
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Nikita Bahhir

Positioning using WiFi

Bachelor’s Thesis (9 ECTS)

Supervisor(s): Danielle Melissa Morgan

Tartu 2024

Positioning using WiFi

Abstract:
This thesis looks into the problem of outdoor positioning and whether WiFi can be used
to estimate the position. The most popular method of estimating position using GPS can
be unreliable in certain situations, such as cloudy weather or a high density of buildings.
We tried using the abundance of WiFi networks to offer an alternative way of estimating
positioning. Here, we show the app, which acts as a tool for positioning and data analysis,
and the results of using the app in cities, along with its accuracy. The results revealed
that GPS accuracy is still better overall, but the app could still be used in situations where
GPS is unavailable. On several occasions, the WiFi positioning produced better results
than GPS. In the end, there is still a lot of improvement space, but the app could already
be used in the cities to get a fairly accurate position and gather useful data.

Keywords:
BSSID, SSID, Beacon Frame, Trilateration, Triangulation, WiFi, positioning, WiGLE,
GPS

CERCS:
P170 Computer science, numerical analysis, systems, control
P175 Informatics, systems theory

2

Positsioneerimine WiFi abil
Lühikokkuvõte:

See töö uurib välistingimustes positsioneerimise probleemi ja seda, kas WiFi-võrke
saab kasutada asukoha määramiseks. Kõige populaarsem meetod asukoha määramiseks
GPSi abil võib teatud olukordades, nagu pilvine ilm või suur hoonete tihedus, olla
ebakindel. Proovisime kasutada WiFi-võrkude rohkust alternatiivse positsioneerimise
meetodina.Siin näitame rakendust, mis toimib positsioneerimis- ja andmeanalüüsi töö-
riistana, ning rakenduse kasutamise tulemusi linnades koos selle täpsusega. Tulemused
näitasid, et GPSi täpsus on siiski üldiselt parem, kuid rakendust saab kasutada olukor-
dades, kus GPS pole saadaval. Mitmel korral andis WiFi positsioneerimine paremaid
tulemusi kui GPS. Lõpuks on veel palju arenguruumi, kuid rakendust saab juba kasutada
linnades üsna täpse asukoha saamiseks ja kasulike andmete kogumiseks.

Võtmesõnad:
BSSID, SSID, Beacon Frame, Trilateratsioon, Triangulatsioon, WiFi, positsioneerimine,
WiGLE, GPS

CERCS:
P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)
P175 Informaatika, süsteemiteooria

3

Contents
1 Introduction 6

2 Background 8
2.1 Positioning Methods . 8

2.1.1 Fingerprinting . 8
2.1.2 Trilateration . 10
2.1.3 Triangulation . 12

2.2 WiFi Beacons . 13
2.2.1 BSSID . 15
2.2.2 SSID . 15

2.3 WiGLE . 16
2.3.1 Database . 16
2.3.2 WiGLE Wardriving App . 17

3 Methods 20
3.1 Tools . 20

3.1.1 Data Gathering . 20
3.1.2 Coding . 21
3.1.3 Development Environment . 21

3.2 Android App . 23
3.2.1 Setup and Basic Layout . 23
3.2.2 WiFi Scanner . 25
3.2.3 WiGLE Search . 26
3.2.4 GPS . 29
3.2.5 Manual . 30
3.2.6 Logging . 31

4 Results 33
4.1 Testing . 33
4.2 Findings . 37

5 Discussion 43

6 Conclusion 45

References 46

4

7 Appendix 49
7.1 I. WiGLE Database Entry Example . 49
7.2 II. Logs from the app . 50

7.2.1 II.A WiFi Scanner Log . 50
7.2.2 II.B WiGLE Search Log . 50
7.2.3 II.C GPS Log . 50
7.2.4 II.D Manual Logs . 50

II. Licence . 52

5

1 Introduction
Navigation has significantly evolved over recent decades, transitioning from traditional
methods to technologically advanced systems that seamlessly integrate with our daily
lives. Today, navigating our world is more accessible than ever. As a result, individuals
routinely rely on navigation services for various activities: from planning trips and
sightseeing to finding points of interest and checking bus schedules.

A quintessential example of a navigation tool that has become integral to our routines
is Google Maps. According to Gitnux—a reputable and frequently cited source—Google
Maps ranked as the second most downloaded Google app, boasting over 13 million
downloads in July 2022 [1]. Beyond its standalone application, it powers many other
services, providing navigation-related functionality. Approximately 5 million websites
utilize the Google Maps service daily to enhance their user experience [2]. These figures
underscore the ubiquity and utility of navigation software in the present era.

The backbone of most civilian navigation systems is the GPS or Global Positioning
System. Over 30 satellites orbit Earth, designed in such a way that a minimum of four
satellites are always available from any point on the globe to triangulate the location
of a receiver device [3]. However, satellite signals are not infallible. As they traverse
from orbit to the Earth’s surface, various elements—ranging from clouds and buildings
to competing signals—can hinder their clarity. This signal attenuation is especially
pronounced in densely urbanized environments, a phenomenon extensively studied and
addressed in numerous scholarly works. [4]

This paper pivots its focus toward an alternative localization method: WiFi. In urban
areas with vast amounts of active WiFi networks, interference between GPS and WiFi
signals can compromise the efficiency of the former. Harnessing the dense WiFi networks
might promise a more precise and streamlined localization process in such settings. The
forthcoming sections provide a comprehensive overview of:

• Various localization techniques, elaborating on their advantages and limitations.

• Information about WiFi, emphasizing unique network identifiers such as Beacon
frames, SSID, and BSSID.

• The WiGLE database, a pivotal resource for correlating WiFi networks with
specific locations.

Section 2 looks at some popularly studied and applied positioning methods. It also
provides an overview of WiFi transmission details, explaining terms related to this
research. The section ends with an explanation of the WiGLE database and app and how
and why they were used in this paper.

Subsequently, Section 3 will cover the methodology of creating an application that
uses WiFi networks to estimate user device locations. Each tab in the application is
explained in the subsections.

6

Afterwards, Section 4 will explore the results gathered from the testing and will
provide an overview of the findings from them.

Chapter 5 provides various discussion points and potential future improvements and
questions.

Chapter 6 concludes this thesis. Finally, the Reference and Appendix chapters are
provided after Chapter 6.

Grammarly was used to make the text more readable and grammatical. This applica-
tion is based on AI; however, it does not create new content but processes and analyzes
existing texts, helping to improve the writing and fix various text-related mistakes. It can
pick more accurate and suitable words, change the order of words, and provide general
writing support. It was solely used as a supporting tool and was not used to generate any
sort of new content.

7

2 Background
This paragraph intends to give an overview of a more theoretical aspect of this paper.

Firstly, different methods for localization in indoor and outdoor areas will be dis-
cussed, such as fingerprinting, triangulation, and trilateration. Although not directly
used in this work, their general concepts have greatly influenced it. Knowing or being
acquainted with said concepts will help to understand this paper’s topic and proposed
solutions.

The succeeding section explains how phones receive and recognize the WiFi network
around them. More specifically, it will cover how helpful information can be extracted
and used in identification and later localization.

Lastly, it is important to explain precisely how to map uniquely identified WiFi
networks and real-world locations to the reader. This will be the purpose of the section
about the WiGLE database, which can be described as the core component of this paper’s
solution.

2.1 Positioning Methods
The effectiveness and accuracy of WiFi positioning heavily rely on methods that help
identify the exact location of objects and individuals in a given environment. Some
approaches have emerged regarding WiFi positioning, each offering a distinct viewpoint
and method for precisely localizing objects. Some are better suited to work in an enclosed
environment, while others are more efficient in the outside areas. This section will
delve into the details and complexities of three WiFi positioning methods: trilateration,
triangulation, and fingerprinting. The principles of how these methods work in practice
will be explored and evaluated based on previously made research.

2.1.1 Fingerprinting

Fingerprinting consists of making multiple measurements using any sort of device able
to receive a WiFi signal. Access points (AP) of WiFi networks are placed around
the navigable area first. Their placement can range from random to pre-planned and
calculated, which can severely affect location estimation results, for example, wall
obstruction and signal interference. [5] A device capable of receiving the signal is then
used throughout the affected area to measure the signal strength to every accessible AP
around it. RSSI, the measurement of WiFi signal power, is most widely used as a signal
strength unit. All acquired information, which is the RSSI measurements/values/signal
strength of APs at different locations, is stored in the database. [6]

If the device wants to estimate its position in such a place, it uses the database and its
measurements of nearby WiFi AP points’ signal strength to find the closest match in the
database. The matching positional data is used to estimate the device’s location. [6]

8

Figure 1. The process of WiFi Indoor Fingerprinting Method. [7]

Figure 1 clearly distinguishes two main stages of the fingerprinting process – training
and positioning. Training is when the required data is captured and stored in the database.
In contrast, the positioning stage depicts looking for the closest match in the database
and applying algorithms to transform the data in some given way, finally getting the
estimated location.

Countless algorithms aim to improve the accuracy of estimations. For example, a
recently published article by Jin Zheng, Kailong Li, and Xing Zhang discusses using a
robust localization model and a standard particle swarm optimization (SPSO) algorithm
to boost estimation accuracy considerably [8]. The increase in accuracy, ranging from
15.32 to 36.64 per cent, was reported by the research group compared to commonly used
estimation algorithms. Those include K-Nearest Neighbors, Support Vector Machine,
Logistic Regression, and Random Forest algorithms. [8]

K-Nearest Neighbors (KNN) is an algorithm that predicts or classifies data by looking
at its nearest neighbours. This algorithm is often used in different fields, such as machine
learning or remote sensing. [9]

Support Vector Machine (SVM) algorithm is a learning algorithm, which tries to find
a two-dimensional plane in a three-dimensional space that separates different classes in
the feature space in the best way. Feature space can be described as the set of all possible
values for a chosen set of features from that data. It is supervised, meaning it is used to
make predictions or classify the data. [10]

Logistic Regression (LR) is a model, which is commonly used to understand the rela-
tionship between one binary variable and other variables. All variables are independent.
Logistic Regression calculates a binary outcome probability by using a logistic function.

9

Often used in psychology to evaluate multivariate screening accuracy. [11]
Finally, the Random Forest (RF) algorithm constructs a range of decision trees during

its training. Each tree is independent of others and makes its own prediction. The final
prediction is an aggregation of decisions of individual trees. Sometimes, the average of
all decisions is taken as a final result; other times, the most popular decision is taken as
the final one. [12]

Jin Zheng, Kailong Li, and Xing Zhang explain the SPSO algorithm as a probabilistic
evolutionary algorithm, where the potential solution can be represented as a position of
elements in the swarm [13]. The specifics of said algorithm are pretty complex and out
of scope for this paper.

Fingerprinting offers a good opportunity for outdoor positioning because many
accuracy improvement methods have been researched. If the positioning data is provided
by the database, then the AP’s position does not need to be calculated.

2.1.2 Trilateration

This method relies mainly on distance measurement between APs or emitters and re-
ceivers. In contrast to triangulation, where angles are used, the angles play no role here.
There are numerous articles on trilateration. However, the article from Oguejiofor O. S,
Aniedu A. N, Ejiofor H. C, and Okolibe A. U, posted in 2013, seems to be the clearest
one explaining the topic as such they will be referred to while discussing the trilateration
method of positioning [14].

If the position of some receiver needs to be estimated in relation to one AP, then
it is possible to measure the distance d1 from the receiver to the AP with coordinates
(x1, y1). This scenario is depicted in Figure 2. The method of acquiring and calculating
the distance will be touched upon later. For now, it can be assumed that the distance d1
has already been accurately measured. The distance from this AP can be represented as a
circumference around it, with the receiver’s location possibly being at any given point in
this circumference. Currently, estimating the receiver’s coordinates (x, y) is impossible,
as the number of possible points is infinite. Now let’s consider the scenario with 2 access
points as seen in Figure 3.

The second access point with coordinates (x2, y2) has been added, with its distance
to the receiver d2 represented as a circumference. Currently, only two possible points
match distances d1 and d2 to the emitters, namely point 1 with coordinates (xp1, yp1)
and our receiver with coordinates (x, y). The number of possible positions was reduced
from infinite to just two, but the estimation can still result in serious error. To mitigate
this, a third point can be added as seen in Figure 4.

The third AP has been added to Figure 4 with its distance d3, coordinates (x3, y3),
and the circumference. Now, only one particular point matches all three given distances
d1, d2 and d3 – our receiver at (x, y).

10

Figure 2. Trilateration with 1 AP

Figure 3. Trilateration with 2 APs

The basic equation for the 2D circle on one plane is:

d2 = x2 + y2

For a circle, centered at the point (x0, y0) the formula is expressed as:

d2 = (x− x0)
2 + (y − y0)

2

For our three circles from the diagram, the equations become:

d21 = (x− x1)
2 + (y − y1)

2

d22 = (x− x2)
2 + (y − y2)

2

d23 = (x− x3)
2 + (y − y3)

2

After this system of equations is solved for x and y, the receiver’s location can be
calculated. However, as stated in the article, these are independent non-linear simultane-
ous equations which cannot be solved mathematically. The solution involves different
transformations applied to the formulas. [14]

11

Figure 4. Trilateration with 3 APs

This method, however, can be pretty inaccurate, primarily due to difficulties in
converting RSSI (signal strength) into distance. RSSI differs across various emitter
types and models; obstructions can interfere with signal propagation, and the receiving
device influences the resulting value. Multiple proposed algorithms exist to optimize
and estimate the distance based on RSSI value [15]. Still, they often include complex
mathematics, others are inaccurate, and some require additional information, which is
frequently unavailable. As such, trilateration does not seem to be a suitable method
for outside WiFi positioning because the information about WiFi networks is minimal,
and multiple obstructions will make it extremely hard to use trilateration in highly
populated areas with chaotic spread of wireless networks and building interferences. The
information is minimal because the only useful information that is possible to gather
is identifiers for the network and RSSI or signal strength. The positions of these APs,
which are essential to using this method, are still unknown.

2.1.3 Triangulation

Triangulation is often confused with trilateration, possibly because of similar spelling and
overall foundation. This method, as well as trilateration, measures the distance between
one or more APs and a receiver, but more importantly, it also uses angles [16].

Figure 5 shows us the fundamental inner workings of an algorithm for using angles.
In this case, Point 3 is the receiver, while Points 1 and 2 are some emitters. We have
a Baseline length, a known distance between two emitters. Angle-of-Arrival (AoA) is
used to calculate the angle in this triangle. These angles can then be used to calculate the
location of Point 3. [18]

This method is also unsuitable for outdoor WiFi positioning, as it is not possible to
gather information about the positions of the emitters and the angles between the points.

12

Figure 5. Basic triangulation method. [17]

2.2 WiFi Beacons
Beacons are important in managing communications between devices using the IEEE
802.11 standard, known as WiFi. They aim to periodically propagate short-length trans-
missions to tell possible candidate receivers about nearby access points and available
WiFi services. This way, receivers can process this information to make decisions regard-
ing different WiFi networks [19]. The transmission period is also easily configurable,
which provides control over how much it pollutes the air with this transmission [20].

Figure 6. AP advertising itself to receivers

As shown in Figure 6, two receivers (receiver 1 and receiver 2) were in the range of
the Beacon broadcast, which enabled them to identify and discover the network, while
the third receiver was out of range and was not notified about the advertised access
point. The range of the transmission depends on many factors, including the operating
frequency, the power of the antenna or the presence of any physical obstructions. [21]

The most prominent example of this process is something that can be unavoidably

13

Figure 7. An example of a Beacon advertisement – WiFi network search

encountered every day – WiFi network search in smartphones. In Figure 7, a Samsung
Galaxy S22 Ultra is used as a Beacon frame broadcast receiver to identify nearby WiFi
networks and, if needed, to connect to one of them. The phone internally processes the
received transmission, displaying the information conveniently and user-friendly.

14

Figure 8. Beacon Frame structure. [22]

The Beacon Frame contains a lot of information regarding the network and the frame
itself. It mainly consists of two parts - Medium Access Control (MAC) Header and
message body. The MAC Header is a part of the Beacon Frame that contains information,
which identifies the transmitter and tells the receiver if it can accept the message. [20]
Figure 8 demonstrates the structure of a Beacon Frame. For the purposes of this paper,
BSSID contained in the MAC Header and SSID contained in the message body are the
most important ones, as the identification of a WiFi network is needed for the location
estimation [20]. They have been marked in Figure 8.

2.2.1 BSSID

The BSSID, or Basic Service Set Identifier, as mentioned previously, is present in every
Beacon transmission as a part of the MAC Header. The Header provides the MAC address
of the AP transmitter, a unique address assigned to the device to allow communication
on a network, meaning it can be used to identify the access point. [23]

2.2.2 SSID

The SSID, or Subscription Service Identifier, represents the identity of an Extended
Service Set (ESS). In simpler terms, it acts as a standard network name for this access
point and its network [20]. The SSID can be seen on a smartphone screen (Figure 7)
during a WiFi network search and what is most familiar to people. However, it is essential
to note that the SSID does not uniquely identify a WiFi network or an AP, meaning
multiple APs worldwide can have identical SSID, which is not valid for the BSSID.

15

2.3 WiGLE
After reviewing several positioning methods, it was decided to focus on Fingerprinting.
A database is required to store information about networks and their locations. With such
a database, it would be possible to map networks to specific coordinates and estimate
their locations. One of the largest ones is WiGLE.

WiGLE, which stands for Wireless Geographic Logging Engine, is a platform and
database designed to collect and manage network information, specifically on WiFi and
cellular networks. It relies on a community of users who actively contribute by collecting
and sharing data about the networks they come across. This data includes details about the
locations of WiFi access points, cellular towers, and their characteristics. The database is
maintained through users’ submissions through their mobile app or dedicated hardware
devices that scan and record nearby network information passively. By following this
community-driven approach, WiGLE ensures its database remains up-to-date and can
provide network localization, research, and analysis resources. Only registered users can
access the database, visualize network information through the WiGLE website or use
their custom API. This makes it an essential tool for localization-based services. [24].

WiGLE database was chosen for mapping WiFi networks to coordinates because it
is the most extensive public database available now. It fulfils the requirements for an
extensive database, counting more than 1 billion networks present, and it counts as a
training stage for fingerprinting [24]. It also provides and documents various ways to
interact with its database and system, providing an overall good experience working
with it. It is easy to establish a connection between their server and a software, which is
crucial for the practical part of this thesis.

2.3.1 Database

The database is the main product provided by WiGLE. As of the time of writing this, the
WiGLE database has over 1.1 billion WiFi networks and over 21 million cellular towers
saved in it [24]. Each entry in the database contains a lot of information:

• names (SSIDs);

• MAC addresses (BSSIDs);

• signal strengths;

• times of capturing;

• address information if available, like city, region, country;

• estimated coordinates

• technical fields, such as frequency, encryption, etc.

16

The full JSON structure of the WiGLE database entity is available in Appendix
I.WiGLE Database Entry Example.

Figure 9. WiGLE database, accessible from their website

Figure 9 shows what users typically see when entering the WiGLE official website.
This is a graphical interface to query data from their database. It includes an interactive
map with multiple purple dots – each representing a network placed in a location calcu-
lated by WiGLE. Each can be pressed to provide more detailed information regarding
this specific network.

They also have an API, which allows users to access data in a more programmatic
way by using different WiGLE API endpoints. Endpoints are the location, where API
receives a request regarding specific functionality and they are typically provided in the
form of URL [25]. These endpoints allow the user to communicate with the WiGLE
server by sending requests to them. Users need to register and possess a non-expirable
token, which can be generated on the same website for free and forever.

There are numerous ways to contribute to the database. Uploading a strictly formatted
CSV file containing the network information is possible. DataHub defines CSV, Comma
Separated Values, as a "very old, very simple and very common ‘standard‘ for (tabular)
data". The format is supported by many tools ranging from sheets, like Google Sheets,
to databases, to programming languages, like Python. [26]

It is also possible to use their dedicated app to automate this process and eliminate
the possibility of incorrectly formatted CSV files.

Even though WiGLE offers a convenient GUI on their website (see Figure 9), the
API can be used to support better automation and communication with different software.
In order to have access to it, the user needs to be registered on their website and be
provided an API key. API key can be acquired either manually from the profile page on
their website, or as an alternative there is a dedicated API endpoint, which provides the
API key in exchange for the username and the password.

2.3.2 WiGLE Wardriving App

WiGLE has a dedicated app to make accessing the database, passively capturing nearby
WiFi networks, and processing and uploading data to the WiGLE database as easy as

17

possible. It is available via both the Play Store and Apple Store. It is open source, which
means the code is open to the public.

It is possible to use the app in various ways, including accessing the database and
the capability to upload CSV files to the server, but the most interesting feature is the
‘Wardriving‘. Wardriving is in the app name, and in the networking context, it means
driving or moving around and capturing information about nearby WLANs (Wireless
Local Area Networks). [24]

Figure 10. Wardriving App different tabs. A - tab list, B - Network List, C - Uploads

As seen in Figure 10A, multiple functionalities are present in the app:

• Network List

• Map

• Dashboard

• Database

• Search

18

• News

• Statistics

• Uploads

• Settings

For the purposes of this paper, the Network List and Uploads tabs were used. Network
list, as seen in Figure 10B, lists all currently passively discovered networks in the area
surrounding the receiver. It contains a large amount of information, including encryption
types, location, signal strength, SSID, BSSID, type of emitter, general information about
the search (how many have been found, what types, etc), and even the speed of the receiver
as of the scanning time. It is intended to work even if the app runs in the background.
There is also a button to upload the scanned networks to the WiGLE database. Before
persisting the data in the database, the WiGLE estimates the location of the AP based
on the location of the user. This process is described by the WiGLE team as "weighted-
centroid trilateration", which is the average of the latitudes and longitudes gathered using
the squared signal strength as a weight. [24] In even more basic explanations, the WiGLE
app makes numerous measurements, applies the algorithms above, and finds the average
of those calculations, then uploads the results to the database.

The status and history of uploads can be seen in the "Uploads" tab, depicted in
Figure 10C. It also contains a lot of information specific to each upload attempt. The
upload usually consists of 2 stages: processing and upload. Processing uses the defined
algorithms to estimate the position of the discovered AP. Upload is responsible for
uploading the information to the database. When both of these processes are completed,
the data is available in the WiGLE database.

19

3 Methods
One of the main goals of this thesis is to develop an app, which could be used as a tool to
get location estimation using WiGLE and analyze the data related to GPS and manually
entered coordinates.

This section will delve deeper into the process and methods employed in developing
this app with the objective of using the abundance of WiFi networks in urban areas to
estimate the user’s position with adequate accuracy and compare the results with GPS.

The methodology adopted in this research covers the entire development cycle from
conceptualization to practice. It involves software development, data collection and
processing, optimization, and algorithmic design, each playing a crucial role in achieving
the result.

The tools section covers the software and hardware used in this paper and their
configurations and specifications.

3.1 Tools
The following subsection will focus on the tools used to gather data, the coding choice,
and the development environment. The Data Gathering section will explain what was
used to capture the information needed for this thesis. Then, the focus will shift to the
software side of the project - what coding languages were used, and why they were picked.
Finally, the section will end with a subsection about the development environment.

3.1.1 Data Gathering

A Samsung Galaxy S22 Ultra smartphone was used to capture GPS and WiFi data using
apps and in-built features. The device supports 2.4 GHz, 5 GHz, and 6 GHz signals,
however, only 2.4 GHz and 5 GHz signals are covered.

As mentioned previously, fingerprinting was chosen as a method of estimating a
user’s position. A huge database would be needed to accomplish this, and it was decided
to use the WiGLE Database, as it contains a huge amount of networks with estimated
coordinates. However, there is no guarantee that the information about local networks is
up-to-date or even if the networks are present there. To augment the database for Estonian
cities and make sure that the networks there are updated, the Samsung Galaxy S22 Ultra,
together with the WiGLE Wardriving App, was used extensively to populate the database.
As the phone supports all currently used WiFi frequencies, there is no potential issue of
losing some of the networks. Based on the information from the Wardriving app, more
than 6000 networks were added to and updated in the WiGLE database using Samsung
Galaxy S22 Ultra.

Google Maps service was used to gather manual coordinates, which can be used as a
target to test the accuracy of GPS and WiGLE..

20

3.1.2 Coding

Two primary candidates were considered when choosing the working language of the
future app. One is Python, and the second one is Kotlin. Kotlin is a high-level program-
ming language built upon Java. It is statically typed, meaning every data typed needs
to be explicitly stated at the definition stage. It puts certain constraints but makes the
code overall safer and cleaner, as the program always knows what data it can and cannot
use. It is also compiled, meaning it is entirely translated into the assembly code. This
makes startups a bit slower because the program needs some time to be compiled into an
assembly, but makes the actual performance a lot faster. [27]

Python, on the other hand, is not statically typed. Variables are declared without any
types. It is also an interpreted language. In short, every line of code is being compiled
and run step-by-step instead of compiling the whole code at the startup. This, in essence,
makes the startup faster but slower overall performance. However, debugging is more
straightforward, as the code can be effortlessly stopped and examined at any line. [28]

Both languages have a range of frameworks for Android Development. Python’s
most prominent framework is Kivy. It allows programmers to create GUI applications
for both desktop and mobile operating systems, including the Android operating system.
Kotlin has a lot more going on with Android, as it is considered one of the primary
usages of the language.

Kotlin was chosen as the language for developing this app. The familiar Java founda-
tion and vast helpful libraries and documentation targeted at mobile development were
key factors in choosing this language. Namely, Kotlin is the language Android Jetpack
uses, a collection of Android libraries. [29]

3.1.3 Development Environment

Android Studio is the official Integrated Development Environment (IDE) for Android
applications. It offers a comprehensive set of tools for Android developers. It supports
the latest Android Software Development Kits (SDK) and provides a powerful tool
for emulating different hardware devices, such as tablets and mobile. This makes the
development and testing process very fast and convenient, as there is no need to build
and transfer the app to the physical phone every time some change is made. Code can
be compiled, run and tested with a single button press without using any other device.
Emulated hardware makes testing the app against different hardware easy, which would
have been difficult otherwise.

The choice of Android Studio for app development is motivated by its excellent
compatibility with the Android ecosystem, a collection of useful Android libraries,
and its hardware emulation capabilities. Android Studio was configured to suit the
specific needs of the project. One of the more critical decisions was to determine the
minSdkVersion and targetSdkVersion. In other words, a minimally supported Android

21

API version and the one for which the app is built. This was a difficult choice to make,
as the current Android market is overflown with a wide range of devices with varying
system versions.

Figure 11. Android Version distribution in 2023, provided by Google, obtained in
Android Studio.

At the end of the year, Google shows these statistics to Android developers to help
them decide which Android version they should use. These statistics can be viewed
in Android Studio at the startup. Figure 11 shows the informational window, which is
displayed upon the startup. For this app, the minSdkVersion was set to 26 and the target
to 33. As seen in this statistics window, at the end of 2023, around 93.7% of users could
run the apps made for Android API version 26. This is a reasonable balance between the
older versions’ availability and the newer ones’ innovations. Every Android library that
was needed for this project also supported this version. The targetSdkVersion was set
to 33, simply because it is reasonable to develop the app for the latest available stable
version, and the available hardware also runs on the latest Android API version.

The IDE was configured to use an emulator with these versions in mind. Two devices
were used during testing, but only one was emulated. Google Pixel 3a with SDK version
26 was emulated in the IDE to test the app against the smartphone with the lowest
supported SDK version to check compatibility and different screen sizes to ensure that
the app looks the same way on a different screen. Samsung Galaxy S22 Ultra was paired
to the IDE using the WiFi Development feature, which uses the WiFi medium to install

22

the app to the actual hardware with one button press. This feature was used a lot during
the development process.

A few libraries should be mentioned, as app critical flows heavily rely on them.
Retrofit library provided a convenient web client to send and receive HTTP requests
and responses. They have also provided a flexible converter to handle serialization and
deserialization of the content. The location package and basic Android libraries were
included. The method to calculate the distance between two sets of coordinates was used
to compare results from GPS and WiGLE.

3.2 Android App
After the initial experiments with positioning, it was decided that trilaterating the re-
ceiver’s position using transmitters’ coordinates data from WiGLE with RSSI data would
be impossible, as the necessary data is absent to make accurate predictions. Furthermore,
the observed difficulties in obtaining and using the coordinates measurements showed
the need for a more convenient tool. The following subsection will cover the basic
requirements for the app and provide a brief overview of the layout chosen. Further
subsections will provide a more detailed insight into the development of each main tab.

3.2.1 Setup and Basic Layout

The development of an app began with setting up the working environment, finding
the official documentation and deciding on the basic app layout. There were several
requirements which needed to be met. The app can:

• Capture the data of nearby WiFi networks (this includes RSSI, SSID, BSSID and
operating frequency);

• Send the captured WiFi data to WiGLE;

• Receive an answer containing positional data from WiGLE

• Show the estimated WiGLE position on the map

• Use GPS to capture current positional data

• Compare GPS positional data with WiGLE positional data

• Compare manually set coordinates with GPS and WiFi data

GitHub was also set up at this stage, providing a decent versioning and allowing it to
work comfortably on multiple machines.

Figure 12 shows the final build of the app. Four tabs can be separately seen: WiFi
Scanner, WiGLE Search, GPS and Manual.

23

Figure 12. The look of the app

WiFi Scanner acts as a home screen of the app and the first tab the user sees. By
pressing the "Scan" button, the user is prompted to give the app permission to allow the
app to access WiFi data and perform scans. After giving permission, the app scans all
nearby WiFi networks, displaying their SSIDs and RSSIs.

The WiGLE Search tab aims to communicate with the WiGLE database and collect
positional information based on the WiFi data captured in the WiFi Scanner tab. The user
can select which of the captured WiFi networks will be used to request the positional
data from WiGLE. By default, the app selects the strongest signal. It is possible to
choose the network, as not all surrounding networks could be present in the WiGLE
database. Google Maps embedded map is also present on this tab to provide a clear
view on the estimated location. To allow the app to communicate with Google Maps and
use the embeeded map, an API key, which are basically identifiers, must be requested
from Google. Google has a separate web platform for developers that includes a lot of
functionalities related to their geographical products, such as Google Places, Google
Routes, Google Environment, and Google Maps. API keys were also created on this
platform. They are provided freely and can be used by anyone.

The GPS tab collects the device’s GPS positional data, and it requires the user’s
permission to do so. After getting the WiGLE response and GPS positional data, the user
can compare those two sets of estimated coordinates and get the difference in meters.

Finally, the Manual tab compares WiGLE and GPS coordinates to the user’s input. It
works similarly to the comparison functionality from the GPS tab, allowing the user to
see the meter difference between the coordinates.

24

The app also has logging capabilities to collect the data in a more convenient format.
Several actions result in logs, specifically performing a WiFi scan, making a WiGLE re-
quest (logs both the requested network and the answer from WiGLE), and all comparison
operations. Logs are sorted in corresponding folders ("scan", "wigle", "gps", "manual")
and use the timestamp as names in the format of year-month-day hour-minute-second.

The next sections will explain the technical aspects of the different tabs and their
inner workings in more detail.

3.2.2 WiFi Scanner

Figure 13. WiGLE tab in the latest application version.

This tab acts as the app’s home screen, meaning this is the first thing the user sees after
launching it. Its main components are the view of the results, which becomes scrollable
once it exceeds the visible area, and two functional buttons: "Scan" and "Status".

Pressing the "Status" button displays the current status of the app’s accessibility to
capture the WiFi data as a short-timed pop-up on the bottom side of the screen. The
"Scan" button requests permission to use WiFi from the user, scans the surrounding WiFi
networks and adds those results to the results view.

These two buttons use the WifiManager class to check the WiFi state and perform
WiFi operations. This class is a part of the "android.net.wifi" package, providing an

25

interface for managing WiFi connectivity [30]. The code snippet from Listing 1 shows
the usage of the "getWifiState" public method. This way, upon pressing the "Status"
button, the user knows if WiFi functionality is ready.

Listing 1. Code for checking the status of the WiFi.
1 b ind ing . s ta tusBut ton . se tOnCl i ckL is tener {
2 val s t a t u s I n f o = when (wi f iManager . w i f i S t a t e) {
3 WifiManager . WIFI_STATE_DISABLING −> "Disabling"
4 WifiManager . WIFI_STATE_DISABLED −> "Disabled"
5 WifiManager . WIFI_STATE_ENABLING −> "ENABLING"
6 WifiManager . WIFI_STATE_ENABLED −> "ENABLED"
7 else −> {
8 "Unknown"
9 }

10 }

Scanning is performed using the "startScan" public method. As a result, WifiManager
keeps all found WiFi networks in a "scanResults" list. It maps the network information to
the "ScanResult" class containing multiple fields. Only a few of those fields are needed,
and these objects are transformed into instances of the "WifiScanResult" class, repre-
senting the scanned network model in the app structure. "SSID, "BSSID, "frequency,"
and "level" are retained with the data transformation and saved in the data context of the
app. The code snippet from Listing 2 shows the code that starts the scanning process and
maps the results to the model from the app’s infrastructure.

Listing 2. Scanning code.
1 val success = wif iManager . s tar tScan ()
2 i f (success) {
3 val scanResult : L i s t <Wif iScanResul t > = wif iManager . scanResults . stream ()
4 .map { r e s u l t −> Wif iScanResul t (r e s u l t . SSID , r e s u l t . BSSID ,
5 r e s u l t . frequency , r e s u l t . l e v e l) }
6 . t o L i s t () ;
7 }

Here, the SSID and BSSID correspond to the SSID and BSSID from the scanned
network. The frequency is the same, which is either 2.4 GHz or 5 GHz in the scope of
this thesis. The level is the signal strength.

3.2.3 WiGLE Search

The WiGLE database played a pivotal role in this development. It provided the necessary
positional information, which would have been impossible to get without the usage of
GPS. This tab hosts the functionalities related to WiGLE communication.

Figure 14 shows the tab’s appearance. The network needs to be selected in the
provided spinner, which opens up a list of available WiFi networks when pressed (See
the red circle in Figure 14). The app gets the list of available WiFi networks from the
process in the WiFi Scanner tab. Once the scan has been performed, the found networks
are available in the shared data context used in this tab.

26

Figure 14. WiGLE tab

When the "Search" button is pressed, an HTTP request to the WiGLE database is
made. The client, a class responsible for handling requests and responses from a server,
was needed. The Retrofit library was used for this purpose. Retrofit is a type-safe HTTP
client for Kotlin. Its defining feature is the ability to represent API endpoints by defining
interfaces and annotating their methods [31]. Listing 3 shows the code snippet from the
WigleApi interface class. Here, the endpoint "network/search" is defined by one method.
It is also possible to introduce additional parameters to the request using the "@Query"
annotation on method parameters. Here, it is used to indicate to the Retrofit that this
endpoint should have "netid" as the query parameter. In the WiGLE database context,
"netid" is just another way of saying "BSSID". They are the same property.

Listing 3. Defining an API point for Retrofit
1 in ter face WigleApi {
2 @GET("network/search")
3 fun getNetwork (@Query("netid") ne t i d : String) : Cal l <WigleResponseDto>
4 }

Retrofit also handles many other functions, making the process of creating a client easier.
It handles URL construction, request dispatching, and the serialization of parameters
and response objects. The integration with serialization libraries is also present [31].
Listing 4 presents how the client is defined in the RetrofitClient class, which acts as a

27

factory for the client. The timeouts, base URL for the web server, base client, interceptors
and converters are configured here. Interceptors are meant to intercept the requests or
responses to perform any sort of action on them before retrieving or sending them. In this
case, the only interceptor, "RequestInterceptor", simply logs any requests made through
the client. Retrofit uses the base client to make HTTP calls. The converter is a class that
serializes objects into JSON messages and vice versa. The default converter will suffice
as the objects are plain, meaning they are simply key-value pairs.

Listing 4. Defining a Retrofit client
1 object R e t r o f i t C l i e n t {
2 private const val WIGLE_URL = "https ://api.wigle.net/api/v2/"
3

4 val okHt tpC l i en t = OkHt tpCl ien t ()
5 . newBui lder ()
6 . connectTimeout (Durat ion . ofSeconds (3 0))
7 . add In te rcep to r (Reques t In te rceptor)
8 . b u i l d ()
9

10 fun g e t C l i e n t () : R e t r o f i t =
11 R e t r o f i t . Bu i l de r ()
12 . c l i e n t (okH t tpC l i en t)
13 . baseUrl (WIGLE_URL)
14 . addConverterFactory (JacksonConverterFactory . c reate ())
15 . b u i l d ()
16 }

WiGLE API contains multiple endpoints dedicated to various purposes. An API
key must be used to call the endpoints. Users can create such a key on their WiGLE
website profile page. The one endpoint used here is "/api/v2/network/search." This
endpoint accepts GET requests containing query parameters, based on which its server
performs a search, filtering out results that do not fit the provided search parameters and
returning the list of networks fulfilling the conditions. For the positioning estimation to
be precise enough, some property that uniquely identifies WiFi networks must be used to
get exactly one result. BSSID fits this purpose and can be passed as a query parameter
to their server by specifying it as a "netid" in the search string. For example, passing
"/api/v2/network/search?netid="b1:b1:b1:b1:b1:b1" (this is not a proper representation,
as some characters would need to be escaped when used in the URL) will yield a list
with its only element being the network with that BSSID. [32]

After the "Search" button is pressed on the tab, the method "getNetworkByBSSID"
is called. It accepts the network’s BSSID, which is taken from the user’s chosen network.
Listing 5 shows this class and method.

Listing 5. Using the client to make the request
1 class Wig leC l ien t {
2 private val r e t r o f i t = R e t r o f i t C l i e n t . g e t C l i e n t () ;
3 private val wig leAp i = r e t r o f i t . c reate (WigleApi : : class . java)
4

5 fun getNetworkByBSSID (bss id : String) : WigleDto? {
6 val wigleResponse = wig leAp i . getNetwork (bss id)

28

7 . execute ()
8 i f (! wigleResponse . i sSuccess fu l) {
9 return nul l ;

10 }
11

12 i f (wigleResponse . body () ? . r e s u l t s ? . s i ze == 0) {
13 return nul l ;
14 }
15 return wigleResponse . body () ? . r e s u l t s ? . get (0) ;
16 }
17

18 }

The client is created using the code from Listing 4, and the implementation of API
defined in Listing 3 is made using the "create" method. After that, the only remaining
thing is to call the endpoint, providing it a BSSID, and validate response. The response
is considered successful if it contains a non-null body with at least one result. In case of
an unsuccessful result, null is returned, while the successful call results in one instance
of "WigleDto" returned. This class is what the response message is being deserialized in
and contains positional data (latitude and longitude, SSID, quality of signal and BSSID).

When the controller class receives the instance of WigleDto, it is converted into
"WigleCalculatedLocation," which contains the same fields but is made to represent
data inside the app specifically and saved to the shared data context. This tab’s text
elements are listening for the updates in the data context. When they detect that the
instance of WigleCalculatedLocation is being saved, they also update the coordinates on
the screen. If the controller class receives null, the "Not found" message is displayed in
the coordinates window instead.

This tab also introduces an interactable map provided by Google Maps libraries (see
Figure 14). When the controller receives a valid response from the WigleClient, the point
of corresponding coordinates is added to the map (the location marker in Figure 14).

3.2.4 GPS

One critical aspect of this work is assessing the accuracy of GPS against the WiGLE-
provided location. This tab is seen in Figure 15 and serves two purposes: data collection
and comparison. When the "Calculate Position" button is pressed, the controller uses the
"LocationServices" class to get the user’s most recent location. If the location is fetched
successfully, an instance of "GpsCoordinates" is created. This class represents the last
known GPS location, and it only contains latitude and longitude. It is saved in the shared
data context and displayed in the corresponding text area.

The "Test" button starts the comparison process. The gathered GPS coordinates
are compared to the ones received as a response from the WiGLE database, and the
difference is displayed in meters. If WiGLE Search has not been performed yet, the
pop-up informs the user that the WiGLE data is missing. As GPS and WiGLE data are
stored in the same data context, they are available and accessible from any tab.

29

Figure 15. GPS tab

The "Location" class from the "Android.location" package calculates the difference in
meters between the coordinates. It uses its own internal methods to do so by representing
location coordinates in the WGS84 standard. [33]

3.2.5 Manual

The Manual tab allows users to compare the previously gathered GPS and WiGLE
data against manually entered coordinates. The purpose of this tab is to provide some
definitive target coordinates against which to test accuracy. GPS is not reliable, as
location estimation could be inaccurate. By using this tab the user can test both GPS and
WiGLE coordinates if they know their exact location (provided by a GPS device or some
other way). It is seen in Figure 16.

Users can input the coordinates into the dedicated text input area. If they are valid,
their coordinates are saved in the shared data context as an instance of the GpsLocation
class. Validation checks that the entered coordinates fall into the range of possible
latitude and longitude values. This means if the latitude is not between -90 and 90 or
if the longitude is not between -180 and 180, then the validation fails, and the user is
informed that the entered coordinates are invalid.

This tab has two distinct areas dedicated to GPS and WiGLE comparison. Both

30

Figure 16. Manual tab

work similarly. Each one has a special text area, informing the user about the status of
this particular comparison. For the comparison to be available, both manually entered
coordinates and corresponding GPS or WiGLE coordinates should be present in the
shared data context. When the requirements are met, the status says "Available" and the
buttons become active. Distance in meters is calculated the same way it is done in the
GPS tab.

3.2.6 Logging

During testing, it became apparent that gathering the results was quite difficult. To
preserve the results for further analysis, a screenshot for each tab was taken during each
measurement session, which proved inconvenient. To provide simpler data analysis,
logging was introduced into the app. The app logs the following actions:

• Performing a WiFi scan (See Appendix II.A);

• Requesting the WiGLE database search through the client and receiving a response
(See Appendix II.B);

• Comparing the accuracy of GPS against WiGLE (See Appendix II.C);

31

• Comparing the accuracy of manually entered coordinates against WiGLE/GPS
(See Appendix II.D).

Logs are kept in the device’s internal memory and separated into four folders: "gps,"
"manual," "wifiScan," and "wigle." Each log has a timestamp in its name, with accuracy
up to seconds. Some parts of it might need clarification for the reader. In Listing 7 a few
fields can be misleading, such as ‘trilat‘ and ‘trilong‘. They are basically the latitude
and longitude provided by WiGLE. Here is also the field ‘qos‘, which is the quality
of the signal. At some point, there was a thought that this might be useful for the app
functionality, but it is not used anywhere. The logs also specify the SSID used, so it
would be easy to look at the log and see what SSID was used to request the estimation
from WiGLE.

Listing 6 has a lot of fields, which might confuse. WiGLE collect a wide range of
data regarding the networks and a lot of those fields are left unused, although the app
logs every bit of information in case it might be useful.

Listing 9 and Listing 10 are from the Manual tab. One log is for GPS comparison
and the other one is for WiFi comparison. The thought behind this is to make logs
more readable by separating those two comparisons into separate logs. Firstly, the
difference in meters is logged. Then, the basic information about the comparison actors
is also logged. In the case of GPS and manual coordinates, they are both logged as
GpsLocation with just latitude and longitude. The WiGLE comparison actor is logged as
WigleCalculatedLocation with already seen fields.

32

4 Results
The following chapter describes the results of the finished application, including testing
methods and conclusions, and discusses a few solutions for problems that arose during
the research.

The research resulted in an app that can be used as a tool for analysing the accuracy
of using the surrounding WiFi networks and an internet connection to estimate the
location without the usage of GPS. The app is available through a built APK file from
the Github1 and can be installed on Android devices with an API version above or equal
to 26, the recommended however is 33. After installation, the app will request a few
permissions related to WiFi and GPS functionalities. The corresponding services must
also be available in order to use the main app functionalities.

4.1 Testing
The app passed multiple testing stages during its development. The testing process
consisted of visiting areas of cities with different densities of buildings/people/networks
and using the app to get estimations. Before the logging feature was implemented, the
results were saved as screenshots of different tabs.

Testing was done in three cities: Narva, Tallinn, and Budapest. Most of the tests
were conducted in Narva. Budapest was chosen to test the app in a completely different
environment, specifically, in a much denser, bigger and more populated environment.
Additionally, as the tests in Budapest were done by the tester, this helped to see how the
tester would go through the installation process and interact with different flows in the
app.

As it was mentioned before, most of the readings were done in Narva using a Samsung
Galaxy S22 Ultra. The process for testing was the following:

1. Find a spot, where at least one WiFi signal is available;

2. Perform a WiFi scanning for surrounding networks;

3. Choose the network to request WiGLE information. If the network is not in the
database, try another;

4. Go to the GPS tab, save the GPS coordinates and compare them to WiGLE;

5. Manually gather the coordinates by pinpointing a location using Google Maps;

6. Input the location into the Manual tab, and save it;

7. Compare the manual location to the GPS and WiGLE coordinates;
1https://github.com/nbahh/wifi-positioning-app

33

8. Repeat steps 3-7, but choose the network with another frequency, so that it is
possible to compare the accuracy with different frequencies;

9. Examine logs;

Figure 17. Test locations in Narva

Figure 17 shows the testing locations chosen for Narva. In total, there are eight sites
where it was attempted to get the reading, and fifteen readings were made - two readings
for most testing sites, in order to compare the influence of the operating frequency of
the network. One reading was made for a 2.4GHz network, and another for a 5GHz
network. Each site on every map has a number next to it, this is the unique ID for the
network, which are assigned later in the Findings section. Fourteen of those readings
were successful, while one reading failed, as the WiFi networks that surround the areas
were not present in the WiGLE database. The locations were chosen to be at different
distances from the city centre; as such, the testing sites could be arranged in a line from
the centre to the outer regions of the city, with the outermost site located at around 2 km
from the city centre.

To improve the accuracy of the WiGLE estimation the WiGLE Wardriving App was
used in the city. The process involved passing different areas of the town while capturing
as many WiFi networks as possible and sending them to the WiGLE database so that they
could perform their estimation. This app is explained in section 2.3.2 of this paper. As a

34

Figure 18. Test locations in Budapest

result of using this Wardriving app, around 1000 networks were added to the WiGLE
database.

Seven readings were done in Budapest. Unfortunately, only two of those were
successful. Testing sites for Budapest were chosen to be all near the city centre in order
to measure the accuracy in the denser area. Figure 18 shows those locations on the map.
These locations are more interesting, as several measurements took place inside big and
highly popular places, such as the clinic and the theatre. Some readings were taken in
areas which are full of tourists, like the river shore and the Bastion, and some readings
were taken in a fairly normal environment, such as flats.

A volunteer performed the reading in Budapest. The volunteer was instructed on how
to install and use the app. This was successful, and it indicated that the app works on a
device other than the Samsung Galaxy S22, as the volunteer was using a Realme 8 5G.
These devices have different Android versions and different screen sizes, which indicates
good compatibility. The feedback provided by the tester was quite useful and helped to
improve the app.

35

Figure 19. Test locations in Tallinn

Finally, Tallinn had the fewest testing sites. Only three spots were measured with the
app with all of them being a successful reading. All readings were taken near the city
centre. Its testing sites are visible in Figure 19.

36

4.2 Findings
Most of the information was collected from Narva; as such, the most important findings
are related to this city. Table 1 shows some of the information extracted from the logs,
which were collected while testing in Narva. Table 3 and Table 4 show results in the
same format but from Budapest and Tallinn respectively. There are fewer results from
those cities, but they still have a few interesting points.

Table 1. General information in the table format from Narva.

ID Place SSID Freq WiGLE GPS WiGLE Acc GPS Acc

1 Fama 48 2.4GHz 53.5m 22.8m MEDIUM MEDIUM
2 Fama tp link 5GHz 164.7m 22.9m LOW MEDIUM
3 Astri IBSD 5GHz 66.1m 5.1m MEDIUM HIGH
4 Soldino Puskina23 2.4GHz 934.5m 4.0m INCORRECT HIGH
5 Soldino masja_5G 5GHz 46.3m 3.4m MEDIUM HIGH
6 Prisma Boss 2.4GHz 36.6m 40.2m MEDIUM MEDIUM
7 Prisma Igor 5G 5GHz 41.5m 14.6m MEDIUM HIGH
8 Äkkeküla #Telia-0CBACA 5GHz 10.7m 8.8m HIGH HIGH
9 Äkkeküla TP-LINK_A25A 2.4GHz 38.5m 8.8m MEDIUM HIGH

10 Gas Station OLX-FREE 2.4GHz 42.4m 25.8m MEDIUM MEDIUM
11 Gas Station OLX-OTHER 5GHz 22.3m 20.9m MEDIUM MEDIUM
12 Near Tempo MyVolvor6kXHL 2.4GHz 689.4m 10.1m INCORRECT HIGH
13 Near Tempo Fill_Point_26 5GHz 302.5m 10.1m LOW HIGH
14 Inside Astri Tasuta Wifi Astri 5GHz 41.6m 26.3m MEDIUM MEDIUM
15 Inside Astri optium 2.4GHz 30.8m 32.5m MEDIUM MEDIUM

Each table consists of the following columns:

• ID - an identification number given to each reading in the table for easier reference;

• SSID - the name of the network;

• Freq - the operating frequency of the network - either 2.4 or 5 GHz;

• WiGLE - the distance from manually entered coordinates to the WiGLE coordi-
nates, computed using the app;

• GPS - the distance from manually entered coordinates to the GPS coordinates,
computed using the app;

• WiGLE Acc - the accuracy level, which is given to the WiGLE estimation;

37

• GPS Acc - the accuracy level, which is given to the GPS-acquired coordinates;

Figure 17 also specifies where exactly the measurements were taken by using the IDs
assigned in the table in Table 1. Accuracy level is defined in the context of this paper
as a means to categorize WiGLE estimations and GPS coordinates into several groups
so that it can be used to make some conclusions regarding the accuracy of said method.
Table 2 defines the accuracy levels and explains how it can be assessed. During testing,
the manually entered coordinates were considered a target against which the precision
was tested. If the distance between target coordinates and WiGLE estimated coordinates
is 20m or less, then the estimation is considered to be a "HIGH" level. If the distance
lies between 20 meters and 100 meters, the accuracy is "MEDIUM". Between 100
meters and 500 meters is "LOW" accuracy. Everything beyond, meaning more than
500 meters, is considered to be "INCORRECT", as the error is too high to consider this
estimation correct. Boundary values for these groups were chosen so that every group
was represented reasonably. The highest accuracy WiGLE estimation was network 8
from Table 1, so the boundary for the "HIGH" level was set to 20 meters to place this
network and a few others into the "HIGH" accuracy bucket. The "MEDIUM" level was
limited to 100 meters because the average of the readings excluding the abnormal ones,
like 600 meters or 900 meters, is 61 meters, so it is reasonable to consider a deviation of
more than 50 meters to be "LOW" level. For the sake of making the boundary values
easier to read, the boundary for the "LOW" level was rounded down to 100 meters.

Table 2. Accuracy levels definition.

Distance (x meters) Accuracy level

x <= 20 HIGH
20 < x <= 100 MEDIUM
100 < x <= 500 LOW

500 < x INCORRECT

This method of assessing the accuracy levels shown in Table 2 was used to construct
a graph showing how accurately WiGLE estimation was performed. Figure 20 shows
this distribution. It is clearly seen that WiGLE estimations are less accurate than the GPS
ones. It is further confirmed by the average values, with WiGLE estimations being 176.8
meters on average from the target coordinates, while GPS averages 17.1 meters from the
target coordinates.

38

Low Medium HighIncorrect
0

2

4

6

8

10

2

10

1
2

Accuracy levels

#W
iG

L
E

co
or

di
na

te
s

Low Medium HighIncorrect

0

2

4

6

8

0

7

8

0

Accuracy levels

#G
PS

co
or

di
na

te
s

Figure 20. Distribution of networks by accuracy level in Narva.

39

Table 3. General information in the table format from Budapest.

ID Place SSID Freq WiGLE GPS WiGLE Acc GPS Acc

16 Flat 1 TELEKOM-0599 5GHz 15.0m 9.2m HIGH HIGH
17 Flat 2 TELEKOM9 2.4G 2.4GHz - - - -
18 Theater VODAFONE-0834 2.4GHz 27.8m - MEDIUM -
19 Bastion ADRIENS S23 ULTRA 2.4GHz - - - -
20 River Shore REDMI NOTE 8 PRO 2.4GHz - - - -
21 Medical Clinic S EPULET 5GHz 126.8m 210.9m LOW LOW

Budapest observed a different conclusion. Table 3 shows the results of readings
in Budapest. Several cells are missing data, because there were some complications
which have different causes. There were three main failure causes: WiFi scanning issues,
WiGLE estimation issues and GPS issues. The distribution of those issues is described in
Figure 21. "GPS issue" means that those reading encountered problems while reading
GPS, this can happen when the signal reception is bad or there are in general some sort
of problem with the smartphone’s GPS service. "WiGLE issue" means that there were
problems with WiGLE estimations. This can be either that the networks data is absent
from the WiGLE Database or that the server is unavailable. "WiFi Scan issue" means
that something went wrong while scanning the WiFi networks. This also means that the
app scanned something that it should normally avoid, such as smartphone’s hotspots.
Some of the cells in Table 3 are empty in relation to the errors depicted in Figure 21.
Network 17, 19 and 20 are missing the WiGLE estimation data, as networks 19 and 20
suffered a problem with WiFi scanning, specifically, smartphone hotspots were picked
for the WiGLE estimation, while network 17 had used a normal WiFi network, but that
network was missing from the database, which classifies its issue as the WiGLE issue.
The GPS comparison was not done in case of WiFi scanning issues, which happened
with networks 19 and 20, or in case of WiGLE issues, which happened with network 17.
GPS issue happened with network 18, as the signal reception was bad, so in that is why
in total 4 networks have missing GPS data.

The average WiGLE estimation in the area, is 56.5 meters from the target coordinates,
while GPS shows 110.05 meters from them (see Table 3). However, it is most likely
caused by such a small sample group, where abnormal deviation can pollute the results.
The network with an ID equal to 21 is one such abnormality, where the GPS showed
worse results than the WiGLE estimation. This reason might be that the readings were
taken inside the clinic (see Figure 18), where the GPS signal is obstructed by the building,
which might have resulted in low accuracy. When taking a better look at networks 19
and 20 in Table 3, it is clear that those network sources are smartphones. Specifically, a
smartphone that acts as a network hotspot. The probability of them being in the WiGLE
database is quite low, as they move very frequently and their SSID can be changed
very easily in the smartphone’s option menu. And indeed, when requesting a WiGLE

40

WiGLE

2

GPS

1

WiFi Scan

2

Success

2

Figure 21. Reading results from Budapest

estimation, those networks yielded no results. However, this problem was classified as
a WiFi Scanner problem, as such networks should not be used for the estimation due
to their unreliable nature. At first, the app chose the strongest signal and it was not
possible to manually choose the networks to use. After this, however, this feature was
implemented.

Table 4. General information in the table format from Tallinn.

ID Place SSID Freq WiGLE GPS WiGLE Acc GPS Acc

22 Sikupilli POLA-LASNA2-SK1 5GHz 525.3m 72.1m INCORRECT MEDIUM
23 Tornimäe TELIA-8D0DE2 2.4GHz 9m 9.7m HIGH HIGH
24 Liivalaia Smartphone_connect_73a28a 2.4GHz 21.2m 11.1m MEDIUM HIGH

Tallinn, however, followed Narva’s tendencies with the average being 185.2 meters
for the WiGLE estimation and 92.9 meters for GPS (as seen in Table 4).

However, as Table 1 shows, there are occasions when WiGLE produces more accurate
results. Networks 6 and 15, categorized as Medium accuracy level networks, are such
examples from Narva. Networks 21 and 23 are similar examples from Budapest and
Tallinn respectively.

41

2.4GHz 5GHz

100

150

200

250

260.8

92.8

Frequencies

#A
ve

ra
ge

ac
cu

ra
cy

Figure 22. Average of networks based on frequencies

Interestingly enough, the frequencies seem to influence the estimations quite con-
siderably. Figure 22 demonstrated a significant difference in accuracy between the 2.4
GHz and 5 GHz frequency networks. The y-coordinate represents the distance between
the target and estimated coordinates, so a higher number means a less accurate result.
This could indicate that WiGLE is more accurately localizing 5 GHz networks than 2.4
GHz networks. One possible reason might be that due to their nature, 2.4 GHz networks
can be detected farther away than 5 GHz networks. A bigger radius of detection implies
more room for mistakes.

42

5 Discussion
A few interesting difficulties came up during the research process, which redirected
the project and required us to come up with new solutions. One example is the tourist
hotspot problem described in the Results section. At that stage, the app did not have the
functionality that allows the user to choose the network they wanted to use for WiGLE
estimation. The app chose the strongest available network instead. This is the reason
why the tester had so many difficulties with getting the WiGLE estimations in areas with
high tourist density. As mobile hotspots are highly movable WiFi points, the possibility
of one of those networks being in the WiGLE database is low. And if the network is
present in the database, then that could produce an incorrect estimation instead.

After receiving the feedback from the tester, the app received an update to allow the
user to choose the WiFi network to avoid such situations in the future. However, there
is still space for app updates. One possible addition to the app might be the addition of
local database storage for scanned networks. This way, the app can work in offline mode
if the networks have already been seen or even sent to the WiGLE database to improve
their network coverage.

There is more room for research regarding the 2.4 GHz and 5 GHz networks. Results
show better accuracy with 5 GHz networks, which was mentioned before, as well as
the possible reason. It would be interesting to test the accuracy of 6 GHz networks.
Unfortunately, no networks with such operating frequencies were found in any of the
testing sites. Would the accuracy of WiGLE be even higher with a 6 GHz network, given
their even smaller radius?

There were also a lot of difficulties with the design of the app. It was quite a challenge
to design a cohesive app interface which would not break in case the target phone has a
screen with a different size. There were multiple occasions when the app APK file was
sent to some person’s phone to test its functionality, only to be stopped by the interface.
Buttons especially were vulnerable to the screen size change and frequently flew out of
the screen.

During testing in Budapest, there was also one case, where the GPS failed, but
WiGLE was still able to give an accurate estimation. Network 18 from Table 3. The
tester reported that the GPS was not functional, but they were still able to estimate the
location using WiGLE service along with the app’s WiFi Scanner. The reading was taken
inside the theatre (see Table 3 or Figure 18), so the error in the GPS system might have
been caused by the obstruction of the signal by the building.

Some readings were really inaccurate. Table 1 holds an especially strange network,
namely number 4. It is not special in any regard in comparison to the other networks,
however, the deviation is more than 900 meters. This is really interesting, as the reading
was taken in the fresh air with no obstructions. It is still unknown how such an error
was produced, but most probably it is related to how WiGLE performs its estimation
when the network enters its database. The other possible explanation is that when this

43

network was saved in the WiGLE database, its transmitter was located in the other area.
An owner of this network might have moved out to another apartment, which would have
explained some strong deviations. One potential solution might be to limit the year range
for results to have only up-to-date information. WiGLE API provides the capability to
restrict the search results only to the one after a specific date. Another potential solution
could be to apply the weighted approach, which basically means do readings of multiple
AP, get their positional information from the WiGLE database, and choose the closest
one to the user.

Another way to improve accuracy might be to capture the data and send it to WiGLE
more frequently. If the database updates more frequently, then the locations stay up to
date, and the estimation can incorporate any updates or changes made to the localization
algorithm by WiGLE. Multiple attempts at capturing the data can produce more accurate
data. Also, the WiGLE database have the cellular data available, which could potentially
help to boost accuracy.

44

6 Conclusion
For this thesis, common positioning methods were analysed and explained, such as
trilateration, triangulation and fingerprinting. As a part of the research, the topic of WiFi
and the contents of its wireless transmission was also touched upon. WiGLE, one of the
biggest network databases, was explored and heavily used throughout the thesis. As a
result of this research, an Android app was developed to act as a tool to investigate the
phenomena of WiFi and GPS positioning.

The app is fully functional and has been tested on different devices in different cities,
including Tallinn, Narva and Budapest. The app is available in Github, which was one of
the main development environments used for the purposes of this paper. The app requires
at least the API version of 26 to run, and the target version is 33. It holds several vital
functionalities, such as a WiFi scanner, GPS service to save the coordinates in the app
along with the comparison tool, a client to communicate with the WiGLE database and a
separate tab to compare the result to manually entered coordinates. Using this app, 24
readings were taken and analysed, which showed some interesting points, such as how
the efficiency of WiGLE estimations change with 2.4 GHz and 5 GHz networks.

However, there is still a lot of room for improvement. The app interface is not
very stable and can still be broken for several screen sizes. The overall looks could
be improved. The localization algorithm can probably be improved to produce more
accurate results.

In the future, more improvements could be done on positioning algorithms using
WiFi, because there are scenarios in which relying on GPS becomes unsustainable,
especially inside of buildings and highly dense areas.

45

References
[1] Gitnux. Google Maps Usage Statistics 2023: The Most Important Facts. Mar-

ket Data Coverage. https : / / blog . gitnux . com / google - maps - usage -
statistics/. Mar. 2023.

[2] Joseph D’Souza. The most widely used navigation application worldwide is
Google Maps. Press Release article based on Enterprise Apps Today data. https:
/ / www . mynewsdesk . com / 11press / pressreleases / the - most - widely -
used- navigation- application- worldwide- is- google- maps- 3234407.
Feb. 2023.

[3] United States Department of Transportation. Satellite Navigation - GPS - How It
Works. https://www.faa.gov/about/office_org/headquarters_offices/
ato/service_units/techops/navservices/gnss/gps/howitworks.

[4] Khavari A. et al Tabatabaei A. Mosavi M.R. “Reliable Urban Canyon Navigation
Solution in GPS and GLONASS Integrated Receiver Using Improved Fuzzy
Weighted Least-Square Method”. In: Wireless Pers Commun 94 (June 2017),
pp. 3181–3196.

[5] Xuan Du and Kun Yang. “A Map-Assisted WiFi AP Placement Algorithm En-
abling Mobile Device’s Indoor Positioning”. In: IEEE Systems Journal PP (Mar.
2016), pp. 1–9. DOI: 10.1109/JSYST.2016.2525814.

[6] Jongtaek Oh and Jisu Kim. “AdaptiveK-nearest neighbour algorithm for WiFi
fingerprint positioning”. In: ICT Express 4.2 (2018). Artificial Intelligence and
Machine Learning Approaches to Communication, pp. 91–94. ISSN: 2405-9595.
DOI: https://doi.org/10.1016/j.icte.2018.04.004. URL: https:
//www.sciencedirect.com/science/article/pii/S240595951830050X.

[7] Fuqiang Gu et al. “Indoor Localization Improved by Spatial Context - A Survey”.
In: ACM Computing Surveys 52 (July 2019), 64:1–35. DOI: 10.1145/3322241.

[8] Jin Zheng, Kailong Li, and Xing Zhang. “Wi-Fi Fingerprint-Based Indoor Local-
ization Method via Standard Particle Swarm Optimization”. In: Sensors (Basel,
Switzerland) 22 (July 2022). DOI: 10.3390/s22135051.

[9] A. T. Hudak et al. “Nearest neighbor imputation of species-level, plot-scale forest
structure attributes from lidar data”. In: Remote Sensing of Environment 112 (5
2008), pp. 2232–2245. DOI: 10.1016/j.rse.2007.10.009.

[10] N. Farjallah and A. Sghaier. “Machine learning based modelling of economic
growth and quality of governance: the mena region”. In: (2022). DOI: 10.21203/
rs.3.rs-1772256/v1.

46

https://blog.gitnux.com/google-maps-usage-statistics/
https://blog.gitnux.com/google-maps-usage-statistics/
https://www.mynewsdesk.com/11press/pressreleases/the-most-widely-used-navigation-application-worldwide-is-google-maps-3234407
https://www.mynewsdesk.com/11press/pressreleases/the-most-widely-used-navigation-application-worldwide-is-google-maps-3234407
https://www.mynewsdesk.com/11press/pressreleases/the-most-widely-used-navigation-application-worldwide-is-google-maps-3234407
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps/howitworks
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps/howitworks
https://doi.org/10.1109/JSYST.2016.2525814
https://doi.org/https://doi.org/10.1016/j.icte.2018.04.004
https://www.sciencedirect.com/science/article/pii/S240595951830050X
https://www.sciencedirect.com/science/article/pii/S240595951830050X
https://doi.org/10.1145/3322241
https://doi.org/10.3390/s22135051
https://doi.org/10.1016/j.rse.2007.10.009
https://doi.org/10.21203/rs.3.rs-1772256/v1
https://doi.org/10.21203/rs.3.rs-1772256/v1

[11] Y. Petscher and S. Koon. “Moving the needle on evaluating multivariate screening
accuracy”. In: Assessment for Effective Intervention 45 (2 2018), pp. 83–94. DOI:
10.1177/1534508418791740.

[12] IBM. What is random forest? https://www.ibm.com/topics/random-forest.

[13] Zhang X Zheng J Li K. “Wi-Fi Fingerprint-Based Indoor Localization Method
via Standard Particle Swarm Optimization”. In: Sensors (Basel) (July 2022). DOI:
10.3390/s22135051.

[14] Ejiofor H. C Oguejiofor O. S Aniedu A. N and Okolibe A. U. “Trilateration Based
localization Algorithm for wireless Sensor Network”. In: IJISME 1 (Sept. 2013),
pp. 21–27. ISSN: 2319-6386.

[15] R. Safwat et al. “Fingerprint-based indoor positioning system using ble: real
deployment study”. In: Bulletin of Electrical Engineering and Informatics 12 (1
2023), pp. 240–249. DOI: 10.11591/eei.v12i1.3798.

[16] Yapeng Wang et al. “Bluetooth positioning using RSSI and triangulation methods”.
In: Jan. 2013, pp. 837–842. ISBN: 978-1-4673-3131-9. DOI: 10.1109/CCNC.2013.
6488558.

[17] Nur Rose, Low Tan, and Muneer Ahmad. “3D Trilateration Localization using
RSSI in Indoor Environment”. In: International Journal of Advanced Computer
Science and Applications 11 (Jan. 2020). DOI: 10.14569/IJACSA.2020.0110250.

[18] GISGeography. How GPS Receivers Work – Trilateration vs Triangulation. https:
//gisgeography.com/trilateration-triangulation-gps/. Sept. 2022.

[19] IEEE. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications”. In: IEEE (2016).

[20] Vishal Gupta and Mukesh Kumar Rohil. “Bit-Stuffing in 802. 11 Beacon Frame:
Embedding Non-Standard Custom Information”. In: International Journal of
Computer Applications 63 (Feb. 2013), pp. 6–12. DOI: 10.5120/10436-5115.

[21] I. Dhanapala et al. “Modeling wifi traffic for white space prediction in wireless
sensor networks”. In: (2017). DOI: 10.1109/lcn.2017.30.

[22] Hosam Alamleh. “Unobtrusive Location-Based Access Control Utilizing Existing
IEEE 802.11 Infrastructure”. PhD thesis. May 2019. DOI: 10.13140/RG.2.2.
34451.50725.

[23] J. Martin et al. “A study of mac address randomization in mobile devices and
when it fails”. In: Proceedings on Privacy Enhancing Technologies 2017 (4 2017),
pp. 365–383. DOI: 10.1515/popets-2017-0054.

[24] WiGLE. WiGLE FAQ. https://wigle.net/faq.

47

https://doi.org/10.1177/1534508418791740
https://www.ibm.com/topics/random-forest
https://doi.org/10.3390/s22135051
https://doi.org/10.11591/eei.v12i1.3798
https://doi.org/10.1109/CCNC.2013.6488558
https://doi.org/10.1109/CCNC.2013.6488558
https://doi.org/10.14569/IJACSA.2020.0110250
https://gisgeography.com/trilateration-triangulation-gps/
https://gisgeography.com/trilateration-triangulation-gps/
https://doi.org/10.5120/10436-5115
https://doi.org/10.1109/lcn.2017.30
https://doi.org/10.13140/RG.2.2.34451.50725
https://doi.org/10.13140/RG.2.2.34451.50725
https://doi.org/10.1515/popets-2017-0054
https://wigle.net/faq

[25] Jamie Juviler. What Is an API Endpoint? (And Why Are They So Important?)
https://blog.hubspot.com/website/api-endpoint.

[26] DataHub. CSV - Comma Separated Values. https://datahub.io/docs/data-
packages/csv.

[27] Google. Kotlin Overview. https://developer.android.com/kotlin/overview.

[28] Python. Python Overview. https://www.python.org/doc/essays/blurb/.

[29] Google. About Android Jetpack. https://developer.android.com/jetpack/
getting-started.

[30] Google Android Studio. WifiManager documentation. https://developer.
android.com/reference/android/net/wifi/WifiManager.

[31] Retrofit. Retrofit Client website. https://square.github.io/retrofit/.

[32] WiGLE. WiGLE API documentation. https://api.wigle.net/swagger.

[33] Google Android Studio. Android Developer Location Documentation. https:
//developer.android.com/reference/android/location/Location.

48

https://blog.hubspot.com/website/api-endpoint
https://datahub.io/docs/data-packages/csv
https://datahub.io/docs/data-packages/csv
https://developer.android.com/kotlin/overview
https://www.python.org/doc/essays/blurb/
https://developer.android.com/jetpack/getting-started
https://developer.android.com/jetpack/getting-started
https://developer.android.com/reference/android/net/wifi/WifiManager
https://developer.android.com/reference/android/net/wifi/WifiManager
https://square.github.io/retrofit/
https://api.wigle.net/swagger
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location

7 Appendix

7.1 I. WiGLE Database Entry Example

1 {
2 " t r i l a t " : 59.38251114 ,
3 " t r i l o n g " : 28.16660690 ,
4 " ss id " : " E l i on " ,
5 " qos " : 0 ,
6 " t r a n s i d " : "20050822 −00000" ,
7 " f i r s t t i m e " : "2001−01−01T00 :00:00.000Z" ,
8 " l a s t t i m e " : "2005−08−22T18 :00:00.000Z" ,
9 " l a s t u p d t " : "2005−08−22T16 :00:00.000Z" ,

10 " ne t i d " : "00 :02 :2D: B2 :D7: 98 " ,
11 "name " : " Neste−A24 " ,
12 " type " : n u l l ,
13 " comment " : n u l l ,
14 "wep " : "N" ,
15 " b c n i n t e r v a l " : 0 ,
16 " f r eene t " : " ? " ,
17 " dhcp " : " ? " ,
18 " paynet " : " ? " ,
19 " userfound " : fa l se ,
20 " channel " : 9 ,
21 " r c o i s " : n u l l ,
22 " enc ryp t ion " : " none " ,
23 " count ry " : "EE" ,
24 " reg ion " : " Ida −V i ru maakond " ,
25 " housenumber " : "44 " ,
26 " posta lcode " : "21005" ,
27 " road " : " T a l l i n n a mnt " ,
28 " c i t y " : n u l l
29 }

49

7.2 II. Logs from the app
7.2.1 II.A WiFi Scanner Log

Listing 6. WiFi Scanner log (BSSIDs hidden for privacy)
1 SSID : " Wallet_May_Cry_Peak_Of_Thesis_5G " , BSSID : ac :4 c : a5 : * * : * * : * * ,
2 c a p a b i l i t i e s : [WPA2−PSK−CCMP+TKIP] [RSN−PSK−CCMP+TKIP] [WPA−PSK−CCMP+TKIP]
3 [ESS] [WPS] , l e v e l : −36, frequency : 5220 , timestamp : 19296281705,
4 d is tance : ?(cm) , distanceSd : ?(cm) , passpoint : no ,
5 ChannelBandwidth : 0 , centerFreq0 : 5220 , centerFreq1 : 0 ,
6 standard : 11ac , 80211mcResponder : i s not supported ,
7 Radio Chain In fos : n u l l , i n t e r f a c e name : wlan0
8

9 SSID : "05a1e0 " , BSSID : 00:71: c2 : * * : * * : * * , c a p a b i l i t i e s :
10 [WPA2−PSK−CCMP+TKIP] [RSN−PSK−CCMP+TKIP] [WPA−PSK−CCMP+TKIP] [ESS] [WPS] ,
11 l e v e l : −76 , frequency : 2412 , timestamp : 19296281700,
12 d is tance : ?(cm) , distanceSd : ?(cm) , passpoint : no ,
13 ChannelBandwidth : 0 , centerFreq0 : 2412 , centerFreq1 : 0 ,
14 standard : 11n , 80211mcResponder : i s not supported ,
15 Radio Chain In fos : n u l l , i n t e r f a c e name : wlan0

7.2.2 II.B WiGLE Search Log

Listing 7. How WiGLE requests are logged (BSSIDs hidden for privacy)
1 SSID used : TP−Link_8B94_5G , −−−−−> Wig leCalcu la tedLocat ion (t r i l a t =59.37862778 ,
2 t r i l o n g =28.1688633 , ss id = 'TP−Link_8B94_5G ' , qos=4 , ne t i d = 'B0 :BE : 7 6 : * * : * * : * * ')

7.2.3 II.C GPS Log

Listing 8. GPS log (BSSIDs hidden for privacy)
1 Di f fe rence : 930.5388 meters ,
2 gps : GpsLocation (l a t i t u d e =59.377205 , l ong i t ude =28.1727997)
3 −−−−−−
4 wig le : Wig leCalcu la tedLocat ion (t r i l a t =59.37882233 ,
5 t r i l o n g =28.18885994 , ss id = ' Puskina23 ' , qos=0 ,
6 ne t i d = 'C0: 2 5 :E9 : * * : * * : * * ')

7.2.4 II.D Manual Logs

Listing 9. Manual log - for GPS comparison
1 Di f fe rence : 3.4203334 meters ,
2 gps : GpsLocation (l a t i t u d e =59.3771981 , l ong i t ude =28.172673)
3 −−−−−−
4 manual : GpsLocation (l a t i t u d e =59.3771952 , l ong i t ude =28.1727329)

50

Listing 10. Manual log (BSSIDs hidden for privacy) - for WiGLE comparison
1 Di f fe rence : 934.47577 meters ,
2 wig le : Wig leCalcu la tedLocat ion (
3 t r i l a t =59.37882233 , t r i l o n g =28.18885994 , ss id = ' Puskina23 ' ,
4 qos=0 , ne t i d = 'C0: 2 5 :E9 : * * : * * : * * ')
5 −−−−−−
6 manual : GpsLocation (l a t i t u d e =59.3771952 , l ong i t ude =28.1727329)

51

III. Licence
Non-exclusive licence to reproduce thesis and make thesis public

I, Nikita Bahhir,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for preservation, including for adding to the DSpace digital archives
until the expiry of the term of copyright,

Positioning using WiFi
supervised by Danielle Melissa Morgan.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Nikita Bahhir
15/05/2024

52

	Introduction
	Background
	Positioning Methods
	Fingerprinting
	Trilateration
	Triangulation

	WiFi Beacons
	BSSID
	SSID

	WiGLE
	Database
	WiGLE Wardriving App

	Methods
	Tools
	Data Gathering
	Coding
	Development Environment

	Android App
	Setup and Basic Layout
	WiFi Scanner
	WiGLE Search
	GPS
	Manual
	Logging

	Results
	Testing
	Findings

	Discussion
	Conclusion
	References
	Appendix
	I. WiGLE Database Entry Example
	II. Logs from the app
	II.A WiFi Scanner Log
	II.B WiGLE Search Log
	II.C GPS Log
	II.D Manual Logs

	II. Licence

