
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Tofig Bakhshiyev

Hard and Soft Tuning of Spark Ecosystem
Toward Query Energy Efficiency

Master’s Thesis (30 ECTS)

Supervisor(s): Simon Pierre Dembele, PhD

Tartu 2024

Hard and Soft Tuning of Spark Ecosystem Toward Query Energy
Efficiency

Abstract:
This thesis explores the energy efficiency of executing TPCH queries within the Apache
Spark framework, explicitly focusing on diverse file formats (Parquet, CSV, Avro, and
TBL) and varying partition sizes in a standalone configuration. The assessment measures
energy consumption during the data reading and query processing phases. Initial compar-
isons are made regarding the characteristics of Parquet, CSV, and Avro formats, analysing
their impact on the query performance of Spark. Additionally, the study investigates
Spark’s standalone configuration, scrutinising cluster settings, resource allocation, and
hardware optimizations that influence energy usage during query execution. An integral
part of this exploration involves comprehending how different partition sizes influence
energy consumption. The evaluation systematically assesses the impact of partition
sizes on IO operations, data shuffling, and overall energy consumption during query
processing. Utilising TPCH queries as benchmarks, experiments are conducted across
various file formats, partition sizes, and configurations. The outcomes offer practical in-
sights for enhancing energy efficiency in Spark-based big data processing. This research
contributes to the broader discourse on sustainable data processing, guiding practitioners
to make energy-conscious decisions in Apache Spark environments.

Keywords: Energy evaluation, Partitioning, distributed systems, data processing, file
formats

CERCS:P170, Computer Science

2

Sparki ökosüsteemi kõva ja pehme häälestamine päringute energiatõ-
hususe suunas
Lühikokkuvõte:
Käesolevas töös uuritakse TPCH päringute täitmise energiatõhusust Apache Sparki raa-
mistikus, keskendudes selgesõnaliselt erinevatele failivormingutele (Parquet, CSV, Avro
ja TBL) ja erinevatele partitsioonide suurustele iseseisvas konfiguratsioonis. Hindamisel
mõõdetakse energiakulu andmete lugemise ja päringu töötlemise faasis. Esmalt võr-
reldakse Parquet, CSV ja Avro formaatide omadused, analüüsides nende mõju Sparki
päringute sooritamisele. Lisaks uuritakse Sparki eraldiseisvat konfiguratsiooni, uurides
klastri seadistusi, ressursside jaotust ja riistvara optimeerimist, mis mõjutavad energiaka-
sutust päringu täitmise ajal. Selle uurimise lahutamatu osa on mõista, kuidas erinevad
partitsioonide suurused mõjutavad energiatarbimist. Hindamisel süstemaatiliselt hinna-
takse partitsioonide suuruse mõju IO-operatsioonidele, andmete segunemisele ja üldisele
energiatarbimisele päringute töötlemisel. Kasutades TPCH päringuid kontrollmõõduna,
tehakse katseid erinevate failiformaatide, partitsioonide suuruse ja konfiguratsioonide
vahel. Tulemused pakuvad praktilisi teadmisi energiatõhususe suurendamiseks Sparki-
põhises suurandmete töötlemises. See uurimus aitab kaasa laiemale arutelule säästliku
andmetöötluse teemal, suunates praktikuid tegema energiateadlikke otsuseid Apache
Sparki keskkondades.

Võtmesõnad: Energiatarbimine, suurandmed, hajussüsteemid, andmetöötlus

CERCS:P170, Arvutiteadus

3

Contents
1 Introduction 6

2 Background 7
2.1 Apache Spark . 7

2.1.1 Apache Spark Core . 7
2.1.2 Spark SQL . 8
2.1.3 Apache Streaming . 8
2.1.4 Apache MLib - Machine Learning Library 8
2.1.5 Apache GraphX . 9
2.1.6 Spark RDD . 9
2.1.7 Spark SQL: Relational Data Processing 9
2.1.8 Spark SQL Key Benefits . 10

2.2 Storage Mechanisms . 10
2.2.1 Storage models . 10
2.2.2 File Formats . 11

2.3 Computer Energy Consumption Formulations 12
2.4 The motivation of the thesis . 13

3 Literature review 13
3.1 Energy Evaluation . 14
3.2 Taxonomy of Energy Efficiency (EE) in Apache Spark 14

3.2.1 Hardware approaches solution 15
3.2.2 Software solution . 17

3.3 Conclusion . 19

4 Methods 19
4.1 Softwares and Tools . 19

4.1.1 Yocto-Watt . 19
4.1.2 TPC-H Benchmark Datasets 20

4.2 Environment . 21
4.3 Power and performance measurement process 22

5 Results 23
5.1 Experitment 1 - File Formats confrontation 23
5.2 Experitment 2 - Different Partition Numbers 24
5.3 Experitment 3 - Different Partition Size 27
5.4 Experitment 4 - Scheduling policy FIFO to FAIR 28

6 Discussion and recommendation 29

4

7 Perspectives 30

8 Conclusions 31

References 34

Appendix1 35
I. Glossary . 38
II. Licence . 39

5

1 Introduction
In this thesis, we comprehensively explore the energy efficiency considerations associated
with executing TPCH queries in Apache Spark. Our focus centres on evaluating the
impact of different file formats—specifically, Parquet, CSV, and Avro—along with the
influence of varying partition sizes in a standalone setup. Throughout our investigation,
we meticulously measure energy consumption during data reading and query processing.

The initial phase of our study involves a comparative analysis of Parquet, CSV, and
Avro formats, shedding light on their respective characteristics and consequential effects
on Spark’s query performance. Beyond file formats, we extend our inquiry to encompass
Spark’s standalone configuration. This entails a detailed examination of cluster settings,
resource allocation strategies, and hardware optimizations, all of which play a pivotal
role in shaping energy usage during the execution of queries.

A critical dimension of our exploration is understanding how different partition sizes
impact energy consumption. This entails a systematic evaluation of the influence of
partition sizes on IO operations, data shuffling processes, and the overall energy footprint
during query processing.

Using TPCH queries as benchmarks, our experiments span diverse file formats,
partition sizes, and configurations. The outcomes of this research aim to provide practical
insights, offering guidance to practitioners seeking to optimise energy efficiency in
Apache Spark-based big data processing. By contributing to the broader discourse on
sustainable data processing, our findings aspire to empower decision-makers with the
knowledge to make energy-conscious choices in Apache Spark environments.

6

2 Background
This section presents an overview of the technologies and methodologies employed in
this thesis. This covers Spark SQL, various file formats, namely Parquet, Avro, TBL, and
CSV, and general computer energy consumption discussion. Additionally, the motivation
behind undertaking this thesis is explored.

2.1 Apache Spark
Apache Spark is a rapid cluster computing solution created for swift data processing.
Built upon Hadoop MapReduce, it expands the MapReduce paradigm to support a
broader range of tasks, including interactive queries and real-time stream processing.
Spark’s standout attribute lies in its utilisation of in-memory computing across clusters,
significantly enhancing application processing speeds. It has five main components
[Spa24a], namely Spark Core, Spark SQL, Spark Streaming, MLib, and GraphX as
shown in Figure 1.

Figure 1. Apache Spark Components

2.1.1 Apache Spark Core

Apache Spark Core is the foundational framework of the Apache Spark platform. It
provides distributed task scheduling, memory management, and fault recovery. It also
includes Java, Scala, and Python APIs, enabling developers to interact with the Spark
cluster and perform distributed data processing tasks [Spa24b].

7

Figure 2. Spark SQL interaction with Spark RDD

2.1.2 Spark SQL

Spark SQL is a component of Apache Spark that enables the processing of structured
and semi-structured data using SQL queries as shown in Figure 2. It allows users to
seamlessly integrate SQL queries with Spark programs, providing a unified batch and
real-time data processing platform. Spark SQL processes data by leveraging a query
optimizer called Catalyst, which translates SQL queries into a physical execution plan.
The process involves parsing, analysis, optimization, code generation, and execution
[AXL+15], [Spa24g].

2.1.3 Apache Streaming

Spark Streaming is an extension of the core Spark API that enables scalable, high-
throughput, fault-tolerant stream processing of live data streams [SDC+16], [Spa24h]. It
allows developers to process data streams in real time using the same programming model
as batch processing, simplifying the development of real-time analytics applications.

2.1.4 Apache MLib - Machine Learning Library

MLlib is Apache Spark’s scalable machine learning library. It provides a wide range of
distributed machine-learning algorithms and utilities, allowing users to build and deploy
machine-learning models at scale [SDC+16], [Spa24e]. MLlib supports various tasks
such as classification, regression, clustering, collaborative filtering, and dimensionality
reduction.

8

2.1.5 Apache GraphX

GraphX is Apache Spark’s graph processing library. It provides an API for manipulating
and analysing graphs and graph-parallel computation. GraphX enables users to express
graph computation within the Spark framework, allowing seamless integration with other
Spark components for efficient large-scale graph processing [[SDC+16], [Spa24d]].

2.1.6 Spark RDD

Apache Spark RDD (Resilient Distributed Dataset) is a distributed, immutable collection
of data items partitioned across nodes in a cluster [Spa24f]. RDDs support transforma-
tions and actions for parallel processing, ensuring fault tolerance and high performance.

2.1.7 Spark SQL: Relational Data Processing

Data Processing and Shuffling: During execution, Spark processes the data according
to the optimised plan. If there are operations that require shuffling (data redistribution
across partitions), Spark efficiently manages this process to minimise data movement
and optimise performance. Spark SQL has two main components, as shown in Figure 2:
Optimizer and Dataframe API.

Optimizer jobs: It has five stages, namely Parsing, Analysis, Optimization, Code
Generation, and Execution [AXL+15].

• Parsing: Spark SQL parses the SQL queries to understand their syntactic structure.

• Analysis: The parsed queries undergo an analysis phase where Spark SQL checks
for semantic errors, resolves references to tables and columns, and ensures the
queries are logically sound.

• Optimization: Catalyst performs query optimization by transforming the logical
execution plan into a physical execution plan. This includes optimizations like
predicate pushdown, constant folding, and other rule-based transformations to
enhance performance.

• Code Generation: Spark SQL uses code generation to generate Java bytecode for
the physical execution plan. This compiled code is then executed on the Spark
engine.

• Execution: The optimised and compiled code is executed on the Spark engine,
processing the data in a distributed and parallelized manner across the Spark
cluster.

9

DataFrame: This API provides a higher-level abstraction for working with structured
data in Spark SQL [AXL+15], [Spa24c].
It allows users to express data manipulation operations in a more concise and declarative
manner than traditional RDD-based operations. DataFrames represent distributed col-
lections of data organised into named columns, similar to tables in a relational database.
The DataFrame API supports a wide range of operations, including filtering, grouping,
joining, aggregating, and windowing, making it suitable for various data processing tasks.
DataFrames seamlessly integrate with Spark SQL, allowing users to execute SQL queries
directly on DataFrame objects and vice versa.

2.1.8 Spark SQL Key Benefits

Spark SQL supports structured and semi-structured data, and this allows users the
flexibility to work with different data sources (such as Parquet, CSV, TBL, and Avro). In
addition, Spark SQL extends its capabilities to support Structured Streaming, allowing
users to process real-time data using the same high-level SQL constructs as batch
processing. This simplifies the development of streaming applications, and Spark SQL
inherits the scalability and performance benefits of the underlying Spark engine. It can
efficiently process large-scale datasets in a distributed and parallelized fashion, making it
suitable for big data analytics [Spa24g].

2.2 Storage Mechanisms
This section delves into various file formats commonly utilised in the industry alongside
their underlying technologies, and these file formats are of two different types.

2.2.1 Storage models

In the literature, mainly we have two alternatives for storing formats, namely column
and row-oriented [Wri24], as shown in Figure 3.

10

Figure 3. Columnar and row based storage

2.2.2 File Formats

In terms of file format technologies, Apache Parquet, Apache Avro, CSV, and TBL are
used.

• Apache Parquet: Apache Parquet is a columnar storage file format designed for
the Apache Hadoop ecosystem. It is optimised for efficient storage and processing
of large-scale structured data. Parquet is particularly well-suited for analytical
workloads in big data environments, and it supports various comparison methods;
the most popular one is Gzip [Voh16b], [Com22b].

• Apache Avro: Apache Avro is a data serialisation system that efficiently exchanges
data between systems and languages. It is a row-based format that focuses on
providing a compact and efficient binary serialisation format. Avro is particularly
well-suited for use cases requiring data schema evolution, efficient serialisation,
and interoperability across different programming languages and systems [Voh16a],
[Com22a].

• CSV: Comma-separated values (CSV) is a widely used file format for storing
tabular data in plain text. It is a simple, lightweight format that is easy to understand
and widely supported by various software applications and programming languages
[Sha05].

• TBL: Tabular Data Package (TBL) is a file format and data packaging specification
that aims to provide a standardised way to package and share tabular data and

11

metadata. TBL files typically contain structured data organised in rows and
columns, similar to CSV files, but with additional metadata to describe the data
schema and other attributes [Com23].

2.3 Computer Energy Consumption Formulations
Energy, a fundamental concept in physics, manifests in various forms, such as electrical,
magnetic, chemical, and nuclear. In this study, we focus on electrical energy, measured
in Joules [DBOR20]. Power, denoted as P, represents the rate of energy transfer per unit
time measured in Watts. It can be expressed as the work done, W, over a period, t, as per
Equation 1.

P =
W

T
(1)

Energy, denoted as E, is the total electrical energy consumed over time, calculated by
multiplying power by time, as shown in Equation 2.

E = P × T (2)

In information technology, work entails activities associated with program execution.
At the same time, power denotes the rate of electrical energy consumption per second,
and energy represents the total electrical energy consumed over time.

Electrical power consumption can be categorised into dynamic power and static
power.

• Static power, or leakage power (Pleakage), stems from leakage current (Ileakage)
flowing in the system’s idle state. This includes consumption from components
like fans, processors, memory, and I/O devices when inactive, as expressed in
Equation 3.

Pleakage = Ileakage × V oltages (3)

• Dynamic power consumption (Pdynamic) occurs during workload execution and is
influenced by the type of workload and how it utilises the processor, memory, and
I/O devices. Switched capacitance primarily drives dynamic power consumption,
as detailed in Equation 4.

Pdynamic = α× c× f × V 2 (4)

where Where α is the percentage of active gates, c is the capacitance, V is the
voltage, and f is the frequency.

12

• Energy efficiency (EE) signifies optimal energy utilisation to provide the same
service. It is defined as the ratio of performance to power, expressed as in Equation
5:

EE =
useful energy

total energy
(5)

2.4 The motivation of the thesis
Data warehouses are critical infrastructure for storing and managing vast data, facili-
tating efficient data analysis and decision-making processes. However, the increasing
energy needs of storage and data processing systems exacerbate environmental problems
and significantly increase operational costs. In order to address these ecological issues
while meeting the growing demand for data management services, initiatives need to be
developed to facilitate the digital transition towards greater energy efficiency. This thesis
builds upon previous research efforts to optimise the energy consumption of storage
and data processing systems through efficient and appropriate utilisation of available
resources. By targeting energy reduction, this thesis aims to mitigate the environmental
impact of data warehouse operations while concurrently reducing operational expenses.
Achieving this goal involves implementing energy-efficient hardware and software opti-
mization techniques and adopting sustainable data management practices. In this thesis,
we examine the energy consumption of the query processing system in the SparkSQL
engine across various configurations. We begin by evaluating the impact of storage
format choices on the system’s total energy consumption. Then, we analyse the effect of
the number of data partitions while query execution. Finally, we assess the impact of
Scheduling policy by switching between FIFO to FAIR. These various assessments aim
to guide storage or processing system administrators towards best practices that would
optimise both the energy consumption of the system and the query execution performance.
In summary, this thesis endeavours to optimise data warehouse operations by addressing
the interconnected challenges of energy consumption, performance enhancement, and
resource optimization. By implementing innovative strategies and technologies, it seeks
to create a more sustainable, efficient, and resilient data infrastructure capable of meeting
the demands of modern data-driven enterprises.

3 Literature review
In this section, after discussing the approaches used to evaluate the energy consumption of
computer systems, we will cover the recent works related to energy efficiency techniques
in the Apache Spark data processing engine.

13

3.1 Energy Evaluation
Efficient energy assessment relies on the collaboration between advanced computational
frameworks and practical physical instruments. While energy assessment models offer
thorough analyses and optimization plans, physical tools provide actual data collection
and validation. The integration of these methods enables a comprehensive understanding
of energy usage patterns and facilitates specific efficiency enhancements.

• Energy Assessment Models: These computational frameworks employ mathe-
matical algorithms and simulation methods to forecast energy consumption and
pinpoint optimization opportunities. These models deliver valuable insights into
energy consumption trends by considering factors like equipment efficiency, oper-
ational parameters, and environmental factors.

• Physical Tools: Tools like smart meters, energy audit equipment, and data log-
ging devices enable real-time data collection and analysis. They empower energy
auditors and researchers to gather empirical data on energy usage, identify ineffi-
ciencies, and validate the conclusions drawn from computational models.

• Combining Models and Tools: Merging energy assessment models with physical
tools heightens the accuracy and dependability of energy evaluations. This collab-
oration allows stakeholders to devise targeted energy-saving strategies based on
empirical data and computational insights.

3.2 Taxonomy of Energy Efficiency (EE) in Apache Spark
An overload of work has been conducted to improve energy efficiency in data stores
and processing engines. These works fall into two approaches: an approach based on
hardware tuning and an approach based on software optimization. Many works in the
Apache spark engine ecosystem have focused on resource management, job scheduling,
processing tuning, and dynamic power management techniques to optimise the overall
energy system consumption, as shown in Figure 4.

• Resource Management: Efficient cluster resource allocation and dynamic resource
adjustment.

• Job Scheduling: Optimising task and stage scheduling to minimise idle time and
resource contention.

• Data Processing Techniques: Utilising data partitioning, compression, and caching
to reduce network and I/O energy consumption.

• Algorithmic Optimization: Choosing efficient algorithms and caching to minimise
CPU and I/O operations.

14

• Hardware Considerations: Optimising CPU and memory utilisation for energy
efficiency.

• Monitoring and Optimization: Continuous monitoring, profiling, and tuning to
identify inefficiencies.

• Environment-aware Execution: Considering temperature, cooling, and power
constraints.

• Power Management: Utilising DVFS and power-aware scheduling to optimise
energy consumption.

Figure 4. Taxonomy of energy efficiency in Apache Spark

3.2.1 Hardware approaches solution

Authors in [SSK16] explore how small, energy-efficient computer chips called System-
on-Chip (SoC) platforms perform when used for Apache Spark data analysis. Even
though these chips take longer to finish tasks than powerful processors, they use much
less energy. These chips can be up to 3 times more energy-efficient for tasks like machine
learning and graph computations. This means they can help save power and reduce
costs in data centres. So, even though they are slower, they are better for saving energy,

15

especially if energy efficiency is more important than speed.

In [HZK+18], authors introduce a method for combining FPGA (Field-Programmable
Gate Array) accelerators with Apache Spark clusters to improve performance and energy
efficiency in big data processing. The researchers used a 2D-FFT (Two-Dimensional Fast
Fourier Transform) algorithm as a case study to test the FPGA-based Spark framework.
The results showed that the FPGA-based Spark implementation was 1.79 times faster
than the CPU implementation. The authors aim to further enhance the performance of
Spark clusters by equipping each slave node with an FPGA accelerator and optimising
the implementation of other resource-intensive algorithms. This approach could signifi-
cantly improve the efficiency of big data processing in various applications and industries.

Researchers in [KSKS18] demonstrate a new approach for easily using FPGA hard-
ware in data centres with Spark as part of the VINEYARD project. This method lets
FPGAs be used efficiently without changing application code, leading to faster speeds
and less energy use in machine learning tasks. The researchers tested the KMeans
machine learning algorithm. They found that the FPGA setup was twice as fast, used 23
times less energy than an Intel Xeon processor, and was 31 times faster and 29 times more
energy-efficient than an ARM-only solution. The VINEYARD project aims to create
a system for energy-efficient data centres using programmable hardware accelerators,
promoting innovation in FPGA-based solutions for cloud computing.

In [Ngh18], authors focus on addressing the pressing issue of high energy consump-
tion by data processing engines in data centres, exacerbated by the exponential growth
in Big Data processing. The paper proposes the innovative Best Trade-off Point (BToP)
method to tackle this challenge. This method offers a systematic approach, leverag-
ing mathematical algorithms to identify the optimal trade-off point on an elbow curve,
balancing performance against resources for efficient resource allocation in Hadoop
MapReduce environments. Extending the applicability of the BToP method beyond
Hadoop MapReduce, the paper applies it to the emerging cluster computing frame-
work, Apache Spark. By utilising the BToP method, the study demonstrates improved
performance and energy consumption compared to Spark’s built-in dynamic resource
allocation mechanism. Spark-bench tests confirm the effectiveness of employing the
BToP method to determine the optimal number of executors for various workloads in
production environments. The BToP method is distinguished by its ability to precisely
identify the optimal number of executor resources for a workload, striking the ideal
balance between performance and computing resources based on a runtime elbow curve
derived from sampled executions within the target cluster. The versatility of the BToP
techniques extends beyond cluster-computing frameworks like Hadoop and Spark, offer-
ing potential applications across diverse systems and applications relying on trade-off

16

curves for informed decision-making. While this paper explicitly evaluates Apache Spark
running on YARN for resource provisioning efficiency, the BToP method holds promise
for optimising resource allocation in various computing environments.

Authors in [LWX+21] address the pressing issue of high energy consumption in
Cloud data centres for big data processing, proposing a frequency-aware and energy-
saving strategy termed FAESS-DVFS for Spark on YARN. This strategy aims to optimise
energy consumption while maintaining Service Level Agreements (SLA) by imple-
menting energy-saving measures at both the YARN and Spark layers. In the YARN
layer, an optimal CPU frequency is determined based on the minimum energy efficiency
ratio (EER) obtained from a status monitoring module. This frequency is selected to
minimise energy consumption while ensuring SLA requirements. In the Spark layer, a
task scheduling method is developed to dynamically adjust the CPU frequency of nodes
throughout the lifecycle of different stages. This adjustment optimises energy consump-
tion by leveraging dynamic voltage and frequency scaling (DVFS) in response to varying
workload demands. Experimental tests conducted using Hibench demonstrate that the
FAESS-DVFS method achieves significant energy savings of up to 29.5% compared to
default algorithms in Spark on YARN, all while satisfying SLA constraints.

3.2.2 Software solution

The work in [LWF+20] presents an energy-aware scheduling algorithm, EASAS, de-
signed to mitigate the escalating energy consumption associated with the rapid growth
of big data applications in Apache Spark clusters. EASAS dynamically allocates tasks
based on historical data, optimising energy usage while ensuring service level agree-
ments (SLA) are met. Through comprehensive experimentation across various workloads
from the HiBench suite, EASAS demonstrates remarkable energy savings, achieving
reductions of up to 51.2% and 56.3% compared to traditional FIFO and FAIR scheduling
strategies. These findings underscore EASAS’s potential to significantly curb energy
consumption in Spark clusters without compromising performance objectives. Future
research will further optimise task scheduling to unlock even greater energy efficiencies.

[MZK17b] introduces a framework for efficient energy scheduling of Spark work-
loads, addressing the pressing need to minimise energy consumption in distributed
processing systems while meeting performance requirements. The framework orches-
trates the execution order of Spark applications, utilising dynamic voltage and frequency
scaling (DVFS) to tune CPU frequencies and minimise energy usage. Experimental
results demonstrate the framework’s effectiveness in reducing energy consumption while
satisfying application deadlines. The paper presents a novel framework designed to

17

optimise energy usage in Spark workloads, which is crucial for reducing data warehouse
operations’ environmental impact and operational costs. The framework aims to bal-
ance energy efficiency with performance requirements by dynamically adjusting CPU
frequencies based on workload characteristics. Experimental evaluations showcase the
framework’s effectiveness in minimising energy consumption while meeting application
deadlines.

This paper aligns closely with the broader research objective of optimising energy
consumption in data storage and processing systems. While the research introduction
focuses on addressing ecological concerns and operational costs through energy-efficient
practices, the presented framework contributes directly by providing a solution tailored
to the Spark ecosystem. Leveraging dynamic scheduling techniques complements efforts
to enhance resource utilisation and reduce environmental impact in data warehouse
operations.

[IKB17] introduces dSpark, a lightweight resource allocation framework tailored
for Apache Spark, overcoming limitations in existing methods. Unlike conventional
approaches, dSpark autonomously determines a cost-efficient resource allocation plan,
considering individual user deadlines, thus eliminating manual input. Moreover, dSpark
incorporates a predictive model for application completion times, utilising application
profiles to forecast task completion durations precisely. This enhances resource alloca-
tion efficiency, minimising both cost and resource consumption. The authors’ findings
demonstrate dSpark’s efficacy in selecting optimal resource allocation strategies and
enhancing performance across diverse user deadlines. Furthermore, dSpark simplifies
deployment by removing the need for users to specify application types. Additionally,
the accuracy of the framework depends on the depth of application profiling, with more
thorough profiling yielding more precise predictions. Furthermore, while dSpark assumes
homogeneous worker nodes, it can also adapt to heterogeneous environments.

The authors in [SLG+22] introduce two scheduling algorithms, TPCBFD and EAT-
PCBFD, to enhance energy efficiency and meet Service Level Agreement (SLA) require-
ments in Apache Spark. TPCBFD categorises tasks into three types and assigns them to
nodes with superior performance, while EATPCBFD further optimises energy efficiency
based on an energy consumption model. Experimental results demonstrate significant
improvements in energy efficiency and SLA adherence compared to existing algorithms.

The authors in [MZK17a] introduce ExpREsS, a scheduling system designed for
distributed processing frameworks like Apache Spark, with a focus on minimising energy
consumption while meeting application performance requirements. ExpREsS utilises
time-series prediction models to understand application energy usage and execution
times, enabling it to apply dynamic voltage and frequency scaling (DVFS) techniques

18

to reduce energy consumption effectively. Experimental results illustrate the benefits of
ExpREsS in optimising energy usage while meeting application deadlines, outperforming
existing scheduling approaches. Key contributions include formulating the problem of
energy-efficient scheduling, proposing the ExpREsS scheduler, and providing methods
for detecting and exploiting periodic power usage patterns. In summary, ExpREsS
enhances the efficiency of mixed workloads in distributed processing systems, offering
practical solutions for minimising energy utilisation and meeting performance goals.

3.3 Conclusion
The review of previous works regarding energy efficiency in Apache Spark show that
various methods have been explored to target energy efficiency issues in Spark clusters.
To facilitate the understanding, we have classified these works into two groups. The first,
named hardware approaches, are solutions that leverage the redesigning and tuning of
hardware, and the second, named software approaches, focus on managing resources,
scheduling tasks, and optimising algorithms. Our proposition falls in the middle of these
approaches; we aim to confront different configurations by tuning factors such as file
formats, partition size, and memory size to determine and make recommendations for
the one that fits with the green purpose. These recommendations will provide valuable
insights for practitioners aiming to improve energy efficiency in their data processing
workflows.

4 Methods
This chapter summarises the softwares and tools, data modelling, and queries used in
the research thesis. It explains how the study was conducted, including the methods and
materials used. Also, it emphasises the importance of these components in reaching the
research goals.

4.1 Softwares and Tools
This study conducted energy measurements using the Yocto-Watt device, Python, Scala,
and SQL were used as the programming and query languages, while Apache Spark 3.5
was utilised for data processing and TPC-H benchmark (Implementations Repository).

4.1.1 Yocto-Watt

This tool is a digital watt-meter designed to monitor the power usage of electrical devices,
as shown in Figure 5. It functions with both AC and DC currents. It calculates the actual
power consumption for AC currents, making it suitable for monitoring inductive loads.

19

https://github.com/TofigBakhshiyev/MasterThesisComputerScience/tree/main

Additionally, it can measure power consumption over a specified period with an accuracy
of 1mWh, 1%. Moreover, the device is isolated, ensuring that the sensor component
is electrically separated from the USB component, allowing voltage differences to be
measured within the range of -250V to 250V. [YW23].

Figure 5. Yocto-Watt device

4.1.2 TPC-H Benchmark Datasets

The TPC-H benchmark is used for decision support and includes different business-
related queries and data modifications. It is designed to be relevant across different
industries and demonstrates systems that analyse large datasets and answer complex
business questions. The benchmark measures performance using the TPC-H Composite
Query-per-Hour Performance Metric (QphH-Size), which considers database size, query
processing power, and throughput for single and multiple users [Ben23].

• Data Modeling
The TPC-H benchmark employs a star schema data model with a central fact table
encircled by several dimension tables, as shown in Figure 6. This model is preva-
lent in decision support systems and data warehousing applications, facilitating
streamlined querying and analysis of extensive datasets [Ben23].

20

Figure 6. TPC-H Star Schema Data Model

• TPC-H Queries
The TPC-H benchmark employs complex decision support queries to simulate
real-world business situations, assessing database systems’ capacity to handle large
data volumes and perform advanced tasks like aggregations, joins, and filtering,
which is prevalent in data warehousing and business intelligence contexts, and
there are 22 queries (See Appendix I).

4.2 Environment
In Figure 7 of the thesis, the illustration depicts a personal computer connected to a lab
computer via SSH, with a Yocto-Watt device connected to the lab computer for real-time
energy measurement. SSH connection to the lab computer is chosen to avoid unnecessary
energy consumption when running Ubuntu’s graphical user interface (UI) and additional
services. In addition, lab computer specification shown in Table 1.

21

Systems Description

Operation System Linux Ubuntu 64 bit 22.04.2 LTS
CPU Intel Core i7-6700 CPU 3.40 GHz - 4 cores, 8 threads
RAM 16 gigabyte DDR4 2133MHz
Datasize 43 gigabyte
Thermal design power 65 W
Development tools Python, Scala, Apache Spark, Pandas, Python Threading
Apache Spark Config Standalone mode, one master, 10 gigabytes executor memory,

one executor with 8 threads

Table 1. OS and Computer Specification

Figure 7. Energy Values by Query and File Format.

4.3 Power and performance measurement process
In the thesis, the process involves concurrently initiating both a Spark job and the
Yocto-Watt device, achieved through utilising the multiprocessing library in Python.
This approach enables the execution of both tasks simultaneously. Upon completion
of the Spark job, the Yocto-Watt stops energy measurement. Furthermore, the Python
script allows for specifying parameters such as partition size, file format, and query
number. These parameters facilitate the testing of individual queries or varying partition
sizes. Furthermore, the Yocto-Watt device records energy measurements at one-second
intervals and logs them to an Excel sheet. However, due to this setup, the energy values
captured may be near real-time. Additionally, a finish message is sent to the queue upon
completion of the Spark job processing. Subsequently, the Yocto-Watt process receives
this message and concludes the energy measurement. Consequently, the energy values
corresponding to one or two rows at the end of the Excel sheet may not be directly linked
to the energy measurement of the Spark job.

22

5 Results
This section extensively examines the performance and energy aspects of various file
formats, presenting results obtained for different partition sizes. It delves into the impact
of file formats on performance metrics and energy consumption. Additionally, it provides
detailed insights into the outcomes observed when varying partition sizes, shedding light
on how these alterations affect the system’s overall performance and energy efficiency.

5.1 Experitment 1 - File Formats confrontation
In this experimentation, we kept the default partition number at 200 (default size 128
megabytes) in the default configuration of Apache Spark while utilizing a single executor
with 8 threads and 10 gigabytes of memory. As depicted in Figures 8 and 9, Apache Par-
quet demonstrates lower energy consumption during read and data processing operations.
In generating random data, there was not an Apache Parquet file. Instead, we converted
the data into three widely used file formats: Apache Parquet, Apache Avro, and CSV.
Following this conversion, the Apache Parquet file was observed to be smaller than the
others due to its effective compression technique. Despite the fact that Parquet requires
a data decompression step when processing queries, it nevertheless remains the most
efficient in terms of time and energy consumption.

Figure 8. Energy Values by Query and File Format.

23

Figure 9. Total Energy Values in every File Format

5.2 Experitment 2 - Different Partition Numbers
This analysis explores the effects of different partition sizes on time-performance and
energy consumption. In this experiment, we selected partition numbers of 16, 78, 300,
400, 500, and 600, utilizing best file format the Apache Parquet from the previous
experimentations. And, we employed a single executor with 8 threads and 10 gigabytes
of memory. We try to asses the best number of partitions using the formula mentioned
below (Formula 6) which use executor memory efficiently. From our formula, we set
executor memory to 10 gigabytes and using default the partition size (128 megabytes),
as a result, we found 78 partition number. Therefore, we perform experimentation with
this number and others partition numbers choosed randomly to evaluate Apache Spark’s
performance and energy consumption. Various scenarios involving partition numbers
below and above 78 were included based on random selection.

24

Figure 10. Partitions and Time Performance

Figure 11. Partitions and Energy

And, we can see results for 78 partitions for energy and time in all queries, as shown
in Figure 10 and 11.

25

Figure 12. Energy values in all queries for partition number 78.

Figure 13. Time in all queries for partition number 78

Figure 10 and 11 illustrates that a partition size of 78 outperforms other partition
sizes. The formula used for this particular partition size is provided below and Figure 12
and 13 show execution time and energy values in single queries.

ExecutorMemorySize(mb)

PartitionSize(mb)
= NumberofPartitions (6)

The default partition size in Apache Spark is 128 megabytes and 200 partitions,
corresponding to an HDFS block. Given our utilisation of a 10-gigabyte executor
memory, the formula induces a result of 78 partitions.

26

5.3 Experitment 3 - Different Partition Size
In this section, we extended the experiment by introducing new parameters. We opted for
300 partitions with a partition size of 33 megabytes to observe the impact on performance
and we will compare with 300 partitions with 128 megabytes size in the 18th query
which consumed much more time and energy than other queries (the plan’s execution
is on Execution plan. Figures 14 and 15 show that utilising 300 partitions with a size
of 33 megabytes is not as efficient as using 300 partitions with a size of 128 megabytes
in terms of both time and energy consumption. This can be attributed to the small
partition size, which introduces additional overhead in scheduling multiple tasks and
managing more extensive metadata. Similar to multithreaded applications, increasing
parallelism does not necessarily result in improved performance. Additionally, opting for
larger partition sizes may result in reduced concurrency and heightened memory pressure
during transformations involving shuffling.

Figure 14. Partition 300 with 33 megabytes

Figure 14 illustrates that memory was not utilised efficiently, leading to Spark creating
an excessive number of tasks, exceeding 21,000. This inefficiency can be attributed to
the small partition size chosen.

27

https://github.com/TofigBakhshiyev/MasterThesisComputerScience/blob/main/query18_plan.jpg

Figure 15. Partition 300 with 128 megabytes

In contrary, with a partition size of 128 megabytes, we observe that memory utilisation
improves, with over 300 tasks being created for each job, as shown in Figure 15.

5.4 Experitment 4 - Scheduling policy FIFO to FAIR
• FIFO (First In, First Out): FIFO is a basic scheduling policy where tasks are

executed in the order they were submitted to the cluster. In other words, the first
task submitted is the first one to be executed, and so on. While FIFO scheduling
is simple, it may only sometimes be the most efficient, especially in multi-tenant
environments where different users or applications may have varying priorities.

• FAIR: FAIR scheduling is a more sophisticated approach that aims to provide
better resource allocation and fairness among multiple applications or users sharing
the same cluster. With FAIR scheduling, resources are divided into pools, and each
pool is allocated a particular share of the cluster resources. Within each pool, tasks
are scheduled using the FIFO policy. This ensures that each pool receives a fair
share of the resources, regardless of the workload or number of tasks submitted
[Spa23].

In the experiment, 78 partitions were used with 128 megabytes which was the best one
among other partitions after changing scheduling policy FIFO to FAIR. After experiment,
57.24 seconds and total 4954.58 energy consumption in FAIR scheduler, in FIFO, it was
78.75 second and nearly total 5794.14, as shown in Figure 16.

28

Figure 16. FIFO vs FAIR scheduling with 78 partitions

6 Discussion and recommendation
After conducting various experiments under different scenarios, it becomes evident that
Apache Parquet exhibits lower energy consumption during reading and data processing
tasks. This advantage can be attributed to the smaller size of Apache Parquet files, re-
sulting from its efficient compression technique and columnar-oriented structure. These
features contribute to enhanced energy efficiency and quicker data reading capabilities.

Furthermore, analysing different partition sizes reveals diverse impacts on time
performance and energy consumption. Notably, employing a specific formula yields
more optimal partition numbers, as observed in Experimentation 2. Additionally, when
considering a reduction in partition size from 128 megabytes to 33 megabytes and we
used Formula 6 above divinding exector memory by 300 partition numbers, it equals
to 33 meagabytes, significant effects on performance and energy consumption emerge,
primarily due to the proliferation of multiple tasks.

Lastly, exploring scheduling algorithms underscores that the FAIR algorithm is much
better regarding performance and energy consumption due to FAIR scheduler mode is
a good way to optimize the execution time of multiple jobs inside one Apache Spark
program. Unlike FIFO mode, it shares the resources between tasks and therefore, do not
penalize short jobs by the resources lock caused by the long-running jobs. This finding
emphasises the importance of scheduling policies in optimising resource utilisation
and system efficiency. These insights highlight the multifaceted nature of optimising
performance and energy consumption in Apache Spark, underscoring the need to consider
various factors in system configuration and resource allocation carefully.

29

7 Perspectives
In perspective, this study provides valuable insights into the performance and energy
efficiency of Apache Spark in distributed data processing environments. Moving forward,
several routes for future research and development emerge:

• Integration with Kubernetes and scaling the Spark cluster to evaluate performance
and energy in containerized environments.

• Exploration of other alternatives of data storage solutions, such as columnar and
row-based databases, for optimised data retrieval and processing.

• Development or utilisation of machine learning models for predictive analytics,
leveraging historical query data to anticipate energy consumption and performance
outcomes in the aim to select the plan that is more energy-optimised in the Catalyst
optimizer.

• Investigation of other workload optimization techniques and resource provisioning
strategies to enhance Spark’s efficiency in diverse computational workflows.

30

8 Conclusions
In recent years, energy efficiency has become one of the major design requirements of
computer system components, ranging from a simple laptop to cloud environment. The
thing that had fostered this is the over energy consumption of components have practically
not stopped to grow. In addition to exorbitant operating costs, high energy consumption
leads to significant emissions of greenhouse gases into the environment responsible for
climate change. In this thesis, we focused on evaluating the energy consumption of the
Spark data processing system by comparing the different data storage files under different
scenarios. Our thesis aimed to identify optimal configurations and data file formats
that minimise energy consumption while enhancing performance in distributed data
processing environments. Through comprehensive experimentation and analysis, insights
were gained into the efficiency of Apache Parquet in reducing energy consumption,
the significance of selecting optimal partition sizes for improved performance, and the
impact of scheduling algorithms on resource utilisation. These findings contribute to
advancing the understanding of energy-efficient and high-performance data processing
in Apache Spark, paving the way for future research and development in this field.

31

References
[AXL+15] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali
Ghodsi, et al. Spark sql: Relational data processing in spark. In Proceedings
of the 2015 ACM SIGMOD international conference on management of data,
pages 1383–1394, 2015.

[Ben23] TPC-H Benchmark. Tpc-h benchmark, 2023. May, 2024.

[Com22a] Community. Apache avro, 2022. May, 2024.

[Com22b] Community. Apache parquet, 2022. May, 2024.

[Com23] Community. Tabular data package, 2023. May, 2024.

[DBOR20] Simon Pierre Dembele, Ladjel Bellatreche, Carlos Ordonez, and Amine
Roukh. Think big, start small: a good initiative to design green query
optimizers. Cluster Computing, 23:2323–2345, 2020.

[HZK+18] Junjie Hou, Yongxin Zhu, Linghe Kong, Zhe Wang, Sen Du, Shijin Song,
and Tian Huang. A case study of accelerating apache spark with fpga. In
2018 17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE), pages 855–860.
IEEE, 2018.

[IKB17] Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya.
dspark: Deadline-based resource allocation for big data applications in
apache spark. In 2017 IEEE 13th International Conference on E-Science
(e-Science), pages 89–98. IEEE, 2017.

[KSKS18] Christoforos Kachris, Ioannis Stamelos, Elias Koromilas, and Dimitrios
Soudris. Seamless fpga deployment over spark in cloud computing: A use
case on machine learning hardware acceleration. In Applied Reconfigurable
Computing. Architectures, Tools, and Applications: 14th International Sym-
posium, ARC 2018, Santorini, Greece, May 2-4, 2018, Proceedings 14,
pages 673–684. Springer, 2018.

[LWF+20] Hongjian Li, Huochen Wang, Shuyong Fang, Yang Zou, and Wenhong Tian.
An energy-aware scheduling algorithm for big data applications in spark.
Cluster Computing, 23:593–609, 2020.

32

[LWX+21] Hongjian Li, Yaojun Wei, Yu Xiong, Enjie Ma, and Wenhong Tian. A
frequency-aware and energy-saving strategy based on dvfs for spark. The
Journal of Supercomputing, 77:11575–11596, 2021.

[MZK17a] Stathis Maroulis, Nikos Zacheilas, and Vana Kalogeraki. Express: Energy
efficient scheduling of mixed stream and batch processing workloads. In
2017 IEEE International Conference on Autonomic Computing (ICAC),
pages 27–32. IEEE, 2017.

[MZK17b] Stathis Maroulis, Nikos Zacheilas, and Vana Kalogeraki. A framework
for efficient energy scheduling of spark workloads. In 2017 IEEE 37th
international conference on distributed computing systems (ICDCS), pages
2614–2615. IEEE, 2017.

[Ngh18] Peter P Nghiem. Best trade-off point method for efficient resource provi-
sioning in spark. Algorithms, 11(12):190, 2018.

[SDC+16] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and
Joshua Zhexue Huang. Big data analytics on apache spark. International
Journal of Data Science and Analytics, 1:145–164, 2016.

[Sha05] Yakov Shafranovich. Common format and mime type for comma-separated
values (csv) files. Technical report, 2005.

[SLG+22] Wenhu Shi, Hongjian Li, Junzhe Guan, Hang Zeng, et al. Energy-efficient
scheduling algorithms based on task clustering in heterogeneous spark clus-
ters. Parallel Computing, 112:102947, 2022.

[Spa23] Apache Spark. Apache spark job scheduling, 2023. May, 2024.

[Spa24a] Apache Spark. Apache spark, 2024. May, 2024.

[Spa24b] Apache Spark. Apache spark core, 2024. May, 2024.

[Spa24c] Apache Spark. Apache spark dataframe api, 2024. May, 2024.

[Spa24d] Apache Spark. Apache spark graphx, 2024. May, 2024.

[Spa24e] Apache Spark. Apache spark mllib, 2024. May, 2024.

[Spa24f] Apache Spark. Apache spark rdd, 2024. May, 2024.

[Spa24g] Apache Spark. Apache spark sql, 2024. May, 2024.

[Spa24h] Apache Spark. Apache spark streaming, 2024. May, 2024.

33

[SSK16] Ioannis Stamelos, Dimitrios Soudris, and Christoforos Kachris. Performance
and energy evaluation of spark applications on low-power socs. In 2016
International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS), pages 300–305. IEEE, 2016.

[Voh16a] Deepak Vohra. Apache Avro, pages 303–323. Apress, Berkeley, CA, 2016.

[Voh16b] Deepak Vohra. Apache Parquet, pages 325–335. Apress, Berkeley, CA,
2016.

[Wri24] Gavin Wright. Row and column-oriented storage, 2024. May, 2024.

[YW23] Yocto-Watt. Yocto-watt, 2023. May, 2024.

34

Appendix I
TPC-H Queries

1 -- Query 1.
2 SELECT l_returnflag ,
3 l_linestatus ,
4 SUM(l_quantity) AS sum_qty ,
5 SUM(l_extendedprice) AS
6 sum_base_price ,
7 SUM(l_extendedprice * (1 - l_discount)) AS
8 sum_disc_price ,
9 SUM(l_extendedprice * (1 - l_discount) * (1 +

l_tax)) AS sum_charge ,
10 Avg(l_quantity) AS avg_qty ,
11 Avg(l_extendedprice) AS avg_price ,
12 Avg(l_discount) AS avg_disc ,
13 Count (*) AS count_order
14 FROM lineitem
15 WHERE l_shipdate <= DATE '1998 -12 -01' - interval '[

DELTA]' day (3)
16 GROUP BY l_returnflag ,
17 l_linestatus
18 ORDER BY l_returnflag ,
19 l_linestatus;
20
21 -- Query 2.
22 SELECT s_acctbal ,
23 s_name ,
24 n_name ,
25 p_partkey ,
26 p_mfgr ,
27 s_address ,
28 s_phone ,
29 s_comment
30 FROM part ,
31 supplier ,
32 partsupp ,
33 nation ,
34 region
35 WHERE p_partkey = ps_partkey
36 AND s_suppkey = ps_suppkey
37 AND p_size = [SIZE]
38 AND p_type LIKE '%[TYPE]'
39 AND s_nationkey = n_nationkey
40 AND n_regionkey = r_regionkey
41 AND r_name = '[REGION]'
42 AND ps_supplycost =
43 (
44 SELECT min(ps_supplycost)
45 from partsupp ,
46 supplier ,
47 nation ,
48 region
49 WHERE p_partkey = ps_partkey
50 AND s_suppkey = ps_suppkey
51 AND s_nationkey = n_nationkey
52 AND n_regionkey = r_regionkey
53 AND r_name = '[REGION]')
54 ORDER BY s_acctbal DESC ,
55 n_name ,
56 s_name ,
57 p_partkey;
58
59 -- Query 3.
60 SELECT l_orderkey ,
61 SUM(l_extendedprice * (1 - l_discount)) AS

revenue ,
62 o_orderdate ,
63 o_shippriority
64 FROM customer ,
65 orders ,
66 lineitem
67 WHERE c_mktsegment = '[SEGMENT]'
68 AND c_custkey = o_custkey
69 AND l_orderkey = o_orderkey
70 AND o_orderdate < DATE '[DATE]'

71 AND l_shipdate > DATE '[DATE]'
72 GROUP BY l_orderkey ,
73 o_orderdate ,
74 o_shippriority
75 ORDER BY revenue DESC ,
76 o_orderdate;
77
78 -- Query 4.
79 SELECT o_orderpriority ,
80 Count (*) AS order_count
81 FROM orders
82 WHERE o_orderdate >= DATE '[DATE]'
83 AND o_orderdate < DATE '[DATE]' + interval '3'

month
84 AND EXISTS (SELECT *
85 FROM lineitem
86 WHERE l_orderkey = o_orderkey
87 AND l_commitdate <

l_receiptdate)
88 GROUP BY o_orderpriority
89 ORDER BY o_orderpriority;
90
91 -- Query 5.
92 SELECT n_name ,
93 SUM(l_extendedprice * (1 - l_discount)) AS

revenue
94 FROM customer ,
95 orders ,
96 lineitem ,
97 supplier ,
98 nation ,
99 region

100 WHERE c_custkey = o_custkey
101 AND l_orderkey = o_orderkey
102 AND l_suppkey = s_suppkey
103 AND c_nationkey = s_nationkey
104 AND s_nationkey = n_nationkey
105 AND n_regionkey = r_regionkey
106 AND r_name = '[REGION]'
107 AND o_orderdate >= DATE '[DATE]'
108 AND o_orderdate < DATE '[DATE]' + interval '1'

year
109 GROUP BY n_name
110 ORDER BY revenue DESC;
111
112 -- Query 6.
113 SELECT Sum(l_extendedprice*l_discount) AS revenue
114 FROM lineitem
115 WHERE l_shipdate >= date '[DATE]'
116 AND l_shipdate < date '[DATE]' + interval '1'

year
117 AND l_discount BETWEEN [DISCOUNT] - 0.01 AND [

DISCOUNT] + 0.01
118 AND l_quantity < [QUANTITY];
119
120 -- Query 7.
121 SELECT supp_nation ,
122 cust_nation ,
123 l_year ,
124 SUM(volume) AS revenue
125 FROM (SELECT n1.n_name AS

supp_nation ,
126 n2.n_name AS

cust_nation ,
127 Extract(year FROM l_shipdate) AS

l_year ,
128 l_extendedprice * (1 - l_discount) AS

volume
129 FROM supplier ,
130 lineitem ,
131 orders ,
132 customer ,
133 nation n1,
134 nation n2

35

135 WHERE s_suppkey = l_suppkey
136 AND o_orderkey = l_orderkey
137 AND c_custkey = o_custkey
138 AND s_nationkey = n1.n_nationkey
139 AND c_nationkey = n2.n_nationkey
140 AND ((n1.n_name = '[NATION1]'
141 AND n2.n_name = '[NATION2]')
142 OR (n1.n_name = '[NATION2]'
143 AND n2.n_name = '[NATION1]'

))
144 AND l_shipdate BETWEEN DATE '1995 -01 -01

' AND DATE '1996 -12 -31')
145 AS
146 shipping
147 GROUP BY supp_nation ,
148 cust_nation ,
149 l_year
150 ORDER BY supp_nation ,
151 cust_nation ,
152 l_year;
153
154 -- Query 8.
155 SELECT o_year ,
156 SUM(CASE
157 WHEN nation = '[NATION]' THEN volume
158 ELSE 0
159 END) / SUM(volume) AS mkt_share
160 FROM (SELECT Extract(year FROM o_orderdate) AS

o_year ,
161 l_extendedprice * (1 - l_discount) AS

volume ,
162 n2.n_name AS

nation
163 FROM part ,
164 supplier ,
165 lineitem ,
166 orders ,
167 customer ,
168 nation n1,
169 nation n2,
170 region
171 WHERE p_partkey = l_partkey
172 AND s_suppkey = l_suppkey
173 AND l_orderkey = o_orderkey
174 AND o_custkey = c_custkey
175 AND c_nationkey = n1.n_nationkey
176 AND n1.n_regionkey = r_regionkey
177 AND r_name = '[REGION]'
178 AND s_nationkey = n2.n_nationkey
179 AND o_orderdate BETWEEN DATE '

1995 -01 -01' AND DATE '1996 -12 -31'
180 AND p_type = '[TYPE]') AS all_nations
181 GROUP BY o_year
182 ORDER BY o_year;
183
184 -- Query 9.
185 SELECT nation ,
186 o_year ,
187 Sum(amount) AS sum_profit
188 FROM (SELECT n_name
189 AS
190 nation ,
191 Extract(year FROM o_orderdate)
192 AS
193 o_year ,
194 l_extendedprice * (1 - l_discount) -

ps_supplycost * l_quantity
195 AS
196 amount
197 FROM part ,
198 supplier ,
199 lineitem ,
200 partsupp ,
201 orders ,
202 nation
203 WHERE s_suppkey = l_suppkey
204 AND ps_suppkey = l_suppkey
205 AND ps_partkey = l_partkey
206 AND p_partkey = l_partkey
207 AND o_orderkey = l_orderkey
208 AND s_nationkey = n_nationkey
209 AND p_name LIKE '%[COLOR]%') AS profit
210 GROUP BY nation ,

211 o_year
212 ORDER BY nation ,
213 o_year DESC;
214
215 -- Query 10.
216 SELECT c_custkey ,
217 c_name ,
218 SUM(l_extendedprice * (1 - l_discount)) AS

revenue ,
219 c_acctbal ,
220 n_name ,
221 c_address ,
222 c_phone ,
223 c_comment
224 FROM customer ,
225 orders ,
226 lineitem ,
227 nation
228 WHERE c_custkey = o_custkey
229 AND l_orderkey = o_orderkey
230 AND o_orderdate >= DATE '[DATE]'
231 AND o_orderdate < DATE '[DATE]' + interval '3'

month
232 AND l_returnflag = 'R'
233 AND c_nationkey = n_nationkey
234 GROUP BY c_custkey ,
235 c_name ,
236 c_acctbal ,
237 c_phone ,
238 n_name ,
239 c_address ,
240 c_comment
241 ORDER BY revenue DESC;
242
243 -- Query 11.
244 SELECT ps_partkey ,
245 Sum(ps_supplycost * ps_availqty) AS value
246 FROM partsupp ,
247 supplier ,
248 nation
249 WHERE ps_suppkey = s_suppkey
250 AND s_nationkey = n_nationkey
251 AND n_name = '[NATION]'
252 GROUP BY ps_partkey
253 HAVING
254 Sum(ps_supplycost * ps_availqty) >
255 (SELECT Sum(ps_supplycost * ps_availqty) * [

fraction]
256 FROM partsupp ,
257 supplier ,
258 nation
259 WHERE ps_suppkey = s_suppkey
260 AND s_nationkey = n_nationkey
261 AND n_name = '[NATION]')
262 ORDER BY value DESC;
263
264 -- Query 12.
265 SELECT l_shipmode ,
266 SUM(CASE
267 WHEN o_orderpriority = '1-URGENT '
268 OR o_orderpriority = '2-HIGH' THEN

1
269 ELSE 0
270 END) AS high_line_count ,
271 SUM(CASE
272 WHEN o_orderpriority <> '1-URGENT '
273 AND o_orderpriority <> '2-HIGH' THEN

1
274 ELSE 0
275 END) AS low_line_count
276 FROM orders ,
277 lineitem
278 WHERE o_orderkey = l_orderkey
279 AND l_shipmode IN ('[SHIPMODE1]', '[SHIPMODE2]

')
280 AND l_commitdate < l_receiptdate
281 AND l_shipdate < l_commitdate
282 AND l_receiptdate >= DATE '[DATE]'
283 AND l_receiptdate < DATE '[DATE]' + interval '1

' year
284 GROUP BY l_shipmode
285 ORDER BY l_shipmode;
286

36

287 -- Query 13.
288 SELECT c_count ,
289 Count (*) AS custdist
290 FROM (SELECT c_custkey ,
291 Count(o_orderkey)
292 FROM customer
293 LEFT OUTER JOIN orders
294 ON c_custkey = o_custkey
295 AND o_comment NOT LIKE

'%[word1]%[word2
]%'

296 GROUP BY c_custkey)AS c_orders (c_custkey ,
c_count)

297 GROUP BY c_count
298 ORDER BY custdist DESC ,
299 c_count DESC;
300
301 -- Query 14.
302 SELECT 100.00 * SUM(CASE
303 WHEN p_type LIKE 'PROMO%' THEN

l_extendedprice *
304 (

1

-

l_discount

)

305 ELSE 0
306 END) / SUM(l_extendedprice * (1 -

l_discount)) AS
307 promo_revenue
308 FROM lineitem ,
309 part
310 WHERE l_partkey = p_partkey
311 AND l_shipdate >= DATE '[DATE]'
312 AND l_shipdate < DATE '[DATE]' + interval '1'

month;
313
314 -- Query 15.
315 CREATE VIEW revenue[STREAM_ID]
316 (
317 supplier_no ,
318 total_revenue
319)
320 AS
321 SELECT l_suppkey ,
322 sum(l_extendedprice * (1 - l_discount))
323 FROM lineitem
324 WHERE l_shipdate >= date '[DATE]'
325 AND l_shipdate < date '[DATE]' + interval '3'

month
326 GROUP BY l_suppkey;SELECT s_suppkey ,
327 s_name ,
328 s_address ,
329 s_phone ,
330 total_revenue
331 FROM supplier ,
332 revenue[STREAM_ID]
333 WHERE s_suppkey = supplier_no
334 AND total_revenue =
335 (
336 SELECT Max(total_revenue)
337 FROM revenue[STREAM_ID])
338 ORDER BY s_suppkey;DROP VIEW revenue[STREAM_ID];
339
340 -- Query 16.
341 SELECT p_brand ,
342 p_type ,
343 p_size ,
344 Count(DISTINCT ps_suppkey) AS supplier_cnt
345 FROM partsupp ,
346 part
347 WHERE p_partkey = ps_partkey
348 AND p_brand <> '[BRAND]'
349 AND p_type NOT LIKE '[TYPE]%'
350 AND p_size IN ([size1], [size2], [size3], [

size4],
351 [size5], [size6], [size7], [

size8])

352 AND ps_suppkey NOT IN (SELECT s_suppkey
353 FROM supplier
354 WHERE s_comment LIKE '%

Customer%
Complaints%')

355 GROUP BY p_brand ,
356 p_type ,
357 p_size
358 ORDER BY supplier_cnt DESC ,
359 p_brand ,
360 p_type ,
361 p_size;
362
363 -- Query 17.
364 SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly
365 FROM lineitem ,
366 part
367 WHERE p_partkey = l_partkey
368 AND p_brand = '[BRAND]'
369 AND p_container = '[CONTAINER]'
370 AND l_quantity < (SELECT 0.2 * Avg(l_quantity)
371 FROM lineitem
372 WHERE l_partkey = p_partkey)

;
373
374 -- Query 18.
375 SELECT c_name ,
376 c_custkey ,
377 o_orderkey ,
378 o_orderdate ,
379 o_totalprice ,
380 Sum(l_quantity)
381 FROM customer ,
382 orders ,
383 lineitem
384 WHERE o_orderkey IN (SELECT l_orderkey
385 FROM lineitem
386 GROUP BY l_orderkey
387 HAVING Sum(l_quantity) > [

quantity])
388 AND c_custkey = o_custkey
389 AND o_orderkey = l_orderkey
390 GROUP BY c_name ,
391 c_custkey ,
392 o_orderkey ,
393 o_orderdate ,
394 o_totalprice
395 ORDER BY o_totalprice DESC ,
396 o_orderdate;
397
398 -- Query 19.
399 SELECT Sum(l_extendedprice * (1 - l_discount)) AS

revenue
400 FROM lineitem ,
401 part
402 WHERE (
403 p_partkey = l_partkey
404 AND p_brand = '[BRAND1]'
405 AND p_container IN ('sm case',
406 'sm box',
407 'sm pack',
408 'sm pkg')
409 AND l_quantity >= [QUANTITY1]
410 AND l_quantity <= [QUANTITY1] + 10
411 AND p_size BETWEEN 1 AND 5
412 AND l_shipmode IN ('air',
413 'air reg')
414 AND l_shipinstruct = 'deliver IN person ')
415 OR (
416 p_partkey = l_partkey
417 AND p_brand = '[BRAND2]'
418 AND p_container IN ('med bag',
419 'med box',
420 'med pkg',
421 'med pack')
422 AND l_quantity >= [QUANTITY2]
423 AND l_quantity <= [QUANTITY2] + 10
424 AND p_size BETWEEN 1 AND 10
425 AND l_shipmode IN ('air',
426 'air reg')
427 AND l_shipinstruct = 'deliver IN person ')
428 OR (
429 p_partkey = l_partkey

37

430 AND p_brand = '[BRAND3]'
431 AND p_container IN ('lg case',
432 'lg box',
433 'lg pack',
434 'lg pkg')
435 AND l_quantity >= [QUANTITY3]
436 AND l_quantity <= [QUANTITY3] + 10
437 AND p_size BETWEEN 1 AND 15
438 AND l_shipmode IN ('air',
439 'air reg')
440 AND l_shipinstruct = 'deliver IN person ');
441
442 -- Query 20.
443 SELECT s_name ,
444 s_address
445 FROM supplier ,
446 nation
447 WHERE s_suppkey IN
448 (
449 SELECT ps_suppkey
450 FROM partsupp
451 WHERE ps_partkey IN
452 (
453 SELECT p_partkey
454 FROM part
455 WHERE p_name LIKE '[

COLOR]%')
456 AND ps_availqty >
457 (
458 SELECT 0.5 * Sum(

l_quantity)
459 FROM lineitem
460 WHERE l_partkey =

ps_partkey
461 AND l_suppkey =

ps_suppkey
462 AND l_shipdate >=

date('[DATE]') and
l_shipdate < date

('[DATE]') +
interval '1' year
))

463 AND s_nationkey = n_nationkey
464 AND n_name = '[NATION]'
465 ORDER BY s_name;
466
467 -- Query 21.
468 SELECT s_name ,
469 Count (*) AS numwait
470 FROM supplier ,
471 lineitem l1,

472 orders ,
473 nation
474 WHERE s_suppkey = l1.l_suppkey
475 AND o_orderkey = l1.l_orderkey
476 AND o_orderstatus = 'F'
477 AND l1.l_receiptdate > l1.l_commitdate
478 AND EXISTS (SELECT *
479 FROM lineitem l2
480 WHERE l2.l_orderkey = l1.

l_orderkey
481 AND l2.l_suppkey <> l1.

l_suppkey)
482 AND NOT EXISTS (SELECT *
483 FROM lineitem l3
484 WHERE l3.l_orderkey = l1.

l_orderkey
485 AND l3.l_suppkey <> l1.

l_suppkey
486 AND l3.l_receiptdate >

l3.l_commitdate)
487 AND s_nationkey = n_nationkey
488 AND n_name = '[NATION]'
489 GROUP BY s_name
490 ORDER BY numwait DESC ,
491 s_name;
492
493 -- Query 22.
494 SELECT cntrycode ,
495 Count (*) AS numcust ,
496 Sum(c_acctbal) AS totacctbal
497 FROM (
498 SELECT substring(c_phone from 1 FOR 2)

AS cntrycode ,
499 c_acctbal
500 FROM customer
501 WHERE substring(c_phone FROM 1 FOR 2)

IN ('[I1]', '[I2]','[I3]','[I4]','
[I5]','[I6]','[I7]') and c_acctbal
> (select avg(c_acctbal) from

customer where c_acctbal > 0.00
and substring (c_phone from 1 for
2) in ('[I1]','[I2]','[I3]','[I4]'
,'[I5]','[I6]','[I7]')) and not
exists (select * from orders
where o_custkey = c_custkey)) as
custsale group by cntrycode order
by cntrycode;

38

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Tofig Bakhshiyev,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Hard and Soft Tuning of Spark Ecosystem Toward Query Energy Efficiency,
(title of thesis)

supervised by Simon Pierre Dembele.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Tofig Bakhshiyev
15/05/2024

39

	Introduction
	Background
	Apache Spark
	Apache Spark Core
	Spark SQL
	Apache Streaming
	Apache MLib - Machine Learning Library
	Apache GraphX
	Spark RDD
	Spark SQL: Relational Data Processing
	Spark SQL Key Benefits

	Storage Mechanisms
	Storage models
	File Formats

	Computer Energy Consumption Formulations
	The motivation of the thesis

	Literature review
	Energy Evaluation
	Taxonomy of Energy Efficiency (EE) in Apache Spark
	Hardware approaches solution
	Software solution

	Conclusion

	Methods
	Softwares and Tools
	Yocto-Watt
	TPC-H Benchmark Datasets

	Environment
	Power and performance measurement process

	Results
	Experitment 1 - File Formats confrontation
	Experitment 2 - Different Partition Numbers
	Experitment 3 - Different Partition Size
	Experitment 4 - Scheduling policy FIFO to FAIR

	Discussion and recommendation
	Perspectives
	Conclusions
	References
	Appendix1
	I. Glossary
	II. Licence

