt a
plaintext using two secret keys. In practice, a secure block cipher or hash function
is used for this. The garbler will then encrypt the result column of the truth table
using the generated wires’ tokens as encryption keys. The resulting garbled truth
table for our example is presented in Table 2. Here, we use E((A,B), X) to show
that X is encrypted using keys A and B.

a b∗ z∗ = a ∧ b∗
X0

a X0
b E((X0

a , X
0
b), X

1
z)

X0
a X1

b E((X0
a , X

1
b), X

1
z)

X1
a X0

b E((X1
a , X

0
b), X

0
z)

X1
a X1

b E((X1
a , X

1
b), X

1
z)

Table 2: Garbled AND-gate truth table

Now, the evaluator is only able to decrypt the one truth table row for which

9

he possesses both corresponding tokens. As a result of the decryption, it receives
a single token for the gate’s output wire, but since the wire may have flipped
semantics, the evaluator will not know which bit the token represents. Also, there
is no way to find out whether the wire has been flipped, since the remaining truth
table rows cannot be decrypted.

Now, for garbling a complete circuit, this process is continued with all gates.
The output tokens of one gate are used as the input tokens of successive gates
to encrypt the corresponding truth tables. We can now see, that if the evaluator
possessed a set of tokens for the circuit’s input wires - one token for each wire - he
could evaluate the circuit obliviously by decrypting a single truth table row from
each gate and using the results to decrypt truth tables of successive gates.

Let us remind that in our setting, we have parties A and B who each have
their own inputs a and b respectively. Now, A has generated the tokens for the
circuit’s input wires and also garbled the circuit’s truth tables. It is now necessary
to send B the input tokens which correspond to the joint input of a and b. For the
input tokens corresponding to a, the garbler A simply chooses the correct tokens
according to his input and sends them to the evaluator. The input a will not be
revealed to B, since the semantics of the tokens is random.

Now, for B to receive the tokens corresponding to his own input, a well-known
cryptographic primitive called oblivious transfer is used. Oblivious transfer guar-
antees that B will receive the correct tokens, while A remains oblivious as to which
tokens it sent to B, thereby preserving the privacy of B’s input.

We have now described all the necessary components for parties A and B to
execute Yao’s protocol. The garbler A will garble the circuit’s truth tables and
send them to B. Using oblivious transfer, all the correct input tokens are also sent
to B, who can then obliviously evaluate the circuit. An illustrative overview of the
whole protocol is given in Figure 3.

As a result of this oblivious evaluation, the evaluator is left with a set of tokens
for the circuit’s external output wires. There are then two possibilities. The garbler
can choose to flip the output wires similarly to all others, or leave the output wires
unflipped. If the output wires are not flipped, than the output tokens will directly
reveal the actual output of the computation to the evaluator. In the semi-honest
model, the garbler is then also guaranteed to receive the output, as the evaluator
simply sends it to him. However, if the output wires are also flipped, the evaluator
will send the result of the evaluation back to the garbler, who can then deduce
the real output, since it knows which wires were flipped. Again, if the garbler is
honest, he will send the actual output also to the evaluator.

10

Generate
input tokens

Send input tokens
corresponding to

Receive
input tokens

Input: Input:

Oblivious transfer
of input tokens

corresponding to

Garble circuit
and send to

Receive
garbled circuit

Evaluate circuit
using input tokens

Send result
to

Receive result

Figure 3: General construction of Yao garbled circuit protocols

2.2 Comparison with other secure computation techniques

We have seen that Yao’s protocol enables us to perform secure two-party computa-
tion on a large number of functions. However, we might come across applications
where a more general SMC setting is needed with an arbitrary number of parties.
Yao’s protocol is not specifically designed to work in these settings, although the
protocol can be extended to be used in various other contexts [2]. Also, since
Yao’s protocol operates on a bit-level, the performed computations have a signifi-
cant overhead compared to ordinary operations.

There are however other cryptographic methods with different advantages that
can be used to perform secure computations. We will now discuss two other useful
techniques - secret sharing and homomorphic encryption.

11

2.2.1 Secret sharing

Secret sharing is a well-known cryptographic method for distributing a secret
amongst a group of parties [39, 4]. The secret is divided into shares and each
party receives a share of the secret, which appears random to the receiving party.
The goal for any secret sharing scheme is that the secret can only be reconstructed
by combining a sufficiently large subset of the shares. For a k-out-of-n secret shar-
ing scheme, the secrets are divided into n shares and knowing any k−1 shares does
not reveal the original secret. Secret sharing schemes can be used in secure multi-
party computation to build protocols that guarantee data privacy by performing
computations on secret-shared data [3, 13].

We will describe the additive secret sharing scheme as one example of secret
sharing. Let us assume that we want to secret-share a 32-bit integer value between
n parties. Mathematically, k-bit integers are elements of the ring Z2k . We use
x

$←− Z232 to denote that x is uniformly randomly sampled from the set Z232 . We
can construct random shares for some x ∈ Z232 in the following way [5]:

x1
$←− Z232

. . .

xn−1
$←− Z232

xn ← (x−
n−1∑
i=1

xi) mod 232

Then we have
∑n

i=1 xi = x and each share xi is uniformly random, which means
that the parties receiving the shares will learn nothing about the original secret.
Notice that the additive scheme is an n-out-of-n secret sharing scheme, since all
shares are required for reconstructing the data [5].

SMC protocols based on secret sharing require multiple computing parties since
the data is distributed. To ensure data privacy, the computing parties must not
learn the shares of the other parties, as otherwise they could reconstruct the secret-
shared data. To that end, the protocol performs distributed secure computations
on the shares. By using secret sharing, it is possible to perform computations in
more diverse settings than the rather narrow two-party computation model.

In general, we can divide the actors of a secure multi-party computation into
three groups. First, a number of input parties IPi will provide the input to the
computation. Then, computing parties CPj will perform secure computations using
some cryptographic protocol, and finally, the result is published to one or more
result parties RPk.

12

The number of input parties and result parties may vary according to the
context where secure computation is applied. The number of computing parties
depends on the actual protocols that are used, since different protocols may require
a different amount of parties to guarantee security. The additive secret sharing
scheme, for example, requires at least three computing parties with an honest
majority to remain information-theoretically secure [5].

Also, all three groups can overlap to some extent. For example, some input
parties may also be result parties at the same time. In the case of two-party secure
computation, both parties are input parties and computing parties, with at least
one of them being a result party.

Let us now describe a general construction for a SMC protocol using secret
sharing with one input party and one result party [5] (also illustrated in Figure 4).

1. An input party IP divides its data into n shares.

2. IP sends a share to each computing party CPi, i = 1, . . . , n.

3. The computing parties CP1,. . . ,CPn perform secure computations on the
shares.

4. The computing parties send the output shares to a result party RP.

5. RP receives the shares and reconstructs the actual output.

secure distributed
computations

secret-sharing
the input

constructing
the output

Figure 4: General construction of secret sharing protocols

The secret sharing protocol illustrated in Figure 4 calculates a specific function
f , which is determined by the computations performed in step 3. To build a
protocol that calculates a different function g, different secure computations must
be specified. Constructing such protocols is not always straightforward, since
it requires careful manipulation of the shares to provide the correct result while

13

ensuring data privacy. For example, constructing protocols which perform floating-
point arithmetic on secret-shared data is quite a challenging task [25].

Since computations are carried out on shares which are usually elements of a
large ring or field, it is more natural to build protocols on secret-shared data which
correspond to evaluating an arithmetic circuit. In an arithmetic circuit, instead of
bit values, wires can carry larger values, for example elements of a ring or field.

Although it is possible to carry out arbitrary computations using linear secret-
sharing schemes [15, 8], operations that require bit-level manipulation of data are
more cumbersome to build with secret sharing. Yao’s protocol is a somewhat more
natural solution for implementing such operations, since it computes directly with
individual bits and reduces the communication and complexity overhead of having
to share each bit individually. For simple arithmetic operations, however, secret
sharing protocols are more efficient, as there is no need to regard the bit-level
structure of data.

2.2.2 Homomorphic cryptography

We have explored the additive secret sharing scheme in the previous section. Notice
that performing an addition operation on additively secret-shared data is very
simple and requires no communication between computing parties. Namely, to
compute the sum of two shared values x and y, each share-holder CPi will simply
add his shares together, receiving zi = xi + yi. Then∑n

i=1
zi =

∑n

i=1
xi +

∑n

i=1
yi = x+ y

which means we have succesfully performed addition without any communication
between the computing parties.

This is called a homomorphic property of the secret sharing scheme. For addi-
tive secret sharing, addition is homomorphic as it can be performed by using only
local computations. In general, a cryptographic encryption scheme is considered
homomorphic, if there exists some efficient algorithm for calculating functions on
encrypted inputs and receiving the output also in encrypted form, without actually
decrypting the data.

More formally, let E(m) denote encrypting a plaintext m. If there exists an
efficient algorithm Af for some function f which computes

Af (E(m1), . . . ,E(mi)) = E(f(m1, . . . ,mi)),

then E is a homomorphic encryption scheme in terms of f . Of course, Af is
not allowed to decrypt the ciphertexts directly, as this would defeat the privacy
property of the scheme. Here we silently assume that E is semantically secure, that
is, it is hard to learn anything about the plaintext by looking at the encrypted

14

ciphertext. Also, decryption with the secret key should produce the correct result,
meaning that the original plaintext should be obtainable.

A fully homomorphic encryption scheme allows both addition and multiplica-
tion to be performed on ciphertexts without decrypting them, which in theory
provides the possibility to evaluate any circuit. The theoretical feasibility of fully
homomorphic encryption was first proven by C. Gentry [20]. His constructed
encryption scheme relies on the hardness of some problems on integer lattices.
However, there are also a number of schemes which are only partially homomor-
phic. For example, the Paillier cryptosystem [35] is only additively homomorphic,
similarly to the additive secret sharing scheme.

A possible application of homomorphic cryptography is private information
retrieval schemes, wherein a server can hold some client’s encrypted data and re-
spond to encrypted queries, without learning anything about the query or the data.
Also, general SMC can be performed by using homomorpic cryptography [17].

However, providing full-scale SMC using only homomorphic cryptography is
currently not practical performance-wise and is much more inefficient than other
SMC methods. One of the first results of evaluating a real-life circuit using ho-
momorphic encryption appeared in [21], where the authors evaluated an AES-128
circuit. The best results received were 36 hours for encrypting a single block, and 5
minutes of amortized time per block when using a different algorithm and running
the computation for 65 hours.

This shows that for practical applications, homomorphic encryption by itself
is currently not viable and other methods must be used. However, in many cases,
homomorphic encryption can be used to enhance other SMC methods [16, 22,
17, 37]. In this thesis, we concentrate on the Yao’s garbled circuits and secret
sharing methods as they provide us with the necessary efficient tools to build our
general-purpose SMC protocol.

15

3 Two compilers from C code to Boolean circuits
One important issue with the garbled circuits approach is that it requires circuit
representations for the functions that are evaluated. Building a circuit that calcu-
lates a specific function is not a trivial task in itself, since a circuit representation
for a single function can contain millions or even billions of gates. For example,
the RSA-1024 circuit used in [29] contains 42 billion Boolean gates.

As Boolean circuits can be found extensively in hardware, one might reuse
these for use in protocols based on garbled circuits. As Yao’s protocol entails
considerable performance overheads compared to ordinary computation, it is vital
to use the most efficient circuit representations available. Measures for circuit
efficiency however are slightly different for hardware circuits and circuits used for
SMC. A small amount of gates and low depth of the circuit structure are desirable
in both cases, but some specific constructions are more optimal for Yao’s protocol.
For example, using a well-known optimization, circuits with a large fraction of
XOR-gates can be evaluated much more efficiently [26]. Also, existing hardware
circuits might not contain the functions that would be useful to compute in a SMC
setting, or such designs might be proprietary.

An automatic circuit generating tool would be very helpful for creating arbitary
efficient circuits suitable for SMC applications. There have been some construc-
tions in the past which aim for simplicity in generating circuits for secure proto-
cols [34, 2, 22], but they offer only a limited number of existing building blocks for
creating circuits and are mainly designed for use on a specific SMC platform.

In recent years, two notable state-of-the-art circuit compilers from C have
emerged - CBMC-GC [23] and PCF (Portable Circuit Format) [27]. Both tools
can compile C programs to a corresponding Boolean circuit representation and
are optimized for use in garbled circuit protocols. The fact that the familiar C
language is used makes them especially convenient tools, since no domain-specific
knowledge is needed to generate general-purpose circuits which are usable in any
SMC platform. Also, since C is a very widely used programming language, there
is a large amount of existing code that could potentially be reused without having
to program all the necessary computations from scratch.

Both compilers have already been used succesfully with different secure com-
putation frameworks [24, 29]. We have also integrated PCF with the Sharemind
platform [5] through the general-purpose secure computation protocol described
in this thesis (see Section 4). Note that although both compilers are focused on
the two-party computational model, this is not an inherent shortcoming as the
circuits generated can still be used to compute the necessary function regardless
of where the input is received from.

We will now describe both compilers in detail and provide an overview com-
parison in terms of their efficiency and functionality.

16

3.1 CBMC-GC

The CBMC-GC compiler for C [23] is based on the CBMC bound model checker [14],
which allows the verification of ANSI C programs against different assertions. The
CBMC model checker transforms the verified C program into a Boolean formula,
which can then be analyzed for satisfiability. The produced Boolean formula con-
tains a bit-precise representation of the program execution in memory, along with
assertions that need to be verified. Program traces that violate the assertions can
then be found using a Boolean satisfiability solver.

The CBMC model checker is useful for building a circuit compiler as it provides
an exact bit-level representation of the program. The CBMC-GC compiler is
actually a modified version of the model checker, which uses the Boolean formula
that CBMC produces to translate the program into a circuit. CBMC-GC produces
circuit descriptions in a straightforward textual format, which lists all gates of the
circuit, specifying the functionality and connecting wires of each gate and also the
mappings of external input and output wires to the program variables.

CBMC-GC places some restrictions on the programs it can succesfully compile.
Since CBMC is a bounded model checker, it requires the analyzed program to
terminate in a bounded number of steps. The bound is found either by static
analysis of the code or by receiving it as user input. The bound is necessary,
since a bit-precise representation of the program execution requires all loops and
recursions to be fully unrolled and therefore, non-terminating programs will have
an infinitely large execution description.

CBMC-GC also executes various methods to minimize and optimize the struc-
ture of the produced circuit, for details we refer to [23, 18]. The latest public
version of CBMC-GC at the time of writing this thesis (v0.9.3) supports almost
full ANSI C semantics, considering the bound restrictions. Different bit-length
variables are supported in a single program, also pointer and floating point arith-
metic. However, only scalar variables are allowed for input and output. Overall,
the set of possible computations that are supported by CBMC-GC can be con-
sidered quite diverse for SMC purposes. However, due to the need of unrolling
all loops in the program, compilation times can be expected to be quite long for
larger circuits.

3.2 PCF

The PCF circuit compiler takes a fundamentally different approach to compiling
circuits [27]. Instead of producing a full circuit representation, the PCF system
uses a compact format which can be interpreted similarly to a stack machine. In
contrast to CBMC-GC, loops and recursions in the compiled program are not un-
rolled, but rather, basic program control flow structures appear also in the final

17

circuit representation. Intuitively, the PCF format can be thought of as not an ac-
tual circuit, but a program which calculates the full circuit description at runtime.
This method considerably reduces the amount of necessary RAM for evaluating
such circuits and allows much larger circuits to be compiled in reasonable time,
due to the fact that the circuit is not analyzed in a bit-precise manner, but using
more high-level constructs. On the other hand, the programmer is left responsi-
ble for making sure that the written program will terminate, although some more
obvious cases which can lead to infinite loops are detected by the compiler itself.

Overall, the PCF system consists of three parts. First, it uses a front-end
compiler to translate the C program into a simpler intermediary representation.
Currently, PCF uses the LCC compiler [31] to translate the program into a byte-
code format [29]. The use of LCC bytecode is motivated by the fact that the
bytecode representation and its possible optimizations are machine-independent.
The authors have also suggested supporting LLVM bytecode in the future [28],
so in theory, PCF could compile circuits from a number of different high-level
programming languages.

The bytecode is then translated to the PCF format by the back-end compiler.
The resulting circuit is then optimized with various methods to minimize the size
of the circuit, for details we refer to [29]. To garbling and evaluating the circuit
in PCF format, the PCF interpreter is used. The interpreter can be used as an
external library by any SMC framework. The interpreter does not make any ass-
sumptions about the security model or garbling scheme used in the SMC system.
The interpreter simply provides an interface which emits a circuit’s gates one-by-
one and allows data to be written to and read from the gate’s input and output
wires via customly definable callback functions. The actual circuit is therefore
emitted only during actual evaluation, and is defined by the interpreter’s inner
state. The full circuit structure is never held in memory at once, since the inter-
preter will write over old wire pointers, if they are no longer used.

However, this approach of sequentially parsing the circuit at runtime removes
the possibility to garble many gates in parallel, since the interpreter’s state is
changed with every emitted gate. For example, old wire values used in a previous
gate may be overwritten by emitting the next gate. Therefore, it is necessary to
garble and evaluate gates one-by-one. Also, since the whole circuit structure is
not explicitly available, it is harder to analyze whether the actual circuit meets
the conditions which are required for a certain SMC protocol. The need for pre-
cisely defining the circuit structure used in Yao’s protocol is stressed in [1], since
ambiguous defininitions of circuits may affect the correctness and security of the
garbling scheme used.

Currently, PCF supports only 32-bit integer variables, which makes it harder
to produce optimal circuits for operations which use smaller bit-length or 64-bit

18

data.

3.3 Comparison of two compilers

We performed a small number of experiments with both CBMC-GC and PCF
to assess their performance. We used the publicly available CBMC-GC version
0.9.3 [12] and the PCF version used for the Kreuter et al. paper [29] we received
from the authors themselves. All tests were performed on a workstation with 16
GB of RAM and an Intel R© CoreTM i7-870 2.93 GHz processor.

We tested compiling a few circuits used for benchmarking in [29] and [23].
Although we tried to use identical code with both compilers, some modifications
to the compiled code were necessary. Namely, in CBMC-GC, we were forced
to declare input and output variable explicitly, whereas in PCF, reading input
and writing output are done using specific declared functions. In both cases,
we copied the inputs to globally declared arrays with fixed length and performed
computations using these arrays. Output was similarly written to a separate array.
In PCF versions of the scripts, we read the input using a for -loop over the input
size and reading 32 bits of the input in each iteration, since explicitly reading each
input variable without using cycles was suboptimal for PCF due to the high cost
of certain pointer operations [29].

We illustrate these differences with code examples. Code example 1 presents
a C program which can be compiled using CBMC-GC. Note the variable names
with INPUT and OUTPUT prefixes. In Code example 2, a PCF compatible code
is presented. Both programs will result in an equivalent circuit being compiled.

i n t A[2] , B [2] , C [1] ;

void main (INPUT_A_0, INPUT_A_1, INPUT_B_0, INPUT_B_1) {
A[0] = INPUT_A_0;
A[1] = INPUT_A_1;
B [0] = INPUT_B_0;
B [1] = INPUT_B_0;
C[0] = 0 ;
i n t i ;
f o r (i = 0 ; i < 2 ; i++) {

C[0] += A[i] + B[i] ;
}
i n t OUTPUT_0 = C [0] ;

}

Code example 1: CBMC-GC compatible C code

19

i n t a l i c e (i n t) ; i n t bob (i n t) ; void output_al ice (i n t) ;
i n t A[2] , B [2] , C [1] ;

void main () {
i n t i ;
f o r (i = 0 ; i < 2 ; i++) {

A[i] = a l i c e (i ∗32) ;
B[i] = bob (i ∗32) ;

}
C[0] = 0 ;
f o r (i = 0 ; i < 2 ; i++) {

C[0] += A[i] + B[i] ;
}
output_al ice (C [0]) ;

}

Code example 2: PCF compatible C code

The C code for the Hamming distance and matrix multiplication was taken
from benchmarking programs bundled with the CBMC-GC compiler and code for
the RSA-256 circuit was bundled with PCF. The 128-bit sum implementation was
self-written. We stress that although the compilers might produce more optimal
circuits for a more cleverly written C algorithm, here our goal is to compare both
compilers under similar conditions. The results of our experiments are presented
in Tables 3 and 4 for CBMC-GC and PCF respectively.

Compilation times were calculated as the mean of 10 experiments except for
the Hamming distance and matrix multiplication circuits compiled with CBMC-
GC, where compilation times are the mean of 2 experiments. All experiments
were run with enabling all of the compilers’ optimizations. However, the matrix
multiplication circuit was compiled with CBMC-GC with limiting the SAT-based
minimization iterations to a maximum of 5, to considerably reduce the compilation
time. For reference, compiling the 128-bit sum circuit used 27 SAT-minimization
iterations and the Hamming distance used 38 iterations.

We note that in our experiments, we noticed that only a single core of the
processor was used while compiling with either compiler, which suggests that con-
siderable performance gains could be possible through parallelization.

In summary of our experimental results, we can see that CBMC-GC’s compiling
times are significantly larger than PCF’s, although CBMC-GC does produce more
optimized circuits in the end due to the smaller number of non-XOR gates in the
circuit. However, large circuits like the RSA-256 take huge amounts of time to
compile with CBMC-GC, but PCF scales exceptionally well with circuit size. For
smaller circuits at least, it seems CBMC-GC is more capable at optimizing the
circuit than PCF. However, as can be seen with the 5x5 matrix multiplication
circuit, PCF is much faster in producing fairly optimized circuits. It is possible

20

Circuit Total gates Non-XOR
gates

Compilation
time (s)

128-bit sum 1,924 539 85.18± 0.99%

1600-bit Hamming dist. 16,606 4,038 ∼3,323
32-bit 5x5 matrix mult. 395,550 148,650 ∼15,815

Table 3: Experimental results of compiling circuits with CBMC-GC showing size
of produced circuits and compilation time.

Circuit Total gates Non-XOR
gates

Compilation
time (s)

128-bit sum 4,100 1,403 26.56± 1.1%

1600-bit Hamming dist. 32,912 6,375 18.44± 0.60%

32-bit 5x5 matrix mult. 451,925 131,875 159.00± 0.30%

256-bit RSA 605,028,781 240,058,952 103.68± 0.22%

Table 4: Experimental results of compiling circuits with PCF showing size of
produced circuits and compilation time.

that CBMC-GC would have produced a more optimal circuit if allowed to fully
optimize, but in our test environment, it would have taken days to compile.

From this we can conclude that comparing the current state of both compilers,
the CBMC-GC compiler might be more useful for generating small and moderately
sized circuits, since memory consumption is not a concern with small circuits. Even
compile times of several hours are acceptable from an end-user viewpoint, since
compilation is a one-time offline process. It is more important that the produced
circuit for a key primitive be as efficient as possible, since larger operations can then
be built by composing primitives, for example. Also, since CBMC-GC supports
8-, 16-, 32- and 64-bit data types, one can implement certain functionality more
easily and the circuit itself will be more optimal, as opposed to using only 32-bit
integers.

On the other hand, PCF thrives with large circuits which can be expressed by
cyclic or recursive properties. With these kinds of circuits, CBMC-GC becomes
unpractical to use due to such high compiling times. Also, the circuit produced will
be significantly large and the memory-consumption during the evaluation of such
circuits becomes a serious issue. There are no such concerns with PCF circuits,
however.

We will now describe a protocol which is capable of using Boolean circuits to
perform secure multi-party computations in a generic computational model with
any number of input and result parties.

21

4 Combining garbled circuits with secret sharing
We have now explored and compared the advantages of many useful SMC methods.
Our main goal is to build a protocol which can leverage the capabilities of modern
circuit compilers to easily build efficient SMC protocols for evaluating any Boolean
function. We will call this the hybrid protocol, since it combines the efficiency of
secret sharing with the robustness of Yao’s garbled circuits approach. The hybrid
protocol will work on bitwise secret-shared data, meaning that every bit of the
data is shared independently. As an added gain, our protocol will be usable in
more diverse settings than the regular two-party computation model. Much of the
following material has also been published in a recent research report [41].

In the scope of this thesis, our goal is to provide security in the passive (honest-
but-curious) model, where the corrupted party is assumed to be honest in the
sense that it strictly follows the protocol, but curious, meaning that it will try
to use all data that is available to learn something about other parties’ private
inputs. Security in the passive model guarantees that a corrupted computing
party cannot learn anything else during a secure computation besides what can
be deduced from its own input and output. A more evolved security model is
the active model, where we would have to consider the possibility that one or
more computing parties are maliciously tampering with the protocol by sending
incorrect messages or not following the protocol in other ways.

We will give the description of our protocol in the Sharemind privacy-preserving
computational platform setting, since our prototype implementation of the proto-
col is built directly in the Sharemind platform [40]. We chose Sharemind because
it was available to us and provides a well-developed flexible computation environ-
ment built on secret sharing which could easily be extended with new protocols.

Sharemind provides a runtime which implements a number of different protec-
tion domains [7]. All data which belongs under one protection domain is guarded
by the same set of algorithms and protocols for secure data storage and compu-
tations. Protection domains can use different methods and a varying number of
computing parties to achieve the desired security goals. Our prototype naturally
extends the additive 3-party passive (additive3pp) domain.

The additive3pp domain is based on the 3-out-of-3 additive secret sharing
scheme. Therefore, it uses three computing parties to run secure distributed com-
putations on secret-shared data. There are already a number primitive operations
implemented in the additive3pp domain which are also available for us to use in
our hybrid protocol implementation. All of these protocols provide security in the
passive model and can tolerate at most one corrupted party [5].

We will denote the computing parties as CP1, CP2 and CP3. In the hybrid
protocol, CP1 and CP2 respectively will take the roles of the garbler and evaluator
from Yao’s protocol. Since the hybrid protocol operates on secret-shared data, we

22

will use [[b]] = [[b1, b2, . . . , bn]] to denote a bit vector with length n which is shared
between the computing parties, where [[bi]] represents the i-th shared bit from the
vector. Note that each bit bi is shared individually.

Now, suppose we have a bit vector [[x]] = [[x1, . . . , xn]] shared between the
computing parties and we want to compute the result f([[x]]) = [[y]] = [[y1, . . . , ym]],
where f is a function f : {0, 1}n → {0, 1}m. Let us assume that all computing
parties have access to a Boolean circuit Cf which calculates the function f . Since
the garbling process produces a pair of tokens for each wire, we will use Xb

j ∈
{0, 1}k to denote the token of the j-th wire corresponding to bit b ∈ {0, 1}, where
k is the length of the generated tokens. We say Xb

j has the semantics of b. The
main parts of the hybrid protocol are illustrated in Figure 5.

Oblivious transfer protocol

generate

garble

learn

Resharing protocol

evaluate

learn

Figure 5: Hybrid protocol overview

23

Algorithm 1: Hybrid protocol for processing bitwise secret-shared data with
a garbled circuit
Input: Shared bit vector [[x]] = [[x1, . . . , xn]]
Boolean circuit Cf for the function f : {0, 1}n → {0, 1}m

Output: Shared bit vector [[y]] = [[y1, . . . , ym]] such that [[y]] = f([[x]])
foreach input wire i ∈ {1, . . . , n} do1

CP1 generates a token pair (X0
i , X

1
i) ∈ {0, 1}

k × {0, 1}k2

The computing parties initiate an oblivious transfer protocol which results3

in CP2 receiving {Xx1
1 , . . . , X

xn
n } (the input tokens corresponding to the

actual input bits)
CP1 garbles circuit Cf and sends the garbled truth tables to CP24

CP2 evaluates garbled Cf using input tokens {Xx1
1 , . . . , X

xn
n } and receives5

output wires’ tokens
{
Xy1
o1
, . . . , Xym

om

}
The computing parties produce their output shares and reshare the output6

to receive [[y]]
return [[y]]7

Note, that unlike the baseline Yao’s garbled circuits protocol where input comes
from both the garbler and evaluator, here the input is secret-shared between all
computing parties as well as the output. For oblivious transfer between computing
parties, the protocol makes use of Sharemind’s secure multiplication and addition
protocols on secret-shared integers to perform an oblivious choice [8].

Since we do not want any of the computing parties to actually learn the out-
put of the calculation, the external output wires’ values are also encrypted by the
garbler. However, the evaluator will not send the result of the evaluation back to
the garbler, namely the external output tokens. Instead, the computing parties
will calculate random shares of the output using a perfectly secure resharing pro-
tocol [5]. For clarity, a high-level algorithm of the hybrid protocol is presented as
Algorithm 1.

4.1 Parts of the hybrid protocol

The next sections will cover different parts of the hybrid protocol in detail. We will
also present a proof of the perfect simulatability of the oblivious transfer protocol
following the blueprint described in [5] and argue that the whole hybrid protocol
is secure against a computationally bounded adversary.

24

Algorithm 2: Oblivious transfer of input tokens
Input: CP1 holds the input tokens {X0

1 , . . . , X
0
n, X

1
1 , . . . , X

1
n}

The input bit vector [[x]] = [[x1, . . . , xn]] is shared between all parties
Output: CP2 receives input tokens {Xx1

1 , . . . , X
xn
n }

[[X0]] = [[X0
1 , . . . , X

0
n]] and [[X1]] = [[X1

1 , . . . , X
1
n]] are instantiated as shared1

values, with CP1 taking as his shares the actual tokens and CP2, CP3 taking
zero-shares
[[x̂]] = [[1]]− [[x]]2

[[Y ′]] = [[X0]] · [[x̂]]3

[[Y ′′]] = [[X1]] · [[x]]4

[[Y]] = [[Y ′]] + [[Y ′′]]5

[[Y]] is declassified to CP2 as CP1 and CP3 send their shares of [[Y]] to CP26

CP2 combines the shares of [[Y]] to get {Xx1
1 , . . . , X

xn
n }7

return {Xx1
1 , . . . , X

xn
n }8

4.1.1 Oblivious transfer

Let us first consider the oblivious transfer of the input tokens. The input to the
protocol is [[x1, . . . , xn]] and the garbler CP1 has generated corresponding input
tokens {X0

1 , . . . , X
0
n, X

1
1 , . . . , X

1
n}. We now need an oblivious transfer protocol

from CP1 to CP2 which satisfies the following conditions:

1. As the result, CP2 should learn {Xx1
1 , . . . , X

xn
n } and nothing else

2. CP1 must not learn {Xx1
1 , . . . , X

xn
n }, i.e, which tokens were transferred to

CP2

3. No computing party can learn the input {x1, . . . , xn}

It can be seen easily that if we had an oblivious choice protocol which follows
conditions 2, 3 and outputs [[Xx1

1 , . . . , X
xn
n]] shared between the computing parties,

then satisfying condition 1 is trivial, since we can extend the oblivious choice by
simply sending all result shares from other computing parties to CP2. Performing
an oblivious choice on secret-shared data, however, can be easily implemented
using secure multiplication and addition protocols. The resulting oblivious transfer
protocol is described in Algorithm 2.

On lines 2-5, Sharemind’s additive3pp protection domain multiplication and
addition protocols are used to perform an oblivious choice. The calculations can
be summarized as [[Y]] = [[X0]] · ([[1]] − [[x]]) + [[X1]] · [[x]] , but for clarity, separate
primitive operations which are implemented by different protocols are written on
separate lines. As the result, [[Y]] contains the necessary tokens which need to be

25

transferred to CP2. Then on line 6, the shares of [[Y]] are sent to CP2 who can
combine them to receive the actual input tokens. Note that the tokens X i are
bit strings of length k. Although the multiplication and addition protocols are
defined on elements of a ring Z2n , we can easily encode the tokens as an array of
Z2n elements when k mod n = 0, and extend [[x]] and [[x̂]] to match the extended
length of the tokens.

We will prove in Section 4.2.1 that the oblivious transfer protocol described in
Algorithm 2 is perfectly simulatable according to [5].

4.1.2 Garbling

After the oblivious transfer of the input tokens to the evaluator, the hybrid protocol
is very similar to the standard Yao’s protocol and can be implemented using various
garbling schemes and circuit formats.

Our implementation uses the garbling scheme GaXR presented by Bellare et
al. [1], which is based on modeling fixed-key AES as a random permutation. Bellare
et al.’s garbling scheme is one of the most efficient garbling schemes to date and
takes full advantage of hardware with AES-NI support. Also, the chosen scheme
is compatible with the well-known free-XOR [26] and garbled row reduction [36]
optimizations. For encryption, we chose the A4 construction over other alternatives
presented in the paper since it helps reduce network communication, which we
expected to be a performance bottleneck. Note that this garbling scheme is defined
for a specific circuit construction. The circuit must consist of only 2-to-1 gates
with arbitrary fan-out and functionality. Each wire, which is not an external input
wire, must be an outgoing wire of a gate. External output wires cannot be external
input wires or inputs to gates. The circuit’s external input and output wires must
be unique and no wire can twice feed a gate.

Following the notation of [1], each circuit C can be described as a tuple
(n,m, q, A,B,G), where n is the number of external input wires, m the num-
ber of external output wires and q the number of gates in C. Then InputWires =
[1, . . . , n], Wires = [1, . . . , n+ q], OutputWires = [n+ q −m+ 1, . . . , n+ q] and
Gates = [n + 1, . . . , n + q]. Functions A : Gates → Wires\OutputWires and
B : Gates→ Wires\OutputWires respectively identify the first and second input
wire of any gate. The function G : Gates× {0, 1}2 → {0, 1} determines the func-
tionality of each gate. For a given g ∈ Gates, the function G(g) : {0, 1}2 → {0, 1}
denotes the functionality of gate g. We have presented detailed algorithms of the
whole protocol for each computing party in Figure 6.

For each input wire i ∈ InputWires, the garbler CP1 generates a token pair
(X0

i , X
1
i) with X0

i and X1
i having the semantics of 0 and 1 respectively. We will

call the last bit of a wire token it’s value bit, since the evaluator uses it to choose
which row in the garbled truth table to decrypt. However, to hide the true se-

26

Algorithm 3: Hybrid protocol algo-
rithm of CP1

Input: Input shares x∗1 = [x11, . . . , xn1]
and circuit
Cf = (n,m, q, A,B,G)

Output: Shares [y11, . . . , ym1] of [[y]]
such that [[y]] = f([[x]])

R
$←− {0, 1}k−1 ‖ 11

for i←− 1 to n do2

pi
$←− {0, 1}3

X0
i

$←− {0, 1}k−1 ‖ pi, X1
i ←− X0

i ⊕R4

OT ([X0
1 , . . . , X

0
n], [X

1
1 , . . . , X

1
n], x∗1)5

for g ←− n+ 1 to n+ q do6

a←− A(g), b←− B(g)7

if G(g) = XOR then8

X0
g ←− X0

a ⊕X0
b , X1

g ←− X0
g ⊕R9

else10

for i←− 0 to 1, j ←− 0 to 1 do11

u←− i⊕ lsb(X0
a)12

v ←− j ⊕ lsb(X0
b)13

r ←− G(g, u, v)14

if i = 0 and j = 0 then15

Xr
g ←− Enc(Xu

a , X
v
b , g, 0

k)16

Xr−1
g ←− Xr

g ⊕R17

else18

P [g, i, j]←−19

20 Enc(Xu
a , X

v
b , g,X

r
g)

Send P to CP221

for i←− 1 to m do22

y′i1 ←− lsb(X0
n+q−m+i)23

[y11, . . . , ym1]← Reshare([y′11, . . . , y
′
m1])24

return [y11, . . . , ym1]25

Algorithm 4: Hybrid protocol algo-
rithm of CP2

Input: Input shares x∗2 = [x12, . . . , xn2]
and circuit
Cf = (n,m, q, A,B,G)

Output: Shares [y12, . . . , ym2] of [[y]]
such that [[y]] = f([[x]])

[X1, . . . , Xn]←− OT (0k·n, 0k·n, x∗2)1

Receive P from CP12

for g ←− n+ 1 to n+ q do3

a←− A(g), b←− B(g)4

i←− lsb(Xa), j ←− lsb(Xb)5

if G(g) = XOR then6

Xg ←− Xa ⊕Xb7

else if i = 0 and j = 0 then8

Xg ←− Enc(Xa, Xb, g, 0
k)9

else10

Xg ←− Dec(Xa, Xb, g, P [g, i, j])11

for i←− 1 to m do12

y′i2 ←− lsb(Xn+q−m+i)13

[y12, . . . , ym2]← Reshare([y′12, . . . , y
′
m2])14

return [y12, . . . , ym2]15

Algorithm 5: Hybrid protocol algo-
rithm of CP3

Input: Input shares x∗3 = [x13, . . . , xn3]
Output: Shares [y13, . . . , ym3] of [[y]]

such that [[y]] = f([[x]])
OT (0k·n, 0k·n, x∗3)1

[y′13, . . . , y
′
m3]←− 0m2

[y13, . . . , ym3]← Reshare([y′13, . . . , y
′
m3])3

return [y13, . . . , ym3]4

Figure 6: Detailed algorithms of the hybrid protocol for all computing parties.

27

mantics of the tokens from the evaluator, each token’s value bit is masked with a
random bit pi

$←− {0, 1}, which is called a permutation bit. This means that if the
permutation bit pi equals 1, then the token’s value bit will not correspond to the
token’s semantics, but rather the reverse. We will denote a token Xb

i with a value
bit wi as Xb

i |wi. Finally, the generation results in tokens (X0
i |pi, X1

i |pi) for wire i,
with value bits pi and pi respectively. Note that the value bits may correspond to
the tokens’ semantics, or they may be flipped with probability 1

2
.

Since we are using the free-XOR technique, the input tokens are generated
using a global random token R $←− {0, 1}k−1 ‖ 1, where the last bit of R is always
1. This guarantees that tokens with different semantics also have different value
bits, since X1

i is generated as X1
i ← X0

i ⊕R. The free-XOR technique enables the
evaluator to evaluate XOR-gates without using the gate’s garbled truth tables.

After the input tokens have been generated, each computing party participates
in the oblivious transfer of the input tokens to CP2, using the protocol described
in the previous section. We use OT to denote the call to the oblivious transfer
protocol. Each party inputs their shares of [[x]] to the OT protocol and CP1 also
inputs the generated input tokens. Note that the OT protocol is run synchronously
on all three computing parties.

After completing the oblivious transfer, CP1 starts garbling the circuit and
produces the encrypted truth tables of all gates, which are saved in a data structure
P . For each gate g, the encrypted output corresponding to input tokens with value
bits i, j ∈ {0, 1} is stored in P [g, i, j]. However, due to the free-XOR technique,
XOR-gates are not encrypted, but instead the tokens for a XOR-gate’s output
wire are chosen such that the evaluator CP2 need only perform a bitwise XOR
operation on the two input tokens to receive the corresponding output token [26].

For non-XOR gates, the garbled row reduction technique applies, meaning
that the first row of each non-XOR gate’s truth table is not encrypted, but rather,
the gate’s output tokens are chosen such that CP2 can obtain the output token
corresponding to input tokens Xu

a |0 and Xv
b |0 directly from those input tokens [36].

For the remaining three rows of the truth table, CP1 encrypts the corresponding
output tokens using the input wires’ tokens and saves them in P . The procedure
lsb(X) denotes taking the least significant bit from X and is used to extract the
value bit from a wire’s token.

After all gates are garbled, CP1 sends P to CP2, who will start evaluating
the circuit gate-by-gate. The encryption scheme used to encrypt the truth tables
is a function Enc : {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k which takes
secret tokens A and B and a tweak T to encrypt X, resulting in a ciphertext
Enc(A,B, T,X). The function Enc corresponds directly to the dual-key cipher
construction A4 in Bellare et al.’s paper [1] and is defined as

28

Enc(A,B, T,X) = π(K ‖ T)[1:k] ⊕K ⊕X

with
K = 2A⊕ 4B

where X,A,B ∈ {0, 1}k and T ∈ {0, 1}τ . The function π : {0, 1}k+τ → {0, 1}k+τ
is a random permutation and π(K ‖ T)[1:k] denotes taking the first k bits of the
result. In our implementation we use a fixed-key AES-128 with k = 80 and τ = 48
to instantiate π, which provides reasonable security guarantees for this garbling
scheme [1]. The encryption key for AES is randomly generated and renewed after
each circuit evaluation. For the tweak T , we use the gate’s index encoded as
a 48-bit integer. 2A denotes a doubling function which can be implemented in
many different ways, each providing slightly different security guarantees [1]. We
chose multiplication over finite field GF (2k) due to it providing the best security
guarantees. We used the irreducible polynomial x80 + x9 + x4 + x2 + 1 from [38]
to implement the finite field multiplication.

Decryption is symmetric and is defined as

Dec(A,B, T,X) = Enc(A,B, T,X).

After the evaluator CP2 has received both the external input tokens and the
garbled truth tables, it will start evaluating the circuit gate-by-gate. For a non-
XOR gate g with input wires a and b, the evaluator takes the value bits of the
input tokens X i

a|wa and X
j
b |wb and decrypts the truth table row P [g, wa, wb] using

Dec(X i
a, X

j
b , g, P [g, wa, wb]). The decrypted output wire token will then be used to

decrypt the truth tables of successive gates.
After CP2 has succesfully evaluated the whole circuit and received the external

output tokens, the result [[y]] is being shared between CP1 and CP2 as CP2 holds
the value bits of the output tokens and CP1 holds the permutation bits. The XOR
of the two provides the actual result since the value bits represent the semantics
of the tokens, but are masked with the permutation bits.

The last step in the protocol is resharing the output securely between all three
computing parties. This is done by using the Reshare protocol described in [5].
The Reshare protocol is also run synchronously on all three computing parties.
Finally, the protocol ends with all computing parties holding a random share of
the final result [[y]] = f([[x]]).

4.2 Security proof sketch

We have now described the hybrid protocol in detail and will give a proof that the
presented protocol is secure. Our goal is to prove that the hybrid protocol is secure

29

against a computationally bounded adversary. We will show that the oblivious
transfer protocol is perfectly simulatable following the security proof framework
of [5]. Note that a more evolved security framework has recently been published
by Bogdanov et al. [6], which extends the framework of [5] to provide universal
composability for simulatable protocols. We will also provide a proof sketch that
the garbling procedure is secure, based on results from [1].

The security framework of [5] is based on the ideal vs real world paradigm.
To prove the security of a multi-party computation protocol, we first model an
ideal implementation of the protocol using a trusted third party. In the ideal
implementation, the computing parties will submit their inputs to the trusted
third party, who will perform all necessary computations securely and send the
output back to the computing parties.

The aim is to show then that attacks against the protocol in the real world
can be transformed into attacks in the ideal world, which are thereby roughly
equivalent in terms of resources used and probability of success. Since we are
working in the passive model, we will assume one of the computing parties is
corrupted by an adversary A, meaning that all inputs, outputs and internal state
of that computing party will be seen by A. If we can show that, for the protocol
in question, the adversary cannot distinguish between the real and ideal world
situations, then we can say that all attacks in both settings are roughly equivalent.
This can be shown by constructing a simulator S which acts as a proxy between
the trusted third party and the corrupted computing party. The simulator must
be able to simulate all messages to the corrupted party that would occur in a real
world run of the protocol, while being in the ideal world situation.

We will show for the oblivious transfer, that for each computing party CPi,
there exists an efficient perfect non-rewinding simulator which can simulate all the
incoming messages to CPi. A simulator is considered perfect if the distributions
of the incoming messages to the adversary coincide in the real world and ideal
world. A non-rewinding simulator does not rewind the adversary’s state, rather,
the protocol is executed in a straight line. To show perfect simulatability, we must
also show that the corrupted party’s output distribution is equal in the real world
and ideal world situations. Perfect simulatability guarantees that the corrupted
party does not learn anything except what can be derived from his own input and
output.

We will also use Theorem 4 from [5], which states that a composition of several
perfectly simulatable sub-protocols is also perfectly simulatable, if

• the output of each sub-protocol is either the input of another sub-protocol
or the output of the main protocol, and

• the data dependency graph of sub-protocols is a directed acyclic graph.

30

In our analysis, we can ignore the resharing of the output shares in the end of
the protocol, since we are using the perfectly secure resharing protocol from [5].
Intuitively, resharing the output guarantees that the output shares are completely
independent of the input shares or any intermediate results, which ensures the
composability of our protocol.

We will now show perfect simulatability for the oblivious transfer and security
for the whole hybrid protocol. We argue, that combined with the recent work
of [6], this security analysis can be extended to provide universal composability
in the context of Canetti’s universal composability framework [11]. However, this
bachelor’s thesis does not contain a full rigorous analysis of that claim.

4.2.1 Simulatability of oblivious transfer

Let us show that the oblivious transfer protocol described in Section 4.1.1 is per-
fectly simulatable.

The oblivious transfer can be divided into two parts:

1. the oblivious choice [[Y]] = [[X0]] · ([[1]]− [[x]]) + [[X1]] · [[x]], and

2. declassifying [[Y]] to CP2.

The first step is the oblivious choice, after which, the parties will receive shares
(Y1, Y2, Y3) which combine into Y . Notice that the oblivious choice consists of
only the secure multiplication and addition protocols from [8], the composition
of which is provably perfectly simulatable, since each computing party’s incom-
ing view consists of only uniformly random messages. Using Theorem 4 from [5]
and the fact that the composition of the multiplication and addition protocols is
perfectly simulatable, it follows that the whole oblivious choice is perfectly sim-
ulatable. Therefore, we know that a succesful simulator for the oblivious choice
exists for whichever computing party and we can provide simulations Y ◦1 , Y ◦2 and
Y ◦3 to the computing parties.

For computing parties CP1 and CP3, the only incoming communication that
occurs during the whole protocol, is during the oblivious choice step. Therefore,
the oblivious choice simulator is also a simulator for the whole oblivious transfer
protocol for parties CP1 and CP3.

For CP2, however, we must additionally simulate the shares of [[Y]] sent by
CP1 and CP3. The shares Y1 and Y3 are also trivial to simulate, since the re-
sharing of shares at the end of the multiplication protocol guarantees that the
resulting output shares are uniformly distributed [5]. Therefore, the shares Y1 and
Y3 are simulatable by simply sending random Y ◦1 and Y ◦3 to CP2. Finally, CP2 can
construct some uniformly random Y ◦ from the simulated shares, which is indistin-
guishable from an actual input token, since tokens generated by the garbler in the
real world are also uniformly random.

31

We have therefore shown that an efficient simulator SOT exists, which can
simulate the real world execution of the oblivious transfer protocol. Since the
distribution of all messages is identical to the real world, this proves the perfect
simulatability of the oblivious transfer.

4.2.2 Security of the hybrid protocol

We will now provide a proof sketch that the whole hybrid protocol as described in
Figure 6 is secure against a computationally bounded adversary. We can use our
previous construction of SOT to construct a simulator S for the whole protocol,
ignoring the reshare in the end.

Here we cannot provide information-theoretic simulatability, since the circuit’s
garbled tables are not simulatable in that sense. An adversary with unbounded
computational capability could learn something about the semantics of the input
tokens based on the garbled tables. However, using a sufficiently secure garbling
scheme, we can guarantee that for a real-life adversary with practical limitations,
this probability is negligibly small.

We can see from the detailed algorithm of the whole hybrid protocol on Figure 6
that the only communication that occurs between the computing parties after the
oblivious transfer, is sending the circuit’s garbled tables P to CP2. Since there is
no incoming communication to CP1 and CP3, we only need to concern ourselves
with the incoming view of CP2. It is necessary therefore to simulate the garbled
truth tables P , so that an adversary could not distinguish between the simulated
tables and the actual garbled circuit in the real world.

Let us recall, that as the final result of the protocol, disregarding the reshare
in the end, the output is secret-shared between CP1 and CP2. The permutation
bits for the output tokens are held by CP1 and CP2 holds the value bits, which
together form the actual semantics of the tokens.

We will construct the simulation as follows. During the oblivious transfer, the
simulator SOT has constructed messages Y ◦1 , Y ◦2 and Y ◦3 , which together combine
into some input token Y ◦, that the evaluator will use to evaluate the garbled circuit
sent to it.

The simulator can then use the same algorithm, as the garbler uses in the real
protocol, to generate a set of garbled tables. We claim that the simulator can
produce the garbled tables in such a way, that they correspond to the topological
structure of the circuit being evaluated, and that the semantics of all output keys
that the adversary will receive after evaluating using Y ◦ are 0. However, the actual
output shares the adversary receives, namely the value bits of the output tokens,
are completely random. This is because during the garbling process, the actual
semantics of the keys are masked with random permutation bits. The simulator
follows the same process, therefore, as the semantics of the resulting output keys

32

are guaranteed to be 0, then the adversary will receive the generated random
permutation bits as his share of the result.

Intuitively, the simulator can construct such tables, since it can modify the
truth tables of the actual circuit and choose the semantics of the input tokens
in a meaningful way, knowing also that the adversary will use the tokens Y ◦ for
evaluation. In this situation, the adversary learns nothing from the result of the
evaluation, since the result is simply a random bit vector. We can then bound
the adversary’s chance of distinguishing between the simulated and real garbled
tables based on a similar security analysis as can be found in both [1] and [43]. A
rigorous proof of this would be highly technical, and as such, is left out of the scope
of this thesis. However, since here the adversary does not possess any additional
advantages than described in [1], we claim that reasonable security bounds can be
proven.

33

5 Implementation details
We have built a prototype of the hybrid protocol to test its capability and use-
fulness. We built our prototype directly onto version 3 of the Sharemind privacy-
preserving computational platform [5]. The implementation is written in C++
so that it could be seamlessly integrated into the protocol suite of Sharemind’s
additive3pp protection domain and achieve performance usable in practice. The
prototype provides a separate primitive protocol among other secure computation
protocols in the protection domain, like addition and multiplication, which we
have also used in the hybrid protocol.

Using the common Sharemind development framework, we can send secret-
shared data to the Sharemind servers and into our protocol through a client ap-
plication. The output will eventually be shared between the servers, but we can
receive the actual result by publishing it to the client application. Considering
the general SMC application model, the client acts as an input and result party
at the same time and the Sharemind servers act as computing parties. During the
whole process, no single Sharemind server will learn anything about the inputs or
outputs of the protocol.

5.1 Using the protocol to implement complex primitive op-
erations

For a platform like Sharemind, our protocol prototype is well-suited for imple-
menting primitive operations that are difficult or inefficient to express purely on
the algebraic properties of secret sharing.

Current Sharemind protocols in the additive3pp domain are designed to oper-
ate on elements of a ring Z2n [8], but such protocols are not well-suited for robust
bit-level manipulation over data types with an arbitrary bit-width. The hybrid
protocol is much better suited for implementing such operations, since we have
designed it to operate on bitwise secret-shared boolean vectors with an arbitrary
length.

Since the hybrid protocol is composable, it can be combined with other prim-
itive protocols to provide a versatile set of available secure operations to be used
in applications. The output of one circuit can be used as the input to another
circuit or even a different Sharemind protocol. The advantage of this approach
is that we can support a wide range of possible secure calculations by composing
primitives without having to generate circuits on the fly or compile huge Boolean
circuits that include large input databases.

34

5.2 Circuit setup

Currently, we have used different circuits from Stefan Tillich and Nigel Smart from
the University of Bristol [42] and Kreuter et al. [29] for testing and benchmarking
our prototype. Also, we have experimented with the PCF circuit compiler and
interpreter [27] to generate custom circuits from C programs and evaluate them
using our hybrid protocol. In all cases, the circuits are stored as individual files
on the Sharemind computing party servers. The protocol takes the name of the
circuit as an input argument and parses the corresponding circuit file to compute
the result. Both the garbler and evaluator parse the circuit exactly the same way
since we are not required to hide the function that is evaluated, only the input
and output data along with intermediary computation results.

Tillich and Smart’s circuits are presented in a straight-forward format which
lists all gates in the circuit along with their input and output wires in a topological
order. For these circuits, we wrote our own simple circuit parser which reads the
whole circuit structure into memory once before evaluation. Since our chosen
garbling scheme is not suitable for garbling 1-to-1 gates, our parser optimizes out
the logical inverse gates from these circuits. This is achieved by modifying the truth
tables of the gates which have inputs originating from an inverse gate. However,
since we do not want to lose XOR gates from the circuit, we do not modify their
truth tables in case of an inverted input, but change the truth tables of successive
non-XOR gates instead. Removing the inverse gates in such a way was not possible
in all cases without violating the circuit structure needed for our garbling scheme.
We therefore did not use these circuits to evaluate our protocol. Since evaluating
the circuit requires no extra information from the circuit file, the parsing can be
done in an offline phase, which reduces the time spent for garbling and evaluating.
However, keeping the whole circuit directly in memory consumes large amounts of
memory, which makes this method impractical for very large circuits.

Kreuter et al. kindly provided us with a parser for their circuits, which we used
as basis in our protocol. Their circuits are presented in a compact binary format.
The parser provides an interface which emits the circuit’s gates one-by-one. At
any time, only a working set of the circuit’s wires are kept directly in memory. To
efficiently parse the circuit at runtime, the whole circuit file is memory-mapped.
However, this is simply a convenient method for reading the circuit file fast. In
theory, the parser could hold only a fixed portion of the circuit file in memory at
any one time. This method would scale much better with larger circuits in terms of
memory consumption, but introduces a slight performance drawback, since circuits
need to be parsed again for each successive evaluation, increasing the time spent
for garbling and evaluating.

We also integrated the PCF interpreter succesfully with our hybrid protocol
prototype. The C implementation of the PCF interpreter can be used as an ex-

35

ternal library and provides a circuit parsing black box to be used with any secure
computation system to handle parsing and evaluating circuits compiled with the
PCF compiler.

5.3 Optimizations

Our hybrid protocol contains some standard Yao protocol optimizations for
the garbling and evaluating of circuits. As discussed in Section 4.1.2, the gar-
bling scheme we use incorporates the free-XOR [26] and garbled row reduction [36]
optimizations.

The free-XOR technique removes the need to garble XOR-gates by choosing
the wire tokens in a clever way, which allows the evaluator to compute the correct
output token directly from the input tokens. This greatly reduces the commu-
nication cost of the garbling procedure, as no garbled tables need to be sent for
XOR-gates. Also, the computational cost for garbling XOR-gates is minimized,
since there is no need to encrypt XOR-gates’ truth tables. In theory, both com-
munication and computational cost of garbling and evaluation are reduced to the
fraction of non-XOR gates in the used circuit.

The garbled row reduction method further reduces the communication overhead
of garbling by 25%. This is achieved by setting one of the tokens for the output
wire of a non-XOR gate as a function of two input wire’s tokens. Then for these
two input tokens, the corresponding output token can be calculated directly by the
evaluator without using the garbled truth table of the gate, effectively reducing
the size of the garbled truth table by one row.

We are also using a streaming approach to the garbling and evaluating of
circuits to parallelize the work of the garbler and the evaluator. When the garbler
has finished garbling a batch of the circuit’s gates, he can send the garbled truth
tables to the evaluator, who can start evaluating the circuit while the garbler
encrypts the next batch of gates. Currently, the batch size is fixed in our prototype,
but in theory, the optimal batch size for circuit streaming can be fine-tuned to
match the running Sharemind instance’s network and hardware capabilities and
the circuit being evaluated.

36

6 Experimental results
We now present the performance results of our implemented hybrid protocol pro-
totype on Sharemind 3. The prototype was benchmarked with various circuits of
different size from Stefan Tillich and Nigel Smart [42] and Kreuter et al. [29] The
descriptions of the used circuits and the corresponding performance results are
presented in Tables 5 and 6 respectively.

Table 5 lists - for every circuit - the size of the input in bits, the overall number
of logic gates in the circuit, and the number of non-XOR gates in the circuit. We
did not count logical inverse gates in the gate counts since these are optimized out
for Tillich and Smart’s circuits and Kreuter et al.’s circuits did not contain any.
The batch size for streaming garbled tables to the evaluator was fixed for all test
runs on 35,000 non-XOR gates’ tables.

The tests were run on a cluster with three nodes, all hosting Sharemind version
3 servers, with each node acting as a single computing party. All nodes had 48GB
of RAM and a 12-core 3GHz CPU which supports HyperThreading. The nodes
were connected to a LAN with 1 Gbps full duplex links.

In Table 6, the performance results for all circuits are presented. The table
lists the mean times spent on different phases of the protocol separately, and also
the mean total elapsed time. All times are reported in milliseconds with a 95%
confidence interval, where 123k denotes 123,000 ms. For each circuit we conducted
two sets of experiments, one with AES-NI instructions enabled and the other
without AES-NI, but using OpenSSL’s v1.0.1 AES implementation instead. This
enabled us to measure the effect of AES hardware instructions on our protocol’s
performance.

The initial parsing time for Kreuter et al.’s circuits is very small due to the
fact that the circuit is actually parsed gate-by-gate during garbling and evaluation.
Initially, the circuit is memory-mapped so that it could be efficiently parsed during
runtime. The runtime parsing time is reflected in the garbling and evaluation times
for Kreuter et al.’s circuits.

For Tillich and Smart’s circuits, the whole circuit is parsed once before gar-
bling/evaluation. The circuit format is much less efficient to parse than Kreuter et
al.’s and therefore the initial parsing times are quite significant. Also, our custom-
built parser might not be optimal for parsing. However, in theory the circuit could
be parsed once in an offline phase and reused for multiple evaluations, but this
approach is not viable if very large circuits need to be evaluated since it would
consume large amounts of memory.

The garbling and evaluation are executed in parallel on different computing
parties and times include the time spent on communication in addition to the
computational time. Due to network layer instability issues, we were forced to
make the garbler thread sleep for 40 ms after each batch of garbled tables, except

37

the last, was sent. 40 ms was enough so that the next batch would not be sent
until the previous had been received by the evaluator. Therefore, the garbling and
evaluation times of our prototype are roughly the same for larger circuits. For
smaller circuits, the garbling time is almost always smaller, which is due to the
communication overhead of sending garbled tables over the network, as evaluation
is actually less computationally intensive than garbling.

For the oblivious transfer phase and the total runtime of the protocol, the
mean was calculated from the maximum of reported times of all computing parties,
meaning that only the reported time of the last computing party to finish was used
in calculating the mean.

38

Circuit
Input
size
(bits)

Total
gates

non-XOR
gates Description

Kreuter et al.’s circuits

mil4 10 57 35 Solves the millionaire’s
problem for 4-bit values

mil128 258 1,793 1,027 Solves the millionaire’s
problem for 128-bit values

AES 384 50,935 16,070
Encrypts a 128-bit block with
given key using AES-128
block cipher

edt-
dist128 272 3,442,956 1,435,140 Calculates the edit distance of

two 128-bit strings

dijkstra50 5,216 22,114,948 10,175,623
Computes the Dijkstra
algorithm on a given 50-node
graph

dijk-
stra100 10,416 168,432,798 77,694,673

Computes the Dijkstra
algorithm on a given 100-node
graph

Tillich and Smart’s circuits
mult-
32x32 64 6,995 5,926 Multiplies two 32-bit numbers

AES 256 31,924 6,800
Encrypts a 128-bit block with
given key using AES-128
block cipher

SHA-256 512 132,854 90,825 Calculates the SHA-256 hash
of a 512-bit block

Table 5: Descriptions of circuits used for benchmarking the hybrid protocol

39

Circuit Initial
parsing

Oblivious
transfer Garbling Evaluation Total

Kreuter et al.’s circuits

mil4
0.1±0.7% 37.4±1.5% 0.17±0.6% 0.03±0.3% 45.6±0.1%
0.1±0.7% 37.8±1.4% 0.18±0.5% 0.04±0.4% 45.6±0.1%

mil128
0.2±0.7% 40.0±1.5% 2.3±0.1% 3.2±9.2% 51.0±1.1%
0.2±0.8% 40.0±1.6% 2.7±0.1% 3.6±9.2% 51.1±1.1%

AES
0.2±1.4% 44.0±1.8% 29.8±0.6% 87.8±0.5% 126.8±0.5%
0.2±1.5% 44.8±1.7% 34.4±0.6% 92.4±0.5% 132.9±0.6%

edt-dist128
0.2±2.8% 41.0±3.3% 3.88k±0.1% 4.00k±0.1% 4.04k±0.1%
0.2±2.9% 41.1±3.9% 4.29k±0.1% 4.40k±0.1% 4.44k±0.1%

dijkstra50
2.0±2.6% 124.2±5.4% 27.97k±0.2% 28.05k±0.2% 28.18k±0.2%
1.9±3.2% 124.8±5.5% 31.34k±0.1% 31.41k±0.1% 31.54k±0.2%

dijkstra100
5.3±1.6% 311.3±4.6% 226.8k±2.8% 226.8k±2.8% 227.2k±2.8%
5.3±1.8% 326.8±3.6% 252.3k±1.9% 252.3k±1.9% 252.7k±1.9%

Tillich and Smart’s circuits

mult-32x32
37.8±0.3% 38.6±1.5% 12.9±0.4% 30.2±0.9% 104.8±0.5%
38.3±0.3% 39.2±1.6% 16.3±0.5% 36.0±1.3% 111.3±0.6%

AES
101.4±0.2% 43.1±1.6% 16.1±0.8% 38.3±1.3% 182.5±0.4%
100.6±0.2% 44.2±1.7% 19.5±0.9% 43.8±0.9% 187.9±0.3%

SHA-256
768.8±0.3% 92.8±5.1% 195.8±0.3% 287.3±0.3% 1,146±0.4%
778.3±0.3% 94.4±4.5% 224.4±0.3% 305.7±0.3% 1,171±0.3%

Table 6: Performance results of the hybrid protocol in milliseconds with 95%
confidence interval. For every circuit, the first row shows results with AES-NI
instructions enabled and the second row with using OpenSSL v1.0.1 AES imple-
mentation

40

In [23], the authors of CBMC-GC present performance results of evaluating
their compiled circuits using the secure two-party computation framework of [24],
which also provides security in the passive model. They report the total time
for garbling and evaluating a 32-bit multiplication circuit as 127 ms in a LAN
experiment, whereas our experiment with the multiplication circuit took 30.2 ms
for garbling and evaluation, even though the multiplication circuit we used con-
tained about 3.5 times more non-XOR gates. The largest circuit benchmarked
in [23] was the 8x8 matrix multiplication circuit, which contained 3.25 million
gates with 900,000 non-XOR gates. The garbling and evaluation for that circuit
took a total of 18.2 seconds. Our protocol evaluated a 128-bit edit distance cir-
cuit which is of comparable size, although slightly larger, in 4 seconds. Overall,
our total evaluation times are several times smaller, which is probably due to the
fast secret-sharing based oblivious transfer and the efficient garbling scheme with
AES-NI by Bellare et al. [1] we used.

We can also compare our protocol’s performance against protocols based on
secret sharing. In [30], Laur et al. implement the AES-128 block cipher with
secret-shared key and plaintext using only secret sharing, also on the Sharemind
platform. They achieved a single AES encryption, including key expansion, in 652
ms. Compared to this result, our circuit-based approach achieves better perfor-
mance for a single operation, namely using the AES circuit by Kreuter et al, we
perform a single encryption in 127 ms, also including the key expansion. However,
currently our protocol does no support parallelization in evaluating circuits and
therefore, the cost for evaluating many circuits increases linearly. Laur et al. on
the other hand are able to achieve an amortized cost of 0.37 ms for a single AES
operation, since their protocol is easily parallelizable. Parallelizing the evaluation
of many circuits seems to be a promising optimization in the future, since cur-
rently, running our protocol made use of only a fraction of the hardware capability
and communication bandwidth available in our test environment.

Also, the garbling performance achieved by Bellare et al. [1] is significantly
higher than our implementation, although the same garbling scheme is used. They
report a garbling time of 637 µs for an AES-128 circuit compared to our 16 ms with
Tillich and Smart’s AES circuit. This performance difference can most probably
be explained with Bellare et al.’s JustGarble system being highly optimized in the
code level, using special compiler intrinsics to access SSE4 instructions and 128-
bit registers to hold the wire tokens. Also, the performance gains they receive by
using AES-NI instructions are much higher than we observed in our experiments.
This suggests that our implementation could still be significantly optimized by
non-cryptographic engineering efforts.

41

7 Conclusion
In this thesis, we have explored the seminal Yao’s garbled circuits methods, which
has enabled the construction of many SMC platforms and solutions. Already
today, it is possible to develop applications for the secure manipulation of private
data using SMC. However, the implementation of primitive protocols that can be
composed to perform secure computations is often quite complex.

We have presented a general-purpose solution based on Yao’s garbled circuits
and secret sharing techniques, to simplify the construction of protocols that pro-
cess secret-shared data. The hybrid protocol can be used in a variety of settings,
where the number of parties associated with the secure computation application
is arbitrary. The protocol’s security is shown in the passive model against compu-
tationally bounded adversaries.

Two state-of-the-art Boolean circuit compilers from C were also analyzed and
benchmarked. These compilers allow our protocol to be easily extended with arbi-
trary computational abilities. Together, the hybrid protocol and circuit compilers
form an efficient toolchain for building robust SMC protocols.

We have described the prototype implementation of the hybrid protocol built
into the Sharemind platform additive3pp protection domain. The prototype was
tested and benchmarked with various different circuits. We also integrated the
capability of evaluating circuits produced with the PCF circuit compiler into the
built prototype.

The result of this thesis is an efficient general-purpose SMC protocol, that en-
ables arbitrary computations on secret-shared data. We have improved on previous
work in the area by using modern optimizations to the standard Yao’s garbled cir-
cuits protocol and also making use of a refined garbling scheme. Our protocol
also extends beyond the rather narrow two-party computational model. We have
presented a proof sketch of our protocol’s security in the passive model, using
the Sharemind security proof framework. Our prototype succesfully demonstrates
the capability of the hybrid protocol and achieves an increase in performance by
orders of magnitude compared to the previous implementation. Our prototype’s
performance is also on par with results from standard implementations of Yao’s
technique, while still allowing for future improvements.

Using our protocol, constructing general-purpose efficient protocols for SMC
is easy, as circuit compilers like PCF and CBMC-GC are able to produce the
circuits needed to perform any calculation using our protocol. We have analyzed
both compilers and seen that while CBMC-GC produces optimal circuits, PCF can
compile fairly small and usable circuits in a fraction of the time it takes CBMC-GC
to compile and optimize. Also, PCF enables evaluation of arbitrarily large circuits
due to their memory-efficient circuit representation.

For future work, we found there is still much room for optimization in our

42

hybrid protocol prototype. Currently, we do not support evaluating many circuits
in parallel, and as such, we are not using the available hardware potential to the
fullest. Also, comparing our garbling benchmarks with the work of M. Bellare,
we conclude that the prototype could be further optimized by non-cryptographic
engineering efforts.

Since we have currently only considered security in the passive model, a natural
step forward would be to extend our protocol to provide security against malicious
adversaries. However, working in the malicious model adds a significant computa-
tional overhead and a careful study of available methods is needed to address this
in an effective way.

Our future plan is to implement a complete suite of protocols using our hybrid
protocol protoype by leveraging the capabilities of the circuit compilers. One
potential candidate for this is a full secure protocol suite implementing floating-
point arithmetic according to the IEEE 754 standard.

43

References
[1] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling

from a fixed-key blockcipher. IACR Cryptology ePrint Archive, 2013:426,
2013.

[2] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure
multi-party computation. In P. Ning, P. F. Syverson, and S. Jha, editors,
ACM Conference on Computer and Communications Security, pages 257–266.
ACM, 2008.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In J. Simon, editor, STOC, pages 1–10. ACM, 1988.

[4] G. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979
AFIPS National Computer Conference, pages 313–317, Monval, NJ, USA,
1979. AFIPS Press.

[5] D. Bogdanov. Sharemind: programmable secure computations with practical
applications. PhD thesis, University of Tartu, 2013.

[6] D. Bogdanov, P. Laud, S. Laur, and P. Pullonen. From input-private to
universally composable secure multiparty computation primitives. In CSF.
IEEE, 2014.

[7] D. Bogdanov, P. Laud, and J. Randmets. Domain-polymorphic programming
of privacy-preserving applications. In Proceedings of the First ACM Work-
shop on Language Support for Privacy-enhancing Technologies, PETShop ’13,
ACM Digital Library, pages 23–26. ACM, 2013.

[8] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure
multi-party computation for data mining applications. International Journal
of Information Security, 11(6):403–418, 2012.

[9] D. Bogdanov, R. Talviste, and J. Willemson. Deploying secure multi-party
computation for financial data analysis (short paper). In Proceedings of the
16th International Conference on Financial Cryptography and Data Security.
FC’12, pages 57–64, 2012.

[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live. In

44

R. Dingledine and P. Golle, editors, Financial Cryptography, volume 5628 of
Lecture Notes in Computer Science, pages 325–343. Springer, 2009.

[11] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

[12] CBMC-GC. http://http://forsyte.at/software/cbmc-gc/, May 2014.

[13] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure
protocols (extended abstract). In J. Simon, editor, STOC, pages 11–19. ACM,
1988.

[14] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C pro-
grams. In K. Jensen and A. Podelski, editors, TACAS, volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer, 2004.

[15] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison, bits
and exponentiation. In S. Halevi and T. Rabin, editors, TCC, volume 3876
of Lecture Notes in Computer Science, pages 285–304. Springer, 2006.

[16] I. Damgård and C. Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In T. Rabin, editor, CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 558–576. Springer,
2010.

[17] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In R. Safavi-Naini and R. Canetti,
editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

[18] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and H. Veith. CBMC-
GC: An ANSI C compiler for secure two-party computations. In A. Cohen,
editor, CC, volume 8409 of Lecture Notes in Computer Science, pages 244–
249. Springer, 2014.

[19] M. Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis,
Aarhus University, 2010.

[20] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[21] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES
circuit. In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of
Lecture Notes in Computer Science, pages 850–867. Springer, 2012.

45

http://http://forsyte.at/software/cbmc-gc/
crypto.stanford.edu/craig

[22] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
TASTY: tool for automating secure two-party computations. In E. Al-Shaer,
A. D. Keromytis, and V. Shmatikov, editors, Proceedings of the 17th ACM
Conference on Computer and Communications Security. CCS’10, pages 451–
462. ACM, 2010.

[23] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure two-party compu-
tations in ANSI C. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM Con-
ference on Computer and Communications Security, pages 772–783. ACM,
2012.

[24] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party com-
putation using garbled circuits. In USENIX Security Symposium. USENIX
Association, 2011.

[25] L. Kamm and J. Willemson. Secure floating-point arithmetic and private
satellite collision analysis. Cryptology ePrint Archive, Report 2013/850, 2013.
http://eprint.iacr.org/.

[26] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates
and applications. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP (2), volume 5126 of
Lecture Notes in Computer Science, pages 486–498. Springer, 2008.

[27] B. Kreuter, B. Mood, A. Shelat, and K. Butler. PCF: A portable circuit
format for scalable two-party secure computation. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 321–336, Berkeley, CA, USA,
2013. USENIX Association.

[28] B. Kreuter and A. Shelat. Lessons learned with PCF: scaling secure computa-
tion. In M. Franz, A. Holzer, R. Majumdar, B. Parno, and H. Veith, editors,
PETShop@CCS, pages 7–10. ACM, 2013.

[29] B. Kreuter, A. Shelat, and C.-H. Shen. Towards billion-gate secure computa-
tion with malicious adversaries. IACR Cryptology ePrint Archive, 2012:179,
2012.

[30] S. Laur, R. Talviste, and J. Willemson. From oblivious AES to efficient and
secure database join in the multiparty setting. In Applied Cryptography and
Network Security, volume 7954 of LNCS, pages 84–101. Springer, 2013.

[31] lcc, a retargetable compiler for ANSI C. http://sites.google.com/site/
lccretargetablecompiler/, May 2014.

46

http://eprint.iacr.org/
http://sites.google.com/site/lccretargetablecompiler/
http://sites.google.com/site/lccretargetablecompiler/

[32] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[33] L. Malka. Vmcrypt: modular software architecture for scalable secure compu-
tation. In Y. Chen, G. Danezis, and V. Shmatikov, editors, ACM Conference
on Computer and Communications Security, pages 715–724. ACM, 2011.

[34] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party
computation system. In Proceedings of the 13th USENIX Security Symposium.
USENIX’04, pages 287–302. USENIX, 2004.

[35] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

[36] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party
computation is practical. IACR Cryptology ePrint Archive, 2009:314, 2009.

[37] P. Pullonen. Actively secure two-party computation: Efficient Beaver triple
generation. Master’s thesis, Institute of Computer Science, University of
Tartu, 2013.

[38] G. Seroussi. Table of low-weight binary irreducible polynomials. http://
www.hpl.hp.com/techreports/98/HPL-98-135.html, 1998.

[39] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[40] The Sharemind secure computation platform. http://sharemind.cyber.
ee/, May 2014.

[41] S. Siim and D. Bogdanov. A general mechanism for implementing secure
operations on secret shared data. Technical Report T-4-21, Cybernetica,
http://research.cyber.ee/., 2014.

[42] N. Smart and S. Tillich. Circuits of basic functions suitable for MPC and
FHE, 2013.

[43] O. Šelajev. The use of circuit evaluation techniques for secure computation.
Master’s thesis, Institute of Computer Science, University of Tartu, 2011.

[44] A. C.-C. Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164. IEEE Computer Society, 1982.

47

http://www.hpl.hp.com/techreports/98/HPL-98-135.html
http://www.hpl.hp.com/techreports/98/HPL-98-135.html
http://sharemind.cyber.ee/
http://sharemind.cyber.ee/
http://research.cyber.ee/

Non-exclusive licence to reproduce thesis and make thesis public

I, Sander Siim (date of birth: 10th of August 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Secure Multi-party Computation Protocols from a High-Level Programming
Language

supervised by Dan Bogdanov and Sven Laur

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2014

48

	Introduction
	Yao's garbled circuits
	General technique
	Comparison with other secure computation techniques
	Secret sharing
	Homomorphic cryptography

	Two compilers from C code to Boolean circuits
	CBMC-GC
	PCF
	Comparison of two compilers

	Combining garbled circuits with secret sharing
	Parts of the hybrid protocol
	Oblivious transfer
	Garbling

	Security proof sketch
	Simulatability of oblivious transfer
	Security of the hybrid protocol

	Implementation details
	Using the protocol to implement complex primitive operations
	Circuit setup
	Optimizations

	Experimental results
	Conclusion
	References

