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Business Process Optimisation of Differentiated Resources

Abstract:
Business process optimisation focuses on improving one or more performance
measures in a business process model. Improving a business process can be
achieved by making changes to the resource allocations within that process.
Resource allocation is the distribution of available resources in a process to
fulfill the organisation goals. The misconfiguration of resource allocations
can heavily impact the cost and cycle time of the process. To address this
issue, optimisation approaches have to be adapted to include differentiated
resources. Differentiated resources each have their calendar, allowing for
better customisability of the resource allocation and in turn better optimi-
sation of the process model. This thesis proposes a multi-objective resource
allocation optimisation approach for business processes with differentiated
resources to minimise the cost and cycle time. The approach heuristically
searches the space of possible resource allocations using simulation models
to evaluate each resource allocation. An empirical evaluation shows that
iteratively optimising resource allocations in conjunction with resource cal-
endars lead to superior cost-time tradeoffs for optimising these allocations
and calendars separately. Additionally, this thesis implements a web appli-
cation to facilitate the interaction experience with the proposed optimisation
algorithm.

Keywords:
Business process optimisation, Roster optimisation, Resource allocation, Multi-
objective optimisation, Process simulation

CERCS: P170 - Computer science, numerical analysis, systems, control

2



Äriprotsesside optimeerimine diferentseeritud ressurssidega

Lühikokkuvõte:
Äriprotsesside optimeerimine keskendub äriprotsessimudeli ühe või mitme
jõudlusnäitaja täiustamisele. Äriprotsessi saab täiustada, tehes selle prot-
sessi raames ressursside eraldamises muudatusi. Ressursi jaotamine on tavaliselt
protsessi kulude ja tsükliaja vaheline kompromiss. Peavoolu protsesside opti-
meerimisel on mitmesuguseid piiranguid, millest kõige silmatorkavam piirang
tuleneb asjaolust, et nad käsitlevad ressursse diferentseerimata üksustena,
mis on rühmitatud kogumitesse. Varasemad uuringud on neid eeldusi tun-
nistanud, ilma et oleks kvantifitseeritud nende mõju simulatsioonimudeli
täpsusele ja omakorda optimeerimise täpsusele. Seejärel eeldatakse, et kõik
need basseinis olevad ressursid on sama jõudlusega ja jagavad sama kalen-
drit. Diferentseerimata ressursside vastand on diferentseeritud ressursid.
Igal diferentseeritud ressursil on oma kalender, mis võimaldab ressursside
jaotamist paremini kohandada ja protsessimudelit omakorda paremini opti-
meerida. See lõputöö pakub välja mitme eesmärgiga ressursside jaotamise op-
timeerimise lähenemisviisi äriprotsesside jaoks, millel on kulude ja tsükliaja
osas diferentseeritud ressurss. Lähenemisviis otsib valikuliselt läbi võimalike
nimekirjade eraldamise ruumi, kasutades simulatsioonimudelit, et hinnata
iga nimekirja jaotust. Empiiriline hindamine näitab, et ressursside jaotamise
iteratiivne optimeerimine koos ressursikalendritega annab paremaid kulu-aja
kompromisse nende jaotuste ja kalendrite eraldi optimeerimisel.

Võtmesõnad:
Äriprotsesside optimeerimine, nimekirja optimeerimine, ressursside eraldamine,
mitme eesmärgi optimeerimine, protsessi simulatsioon

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (au-
tomaatjuhtimisteooria).
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1. Introduction

Business Process Optimisation (BPO) [1] is a technique that focuses on
improving a business’s efficiency by optimising its processes in a targeted
manner. The starting point for BPO is a snapshot of the current perfor-
mance of the business process. To make this snapshot, you need the simula-
tion model, consisting of a process model, enhanced with the parameters to
capture the model’s performance, e.g., the available resources and activity
processing times. When organisations wish to improve their business pro-
cess, they speak about the cycle time, the total amount of time it takes to
complete one instance of the process, and/or the cost, the total cost it takes
to complete one instance of the process.

The issue of resource allocation of differentiated resources involves deter-
mining the optimal amount of resources to assign to each activity in a process
to either maximise or minimise one or more performance measures. When a
process has a higher number of resources, the resources are less busy and have
lower utilisation. Contrary, when a process has fewer resources allocated, the
resources are busier and have higher utilisation. Although higher resource
utilisation leads to a lower cost per instance, it also results in longer waiting
times due to resource contention. Conversely, lower utilisation leads to a
higher cost per instance but shorter waiting times. The problem is finding a
balance between minimising costs and reducing waiting times. There is no
single solution that can minimise both cost and time simultaneously. Instead,
there are a set of optimal solutions, known as the Pareto Front, where no
objective, such as time and cost can be improved without sacrificing another.

The resources that perform in the business process greatly influence the
cycle time and cost. An incorrect configuration of resources results in a
higher cycle time and cost of the process and is thus undesired. E.g., In a
loan application process, there are two resources: the Junior Loan Officer
(JLO) and the Senior Loan Officer (SLO). The (SLO) is also dependent
on completing a task assigned to the (JLO). The (JLO)’s tasks arrive in
the morning, but they are only assigned to work in the afternoon. This
misconfiguration leads to waiting times because the resource is unavailable
when the task arrives. Furthermore, because the (JLO) cannot complete
their task in time, the (SLO) cannot continue with their work as they are
relying on the (JLO) to finish first. Sometimes, a misconfiguration may not
impact the cycle time and cost a lot. However, many misconfigured resources
can inflate this cycle time and cost heavily. E.g., in an administrative process
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with Clerks, with an increased workload between 12.00 and 16.00. To manage
the workload between those times, at least fifteen Clerks should be assigned.
In reality, only five Clerks are available during those times and ten Clerks
work during less busy hours. As a result, a backlog of unfinished work starts
building up and cases take longer to complete; the waiting time increases. In
turn, the cost per instance also increases because the resources are still being
paid, even though they may not be working; the cost per instance increases.

Given that in classic, undifferentiated BP simulation models, resource
pools are disjoint; they cannot capture scenarios where participants share
their time across multiple resource pools. Also, since all resources in a re-
source pool have the same timetable, these models cannot capture scenarios
where a pool incorporates some part-time and full-time resources. Secondly,
in classic, undifferentiated BP simulation models, the processing times of an
activity do not depend on the resource that performs it. Hence, such models
cannot capture scenarios where some resources in a resource pool are faster
or slower than others.

This thesis will consider resources from now on as differentiated resources
that are more customisable than the current business process simulation and
optimisation standard with undifferentiated resources. To achieve our goal,
we must acknowledge the following observations:

• O1 Unpooled resource allocation. Resources do not belong to a resource
pool, a.k.a. a collection of resources that are assigned to perform spe-
cific tasks within a business process. However, resources can perform
the same tasks or a subset of tasks.

• O2 Differentiated performance The processing time of an activity, the
time it takes for the activity to be completed from start to finish, is
dependent on the resource that performs it.

• O3 Differentiated availability Each resource in the process has their
own calendar, e.g., Accountant1 and Accountant2 perform the same
tasks but are not necessarily working during the same time.

We propose an approach to optimise resource calendars to address the cost
and time inefficiencies due to the misallocation of resources. For example,
a task with high waiting times can indicate that the availability calendar
of a resource is not aligned with the arrival times of its assigned tasks in a
process, i.e., the resources are not available when required. Accordingly, the
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thesis advocates a perturbation approach that extends (where possible) the
calendars of underutilised resources (or removes resources altogether) while
shrinking the calendar of over-utilised resources (or adding new resources).
These operations alter the number of resources available at different periods
in time, i.e. the resource roster. Given these possible perturbations, this
research proposes an approach to optimise the roster of resources in a business
process with respect to resource cost and cycle time under the assumption of
differentiated resource calendars. We wish to answer the following research
question:

• RQ1 - How can we simultaneously improve the cycle time and cost of
a business process with differentiated resources?

We will try to answer this question by retrieving a set of optimal solutions
that simultaneously minimise both cycle time and cost, following a multi-
objective optimisation approach. We decided to follow the Design Science
methodology because we aim to solve a problem by developing and evaluating
a software artefact. Its guidelines state to identify the problem first and
motivate its solution. The second step is to define the objectives of the
solution and, afterwards, to design and develop the solution. Finally, the
developed artefact should be demonstrated and evaluated. The results are
then communicated, and possible improvements are discussed. This process
can be repeated iteratively to produce a better solution artefact in each
iteration. The steps of the methodology framework used in this thesis are
presented in Figure 1.

Figure 1: Research methodology approach

During the identification step, the problem that needs to be resolved is
identified. This step identifies the gap in the literature and poses the research
question. We also filter out less relevant literature using knock-out checks
during this step. In the definition step, the focus is on specifying the criteria
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that the solution should fulfil. The discovered gap in the literature calls for
a more accurate optimisation approach capable of improving process models
with differentiated resources. The result of this step is a set of requirements
that support the design and development of the solution. We also define two
Design Objectives for the solution:

• Efficiency - The solution should process an optimisation task in a rea-
sonable time span. It allows the end-user to swiftly receive an optimi-
sation set that can be evaluated and implemented.

• Customisability - The solution should be customisable to meet the spe-
cific needs and requirements of different end-users.

The design and development step entails the actual development of the solu-
tion. The requirements of the previous step are taken into account during this
step. The result is an artefact that can solve the problem and be evaluated.
The evaluation step takes the developed artefact and tests its capabilities
against a dataset. During this evaluation, results are produced that measure
the solution’s performance. In this thesis, the results represent the perfor-
mance of the optimised models against the original model. The final step
of the approach is the communication step. During this step, the results are
discussed, and potential improvements for the next iteration of the solution
are found. These improvements can then be converted into new requirements
and fed back into the Design and Development step.

This thesis is structured as follows. Chapter 2 introduces the relevant back-
ground of business process models, simulation models and resource optimi-
sation and discusses the related work relevant to optimisation and resources.
Chapter 3 presents the problem definition, the multi-objective optimisation
approach and discusses the development architecture and chosen technolo-
gies. In Chapter 4, we will describe the user interface developed for this
thesis project. Chapter 5 empirically evaluates the optimisation approach
with differentiated availability and interprets the findings of this thesis. Fi-
nally Chapter 6 concludes and sketches potential future work.
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2. Background and related work

In this chapter, we describe and define the relevant concepts to set up the
context for the research presented in this thesis. Besides this, we also de-
scribe the related work to Business Process Optimisation, Undifferentiated
and Differentiated resources.

2.1. Business Process Model

A Business Process (BP) Model1 is a graphical representation of a business
workflow and its related sub-processes. This graphical representation exists
out of:

• Events - An Event is something that “happens” during the course of
a process. These events affect the flow of the model and usually have
a cause (trigger) or an impact (result). E.g., start event, stop event.

• Activities - An Activity is a generic term for work that the company
performs. E.g., ”Perform analysis”.

• Gateways - A Gateway is used to control the divergence and conver-
gence of Sequence Flows in a Process. It will determine branching,
forking, merging, and joining of paths E.g., ”Is the result positive?”

• Sequence Flows - A Sequence Flow is used to show the order that
Activities will be performed in a Process.

• Actors - Actors or resources are the people involved in the process that
are responsible for the activities performed. E.g., Clerk, Loan Officer

Most organisations have a good understanding of their business processes,
however, not every process can be known to its deepest detail by every worker
involved. A BP Model is a data-driven, visual representation that makes it
possible for organisations to understand and optimise their workflows.

1https://www.omg.org/bpmn/
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2.2. Simulation Model with Differentiated Resources

The simulation model we will use for this thesis is a BP simulation model with
differentiated resources. In this simulation model, the notion of resource pool
is replaced with that of resource profile. Similar to a resource pool, a resource
profile models a set of resources that share the same availability calendar. In
these simulation models, an activity in a process model may be assigned to
multiple resource profiles, and the same resource profile may be shared by
multiple pools. For example, in a claims handling process, there may be a
resource profile for junior claims handler, another for senior claims handler
and a third for lead claims handler, each with different calendars. Activity
Analyse claim may be assigned to junior claims handler and senior claims
handler, i.e., an instance of Analyse claim may be performed by a junior or by
a senior claims handler. Meanwhile, activity Assess claim may be assigned
to senior claims handler and lead claims handler. Finally, activity Approve
large claim may be assigned to lead claims handler, i.e., only lead claims
handlers may perform this activity. Another difference is that in a classic
simulation model, each activity is mapped to a distribution of processing
times. Meanwhile, in a simulation model with differentiated resources, the
distribution of processing times depends not only on the activity but also
on the resource profile. Thus, the distribution of processing times of the
activity Analyse claim when assigned to a junior claims handler is different
than when assigned to a senior claims handler, e.g., seniors may be faster,
on average, than juniors.

Definition 1 (BP simulation model with differentiated resources).
A BP simulation model with differentiated resources DSM is a tuple <
E,A,G, F, RProf, BP,AT,AC >, where E,A,G are the sets of events, ac-
tivities, and gateways of a BPMN model, F is the set of directed flow arcs of
a BPMN model, and the remaining elements capture simulation parameters
as follows:

1. RProf = {r1, ..., rn} is a set of resource profiles, where n is the number
of resources in the process, and each resource r ∈ R is described by:

• Alloc (r) = {α | α ∈ A} is the set of activities that r can execute,

• Perf (r, α) = R × Am → Pm(R+) is a mapping from the re-
source r to a list of density functions over positive real numbers,

11



corresponding to the distribution of processing times of each activ-
ity α ∈ Alloc, with m being the number of activities that r can
perform,

• Avail(r) is the calendar (a set of intervals) in which the resource
r is available to perform each activity α ∈ Alloc,

• Cost(r) is the cost of the resource r per time unit (e.g., hour)

• PT : A → P(R+) is a mapping from each activity a ∈ A to
a probability density function, modelling the processing times of
activity a.

• BP: F → [0, 1] is a function that maps each flow f ∈ F s.t.,
the source of f is an element of G to a probability (a.k.a., the
branching probability).

• AT ∈ P(R+) is a probability density function modelling the inter-
arrival times between consecutive case creations.

• AC is a calendar (set of intervals) such that cases can only be
created during an interval in AC.

2.3. Pareto Fronts and Meta-Heuristic Optimisation Al-
gorithms

In N-dimensional space, a solution S2 is Pareto dominated by another solu-
tion S1 if S1 is better than S2 for at least one objective, and S1 is at least
as good as S2 for the remaining objectives [2]. For example, consider the
two-dimensional space formed by the cycle time and cost from the execution
of a business process P . Let us assume that the pairs (cycle time, cost)
from the different resource allocations R1, R2 and R3 over P are on aver-
age P (R1) = (20hours, 50euros), P (R2) = (15hours, 80euros) and P (R3) =
(10hours, 45euros). Under minimisation constraints, P (R1) and P (R2) are
Pareto dominated by P (R3), indicating that the resource allocation R3 is the
best among all.

The set of solutions not dominated by any other is called Pareto optimal.
The set of non-dominated points is called the Pareto set, and the evaluation
of the objective functions on those points constitutes the Pareto front[2].
For example, assume that resources in R3 had a salary rise, which increases
the execution costs so that P (R3) = (10hours, 100euros). After the salary
rise, R3 leads to the lowest cycle time with the highest cost among the three
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allocations. On the contrary, R1 offers the lowest price but the worse cycle
times. Meanwhile, R2 costs less than R3 and has a shorter cycle time than
R1. Thus, none of the three allocations dominates the other two. In this case,
we do not have a single optimal allocation, but a Pareto set {R1, R2, R3} of
optimal allocations, which produces the Pareto front {P (R1), P (R2), P (R3)}
from executing the process P . Resource allocation is a widely recognised
NP-complete problem, meaning that an efficient solution is impossible due
to the impracticality of exploring the entire solution space. As a result,
meta-heuristic algorithms can be employed to approximate Pareto fronts.

There are many ways to classify meta-heuristic optimization algorithms,
and one of them is to group them into two categories: single-solution-based
and population-based. Single-solution algorithms involve maintaining one
solution and looking for better solutions through a perturbation function at
each step. Population-based algorithms, on the other hand, maintain a popu-
lation of solutions and generate a new population at each step by perturbing
and merging solutions from the current population. Although single-solution
methods are more efficient and explore fewer solutions, population-based
techniques yield more optimal solutions by exploring a larger number of so-
lution candidates. This observation has been reported in [3].

Hill-climbing is an optimisation technique that performs a search within
the local vicinity of a given point. During each iteration, the algorithm
identifies the optimal point to move to within the current neighbourhood of
points. As a result, the algorithm enhances the current solution at each iter-
ation, except when there are no superior solutions present within the entire
neighbourhood. The conventional use cases of this algorithm, as documented
in [3], typically involve a solitary objective, such as time, cost, or a linear
combination of the two. The authors of [4] introduce a modified version of
hill-climbing that can be used for multi-objective optimisation and to com-
pute a Pareto front. Rather than storing a single solution, the algorithm
saves a Pareto front. This enables the generation of new solution candidates
by exploring the neighbourhood of each point in the current front. While the
greedy nature of hill-climbing enables it to converge quickly, the algorithm
may get stuck at a local optimum.

2.4. Resource optimisation in business processes

Several studies have addressed the problem of optimising the allocation of
resources in a business process, i.e. the problem of determining how many
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resources should be allocated to perform the activities in the process. Most
studies in this field approach this problem as a single-objective optimisation
problem, i.e., either by optimising one performance measure or combining
several into a linear function [5, 6, 7, 8]. In [6], the authors proposed an evo-
lutionary algorithm that takes as input a Petri Net and performs simulations
to optimise the cycle time and resource cost, combined via a linear function
(i.e. a weighted sum of cycle time and resource cost). Similar approaches
using genetic algorithms and simulation models on single-objective problems
were presented in [9, 10]. Another study addressing the allocation problem
as a single-objective optimisation problem is presented in [5]. The approach
minimises the resources constrained by a specified maximum waiting time.
This thesis adopts a different approach. It addresses the problem of resource
allocation as a multi-objective optimisation problem. Here, we aim to dis-
cover not a single but a set of optimal solutions, which allows process analysts
to explore the available trade-offs between cycle time and cost.

In [11], the authors use a grid-search approach, i.e., an exhaustive explo-
ration of all possible resource allocations given a minimum and a maximum
number of resources per pool. This approach can be applied to explore the
resource allocation space when the number of pools is small. However, it
does not scale up to larger search spaces.

The problem of design-time resource allocation tackled in the presented
research is related to the problem of runtime scheduling and runtime as-
signment of resources to work items in a business process. The latter issues
have been tackled in various previous studies. For example, [4] and [12]
consider the problem of deciding how to schedule the work items generated
by each execution of a business process, taking into account that resources
have availability constraints (i.e., they are available at some times but not
at others). Meanwhile, [13] tackles the problem of deciding which specific
resource should be assigned to a given work item, given the characteristics of
each resource. The contribution of the present paper and those of the above
papers are complementary.

The closest work related to the optimisation approach proposed in this
thesis is a paper on resource allocation presented in [14]. This latter proposal
utilises hill-climbing and tabu search meta-heuristics to retrieve the set of
optimal resource allocations that simultaneously minimise cycle time and
cost. However, the approach relies on simulations over pooled allocations
of undifferentiated resources. Thus, due to the missing information on each
independent resource, the optimisation approach is limited to only increasing
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and decreasing the size of the pools, i.e., to mitigate high and low resource
utilisation.

In contrast, this thesis proposes a new set of meta-heuristics over a hill-
climbing search that exploits the characteristics of each independent resource
over a differentiated model. Unlike [14], the presented research not only
adds or removes resources but also updates the availability calendar of each
resource to find resource configurations that jointly optimise cost and cycle
time in the setting where resources have differentiated availability calendars.
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3. Design and Architecture

This chapter is split into two sections. First, we will discuss the problem
definition, explaining Pareto fronts and the objective functions. The second
part is focused on the architecture and deployment of the web application
from a developer’s viewpoint and the relevant technologies.

3.1. Resource Allocation and Roster Optimisation with
Differentiated Resources

This section considers the problem of jointly optimising the cost of resources
and the cycle time of a process by perturbing the allocation of resources
to activities in a process (a.k.a. the resource allocation) and the availability
calendars of the resources (a.k.a. the roster), in the setting where each re-
source has its own calendar, but all resources share the same performance
with respect to any given activity.

In this context, an ideal resource configuration is one that minimises
both the resource cost and the cycle time. Typically, no single configuration
exists that minimises time and cost simultaneously. Instead, there is a set
of (incomparable) optimal configurations (a.k.a. Pareto front) so that for
each configuration in this Pareto front, no performance measure, e.g., time
and cost, can be improved without scarifying any other [14]. Accordingly,
this chapter considers the problem of computing a Pareto front of resource
configurations with respect to resource cost and cycle time, where a resource
configuration consists of a resource allocation (i.e., a set of resources together
with a relation between resources and the activities they can perform) and a
resource roster (i.e., a mapping from resources to availability calendars).

We note that the fewer resources available, i.e., the amount of time ded-
icated to working, the lower the waiting times, and thus the cycle times,
will be. Similarly, the more resources are available, the less busy they are,
i.e., lower resource utilisation, leading to decreasing waiting times and, thus,
decreasing cycle times. However, increasing the number of resources or their
calendar unavoidably increases the cost of the hours worked by the resources
collectively. Conversely, reducing the number of resources or shrinking their
availability calendars is likely to decrease the resource costs at the expense
of increasing waiting times due to higher resource utilization [15].
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3.1.1. Problem Definition: Pareto Front and Objective Functions

Definition 2 (Optimisation Problem). Given a simulation model with
differentiated resources SM =< E,A,G, F, RProf, BP,AT,AC > accord-
ing to Def. 1, the optimisation problem consists of finding the Pareto front
of resource profiles RProf that minimises the overall process cycle time and
cost, that is:

• minimize cycle t =

∑
t∈L

[max{τc∈t}−min{τs∈t}]

|L| , i.e., minimize the aver-
age cycle time of all traces t in an event log L representing the execution
of the model SM . The cycle time of each trace t is the difference be-
tween the timestamps τc, τs corresponding to the last event completed
and the first event started in t, respectively.

• minimize costp =
∑

r∈RProf

Cost(r)×| Avail(r)
⋂
[min{τs ∈ L},max{τc ∈

L}]|, i.e., minimise the total cost of all the available resources during
the process execution. The total cost of each resource r is the whole time
they were available in the interval spanned by the timestamps τs, τc of
the first/last events started/completed in an event log L representing
the execution of the model SM multiplied by their cost per time unit
(e.g., hour).

The key difference in Definition 2, compared to undifferentiated simula-
tion models is that the notion of RPools, i.e., Resource Pools, is replaced by
RProfs, i.e., Resource Profiles. As described in Definition 1, differentiated
resources have their own resource profile. This change does not affect the
formula calculating the cycle time or cost but does affect the end result of
the formula. Since we do not just count the number of resources in a pool
and calculate the cost of that pool, but calculate the cost of the individual
resources, which in the case of differentiated resource models are not part of
a ”pool”.

Adjusting the availability calendars as part of the roster optimisation
problem is typically restricted by several constraints dictating which intervals
to extend or shorten over the resource calendars. For example, in the presence
of human resources, they usually work a maximum of 8 hours daily or a
maximum of 40 hours a week. Besides, there are time slots in which some
resources must always work or never work to satisfy the logistics of the whole
organisation. Accordingly, Definition 3 formalises a set the optimisation
constraints allowed by the optimisation approach presented in this paper.
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Definition 3 (Optimisation Constraints). Consider the weekly calendar

Ĉr of each resource r, i.e., specified by the corresponding Avail function in
RProf. Let Ĉd

r ⊆ Ĉr, with d ∈ W = {Monday, ..., Sunday}, be the avail-

ability calendar of the resource r in week-day d, e.g., ĈMonday
r corresponds to

the working times of r every Monday. The optimisation problem defined in 2
must satisfy the following constraints:

• ∀ κ =< ω, δ >∈ Ĉr,∃ Minδ, α ∈ N+ : |δ| ≥ Minδ ∧ |δ| = α ×Minδ,
i.e., Minδ is the (minimum) granule size so that the duration of the

intervals δ =< τws , τ
w
c > in each calendar entry κ ∈ Ĉr is a multiple of

Minδ,

• ∀ r ∈ RProf, ∃ ηr ∈ N+ : |Ĉr| ≤ ηr, i.e., ηr is the maximum capacity
(measured in time units) that each resource r can work on a week,

a.k.a., weekly-capacity. Analogously, ηdr ∈ N+, |Ĉd
r | ≤ ηdr , specifies

the maximum capacity of the resource r in a single day, a.k.a., daily-
capacity,

• ∀ δ ∈ Ĉd
r , |δ| ≤ Maxd

δ ,Maxd
δ ∈ N, i.e., Maxd

δ is the maximum number
of consecutive time units a resource can work in a day,

• Ĉ−r , with Ĉ−r
⋂

Ĉr = ∅, a.k.a., the never-working calendar, specifies the
intervals of each day in which the resource r never works,

• Ĉ+
r , with Ĉ+

r

⋂
Ĉr = Ĉ+

r , a.k.a., the always-working calendar, specifies
the intervals of each day in which the resource r always works.

The problem of roster optimisation addressed in this paper is a variant of
the resource allocation problem, which is a well-known NP-complete problem.
In other words, no efficient solution exists, i.e., exploring the entire solution
space is impossible in practical scenarios. Instead, meta-heuristic algorithms
to reduce the search space are used to approximate Pareto fronts. Specifically,
in this paper, we focus on the tasks and resources that exhibit poor results
in terms of execution costs as well as waiting and idle times to heuristically
decide which calendars to improve as part of a hill-climbing search.

3.1.2. Discovering Optimal Rosters: Hill-Climbing Meta-heuristic

The optimisation approach presented in this paper follows a well-known
meta-heuristic named Hill-climbing search. Hill-climbing is an iterative op-
timisation technique that performs a local search around a given solution
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candidate. At each iteration, the algorithm explores the neighbourhood of
the current solution candidate, intending to find a better solution to be ex-
plored in the next iteration. Therefore, the algorithm improves the current
solution at each iteration and stops after exploring a neighbourhood that
does not yield any better solution than the ones already in the Pareto front.
The classic hill-climbing algorithm focuses on single objective optimisation [3]
(e.g., time, cost, or a linear combination of both). However, in [16], the au-
thors extended the algorithm for multi-objective optimisation, meaning that
the algorithm returns a Pareto front of solutions instead of a single solution.
In this approach, new solution candidates are generated by exploring the
neighbourhood of each solution in the current Pareto front.

In the scope of roster allocation, exploring the neighbourhood of each solu-
tion in the Pareto front is too broad. For example, updating the availability
calendar Ĉ+

r of a single result produces (at least) 2k solutions candidates,
where k is the number of calendar entries. The latest number considers only
two operations, i.e., expanding and shrinking the time intervals, although
many others can be performed, increasing this number significantly. Note
that those potential solution candidates relate to a single resource. Spread
that to all the resources in each roster and all the rosters in the Pareto front.
Then, searching the neighbourhood space becomes unfeasible in practical
scenarios, especially when the number of resources is high.

In the following, we propose an approach to prune the hill-climbing search-
ing space to discover the Pareto front with the optimal rosters. Instead of
exploring the entire neighbourhood at each iteration, the proposal heuristi-
cally selects which resources have a potentially higher (negative) impact on
cost or cycle time. Specifically, Algorithm 1 incorporates five perturbations
that address different possible causes of cycle times or cost inefficiency by
perturbing the calendars of the resources that are involved in these ineffi-
ciencies.
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Algorithm 1 Perturbation Method: Generating the Pareto front
1: function ExploreSolutionSpace(SM: Simulation Model, P : RProf)
2: PSet ← {RP}
3: Q ← PriorityQueue({P})
4: while Q ̸= ∅ do
5: P ← Pop(Q)

▷ Perturbation 1: Updating availability calendars to reduce waiting times
6: wt list ← SortGranulesToImproveWaitingTimes
7: for each < r, κ >∈ wt list do
8: if ScanPareto(Q, PSet, SM, [L+(P, Ĉr, κ), <<(P, Ĉr, κ)]) then
9: break

▷ Perturbation 2: Updating availability calendars to reduce costs
10: c list ← SortGranulesToImproveCost
11: for each < r, κ >∈ c list do
12: if ScanPareto(Q, PSet, SM, [LR−(P, Ĉr, κ),L−(P, Ĉr, κ),R−(P, Ĉr, κ)]) then
13: break

▷ Perturbation 3: Updating availability calendars to reduce idle times
14: it list ← SortGranulesToImproveIdleTimes
15: for each < r, κ >∈ i list do
16: if ScanPareto(Q, PSet, SM, [R+(P, Ĉr, κ), >>(P, Ĉr, κ)]) then
17: break

▷ Perturbation 4: Adding resources to reduce waiting times
18: tk list ← SortTasksToImproveWaitingTimes
19: for each t ∈ i list do
20: if ScanPareto(Q, PSet, SM, [P ∪ {min cost(P, t)}]) then
21: break

▷ Perturbation 5: Removing resources to reduce costs
22: r list ← SortResourcesToImproveCost
23: for each r ∈ r list do
24: if ScanPareto(Q, PSet, SM, [P \ {r}]) then
25: break
26: return PSet

Perturbation 1 explores how to decrease/remove waiting time inefficiencies
during the process execution. To that end, the function SortGran-
ulesToImproveWaitingTimes in line 6 filters the tasks affected by
waiting times. Then it sort and retrieves in descending order the pairs
resource-calendar entries (r, κ) with a higher incidence at the intervals
where the waiting times occurred during the process execution/simula-
tion from each affected task. Lines 7-9, iteratively from worst-best, try
to fix the calendar entries marked as problematic, stopping at the entry
with the highest impact that can be improved. Here, the issue consists
of a task enabled to be executed while the resource is unavailable. Then,
the correction aims to make the resource available earlier in the prob-
lematic calendar entry by decreasing the lower bound of the correspond-
ing time granule using two operations (Figure 2 b) and h)). The first

operation L+ takes the granule κ =< ω, τws , τ
w
c >∈ Ĉr and expands the
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interval by subtracting the minimum granule size from its lower bound,
i.e., κ′ =< w, τws − Minδ, τ

w
c >. The second operation << takes the

granule κ =< ω, τws , τ
w
c >∈ Ĉr and shifts the entire interval to the left,

keeping its original size, by subtracting the minimum granule size from
its lower and upper bounds, i.e., κ′ =< w, τws −Minδ, τ

w
c −Minδ >.

Perturbation 2 focuses on reducing costs during the process execution.
The function SortGranulesToImproveCost in line 10 filters and
sorts, in descending order, the pairs resource-calendar entries (r, κ) of
the resources according to the total costs incurred during the process
execution. Lines 11-13 iteratively attempt the sorted calendar entries
stopping at the one with the highest cost that can be improved. In this
perturbation, the issue may relate to resources working more hours than
required to fulfill their duties during the process execution. Intuitively,
the adjustment reduces resource availability by decreasing the calendar
entry using three operations (Figure 2 g), c), and e)). The first oper-

ation LR− takes the granule κ =< ω, τws , τ
w
c >∈ Ĉr and shrinks the

interval by adding the minimum granule size to the lower bound and
subtracting from the upper, i.e., κ′ =< w, τws +Minδ, τ

w
c −Minδ >. The

operations L− and R− take smaller steps by only reducing, respectively,
the lower and upper bounds, i.e., producing κ′ =< w, τws +Minδ, τ

w
c >

and κ′ =< w, τws , τ
w
c −Minδ >, respectively.

Perturbation 3 aims to decrease/remove idle time inefficiencies during the
process execution. The function SortGranulesToImproveIdle-
Times, in line 14, descending sorts and retrieve the pairs resource-
calendar entries (r, κ) similarly to SortGranulesToImproveWait-
ingTimes in perturbation 1, but considering idle times instead. Then,
lines 15-17 iteratively try fixing the entries until finding one improving
the Pareto front. Here, the root cause consists of resources becoming
unavailable during the execution of the started tasks, which delays their
completion. Then, the correction aims to increase resource availability
in the problematic calendar entry by raising the upper bound of the
corresponding time interval using two operations (Figure 2 d) and i)).

The first operation R+ takes the granule κ =< ω, τws , τ
w
c >∈ Ĉr and

expands the interval by adding the minimum granule size to its upper
bound, i.e., κ′ =< w, τws , τ

w
c +Minδ >. The second operation >> takes

the granule κ =< ω, τws , τ
w
c >∈ Ĉr and shifts the entire interval to the
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right, keeping its original size, by adding the minimum granule size to
its lower and upper bounds, i.e., κ′ =< w, τws +Minδ, τ

w
c +Minδ >.

Perturbation 4 again focuses on waiting time inefficiencies arising from
high resource utilization, keeping resources busy to perform the tasks
when they become available. The latest may be an indicator that
new resources are required. To decide where to add them, function
SortTasksToImproveWaitingTimes, in line 18, sorts the tasks
according to their waiting times. Then, lines 19-21 attempt to improve
the most problematic task by adding a new resource profile that can
execute it. Like in perturbations 1-3, the correction tries all the tasks
facing waiting times issues iteratively until finding one that can be
fixed. Adding a resource may increase the overall process costs. Thus,
to reduce the impact of that issue, the algorithm copies the resource
profile with lower costs among those who can execute the corresponding
task, i.e., described by mincost(P, t) in line 20.

Perturbation 5 focuses on reducing the overall process cost. In contrast
to perturbation 4, this perturbation aims at reducing cost by increas-
ing the utilization of potentially under-utilized resources (i.e. more
resources are available than required). The underlying idea is that
removing underutilized resources may decrease the overall costs with-
out strongly affecting cycle time. Accordingly, the function SortRe-
sourcesToImproveCost in line 22 filters and descendant sorts the
resources according to their cost and utilization. Then, lines 23-25 fol-
low the same iterative approach to remove the resource with the highest
impact possible, i.e., represented by P \ {r} in line 24.

Figure 2 graphically illustrates the possible transformations over a single
time granule δ in a calendar entry κ used by perturbations 1-3 in Algorithm 1.
All the operations receive an entry κ from the calendar of the Ĉr of one re-
source r in the set of resource profiles P . Then, they modify the calendar of r,
“updating and” returning the resource profiles P accordingly. Indeed, those
operations enforce the “optimisation constraints” presented in Definition 3.
Thus, the functions never produce calendars exceeding the maximum dai-
ly/weekly resource capacity, never remove entries from the “always working”

calendar Ĉ+
r , and they do not add entries to the “never working” calendar

Ĉ−r of the resource.
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Figure 2: Operations to modify the time interval defined by the granule κ (on top).
a) shows the original time interval, b) to i) the resulting intervals after applying the
corresponding operation over a).

Algorithm 1 stores in a priority queue Q any solution candidate which
improved the Pareto front after applying any of the transformations described
by perturbations 1-5. At each iteration, the resource profile P on top of the
queue is perturbated, aiming to improve the current Pareto front. Note that
Q may contain optimal resource profiles in a given iteration but overtaken by
others in subsequent iterations. In those cases, the queue sorts and retrieves
the overtaken profiles according to their euclidean distance to the current
Pareto front. The algorithm stops when the queue is empty, retrieving the
optimal resource profiles stored in PSet. Other stopping criteria are possible,
e.g., the maximum number of iterations or candidates generated. However,
for simplicity, we omitted them.

Algorithm 1 relies on the function ScanPareto to assess if a transforma-
tion described by perturbations 1-5 improves the Pareto front. Algorithm 2
outlines the assessment using simulations. It receives as input the priority
queue Q, the current Pareto set PSet, the simulation model SM , and the
resource profiles candidates obtained after each perturbation. Then, the pro-
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Algorithm 2 Updating Pareto Set using process simulations
1: function ScanPareto(Q, PSet, SM , RProfile candidates)
2: isImproved ← False

3: for each P ∈ RProfile candidates do
4: sLog ← SimulateProcess(SM , P )
5: if isNonDominated(P , PSet, sLog) then
6: FixPareto(PSet, P )
7: Enqueue(Q, P )
8: isImproved ← True

9: return isImproved

cess model is simulated (line 4) for each candidate to estimate the resulting
cycle times and cost. Suppose the new candidate is not dominated by any of
the profiles in the current Pareto set (line 5). In that case, the new Pareto set
is updated, e.g., possibly removing previous solutions after adding the new
profile (line 6). Similarly, the distances of the removed solutions are updated
in the priority queue Q (line 7). Algorithm 2 returns whether any solution
candidate improved the optimal rosters.

3.2. Architecture and Deployment

In this section, we will give an in-depth overview of the application archi-
tecture and its components as well as the deployment environment. First,
we will describe the high-level architecture of the application, after which we
will delve deeper into each tier and its components. Besides this, we will also
describe the technologies used to develop the application and the reasoning
behind their selection. Afterwards, we will discuss the deployment environ-
ment of the application and the related technology. Finally, we will close this
section by providing a summary.

3.2.1. Architecture Overview

Optimos is designed using a well-established software architecture, namely
the Three-Tier Architecture. This architecture separates the application into
three layers, the Presentation Tier, the Application Tier and the Data Tier.
The main benefit of this architecture is that each tier consists of its own in-
frastructure and can be developed, updated and scaled simultaneously with-
out impacting the other tiers. Figure 3 illustrates the high-level overview of
this architecture with the chosen technologies for each Tier.
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Figure 3: High-level architecture of Optimos.

Presentation Tier. The presentation tier contains the user interface and is
the main point of interaction between the end user and the application. The
structure of this tier can vary depending on the application. However, the
purpose of this tier stays the same, namely:

• Display information from the end user

• Collect information from the end user

This thesis implements the presentation tier through a web interface using
React Typescript. A JavaScript library for building user interfaces.

React2 is an open-source library that allows developers to build complex
applications with reusable UI components. This thesis uses an adaptation of
React, namely React Typescript. TypeScript is a statically-types superset of
JavaScript that adds features like strong typing, where each program vari-
able must have a datatype predefined by the programming language. React
TypeScript allows developers to improve code maintainability and increase
productivity.

React was chosen as the technology in this thesis because of its larger
community, out-of-the-box components and much richer ecosystem than other
comparable libraries, like Vue or Angular. Another reason is that Optimos is
part of a more extensive toolset, currently being developed for the Process

2https://react.dev/
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Improvement eXplorer (PIX)3 project. It was decided that the toolset
would use React as the standard library for front-end development.

Application Tier. The application tier contains the core of the application.
This is also the most complex tier of the three tiers, as the full functionality
of the application depends on it. The main purpose of this tier is:

• Process incoming data

• Handle incoming commands and requests

• Perform logical decisions and execute processes

• Communicate between the Data tier and Presentation tier

The application tier of this thesis utilises three distinct technologies,
specifically PyFlask, RabbitMQ, and Celery, to implement various function-
alities. We will implement the application tier using the Master-Slave archi-
tecture. This architecture is a common approach to parallelise workloads,
making it possible to handle large-scale computing tasks more efficiently.
To take this one step further we will extend the architecture to work asyn-
chronously using a message broker like RabbitMQ. Figure 4 illustrates the
Master-Slave architecture implementation in our application.

Figure 4: Master-Slave Architecture used in the Application Tier

3https://cordis.europa.eu/project/id/834141
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PyFlask or Python Flask4 is a Python-based, open-source, lightweight
framework that provides a wide range of features for web development, in-
cluding routing, templating and session management. Within the scope of
the thesis, PyFlask is used to develop the API endpoints of the application.
PyFlask was chosen as technology because we wanted to reduce the number
of programming languages used during development. The back-end system
is developed in Python, so a natural continuation from this would be to im-
plement the API in PyFlask, reducing the complexity of data transmission
yet building a reliable and robust service.

RabbitMQ5 is an open-source message broker that enables a fast ex-
change between applications and systems. In this thesis, we use RabbitMQ
as a message broker because it allows applications to communicate asyn-
chronously using the Advanced Message Queueing Protocol (AMQP). An-
other reason is that RabbitMQ can distribute tasks between the multiple
Celery workers, allowing the application to scale easily.

Celery6 is a Python-based, open-source, task queueing software whose
primary goal is to execute processes asynchronously. The optimisation ap-
proach of the application is computationally intensive and requires consid-
erable time to execute over larger processes. This would hamper the appli-
cation’s functionality as the system would be blocked until the optimisation
has finished. Celery allows us to execute these tasks asynchronously without
compromising the system. Even though Celery is not the only task queue
software, it is reliable and is also Python-based. Thus, reducing the com-
plexity again.

Data Tier. The data tier is responsible for storing and managing all the
relevant data to the application. This is usually in the form of a database or
a file repository. In this thesis, we implemented the data tier as a database
using Redis.

Redis7 is an open-source, in-memory data structure used as a database,
cache and message broker. Redis’ role in the application is as a central
database. It stores nearly all the data provided by the presentation tier and

4https://flask.palletsprojects.com/en/2.2.x/
5https://www.rabbitmq.com/
6https://docs.celeryq.dev/en/stable/index.html
7https://redis.io/
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generated by the application tier. We chose Redis as our database technology
because it is a fast, reliable, scalable NoSQL database.

3.2.2. Deployment

The traditional application deployment process is rather arduous, leading
to unexpected issues and time lost debugging the deployment environment.
To combat this issue, a solution, commonly referred to as Containerisation
was invented. Containerisation is, in essence, the packaging of application
code with a set of operating systems libraries and dependencies that are
required to run the code. This creates a group of isolated application packages
that are easy to deploy, run and maintain. It also removes the need for
maintaining the operating system environment used during the development
by the developers. To facilitate the containerisation and deployment process
of our application, we chose Docker.

Docker8 is a software platform that makes it easy to deploy and run
applications by using containers. Docker provides a wide range of tools that
simplify the deployment of multi-container applications available for the de-
veloper.

Figure 5: Live environment structure of the application.

8https://www.docker.com/
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Live environment. For the live deployment of the application, we opted for a
two-server structure, with one server containing the presentation tier and the
other server containing the application and data tier of the application. This
way, the application tier is accessible even when the presentation tier is under
maintenance. Figure 5 illustrates the structure of the live environment. The
application is accessible on the following URL: http://optimos.cloud.ut
.ee and is hosted on the servers of the University of Tartu.

In the appendix, we have added the Dockerfile 6 and docker-compose file
6 that were used to deploy the application on the live environments. All of
the containers can communicate with each other using a bridge network that
is automatically configured by Docker.

3.2.3. Architecture Summary

To close this chapter, table 1 summarises the technologies used and their role
within the application.

Technology Role Purpose
React User Interface Main interaction point
PyFlask API service Communication facilitator between appli-

cation and user interface
RabbitMQ Message Broker Asynchronous communication facilitator

between API and Celery workers
Celery Asynchronous

worker
Optimisation task performer

Redis Database Store all necessary data of the application
Docker Deployment Containerisation and live-environment de-

ployment

Table 1: Summary of used technologies
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4. User Interface

This chapter presents the User-Interface (UI) of the developed application.
First, we will discuss the application’s structure from the developer’s per-
spective, and then we will walk through the UI and describe each screen and
its functionality.

4.1. UI Development

The previous chapter stated that the front end is developed using React TS.
This library, paired with certain packages, allows developers to use off-the-
shelf components that are ready for use but can be tailored to the user’s
specific needs. Combining this with a proper development workflow, we can
mitigate many potential issues, which could cause reworks and take valu-
able time. To achieve this we decided to implement the front end using a
Component-Based structure.

Component structure is a software architecture designed around build-
ing software systems from independent, interchangeable and reusable soft-
ware components. Each component in this structure is designed to perform
a specific function or set of functions and can communicate with other com-
ponents through interfaces. This allows components to easily be added, re-
moved or replaced without affecting the functionalities of other components.
Secondly, as stated previously, Optimos is part of the PIX project, which
already contains several generic, previously built components.

4.2. UI Walkthrough

In this section, we will walk through the user interface and its components
from an end-user perspective. We will use an example, named ”purchas-
ing example” from the experiments performed in this thesis. This model
describes the lifecycle of a purchase requisition process. We also want to
clarify some terms used in this chapter:

• Slot - One unit of the defined granule in the constraint parameters.
E.g., with a 60-minute granule, one slot is 60 minutes.

• Shift - One or more Slots combined together. Shifts have a clear start
and end point and are split by at least one Slot. E.g., The clerk has a
shift from 8.00 am until 11.00 am and from 2.00 pm until 7.00 pm.
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• Simulation Parameters - A JSON file, containing the parameters
required for the simulator to be able to execute the process simulations.
More information about the format of the simulation parameters can
be found on the GitHub repository of the simulator9

• Constraint Parameters - A JSON file, containing the parameters re-
quired for the optimiser to be able to execute the process optimisation.
More information about the format of the constraint parameters can
be found on the GitHub repository of the optimiser10

Both the simulation parameters and constraint parameters are an imple-
mentation of Definition 1 and Definition 3 respectively.

4.2.1. Landing page

When users navigate to our application, they are greeted with the landing
page, represented in Figure 6. On this page, users can upload several files
necessary for an optimisation task. They can also use the Drag&Drop func-
tionality to upload files more easily. A radio button, ”Generate constraints”,
allows users only to upload the BPMN model and simulation parameters.
The application will then generate constraints based on the simulation pa-
rameters given by the end user, which they can then adjust to their own
requirements. When a user is ready to continue, and they have provided all
of the required information, the button below the container will turn blue
and can be clicked.

Note that the supported file extensions are .zip, .json , and .bpmn .
We allow .zip files to be uploaded given they contain the right files for an
optimisation task.

4.2.2. Global Constraints page

After the files are validated and the entered information is correct, the global
constraints tab is the first page visible to the user. This page is illustrated
in Figure 7 and 8 Here they can enter details about the scenario, like:

• A unique scenario name.

9https://github.com/AutomatedProcessImprovement/Prosimos
10https://github.com/AutomatedProcessImprovement/roptimus-prime
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Figure 6: Landing page of Optimos

• The maximum number of iterations that can be performed before force-
fully quitting the task.

• The preferred algorithm to use for the optimisation.

• The preferred approach the optimisation should follow.

Figure 7: Global Constraints tab - Name and iterations

The maximum number of iterations is an important limiter that directly
impacts the time an optimisation task can take. If the maximum number of
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iterations is a large number, e.g., 5000, it is likely the optimisation can take
multiple hours to complete. This may ultimately lead to a more accurate set
of optimal solutions but should be considered cautiously.

The different algorithms and approaches are described in Chapter 3 and
Chapter 5.

Figure 8: Global Constraints tab - Algorithm and approach

4.2.3. Scenario Constraints page

The tab after the global constraints tab is the scenario constraints tab. In
this tab, the user can define the following constraints that directly impact
the overall limitations of the optimisation. This page is illustrated by Figure
9 and 10

• Maximum capacity - This parameter represents the maximum sum of
the resource times that can be performed per week by all resources
that participate in the process combined. It limits the optimisation
algorithm from exceeding a number set by the user.

• Max shifts/day - This parameter used to represent the maximum num-
ber of shifts resources could have assigned per day. This parameter has
been moved to a lower level and can safely be ignored.

• Time granularity - This number represents the granularity of shift slots.
E.g., 60 represents 1-hour shift slots. Meanwhile, 30 represents 30-
minute shift slots. The granularity impacts the impact of the optimi-
sation step from a time perspective.
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• Max shifts size - This parameter is similar to max shifts/day and is
being shifted to a lower level and can safely be ignored.

• Hours per day - This parameter limits the number of hours a day
consists of. This parameter is not in use yet and safely be ignored.

Figure 9: Scenario Constraints tab - Capacity, shifts/day and granularity

Figure 10: Scenario Constraints tab - Max shift size and hours per day

4.2.4. Resource Constraints page

This page contains the most important parameters for the optimisation. The
resource constraints page allows the end user to customise every resource to
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their specifications. You can select a resource from the list of participating
resources, as seen in Figure 11. Once a resource is selected three differ-
ent parameter sections can be edited, illustrated in Figure 12, 13, and 14
Figure 12 illustrates the resource-specific constraints concerning the working

Figure 11: Resource Constraints tab - Resource selection list

parameters. These are:

• Maximum weekly capacity - How many slots the resource can be as-
signed maximally per week.

• Maximum daily capacity - How many slots the resource can be assigned
maximally per day.

• Maximum consecutive capacity - How many slots the resource can per-
form consecutively before at least one slot is not assigned. A.k.a., the
maximum length of a Shift.

• Maximum shifts per day - How many shifts can be assigned to the
resource per day. E.g., 2 = The resource can maximally have two
shifts assigned per day.
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• Maximum shifts per week - How many shifts can be assigned to the
resource per week. E.g., 7 = The resource can maximally have 7 shifts
assigned per week.

• Human Resource? - Is the resource a human being? This parameter
defines whether or not the resource will be optimised or not, since
systems are expected to have a near 100% uptime during the times
they are active and as such cannot be optimised further.

Figure 12: Resource Constraints tab - Resource constraints

The next section of this page is illustrated in Figure 13. Here the user
can enter a number that represents a binary value corresponding to the shift
slots that the resource is not allowed to work in, with a ”1” meaning the
resource is not allowed to work and a ”0” meaning the resource can work
during that slot. E.g., 1111 0000 1111 means that the resource cannot work
for the first four slots, is then allowed to work in the next four slots, and
finally is not allowed to work in the last four slots again.

The final section of this page is illustrated in Figure 14. Here the user
can enter a number that represents a binary value corresponding to the shift
slots that the resource must work in, with a ”1” meaning the resource is must
work and a ”0” meaning the resource can work during that slot. E.g., 1111
0000 0000 means that the resource must work for the first four slots, and is
then allowed to work during the rest of the slots.
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Figure 13: Resource Constraints tab - Never work masks

It is important to note that the Never Work Masks and the Always
Work Masks cannot intersect. Doing so creates a conflict as a resource
must work during a slot it is not allowed to work.

Figure 14: Resource Constraints tab - Always work masks

After all of the parameters have been customised and verified by the user,
they can press the Start Optimisation button. This action will perform
a last check to ensure all parameters are valid and no conflicting masks have
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been assigned.

4.2.5. Simulation Results page

On this page, the user will see the results of the optimisation task. This
page is illustrated in Figure 15. On this page, the user can see a high-level
overview of the optimisation metrics of the performed task including:

• The average cost of the optimal solutions

• The average cycle time of the optimal solutions

• The number of optimal solutions found - Pareto size

• The number of optimal solutions of the chosen approach that are present
in the Pareto front. This value is only significant when multiple ap-
proaches have been performed.

• Cost optimisation metric. A number representing the average cost
optimisation compared to the original model. If the number is larger
than one, then the found solutions have improved the average cost of
the model.

• Time optimisation metric. A number representing the average time
optimisation compared to the original model. If the number is larger
than one, then the found solutions have improved the average cycle
time of the model.

Below these values, the user can also see every Pareto entry, their identi-
fication hash code and the median cost and cycle time of the solution. They
can also download the simulation parameter and constraint parameters for
each solution.

For a more in-depth look, the user can download all of the related files
to the optimisation report by clicking the Download entire report but-
ton. This will create a .zip file, containing all of the found solutions, their
parameters and the comparative metric file.
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Figure 15: Simulation Results tab

39



5. Implementation and Evaluation

The simulation engine is implemented in an open-source simulation engine,
namely Prosimos, available at https://github.com/AutomatedProcessI
mprovement/Prosimos. Prosimos supports the simulation of processes with
an unpooled allocation model and differentiated availability and performance.
Prosimos takes as input a BPMN process model with simulation parameters
as per Def. 1 (encoded in JSON format). Like other simulation engines,
Prosimos produces an event log and a set of performance indicators such as
waiting, processing, cycle times, and resource utilisation. For a more detailed
explanation of the functionality and architecture of Prosimos, we refer the
readers to [17].

The proposed simulation-based optimisation approach is implemented
as an open-source (Python-based) library, namely Optimos available at
https://github.com/AutomatedProcessImprovement/roptimus-prime.
Like Prosimos, Optimos takes a BPMN process model and the simulation
parameters in JSON format as input. From those, it produces a set of re-
source profiles corresponding to the Pareto-optimal resource configurations.

Similarly, using Optimos in conjunction with Prosimos, we conducted
an empirical evaluation of the simulation-based optimisation approach pre-
sented in Section 3. This evaluation aims to answer the following sub-
questions derived from the question RQ1 presented in Section 1: EQ1 To
what extent Optimos improves the cycle time and cost of the models discov-
ered by Prosimos? EQ2 What impact do the five perturbations handled
by the optimisation approach have on the discovered Pareto fronts regarding
convergence, spread, and distribution?

5.1. Datasets

We use five simulated (synthetic) logs and five real-life ones. Since our pro-
posal does not deal with process model discovery, we use the BPMN models
generated from the input logs using the Apromore open-source platform,11,
which we manually adjusted to obtain 90% replay-based fitness. Table 2 gives
descriptive statistics of the employed logs, including the number of traces and
events and the number of activities and resources. Row “simulation time”

11https://apromore.com
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LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17

Traces 1000 1000 1000 1000 608 225 954 1182 8616 30 276

Events 9844 9782 9768 9569 9119 4503 4962 23 141 59 302 240 854

Activities 15 15 15 15 23 23 18 11 8 9

Resources 19 19 34 34 47 54 337 125 68 141

Simulation Time 1.27 1.24 1.25 1.24 1.07 0.72 0.73 1.29 10.32 41.97

Table 2: Characteristics of the business processes used in the experimentation.

shows the average execution times (in seconds) across five simulation runs.
The first four event logs were obtained by simulating a Loan Origination

(LO) process model using Apromore. The model contains 15 tasks assigned to
5 resource pools. We first simulated the model by assigning the same calendar
to all resource pools. Using this single-calendar (S) model, we generated
two logs: one where the resource utilisation of each pool is around 50%
(Low Utilization – L) and another with a resource utilisation of 80% (High
Utilization – H). The simulation parameters of the H model were identical
to the ones of the L model, except that we adjusted the case arrival rate
to obtain higher resource utilisation. To test the techniques in the presence
of multiple calendars, we simulated the same model after assigning different
(overlapping) calendars to each of the five resource pools. We simulated this
multi-calendar (M) model twice: once with a low utilisation (L) and once
with high utilisation (H). This procedure led to four simulated logs: LO-SL,
LO-SH, LO-ML, LO-MH. The fifth log (purchasing-example (P-EX)) is part
of the academic material of the Fluxicon Disco tool.12

The first real-life log (PRD) is a log of a manufacturing process.13. The
second and third are anonymized real-life logs from private processes. The
C-DM comes from an academic recognition process executed at a Colombian
University. The INS log belongs to an insurance claims process. The fourth
real-life log is a subset of the BPIC-2012 log14 – of a loan application pro-
cess from a Dutch financial institution. We focused on the subset of this log
consisting of activities that have both start and end timestamps. Similarly,
we used the equivalent subset of the BPIC-2017 log15 , which is an updated
version of the BPI-2012 log (extracted in 2017 instead of 2012). We extracted

12https://fluxicon.com/academic/material/
13https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
14https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
15https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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the subsets of the BPI-2012 and BPI-2017 logs by following the recommen-
dations provided by the winning teams of the BPIC-2017 challenge.16

5.2. Experimental setup

To address questions EQ1-EQ2, we took as input the simulation models
discovered by Prosimos. Then, we run Optimos over five different variants
defined with respect to the five perturbations in Algorithm 1, as follows:

• SKD optimises only the resource calendars, i.e., perturbations 1-3,
without adding or removing any resource to the roster (i.e., perturba-
tions 4-5 are not applied).

• RES adds or removes resources to the roster using perturbations 4-5
without updating their calendars (i.e., perturbations 1-3 are not ap-
plied).

• SKD
⋃

RES considers all the 5 perturbations. In this variant, Opti-
mos tries to improve the roster at each iteration by adding, removing
resources, or updating their calendars according to perturbations 1-5.

• SKD → RES first optimises the roster without adding or removing re-
sources, i.e., perturbations 1-3, until the hill-climbing algorithm stops.
Next, it optimised the resource allocation by running a second round of
the hill-climbing algorithm, this time to optimise the resource alloca-
tion using perturbations 4 and 5 (i.e. duplicating or removing existing
resources). The second round of hill-climbing starts from the Pareto
front obtained in the first round of hill-climbing. In other words, we
run SKD followed by RES.

• RES → SKD first optimises the resource allocation by adding or
removing resources only, i.e., perturbations 4-5. It then runs a sec-
ond round of hill-climbing to optimise the roster, i.e., perturbations
1-3, starting the optimal allocation obtained in the first round of hill-
climbing. In other words, we run RES followed by SKD.

16https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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In our experiments, in addition to an empty solution candidate queue, we
set the maximum number of solutions to explore (i.e., function evaluations)
to 5000 and, at most, 500 (10%) consecutive Pareto non-optimal rosters ex-
plored as stopping criteria. For all the variants, we run three simulations per
roster candidate (using Prosimos) to estimate the corresponding times and
costs. To avoid giving unfair advantages to any variant due to the stochastic
nature of the simulations, we memorised the simulation results in files. So,
we can assert that if two variants explore the same roster, they will get iden-
tical times and costs. The memorisation reduces the number of simulations,
thus the execution times, when multiple variants explore common areas in
the solution space. Data about salaries/costs of the resources involved in
the process execution is missing in the event logs used by Prosimos so in
the discovered simulation models. Thus, we assigned each resource with the
unitary cost per hour for the experiments.

To answer the experimental question EQ1, we computed the mean cycle
times and cost of all the Pareto fronts built by each variant. We calculated
the improvement ratio by dividing the costs and cycle times of the original so-
lution (discovered by Prosimos) and the means of the resulting Pareto front,
i.e., initial costp/mean pareto costp and initial cycle t/mean pareto cycle t.

In the simulation models used in the experiments, the optimal rosters,
i.e., the Pareto front, are unknown. Then, we follow the approach presented
in [18, 14], which creates a reference Pareto front PRef to compare the re-
sults retrieved by many solvers. Specifically, PRef is the set containing the
(joint) Pareto-optimal solutions from the entire search space explored by all
the runs of the five variants presented above. Henceforth, we will call PRef
the reference Pareto front (joint from all the variants) and PAprox the ap-
proximated (by one variant) Pareto front. Then, to answer the experimental
question EQ2, we used four metrics:

• Hyperarea [19] (HA) measures convergence and distribution. So far, it
is considered the most relevant and widely used measure to compare
algorithms in the evolutionary community [20]. Hyperarea is the area
in the objective space dominated by a Pareto front delimited by a point
(c, t) ∈ R2, which we set as the maximum cost and time among all the
solutions explored. If PRef is available, the hyperarea ratio is a real
number between 0 and 1, given byHA(PAprox)/HA(PRef). A higher
hyperarea ratio means a better PAprox, being 1.0 the maximum pos-
sible ratio indicating that PAprox dominates the same solution space
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as PRef .

• Averaged Hausdorff distance [21] measures convergence using the dis-
tances between PAprox and PRef . Specifically, it gets the greatest
distance from each point in one set to the closest point in the other
set, i.e., given by max(min||pi, PRef ||2,min||pj, PAprox||2), ∀pi ∈
PAprox, pj ∈ PRef . A lower Hausdorff distance means a better
PAprox.

• Delta(∆) [22, 18] measures spread and distribution, given by:

∆ =
d0 + dn +

∑n−1
i=1 |di − d′|

d0 + dn + (n− 1)d′

where di, 0 ≤ i ≤ n = |PAprox| is the Euclidean distance between
consecutive solutions, with d0 and dn being the Euclidean distances
between the extreme solutions in PRef and the extreme solutions in
PAprox. Besides, d′ is the average of those distances. A lower value of
∆ means a better PAprox.

• Purity [18] is a cardinality measure used to compare Pareto fronts built
by different algorithms. It is given by |PAprox ∩ PRef |/|PAprox|.
Thus, it measures the ratio of solutions in PAprox included in PRef .
Higher purity means a better PAprox ratio of non-dominated solutions,
with 1.0 being the maximum value possible.

5.3. Experimental Results

To answer the question EQ1, Table 3 illustrates the ratio between cycle times
and cost derived from the initial roster discovered by Prosimos, divided by
the mean of those in the Pareto fronts obtained by each variant of Optimos.
For each variant, the value on the top (in gray) corresponds to the cycle time
ratio, and the ones at the bottom are the cost ratios. The results show that
the mean values improve in both components, i.e., time and cost, in 37 out
of the total 50 evaluations (74%). The remaining evaluations (13 out of 50)
show a mean improvement of one component, i.e., 26%. Independently, the
variants SKD, SKD

⋃
RES show a mean improvement ob both components

in 8 out of 10 logs, while RES, SKD → RES and RES → SKD in 7 out
of 10. However, analysing each of the rosters in the Pareto fronts discovered
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LO-SL LO-SH LO-ML LO-MH P-EX PRD C-DM INS BPI-12 BPI-17

M
ea
n
T
im

e,
C
os
t
R
at
io

SKD 1.056, 1.199, 1.068, 1.040, 1.057, 1.032, 1.091, 1.018, 1.127, 1.113,
1.073 1.090 0.996 1.056 1.068 1.045 1.130 0.999 1.096 1.556

RES 0.410, 1.059, 1.039, 0.963, 1.136, 24.269, 2.946, 0.910, 1.193, 1.382,
1.247 1.065 1.116 1.226 1.709 1.921 3.790 1.612 2.246 1.983

SKD
⋃

RES 0.484, 1.110, 1.065, 1.038, 1.195, 34.123, 2.638, 0.906, 1.263, 1.958,
1.225 1.099 1.106 1.193 1.759 1.781 3.297 2.449 2.314 3.512

SKD → RES 0.392, 1.185, 1.044, 0.965 1.119, 25.403, 2.720, 1.018, 1.248, 2.369,
1.243 1.100 1.115 1.238 2.118 1.917 3.321 0.999 1.884 2.820

RES → SKD 0.317 1.024, 1.070, 0.999, 1.074, 24.269, 2.946, 0.757, 1.138, 1.314,
1.356 1.120 1.096 1.252 1.863 1.921 3.790 2.760 2.349 2.248

Table 3: Mean cycle times and costs of the Pareto fronts obtained by Optimos.

by each variant, we observed that at least one of the rosters improved the
component whose mean value remained below the initial allocation. In other
words, all the Pareto fronts contain at least one roster improving cycle time
and/or cost.

The results above are sound and aligned with the expectations drawn
during the experimental setup. Note that the time and cost dimensions are
conflicting, e.g., lower costs due to resource and calendar reductions typi-
cally lead to higher cycle times due to lower resource availability and higher
resource contention, and vice-versa. Besides, the magnitude of the improve-
ment is restricted by the optimisation constraint. For example, the experi-
ments limited the maximum number of working hours per day/week to the
maximum observed in the initial roster availability. In some simulated event
logs, those (observed) values were set to 8 hours per day and 40 per week,
making the operations performed by Optimos restrictive and closer to the
optimal times for the existing resources, i.e., impacting the calendar optimi-
sation. Still, the Pareto fronts in the current results give process managers a
broad spectrum to select which roster is more convenient according to their
needs. So they can pick an allocation with the lowest cost possible to the
detriment of the time. Conversely, they can select a roster with the most
downtime and the corresponding cost impact. Or, they can aim for a more
balanced time-cost ratio by choosing a resource allocation in the center of
the Pareto front.

In multi-objective optimisation, measuring the quality of a Pareto front
approximation retrieved by an algorithm is not trivial. According to [2], a
good approximation must minimise the distance to the actual Pareto front
(a.k.a. convergence). Besides, a good Pareto front should consist of a highly
diversified set of points, which are well distributed across the front (a.k.a.
spread and distribution). Accordingly, to answer the question EQ2, Table 4
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LO-SL LO-SH LO-ML LO-MH P-EX PRD C-DM INS BPI-12 BPI-17

H
y
p
er
ar
ea

SKD 0.576 0.962 0.771 0.795 0.361 0.470 0.230 0.339 0.701 0.878
RES 0.942 0.947 0.973 0.915 0.858 0.984 0.959 0.965 0.989 0.956
SKD

⋃
RES 0.884 0.999 0.949 0.978 0.884 0.981 0.998 0.988 0.999 0.999

SKD → RES 0.919 0.962 0.946 0.978 0.999 0.999 0.989 0.339 0.976 0.999
RES → SKD 0.999 0.967 0.998 0.924 0.904 0.984 0.958 0.999 0.996 0.961

H
au

sd
or
ff

SKD 90270.7 6206.5 55127.5 94534.1 52129.0 3249328.0 29221.4 70639.8 2620.6 3624.6
RES 8107.8 12543.4 11104.1 40446.7 11064.6 6831.3 3344.8 33415.6 980.6 1965.4
SKD

⋃
RES 8045.7 685.8 20026.1 36170.9 7925.2 50726.3 576.2 13037.9 123.1 235.0

SKD → RES 9402.6 6220.2 22110.8 22482.6 3113.4 4207.6 781.5 70639.8 842.2 236.0
RES → SKD 775.04 5068.0 6008.8 50242.3 10690.2 6831.3 3344.8 4243.0 675.5 2448.1

D
el
ta
(∆

)

SKD 0.986 0.765 0.932 0.916 0.942 0.977 0.952 0.924 0.924 0.891
RES 1.173 0.856 0.684 0.777 0.721 0.681 1.0 0.733 0.849 0.895
SKD

⋃
RES 1.198 0.772 0.775 0.744 0.988 0.874 0.524 1.066 0.675 0.803

SKD → RES 1.074 0.765 0.853 0.695 0.832 0.838 0.702 0.924 0.831 0.643
RES → SKD 1.076 0.795 0.778 0.814 0.937 0.681 1.0 0.667 0.73 0.920

P
u
ri
ty

SKD 0.333 0.471 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RES 0.0 0.0 0.063 0.0 0.0 0.0 1.0 0.0 0.143 0.0
SKD

⋃
RES 0.343 0.75 0.12 0.375 0.037 0.75 0.615 0.9 0.764 0.777

SKD → RES 0.136 0.5 0.167 0.167 1.0 0.409 0.4 0.0 0.1 0.333
RES → SKD 0.659 0.214 0.9 0.8 0.045 0.0 1.0 0.417 0.231 0.0

Table 4: Results of the Hyperarea, Hausdorff, Delta, and Purity metrics.

shows the results of the performance metrics achieved by the five variants of
Algorithm 1, highlighting the best score for each metric on each of the logs.

Regarding convergence and distribution, the values retrieved by the hy-
perarea illustrated that the variants spanning all five perturbations achieve
better results. The variant SKD

⋃
RES, which tries all the perturbations

at each iteration, scored the best results in 5 out of 10 event logs. Besides, in
all the experiments, it achieved hyperarea ratios superior to 0.88 (1.0 is the
max possible), meaning that it dominates at least 88% of the solution space
dominated by the reference Pareto front. The variant RES → SKD, which
optimises only the number of resources and then optimises only the calendars
of the resulting resources, exhibited the top scores in 3 even logs. Besides,
it achieved hyperarea values superior to 0.90 in all the perturbations. Also,
regarding convergence, the Hausdorff distance points out the variant RES⋃

SKD as the best one, achieving the top values in 4 event logs, the second
score in another 4, and the best results overall.

The Delta spread metric did not evidence a bad performance of any vari-
ant compared to the others. Overall, it has the most similar results when
comparing the variants, with each scoring 2 or 3 of the top scores. A lower
value of Delta means a better spread, and in 7 logs, all the variants scored
values below 1, while the remaining values were all around 1, which can be
considered good results. Finally, the purity rates again highlight the variants
SKD

⋃
RES and RES → SKD as the ones adding more solutions to the
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joint Pareto fronts, with tops scores in 5 and 4 logs, respectively. Conversely,
applying perturbations 1-3 or 4-5 of Algorithm 1 isolated leads to solutions
that add no rosters to the joint Pareto front, i.e., variant SKD fails to add
any allocation in 8 logs, and RES in 7. The latter is expected as the com-
bined variants refine the results obtained by the variant SKD applying RES
after, and vice-versa.

To summarise, the experiments show that an optimisation approach com-
bining all the perturbations described by Algorithm 1 achieves better results.
Specifically, the evaluation suggests as the best strategy is to iteratively add
or remove possibly conflicting resources, or update their calendar, i.e., SKD⋃

RES, keeping (at each iteration) the rosters that reduce waiting time, idle
time, and/or cost, discarding the remaining ones. Alternatively, performing
a complete optimisation adding or removing resources (only perturbations 4-
5), then optimising the calendars of the resulting rosters (only perturbations
1-3), or vice-versa, i.e., variantsRES → SKD or SKD → RES respectively,
achieves comparable results.

Finally, although the variants SKD and RES performed inferiorly com-
pared to the combined ones, they still offer good approximations, which are
helpful in some scenarios. Optimising only the resource calendar (SKD) fits
the situations in which organisations have a fixed number of resources, e.g.,
due to cost or capacity restrictions. Still, they can re-schedule them according
to the workload needs, restricted according to the organisational rules, e.g.,
the maximum number of daily/weekly working hours per resource, on-dutty
and off-dutty periods, etc. Conversely, updating the resources calendars may
be unattainable in some situations, e.g., all are humans and already working
eight hours and five days a week, while the possible intervals to re-schedule
are those in which the organisation is closed. In those cases, adding and re-
moving resources is an alternative to reduce cycle time and cost inefficiencies,
e.g. by perturbing the calendars of resources with high or low utilisation.

Threats to validity. The evaluation reported above is potentially affected by
the following threats to validity: (1) Internal validity : the experiments
rely only on ten events logs. The results could differ on other datasets. To
mitigate this limitation, we selected logs with different sizes and character-
istics and from different domains. (2) Ecological validity : the evaluation
compares the simulation results against the original log. While this allows
us to measure how well the simulation models replicate the as-is process, it
does not allow us to assess the accuracy improvements of using differentiated
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resources in a what-if setting, i.e., predicting the performance of the process
after a change.

Web-app tests. In the scope of this thesis, we wanted to focus on the perfor-
mance of the optimisation algorithm. The development of the web applica-
tion was decided as a means of facilitating the interaction with the optimisa-
tion algorithm. The web interface allows less technical users to interact with
the algorithm as well. The current implementation of the web interface is not
a production-quality interface and thus does not have relevant test results to
show. However, we did perform in-house demos, showing the capabilities of
the interface, with the goal of receiving feedback for further improvements.
The interface is still actively in development and is part of a demo paper
that is in the works at the moment.
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6. Conclusion and future work

This thesis presented an optimisation approach to compute a set of Pareto-
optimal resource configurations, minimising resource cost and cycle time, in
the setting where each resource has its own availability calendar.

The experiments show how an iterative optimisation approach that adds,
removes resources and perturbs their availability calendars (i.e. the roster) at
each iteration, leads to a set of Pareto-optimal rosters superior to alternative
approaches that optimise the resource allocation and the rosters separately,
one after the other.

We also implemented a web interface that facilitates the user experience
to interact with the developed application.

The research presented has a few limitations that warrant further re-
search. The optimisation approach relies on a hill-climbing strategy, which
exploits a local search of the solution space; thus, it may stop on a local
optimal. Another future work direction is to use other searching strategies
like tabu-search, and genetic algorithms, which span a more comprehensive
range of solutions to explore.

The front-end interface of the application should be addressed as well.
Currently, the application is operational but requires a rework of certain
visual features. E.g., The current implementation of the working masks
makes it difficult for the end user as they would need to perform integer-
to-binary conversion to enter the correct mask they wish to use.

Reproducibility. The experiments on public datasets may be reproduced
by cloning the repository https://github.com/AutomatedProcessImpro

vement/roptimus-prime for the optimisation approach. The repository
contains instructions to reproduce the experiments.
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Appendix

I.I Dockerfile - presentation tier

FROM node : a l p i n e as bu i ld

WORKDIR /app
COPY package . j son package . j son
COPY package−l o ck . j son package−l o ck . j son
COPY . env . product ion . env . product ion
COPY v i t e . c on f i g . t s v i t e . c on f i g . t s
COPY index . html index . html
RUN npm c i

COPY t s c o n f i g . j son t s c o n f i g . j son
COPY t s c o n f i g . node . j son t s c o n f i g . node . j son
COPY ./ pub l i c / . / pub l i c
COPY ./ s r c / . / s r c
COPY ./ nginx/ . / nginx
RUN npm run bu i ld

FROM nginx : s tab l e−a l p i n e as product ion
COPY −−from=bui ld /app/ d i s t / usr / share /nginx/html

COPY nginx/nginx . conf / e t c /nginx/ conf . d/ d e f au l t . conf
EXPOSE 80
EXPOSE 443
CMD [” nginx ” , ”−g ” , ”daemon o f f ; ” ]
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I.II Docker-compose configuration - applica-

tion tier

ve r s i on : ”3 .7”
s e r v i c e s :

r abb i t :
hostname : rabb i t
image : rabbitmq :3−management
container name : optimos−s e r v i c e−rabbitmq
por t s :

− 5672:5672 # port f o r the worker f o r ta sk s management
− 15672:15672 # GUI port

worker :
bu i ld :

context : .
d o c k e r f i l e : Do ck e r f i l e . worker

container name : optimos−s e r v i c e−c e l e ry−worker
environment :

− CELERY BROKER URL=amqp:// rabb i t :5672/
− CELERY RESULT BACKEND=r ed i s : // r e d i s :6379/
− FLASK DEBUG=1

volumes :
− . / s r c / c e l e r y /data : / app/ s r c / c e l e r y /data

depends on :
− rabb i t
− r e d i s

api :
bu i ld :

context : .
d o c k e r f i l e : Do ck e r f i l e . ap i

container name : optimos−s e r v i c e−api
por t s :

− 5000:5000
volumes :

− . / s r c / c e l e r y /data : / app/ s r c / c e l e r y /data
environment :

− CELERY BROKER URL=amqp:// rabb i t :5672/
− CELERY RESULT BACKEND=r ed i s : // r e d i s :6379/
− FLASK DEBUG=1

r e d i s :
image : r e d i s :6− a lp i n e
por t s :

− 6379:6379
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