
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Eduardo Ribas Brito

Towards Decentralized Proof-of-Location

Master’s Thesis (30 ECTS)

Supervisor: Ulrich Norbisrath, PhD

Tartu 2023

Towards Decentralized Proof-of-Location
Abstract:

Location-based services have become ubiquitous in today’s society, and their inte-
gration with various applications and technologies has shaped our interaction with the
physical world. The current state of location-based systems is very far from ensuring
integrity of the location data, especially in trustless environments, with no individual
reliability guarantees. A paradigm shift is needed in order to provide security against
geo-tampering or location spoofing. To address such requirements, digital and verifi-
able Proof-of-Location systems may help in materializing the idea of location-based
authentication or authorization in adversarial environments. Such systems allow for a
vast range of applications in the fields of smart cities, augmented democracy, digital
integrity, liability, and internet transparency. In this thesis, we present a novel approach
to the problem, dissecting the Proof-of-Location systems’ paradigm and building upon
existing work, to further prototype the path towards fully decentralized Proof-of-Location.
Making use of mesh network technologies and permissionless consensus mechanisms,
we specify a new protocol and implement and evaluate a proof-of-concept, showcasing
the generation of complete, verifiable, and spatio-temporally sound location proofs.

Keywords: location-based services, proof-of-location, mesh networks, permissionless
consensus, blockchain, smart contracts

CERCS: P170 - Computer science, numerical analysis, systems, control

2

Detsentraliseeritud asukoha tõendamise suunas
Lühikokkuvõte:

Asukohapõhised teenused on tänapäeva ühiskonnas üldlevinud ning nende integree-
ritavus erinevate rakenduste ja tehnoloogiatega on kujundanud meie suhtlust füüsilise
maailmaga. Asukohapõhiste süsteemide praegune seisund ei taga kaugeltki asukoha-
teabe terviklikkust, eriti usaldamatutes keskkondades, kus puuduvad individuaalsed
usaldusväärsuse tagatised. On vaja paradigma muutust, et tagada turvalisus geograafili-
se manipuleerimise või asukoha võltsimise vastu. Nende nõuetele vastamiseks võivad
digitaalsed ja tõendatavad asukohapäringu süsteemid aidata realiseerida asukohapõhist
autentimist või autoriseerimist vaenulikes keskkondades. Sellistele süsteemidele leidub
laialdaselt rakendusi nutikate linnade, laiendatud demokraatia, digitaalse terviklikkuse,
vastutuse ja interneti läbipaistvuse valdkondades. Käesolevas lõputöös tutvustame prob-
leemile uudset lähenemist, uurides asukohatõestussüsteemide paradigmat ja tuginedes
olemasolevatele süsteemidele, et liikuda täielikult detsentraliseeritud asukohatõenduse
poole. Kasutades võrgustumistehnoloogiad ja lubadeta konsensusmehhanisme, määrat-
leme uue protokolli ning rakendame ja hindame kontseptsioonitõestust, mis tutvustab
täielike, kontrollitavate ning ruumilis-ajaliselt kindlaid asukoha tõendite genereerimist.

Võtmesõnad: asukohapõhised teenused, asukohatõend, võrgustumistehnoloogiad, luba-
deta konsensus, plokiahel, targad lepingud

CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, kontroll

3

Contents
1 Introduction 6

2 Background 8
2.1 Proof-of-Location . 8

2.1.1 Parties Involved . 9
2.1.2 Common Threat Models . 11
2.1.3 Application Scenarios . 11

2.2 Mesh Networks . 13
2.2.1 B.A.T.M.A.N. Routing Protocol 14
2.2.2 OpenWrt, QEMU, and Raspberry Pis 16

2.3 Permissionless Consensus . 16
2.3.1 Proof-of-X . 17
2.3.2 Proof-of-Work and Proof-of-Stake 18

3 Related Work 21
3.1 Trusted and Centralized Architectures 21
3.2 Progressively Distributed and Decentralized Protocols 23
3.3 Fully Trustless Environments . 25

4 Protocol Fundamentals 28
4.1 Overview . 28
4.2 Dynamic and Non-Hierarchic Mesh Networks 29
4.3 Turing-Complete Clock Synchronization 34
4.4 Relative Proof-of-Location . 38
4.5 Absolute Proof-of-Location . 41

5 Proof-of-Concept 43
5.1 Infrastructure . 43

5.1.1 System Design . 43
5.1.2 Testbed Setup . 44
5.1.3 Network Architecture . 45

5.2 Protocol Implementation . 46
5.2.1 Practical Permissionless Consensus 47
5.2.2 Proof Generation and Verification 49

5.3 Measurements . 50

6 Conclusion 55

References 60

4

Appendix 61
I. Repository . 61
II. Licence . 61
III. Writing Workflow . 61

5

1 Introduction
Throughout history, humans have sought to accurately locate themselves, within the
vastness of space and time. From mapping their surroundings and establishing their
borders, to navigating the seas, with the help of stars, humans have always had an
intrinsic need for fundamentally solving the localization problem, asserting their physical
existence in the world. This need has been adaptively met through various means,
including the use of maps, compasses, and astronomical observations. Today, with the
advent of technology, we have access to advanced methods of precise localization, like
the well-known GPS-based systems. Applications that rely on such systems operate
founded in the expectation that the involved parties are sufficiently honest to be correctly
synchronized in space and time, having their individual receivers relatively calibrated,
and marking the correct value in their internal clocks. This thesis will address the
design challenges of trustless systems that aim at ensuring integrity of the location data,
examining the rise of location-based authentication or authorization and the need for
tamper-proof, correct, and spatio-temporally sound location information. In GPS-based
systems, strategic interactions between rational agents often end up supporting this
implicit trust. One party provides a location-based service, and another party makes use
of it for its individual benefit, by providing an allegedly non-tampered time-conscious
piece of location claim. This interaction appears to be one of a cooperative strategy,
that can be observed in most mapping platforms, navigation systems, or mobility and
ride-hailing apps. If driven by the reasoning goal of extracting correct information from
the interacting system, users are logically motivated to calibrate their devices and report
an accurate location. The services, with the higher goal of not losing users, due to
malfunctioning or inaccuracy, are thus motivated to provide maximized quality when
consuming the location data.

This paradigm is now ubiquitous, but it may be structurally unsuitable for other
scenarios. Our work stresses those situations that, therefore and inversely, fundamentally
require verifiable Proof-of-Location to assert a particular state or derive a conclusion.
The trust levels required, in these scenarios, to testify to one’s location claims ought
as well to be crucially measurable. The concept of location-based authentication or
authorization in adversarial environments that rely on information gathered in a trustless
setup eventually materializes into services requiring, for instance, a digital certificate
as proof that a given user is within a particular geographical area, to enable certain
functionalities or assert liability. Applications of such services include customer reward
systems for physical stores, location-authenticated business review platforms, location-
restricted web content delivery, or voter’s physical presence attestation. The present
surge of highly realistic generative AI tools has also made the case for the need to certify
the physical originality of digital content, by photographers, reporters, and other content
creators. Another use case is the verification of the provision of services, such as the
delivery or supply of goods, by third-party providers. Security against geo-tampering or

6

location spoofing in a relatively trustless environment is needed to achieve high levels
of integrity. In consequence, enforcing and contributing to tamper-proof, correct, and
censorship resistant location information, in today’s chaotically data driven world, may
preemptively demand for novel efforts.

The basic infrastructural concept of a Proof-of-Location system is somewhat under-
stood, and theoretical or experimental solutions have been delivered throughout the years.
These solutions have evolved parallel with their trust assumptions, beginning with a fully
trusted setup and progressively shifting towards modern requirements for operational
decentralization, with an inevitable distribution of resources, power, and profit. Recent
attempts contemplate the need for a permissionless means of reaching consensus between
a quorum of witnesses, which can attest to one’s presence at a given point in space and at
a given moment in time. These concepts take shape with a combination of tools: wireless
technologies as short-ranged message-exchanging means, cryptographic protocols as
confidentiality, integrity, or authentication enablers, and distributed ledgers as publicly
trusted record keepers. The quest for a solution that could make this kind of location-
based services as prevalent and ubiquitous shall aim to address a set of design challenges.
These challenges are, among others, the solution’s flexibility and deployability, preferably
by making use of existing infrastructure, and the solution’s security and privacy, obeying
the modern cryptographic standards and requirements, to guarantee envisioned levels of
integrity and resiliency to attacks. This thesis, aiming to address these matters, delivers
the following contributions:

1. It provides an overview of the Proof-of-Location systems’ paradigm, including
the underlying premises and the strategic interactions between rational agents,
along with a review of the state of the art in the field. The review is categorized
in terms of trust levels, from fully trusted to permissionless environments, and,
consequently, in terms of infrastructure, from centralized to decentralized systems.

2. It also attempts at the design of a novel Proof-of-Location protocol and the imple-
mentation of a proof-of-concept that can be deployed in a permissionless manner,
using existing technology. The work is specifically based on permissionless con-
sensus mechanisms and the use of routing protocols, for mobile ad hoc mesh
networks. The goal is to set up a mesh network of witnesses that can collectively
agree to assert one’s presence in a given geographical area.

The structure of the work is as follows. In Chapter 2, an introduction to the underlying
concepts, hypotheses, and applications is provided, together with an outline of the
technology involved in the practical implementation. Chapter 3 examines similar work,
classified according to different trust levels. In Chapter 4, a general overview of the
requirements for the proposed solution is given. Chapter 5 details the architecture’s
design, implementation, and evaluation. Finally, Chapter 6 presents the conclusion and
recommendations for future work.

7

2 Background
This chapter introduces not only the underlying concepts that sustain the work, but
also the technology involved in implementing the proposed practical solution. First,
in Section 2.1, we state and define the Proof-of-Location problem, its participants, the
most common threat models, and a non-exhaustive list of some application scenarios.
Section 2.2 reviews the concept of Mesh Networks and related routing protocols for
establishing nearby witnessing. Lastly, Section 2.3 introduces the permissionless con-
sensus problem and its role in achieving agreement for obtaining a location proof in a
trustless environment.

2.1 Proof-of-Location
The problem of attesting to one’s location is a fundamental act of metaphysical reasoning
that happens everywhere, at every moment. Unconsciously and unwittingly, we do claim
to be somewhere at an indiscriminate point in time, and we do expect others to believe in
us. However, this act is grounded on informal and implicit levels of trust that are not often
explicitly asserted, as liability is usually not categorically assigned. When it does happen,
trust is usually delegated to a third party or distributed between multiple parties that may
be able to testify to one’s presence, synchronously, at the very same location. The act of
witnessing is, therefore, a regular yet fundamental part of our interactions with physical
reality. Additionally, when we do claim our presence at an event, assert our location to a
service provider, or even state our alibi to authorities, as defence in a criminal charge,
a protocol for location attestation is implicitly followed. Some may require a physical
interaction of any kind, while others may find digitalized and infrastructural means to
gather the required location proof [1], both ways relying on any sort of witnessing deed.

A digital Proof-of-Location can then be defined as an electronic certificate that attests
one’s relative position in both space and time [2]. The relativity of the attestation is,
nevertheless, a non-trivial matter. It is, in fact, a complex and multi-faceted process
that requires the simultaneous existence of various untrusted or semi-trusted parties,
especially in an environment with no individual honesty guarantees. According to
Nasrulin et al. [3], a Proof-of-Location protocol may be considered secure if complete,
spatio-temporally sound, and non-transferable. Consequently, the system that materially
backs the implementation of such a protocol is expected to provide fault-tolerance,
reliability, and availability guarantees. More advanced protocols may also explore the
possibility of providing privacy and anonymity assurances [4], as well as the possibility
of being used in a fully trustless environment [2]. Chapter 3 will later and deeply explore
the particularities of some of these solutions. Following is the conceptualization of the
common entities of a Proof-of-Location protocol plus an attempt of a formal and general
definition of the problem.

8

2.1.1 Parties Involved

The general act of witnessing alludes to the simultaneous spatio-temporal existence of a
set of entities with distinct roles. The majority of the protocols convey a clear contrast
between these roles, highlighting the relative dynamism that differentiates those entities.

Concisely and in concrete terms, these location-proof arrangements expect the exis-
tence of a prover that engages in any communication protocol with nearby participants,
the witnesses, with the goal of gathering a verifiable Proof-of-Location claim, to be later
presented to a verifier, therefore convincing it of one’s existence within a geographical
area, at a given moment [5] (see Figure 1).

Witness A

Witness B

Witness C

Prover

Verifier

Decentralized 
Proof-of-Location

Witness

Prover

Verifier

Centralized 
Proof-of-Location

short-range, synchronous  
communication

long-range, asynchronous

communication

Figure 1. The entities involved in a Proof-of-Location protocol. The left side of the
figure represents the typical arrangements of a centralized protocol, where the witness
and the verifier may establish some bond between each other. The right side shows the
configuration of a decentralized and trustless solution, where a quorum of witnesses
attests the prover’s location.

Prover. A prover is a dynamic entity, both in movement and availability terms. It is
expected to be able to communicate with the witnesses, to gather a proof of its location,
and to be later able to provide a location claim to the verifier. Communication with
nearby witnesses is thought to happen via any short-ranged message transmission means.

9

Provers are also expected to be associated with a verifiable but desirably private identity,
often as a pseudonym.

Witness. A witness is an entity that is expected to be able to communicate with
the prover via the same short-ranged communication channel and to provide it with
a verifiable piece of location attestation. These parties are envisioned to statically or
dynamically exist around the prover’s location, during the protocol process, and to
maintain, in the most recent decentralized protocols, a relatively stable neighbouring list
of nearby peers. Witnesses are also expected to be fictitiously identified, usually by a
pseudonym.

Verifier. A verifier is an external entity that is able to receive a location claim from
a prover and verify its validity. Although possible and predicted for trusted setups, in
a trustless environment and with the general assurances of a permissionless protocol,
verifiers shall not have the need to communicate directly with the witnesses. The verifiers’
identities are also of no specific importance for the protocol, since the interaction with
the prover is usually asynchronous and external to the witnessing process.

Inspired by [3, 5], we now introduce a substantially formal but general definition of
the Proof-of-Location problem, along with some of its desirable properties:

Definition 1 (Proof-of-Location). A Proof-of-Location is a verifiable digital certificate
that attests the presence of a prover ρ at location l and time t.

Definition 2 (Completeness). A Proof-of-Location is complete if the prover ρ is
attested at location l and time t, by a set of witnesses ω ∈ W .

Definition 3 (Spatio-temporal Soundness). A Proof-of-Location is spatio-temporally
sound if it is generally hard for the prover ρ to obtain, forge, or modify a complete
Proof-of-Location, if not physically present at location l and time t.

Definition 4 (Non-transferability). A Proof-of-Location is non-transferable if valid
only for the prover ρ that obtained it.

Definition 5 (Correctness). A complete Proof-of-Location, generated by an honest
prover ρ, in cooperation with honest witnesses ω ∈ W , must always be accepted by an
honest verifier ν.

10

Additional properties may be protocol specific, but the above definitions are generally
considered to be the most common and desirable properties of a Proof-of-Location
protocol. Further formalizations can be found in the works dissected in Chapter 3.

2.1.2 Common Threat Models

Like with any technology that involves the collection and processing of sensitive and
tamper-prone location data, Proof-of-Location systems must be designed and imple-
mented with a keen awareness of the threat landscape. The threat models of these systems
are very often intricately multisided, encompassing a diverse range of actors, motives,
and attack vectors. In this context, it is crucial to understand not only the technical
mechanisms of Proof-of-Location systems, but also the broader factors that shape their
security and privacy risks.

Some common scenarios that may affect the security of Proof-of-Location systems
are, for instance, malicious provers that may attempt to forge location claims, or witnesses
that may attempt to collude with other entities to falsify the information. Adversary
efforts may also be observed in the form of baleful provers, or witnesses, that may
try to respectively impersonate other peers. Sybil attacks, which involve flooding the
system with fake participants, are too on the horizon of possible threats, often employed
to disrupt the operation of the protocols [3]. Other works have also considered semi-
honest adversaries that, despite following the protocol rules, may try to learn additional
information from the messages exchanged [5]. These and other attack vectors are further
dissected in Chapter 3, with reference to the multiple solutions that attempt at being
shielded from these malicious situations.

2.1.3 Application Scenarios

The concept of verifiable and digital Proof-of-Location has a wide range of applica-
tions, as deconstructed by Sariou and Alec, in [6]. For instance, in customer reward
systems, Proof-of-Location can be used to provide incentives to customers who visit
physical stores, offering rewards and loyalty programs to verified visitors. In location-
authenticated business review systems, Proof-of-Location can be used to verify the
authenticity of customer reviews. By requiring customers to verify their physical pres-
ence at the business location, businesses can prevent fake reviews and ensure that only
genuine customer feedback is posted. In location-restricted web content delivery, Proof-
of-Location can be used to limit access to online content based on the user’s physical
location. For example, a video streaming service may use verifiable Proof-of-Location
to prevent users from accessing content outside legally allowed regions or countries. In
voter’s physical presence verification, a Proof-of-Location protocol can be set to prevent
voter fraud, by verifying that voters are physically present at the polling stations. Remote
working and residency verification, for tax purposes, fit too in the realm of possible

11

applications. Pournaras [7] goes beyond these specific cases and theorizes about an
augmented democracy approach to smart city development. In the author’s hypothesis,
Proof-of-Location is used to create a transparent and participatory decision-making pro-
cess by enabling citizens to verify their physical presence at public meetings and events.
Proof-of-Location may also play a role in the smart mobility infrastructure, helping in
verifying and optimizing the use and cost of public transportation.

Tailored to the reality that wraps the writing of this thesis, this problem becomes in-
creasingly relevant with the advent of Artificial Intelligence (AI) tools, capable of forging
highly realistic content at unprecedented scales. To combat such surge, photographers
and reporters may make use of Proof-of-Location to certify the physical originality of
their photos and videos, while journalists may use it to verify the authenticity of their
sources. Another use case is the verification of the provision of services, such as the
delivery or supply of goods, by third-party providers. For instance, an Internet Service
Provider (ISP) may use Proof-of-Location to attest the physical deployment and provision
of connectivity to a group of customers in a particular area. This can be extended to
attest, as well, the quality of the service and to prevent the ISP from charging for services
that are not provided, increasing overall trust and transparency. For the first use case,
let’s imagine a reporter who arrives at an accident site, in a busy city centre. The reporter
takes out his camera and captures photos and videos of the crash. As he records, several
bystanders notice and approach him. Since they all simultaneously witness the reporter’s
presence at the accident site, they are able to attest his physical presence at the location
and time of the event, certifying the authenticity of the content that would feature later in
the news. In the second use case, a group of customers has been waiting for their ISP
to provide connectivity to their neighbourhood. The regulators demanded proof of the
ISP’s service provision, after it claimed to have provided the necessary infrastructure.
To generate such proof, customers are asked to coordinate their efforts and attest the
service in their neighbourhood. They all synchronously connect their devices to the
infrastructure and attest the ISP’s connectivity, proving it met the expected standards.
They all proceed to sign the attestation and submit the proof to the regulatory authorities.
These two examples are depicted in Figure 2 and will feature in the following chapters,
bridging the specification of the Proof-of-Location protocol with real world use cases.

Targeting different trust levels, additional application scenarios can be derived from
the above, while many others are yet to be discovered. Given all this, digital and
verifiable Proof-of-Location has a wide range of applications that may disruptively
benefit individuals, businesses, and the society as a whole. Chapter 3, afterwards,
gives a more nuanced overview of both the evolution of the protocols and specific use
cases that these multiple solutions aim at covering. The next section will introduce the
technologies that are set to enable short-range communication between the entities of a
Proof-of-Location protocol.

12

Onlooker B

Onlooker C

Reporter

Journalist

Onlooker A

Customer B

Customer C

ISP

Regulator

Customer A

Figure 2. Examples of Proof-of-Location applications.

2.2 Mesh Networks
The envisioned fourth industrial revolution has set the track for modern advancements in
achieving a global web of pervasive connectivity between all sorts of machines [8, 9].
New means of radio and wireless communication have been pushing for the technological
heterogeneity of protocols, architectures, devices, and consequent performance levels, in
order to find their design suitability for different coverage or range scenarios, transmission
or bandwidth rates [10]. Additionally, requirements for more complex, adaptable, and
resilient topologies have captured broad interest, in both academic and industry domains.

The development of new hardware, protocols, and applications started gaining mo-
mentum and branched their way forward to support the popularisation of Wireless Mesh
Networks (WMNs). In mesh topologies (see Figure 3), network nodes are directly and
dynamically connected in a non-hierarchical way. This trait eventually allows for many-
to-many communications between the devices, to efficiently route data from a generic
source to a generic destination. The infrastructure nodes that make up the mesh are
expected to dynamically self-organize and configure themselves, resulting in beneficial
distributed effects on the overall fault tolerance, ease of deployment, and workload
allocation [9, 10]. WMNs follow these principles with the particularity of being made up
of radio nodes that communicate via any sort of wireless means.

Some of the most common technologies that have been, throughout the years, ported
to WMNs are Bluetooth, LoRa and IEEE 802.11. The first two are prominent solutions
for the extremities of the mesh networking spectrum, with Bluetooth under the short-
range realm of Personal Area Networks (PANs), and LoRa under the Low Power, Wide
Area (LPWA) scenario. Downsides of these technologies are, respectively, the limiting
coverage range for one-hop neighborhoods, or the low bandwidth rates [9]. Hence,
IEEE 802.11 became the most flexible and widely used technology, being the basis of

13

Partially Connected
Mesh Topology

Fully Connected
Mesh Topology

Centralized
Star Topology

Figure 3. Examples of different topologies of a computer network. Starting on the left,
the star topology shows all the nodes connected to a central hub. To the right, examples
of mesh topologies depict the direct and decentralized connections between the nodes.

the Wi-Fi standard, which, at the beginning of the last decade, saw an amendment that
mainly targeted mesh networks — the IEEE 802.11s WLAN Mesh Standard [11]. The
novelty came with the introduction of routing mechanisms operating at the ISO/OSI
Layer 2, allowing for compatible information delivery in the layers above. The dynamic
establishment of a topology for IEEE 802.11s-based mesh networks relies on the phased
transmission of beacon messages that allow for the discovery, synchronization, and
maintenance of the links between the peers. IEEE 802.11s has a default routing protocol,
the Hybrid Wireless Mesh Protocol (HWMP), which is based on a series of flooding
procedures for both proactive and reactive path finding and selection [12]. However,
this protocol is not strictly enforced by the standard and has been replaced by other
more popular solutions. One notable example is the Better Approach To Mobile Ad-hoc
Networks (B.A.T.M.A.N.) routing protocol.

This thesis will explore the concept of mesh networks and their potential for serving as
the infrastructural topology that enables the relatively short-ranged exchange of messages
between the participants of a Proof-of-Location protocol. The following sections will
present the B.A.T.M.A.N. routing protocol, OpenWrt, and other relevant tools that will
be later used to implement the proof-of-concept.

2.2.1 B.A.T.M.A.N. Routing Protocol

The Better Approach To Mobile Ad-hoc Networks (B.A.T.M.A.N.)1 is a proactive routing
protocol for WMNs, operating at the data link layer instead of the network layer, asserting
the reliability of radio links using routing metrics and a distance-vector approach [13].
Its newer version, batman-adv, has gained traction and popularity and eventually made
itself available in the Linux kernel.

Route discovery is preemptively replaced with neighbour discovery, and each infra-

1http://www.open-mesh.org/

14

http://www.open-mesh.org/

structural node is instructed to calculate its potential best next-hop, significantly reducing
the overhead of requiring each peer to be aware of the whole network topology. Its ver-
sion V introduced a throughput metric to evaluate the links’ quality and routing choices,
replacing version IV packet-loss metric, deemed unsuitable for larger network sizes [13].

Packet Type Version TTL Flags

Sequence number

Originator address

(cont'd) Originator address TVLV length

Throughput

TVLV data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 4. OriGinator Message version 2 (OGMv2) packet format [9,14]. These messages
are broadcasted with a collision avoidance delay mechanism defaulting to 1 second. The
packets contain, among other fields, the originator’s MAC address and throughput metric
values, measured in units of 100 kbit/s.

The discovery of neighbouring nodes is accomplished with the capture of broadcasted
OriGinator Messages (OGMv2, see Figure 4), that feature a collision avoidance delay
mechanism, the detection of new or duplicate messages, and other fields for throughput
measurement and gateway discovery. The Echo Location Protocol (ELP) handles the
received messages and ranks the discovered neighbours. The OGM flooding protocol, on
the other hand, enables mesh routing procedures that, simultaneously but independently,
allow for estimating the quality of the individual links [9]. Additionally, the protocol
facilitates OGM aggregations as an effort to reduce the overhead of sending many short-
sized frames. Nevertheless, there is still a quest for optimizations that would allow for
more efficient use of multiple interfaces. An implementation of a subset of the Internet
Control Message Protocol (ICMP) is also made available, allowing, for instance, the use
of the ping command to test the connectivity between nodes [13].

Building on the previous, the B.A.T.M.A.N. routing protocol has been, through
multiple initiatives, successfully blended into the OpenWrt project, which will also be
employed in the proof-of-concept. The following section will present OpenWrt and other
relatable tools.

15

2.2.2 OpenWrt, QEMU, and Raspberry Pis

The OpenWrt project2 is a Linux distribution for embedded devices, which, in the context
of this thesis, will serve as the host operating system for running the proof-of-concept
solution. The project is based on the Linux kernel, encapsulating several of its libraries
and packages, and is designed to be used on resource-constrained devices. OpenWrt
features not only a writable root filesystem and automated build tools with integrated
cross-compiler toolchain, but also a package management system that allows for the
installation of additional software. The project also provides extensive configuration
options for networking capabilities, which includes enabling mesh networking support
through the B.A.T.M.A.N. routing protocol.

To facilitate the development and testing of the proof-of-concept, the QEMU3 emula-
tor will be used. QEMU is a generic and open-source machine virtualizer that, through
its versatile set of features, allows for the full-system emulation of a wide range of
hardware and software. The emulator will run the OpenWrt generated images and spawn
multiple virtual machines. These machines will simulate the various protocol participants
by establishing, with the help of the network emulation tools, a fully connected mesh
network. The intention is to ease and accelerate the development process by allowing
for testing the proof-of-concept in a controlled environment, without the management,
maintenance, and deployment hustle of physical devices. Later, the solution is planned to
be deployed on a set of Raspberry Pis4, the most widely used single-board computers for
developing IoT solutions. The implementation journey will be documented in Chapter 5.

2.3 Permissionless Consensus
Long has been the time when consensus was still on the verge of being considered
such a fundamental problem of distributed systems. Generally defined by Lamport
et al. [15, 16], consensus means reaching an agreement between multiple parties in
the potential presence of faulty individuals. As per multi-agent systems, interacting
over computer networks, consensus is thought to be the result of a coordination effort,
that eventually leads the parties to agree on some value at a given moment. However,
the evolution of the consensus problem has been invariably limited by a set of strong
assumptions. The well-known Byzantine-Fault-Tolerant multiparty consensus systems,
that have been designed over the years, are usually meant to work only with a set of
known participants, being them faulty or not [17].

The other side of the coin is the permissionless consensus challenge, consisting of
achieving agreement in an environment where the parties are unknown and untrusted
[18,19]. The relative openness and lack of any kind of central authority are other intrinsic

2https://openwrt.org/
3https://www.qemu.org/
4https://www.raspberrypi.org/

16

https://openwrt.org/
https://www.qemu.org/
https://www.raspberrypi.org/

particularities of this type of networks, which inevitably adds complexity to the problem.
The participants are not only unknown and untrusted but can also join or leave the
network at any time, freely choosing if they care to participate in the consensus protocol.
Nevertheless, the problem of permissionless consensus is still seen as a special case of
the general consensus definition, but under more meticulous trust assumptions.

Further in this thesis, we will evaluate the different high-level Proof-of-Location
protocols and draw a parallel between the evolution of their trust levels and the ultimate
need for a low-level permissionless consensus algorithm that allows for establishing
decentralized and time-conscious agreement, in an eventual trustless setup, between the
multiple witnesses. The next subsections will briefly review some of the most relevant
aspects and proof units that give practicality to the roots of the permissionless consensus
problem.

2.3.1 Proof-of-X

The solution is, nonetheless, unsettled and the scientific community has been reasoning
about the need for permissionless consensus when there are already well known and
established consensus protocols that work in trusted environments [17, 20]. However,
even those protocols have their own limitations, not only in terms of trust, fault-tolerance,
centrality, permissions, or bottlenecks, but also in terms of scalability [20], despite assur-
ing deterministic finality [21]. The need for permissionless consensus is then justified
by the fact that permissioned protocols are not compatible with the requirements of the
new generation of distributed systems, especially in the context of Blockchain networks.
These requirements include dealing with today’s sparse networks of anonymously and
dynamically participating devices, without interrupting consensus and while battling the
disruption of the system, typically by subverting it with many pseudo-entities — the
so-called Sybil attacks [22, 23]. Fundamentally, the permissionless consensus problem
is the need for a consensus protocol that can be run in a distributed and decentralized
environment, where the participants are unknown and untrusted, and where the network
is bigger, sparser and unpredictably less reliable.

Technically, permissionless environments allow for larger networks that depict lower
connectivity between the participants. Operationally, everything is expected to happen
in an asynchronous or partially synchronous fashion, and the number of transactions is
predicted to be smaller than in the permissioned counterparts. Participation is free, and
the governance is not centralized, but rather distributed and public. The identity of the
participants is secured or semi-secured as it often relies on pseudonymity for protecting
the nodes’ identity, enabling, at the same time, full transparency concerning the rest
of the network’s content and operation [24]. Expectedly, the goal of permissionless
consensus, as for any consensus protocol, is to reach agreement on a single value, or
a set of values. However, due to the nature of the protocols, the values that are agreed
upon end up establishing the serialization of the transactions, and so establishing time

17

consciousness and total order of the events [22].
Also described by Xiao et al. [23], very concisely, the way to achieve an operating

protocol, as seen in the mainstream blockchain networks, is by first generating the agree-
able value, in this particular case, a block and its proof. Next is the phase of proposing
and disseminating the information to the network, followed by the eventual validation and
acceptance of the block by the majority of the nodes. This is the approximate moment
of probabilistic finality, when consensus is ultimately reached (see Figure 5). During
the whole process, a fair and somewhat predictable incentive mechanism is also needed,
that rewards participants for their honest effort in reaching consensus, and punishes the
ones that are not behaving correctly. These incentives are of major importance in this
very context of permissionless consensus, and all these building phases form the basis
of the inner functioning of Bitcoin itself [18], replicated with some variations in other
networks [19, 23]. The following section is a short introduction to some relevant proof
units that feature in the most popular blockchain systems.

tt0

B0 B1 B2

t1 t2

Block generation & proposal Block validation

Figure 5. An illustration of the permissionless consensus building phases. From the
bottom to the top, the asymmetric arrow of time discretizes the block generation and
proposal phases, followed by the block validation, along with frequent network topology
changes and the consequent time conscious serialization of the blocks.

2.3.2 Proof-of-Work and Proof-of-Stake

Without discrediting the previous attempts, the first practical permissionless consensus
algorithm was proposed by Nakamoto in [18]. It is a Proof-of-Work consensus protocol
that resembles a replicated state machine where the independent participants reach

18

agreement not only about transactional values, but also about their order — naturally
forming the underlying structure of what is now known as a blockchain. The focus shifted
for decentralized systems and after Proof-of-Work many other consensus mechanisms
have been proposed, relying on different consensus units.

In the classical Nakamoto consensus protocol, the generation of a block, to be
proposed for further network agreement, complies with the unit of computational work
needed to create, or rather find, a verifiable proof of the effort spent on assembling the
block [18]. This essentially requires brute forcing the search for a cryptographic hash
value for the aggregation of the block information with a nonce. This value has to satisfy
a difficulty threshold (see Procedure 1), which gets adjusted dynamically over time, to
maintain the network overall requirement for the block generation interval [22, 23].

Procedure 1: BlockGeneration
Input: Transaction Merkel Tree Root, Hash of the last Block, Timestamp, Other.
Result: new Block.

1 BlockHeader ← Transaction Merkle Tree Root
2 | Hash of the last Block
3 | Timestamp
4 | Other;

// the preceding zero bits in target depict the mining difficulty
5 while Hash(BlockHeader | nonce) ≥ target do
6 Increment nonce;

// append transactional data
7 return new Block;

One can then exercise the reasoning line and extrapolate the previous block generation
mechanism to a Proof-of-Something pseudo-random competition in which an entity in
possession of a higher amount of a certain resource, either computational power, or
stake, or certain currency, or, for instance, a higher amount of storage space, guarantees
a higher probability of leading the block generation and proposal, consequently winning
the acceptance by the majority. This is the essence of Proof-of-Stake, as a derivative
of the Proof-of-Work mechanism. Here, stake is a traceable and verifiable amount
of a certain unit, token or currency, that is owned by a certain entity who wishes to
participate in the consensus protocol. The stake works as a form of collateral that is used
to guarantee everyone’s honesty, in an attempt to reduce the Sybil attack likelihood. And,
respectively as in Proof-of-Work with computational power, the higher the stake, the
higher the probability of leading the block generation and proposal.

Idealized and inspired by Proof-of-Stake, extending or adapting Proof-of-Work
became a popular trend in the blockchain community. The main idea is to replace the

19

computational power with some other resource, that is more scarce, or more valuable,
or more verifiable, or more traceable, to combine multiple resources, or even to add
extra requirements to pure Proof-of-Work [23]. Not that every one of the options has
a considerable potential for entirely solving the permissionless consensus problem, but
each one of them may tackle different use cases where consensus needs to be reached,
and where different resources are available to make the agreement happen [25, 26].
Nonetheless, the design of these consensus mechanisms shall aim for a protocolar choice
between a set of properties that form a trilemma: security, scalability, and decentralization.
Briefly put, relaxing the security requirements may allow for more scalability, both of
which, consequently, have hands tied with decentralization. These trade-offs are of
practical consideration when defining the network goals and use cases [23]. Further
dissection of various classes of Proof-of-Stake based protocols, diverging alternatives
to the classic Nakamoto consensus, and comparisons between them can be found in
[22, 23, 25–27].

With all the above in mind, we will proceed to review some of the proposed Proof-of-
Location solutions, discriminated by trust levels. Aiming at achieving spatio-temporal
agreement among the witnesses, we will reason about the applicability of one of these
permissionless consensus protocols, in the context of a fully decentralized and trustless
environment.

20

3 Related Work
This chapter presents a description of the current state of the Proof-of-Location problem,
spanning the spectrum of its trust levels, from fully trusted to permissionless environ-
ments. Furthermore, it encompasses an assessment of the typical infrastructural scenarios,
detailing the progressive shift from centralized to decentralized systems. The organi-
zation of the chapter is as follows. Section 3.1 outlines the starting point in a trusted
and centralized setting. Section 3.2 details the progressive shift towards distributed and
decentralized protocols. Finally, Section 3.3 presents the most recent developments in
the Proof-of-Location problem, which ultimately target permissionless and fully trustless
setups.

3.1 Trusted and Centralized Architectures
The establishment of not just the concept, but also the need for a new kind of systems
that, in simple terms, would allow for attesting and prove some device’s location, dates
back to the early beginnings of this century.

Waters and Felten, in [28], attempt at pioneering the design of a location-proving
system by proximity that simultaneously ensures integrity and privacy. The system
model assumes a fully trusted setup, fundamentally composed by two entities, a verifier
and a device. The latter is implicitly thought to be managed by an untrusted user, but
hypothesised and expected to be tamper-resistant, and thus, trusted by the verifier. The
motivation behind this scenario is oriented towards practical situations in which, for
instance, trusted parties lend their equipment to users and want to verify, or monitor,
the equipment’s location, such that it remains inside some pre-established location
boundaries. The authors explicitly mention the lending of computers by universities and
the wish that those devices do not leave the campuses. Home arrest monitoring systems
have, as well, the need for ensuring that the ankle device, and so the person in charge,
does not escape a certain location.

Faced with the design and coverage unadaptability of GPS-based location systems,
which do not structurally aim at serving as Proof-of-Location enablers, the authors
identify the need for small wireless networks, covering a relatively short-ranged area,
via a location manager that acts as an access point. Figure 6 illustrates the multiple
entities of the protocol. The device is set to accept input from an untrusted source, the
user, containing the identity of a nearby location manager. After receiving this input,
the device will try to prove it is physically close to the designated location manager.
Aiming at a more secure and precise positioning system, the device may conduct three
simultaneous proofs of proximity with three location managers, to determine its relative
location. These location managers are either distinctively trusted, or set up by the
verifier [28]. Round-trip and signal propagation latency are the metrics used, respectively,
for determining the proximity of the device to the location manager and for protecting

21

DeviceUser

Verifier

Location 
Manager

Location 
Manager A

Location 
Manager B

Location 
Manager C

Device

short-range, synchronous  
communication

long-range, asynchronous

communication

Figure 6. Waters and Felten’s trusted and centralized Proof-of-Location system [28].

against proxy attacks — when a proxy device is placed near the location manager and
serves as signal repeater for the original device that is somewhere else, outside the
coverage area. The work targets Wireless LAN network operators and their existing
access points’ infrastructure to serve as location managers. A Public Key Infrastructure
(PKI) is also proposed in order to delegate the atomic responsibility of authenticating
and managing their identities to a trusted third party. Finally, the authors set down the
seeds for extending their proximity proof system to a secure and moderately accurate
positioning proof mechanism, with the possibility of using multiple location managers
and a triangulation algorithm.

Waters and Felten’s work pioneered the development of Proof-of-Location systems,
marking the first steps towards more comprehensive definitions of location proofs. Sariou
and Alec, in [6], concisely introduce the primitive concepts around Proof-of-Location and
some desired properties of an inherently secure system. However, the key contribution
of their work was the delineation of a set of example applications that would benefit
from Proof-of-Location protocols. These include, but are not limited to, customer reward
systems for physical stores, location-authenticated business review systems, location-
restricted web content delivery, voter’s physical presence verification, among many
others. For a more thorough depiction of such application scenarios, see Section 2.1.3.

Further protocols took inspiration from this groundwork and started shaping the land-
scape. Graham and Gray, in [29], propose a Proof-of-Location scheme called SLVPGP
that removes the need for the location manager to be trusted by the central verifier,
delegating the trust to tamper-resistant modules. VeriPlace, by Luo and Hengartner [1],

22

is a complex and expensive privacy-aware location proof architecture that distributes
responsibility among three types of trusted entities, taking the first step at avoiding
dedicated tamper-resistant hardware. It specifically targeted the integration with Yelp5, a
public crowd-sourced reviews system for businesses. Another piece worth mentioning is
from Javali et al. [30], still in a centralized and trusted stand, that adds robustness to the
previous protocols by simplifying, in theoretical and practical terms, with trusted and
existing Wi-Fi infrastructure, the Proof-of-Location generation process. Finally, the work
of Akand et al. [31] is a more recent solidification attempt in the design of centralized but
provably secure Proof-of-Location systems that protect against geo-tampering attacks.

The next section will report the emergence of the first relatively distributed Proof-
of-Location protocols, taking a step further in the direction of fully decentralized and
trustless systems.

3.2 Progressively Distributed and Decentralized Protocols
VeriPlace had already profiled and templated an inherently distributed architecture with
built-in privacy awareness, taking a first infrastructural step towards defending against
proxy attacks, without the need for trusted hardware [1]. The whole setup is especially
tangled and consequently resourceful for the levels of trust it assumes, but it definitely
settled the ground for the next generation of Proof-of-Location schemes.

Prover 
Mobile Device

Witness A 
Mobile Device

Witness B 
Mobile Device

Witness C 
Mobile Device

short-range, synchronous  
communication

long-range, asynchronous

communication

Verifier

Location Proof

Server

Figure 7. The main arrangements of the APPLAUS protocol, by Zhu and Cao [32].

5https://www.yelp.com

23

https://www.yelp.com

The following evolutionary stage of these protocols aims at flexing and distributing
trust, resources, power, and responsibility, with the hope of achieving more resilient,
fault-tolerant, and scalable systems. APPLAUS, by Zhu and Cao [32], delivers one of the
first distributed protocols that combines the location proof and location privacy problems.
It uses Bluetooth enabled mobile devices that communicate with nearby participants,
during the proof generation process. The protocol asserts certain bond levels between
the prover, verifier, and witnesses, all of them known to a trusted Certificate Authority
(CA), disregarding, on the other hand, the need for a fully trusted location proof server
to store the historic location records. In Figure 7, the essential configuration of the
protocol is displayed, envisioning the prover to communicate individually, via Bluetooth,
with nearby witnesses. Each witness should agree on providing a location proof, upon
the prover’s request, to be submitted later to an untrusted location proof server. This
server will store the location proof historic records, to be queried by the verifier, in order
to assert a prover’s location within a specific time period. The prover, witnesses, and
verifier are all assumed to be trusted by each other, leaving out the location server. The
claim is that, by statistically changing the pseudonyms for each device and by following
a user-centric privacy model, the protocol can effectively generate privacy preserving
location proofs and store them in a trustless manner. STAMP [33] and PROPS [34] are
two contemporaneous works that take the same witnessing approach as APPLAUS, but
follow the path of convincing the verifier by presenting several shares of a composite
location proof, based on group signatures. Both of them try to more profoundly tackle
the prover’s and witnesses’ privacy concerns, but may admittedly fail at preventing
collusion scenarios between them. Gambs et al. argue that the reliance on a trusted
third party may be an unavoidable requirement, even if against the authors’ principles of
location sovereignty, especially when one wants to entirely prevent unbounded collusion
attacks [34]. SPARSE, by Nosouhi et al. [35], avoids the typical distance-bounding
mechanism and the witness picking process by the prover, as done in the previous works,
with the goal of protecting against those collusion attempts, at best, in relatively crowded
and decentralized witnessing situations.

At this point, all these schemes have assumed the common goal of protecting the
identity of the parties involved in the proof generation process, but they have not yet
tackled the additional problem of keeping the location information proportionally private
from whoever needs to verify it. Dupin et al. [5] theoretically propose a Secure Multi-
Party Computation (SMPC) based protocol that is provably resilient against any semi-
honest participant. Their solution could still benefit from the classical distance-bounding
mechanisms [5], but it is highly resourceful and practically infeasible, since it relies on
expensive and complex cryptographic primitives and assumes directional antennas [36].

The high-level goal to dissociate these Proof-of-Location protocols from any form of
trusted central authority, encompassing identity and information management, remained
a prominent consideration. This goal has met, along the way, Blockchain technology.

24

The next section will present the most recent developments in achieving decentralized,
trustless, and infrastructure-independent Proof-of-Location schemes.

3.3 Fully Trustless Environments
Inspired by the solution proposed by Zhu and Cao [32], Amoretti et al. [2] dive into
the definition of a novel decentralized and infrastructure-independent approach that
allies together short-ranged communication technology and Blockchain-based storage
and information verification. The authors propose the establishment of a distributed
overlay network of linked nodes that, at the same time, wirelessly provide or request
location proofs from nearby nodes, and verify or store propagated proofs, via any
typical lower-level blockchain protocolar agreement, achieving, thus, permissionless
consensus. Their solution is claimed to be one of the very first at protecting against
the main location-based-systems’ attacks, with the help of a fully decentralized and
blockchain inspired peer-to-peer scheme, assuring both integrity and user privacy. Real-
world performance evaluation and the possibility for integrating higher-level incentive
mechanisms were set as future work prospects. Both Amoretti et al. [2] and Nasrulin et
al. [3] contemporaneous works illustrate practical constructs that take advantage of the
tamper and censorship resistant nature of blockchain technology. The latter tries as well
to formalize the main security and spatio-temporal requirements that such a decentralized
Proof-of-Location protocol shall present, as seen in Section 2.1, ending up implementing
a proof-of-concept, based on a permissioned blockchain framework, to specifically solve
the challenges related to supply chain tracking.

Further efforts that build upon the above-mentioned solutions are the ones proposed
by Wu et al. [37] and Nosouhi et al. [38]. The first follows the path of Amoretti et al. [2]
and tries to enable, on top of it, user-defined hierarchical privacy protection, with the help
of Zero-Knowledge proofs. The proposed protocol finds a bridge between the typical
Proof-of-Location set of entities and the usual Zero-Knowledge proof participants. The
suggested Zero-Knowledge Proof-of-Location (zk-PoL) protocol aims at allowing the
prover to convince the verifier that one was at a specific location, at a certain point in
time, but with a granular privacy preserving disclosure of the location proof details.
The obvious motivation of the mechanism is to solve spam, traceability, and privacy
concerns of publicly storing raw location information, especially within decentralized
and public ledgers. Therefore, the scheme is, to a great degree, centred in the privacy
assurances and not in the infrastructural aspects of the potential decentralization that
it is built upon. Nevertheless, it sets a promising starting point for the introduction of
privacy preserving technology in the realms of trustless Proof-of-Location protocols.
Optimizations and faster proof mechanisms are kept in the outlook and waiting to be
explored. Nosouhi et al. [38] stress out a different proximity checking mechanism, to
protect against the still unsolved prover and witnesses collusions, while committing,
as well, to privacy preserving location proof generation and storage, using public and

25

decentralized blockchain technology. Their work has also an original integration of an
incentive mechanism that rewards collaborative participants, in order to more strongly
prevent the main known attacks. This sets an unprecedented track for the incorporation
of these Proof-of-Location protocols into the digital and decentralized economy that
already runs, via Smart Contracts, on blockchain networks like Ethereum [19, 38].

Taking the above into account, Pournaras [7] proposes the complementing concept of
Proof-of-Witness-Presence as a key element in an augmented democracy approach to
smart city development. This concept involves validating the accuracy of data collected
through participatory crowd-sensing, by requiring physical presence at locations of
interest. The author argues that this approach can foster greater citizen engagement and
participation in public spaces, and can be incentivized through blockchain consensus and
a crypto-economic design. The work acknowledges the limitations of current localization
methods, such as GPS, and suggests the need for more advanced and secure location
certificates, based on complex social proofs. The Proof-of-Witness-Presence model
envisioned by Pournaras may rely on token curated registries and a fully trustless Proof-
of-Location protocol that, for instance, FOAM6 tries to deliver. The next paragraph will
examine the main concepts of the FOAM protocol.

Asserting the fundamentality of time synchronization, FOAM leverages Einstein’s
relativity hypothesis to create a new means for measuring space and time, for cartography
and map making [39]. Their protocol, combined with their attempt at standardizing loca-
tion data, is a totally new conceptual way of achieving decentralized, privacy preserving,
highly accurate, censorship resistant, verifiable, and secure Proof-of-Location. Zone An-
chors and Zone Authorities form a dynamic and decentralized network of radio beacons
and gateways that reach consensus over the precise time of their clocks, establishing
zone-relative clock synchronization. This allows for the formation of time conscious
zones of witnesses that can simultaneously determine spacial arrangements and provide
presence claims. Figure 8 depicts the expectation that Zone Anchors or Zone Authorities
dynamically synchronize their internal clocks, establishing a smart contract’s enforced
physical coverage zone that offers trustless, but spatio-temporally sound location ser-
vices. Zones may provide precise, verifiable, and secure Proof-of-Location claims, with
the precision determined by possible triangulation mechanisms. Combined with token
curated registries and crypto-economic incentives, for the maintenance and growth of the
decentralized infrastructure, FOAM ultimately aims at creating a global consensus-driven
map of the world. Their hopes are on Low Power Wide Area Network (LPWAN) radio
technology, for the communication means, and on Ethereum-based Smart Contracts, for
decentralized verification, consumption, and incentivization of the protocol operations
over the location data [40].

6https://foam.space/

26

https://foam.space/

short-range, synchronous  
communication

long-range, asynchronous

communication

Zone Anchor B

Zone Anchor C

Prover

Verifier

Zone Anchor AZone Anchor A

Zone Anchor B

Zone Anchor C

Figure 8. The FOAM protocol for dynamic and decentralized Proof-of-Location [40].

This chapter illustrated the evolution of Proof-of-Location protocols, starting from
centralized and trusted solutions and advancing towards decentralized and infrastructure-
independent approaches. The distribution of trust has driven the development of modern
protocols, culminating in the need for decentralized time synchronization, to make
trustless witnesses collectively agree on attesting to the nearby presence of a prover.
The FOAM protocol is the ultimate inspiration for the work developed further in this
thesis. The processes of zone establishment, spatio-temporal synchronization, and
decentralized witnessing consensus will be explored as in FOAM, but taking advantage
of WiFi-based mesh networking, for the short-range exchange of information, and by
employing a permissionless consensus mechanism, aligned with the concepts introduced
in Sections 2.2 and 2.3.

27

4 Protocol Fundamentals
This chapter outlines the key requirements and long-term goals of the proposed Proof-of-
Location protocol. It also provides an overview of the thesis’ objectives, while aiming at
contextualizing the subsequent technical work.

4.1 Overview
The general approach to the design of Proof-of-Location protocols has been mainly
focused on the proof generation process, as seen in the multiple examples dissected in
Chapter 3. Advancements made towards more distributed and decentralized solutions
have highlighted the need for a comprehensive and detailed description of the protocol’s
entire range of requirements. To achieve an operable system that meets the demands
of real-world applications, a phased strategy with a keen awareness of the intrinsic
details, at every stage of the solution, is essential for providing a complete and coherent
picture of the protocol’s design. Therefore, we will attempt at the design of a Proof-of-
Location protocol that starts with an infrastructural foundation, and ends with a complete
system — aiming to achieve the goal of proving one’s location.

The following sections will guide the reader through the multiple steps of the pro-
tocol’s design. This journey, depicted in Figure 9, starts with the foundation layer of
the system, powered by a dynamic and non-hierarchic Mesh Network topology. This
topology should enable the network agents to communicate with each other in a peer-to-
peer, short-ranged, and conveniently wireless fashion. The next step entails the nodes’
neighbourhood establishment, eased by lower-layer routing protocols, leading to the
eventual creation of fully connected zones of neighbours. Each node, however, may
simultaneously belong to multiple zones, with the processes of zone affinity, zone switch-
ing, zone expanding, and, consequently, the overall configuration of the mesh topology
being dictated by protocol requirements. Application-level incentives, in the lines of the
ones envisioned in the FOAM protocol, may also take part in encouraging the formation
of zones and growth of the network. The goal is to achieve a latticework of space and
time, with zone-relative clock precision. Therefore, the next step is to establish, or derive,
spatio-temporal zone synchronization. Space synchrony is accomplished with the as-
sumptions regarding the short-ranged communication means. To achieve time synchrony,
a clock synchronization mechanism is necessary. This mechanism not only ensures the
synchronization of the witnesses’ internal clocks, but can also enable zone-relative event
serialization, via a strongly consistent consensus-based system. Moreover, by choosing
and employing a Turing-complete consensus protocol, it becomes possible to execute
more complex logic alongside these functionalities, for instance, with the deployment of
smart contracts that potentiate the creation of decentralized and zone-relative location
services. Nonetheless, the main aim is to achieve zone-relative time consciousness, to
then enable spatio-temporal soundness and provide complete location proofs [3].

28

Node A

Node B

Node C

Witness B

Witness C

Prover

Verifier

Witness A

E. Relative Proof-of-LocationD. Zone Synchronization F. Absolute Proof-of-Location
Global Time  
Synchronizer

Witness B

Witness C

Prover

Verifier

Witness A

Public 
Location

short-range, synchronous  
communication

long-range, asynchronous

communication

C. Zone AffinityB. Zone DiscoveryA. Mesh Network

Figure 9. A discretization attempt to capture the multiple steps of the protocol design,
from a dynamic mesh topology, towards the ultimate goal of achieving Absolute Proof-
of-Location.

In the following sections, we will provide a more detailed analysis of these multiple
steps. However, in the practical work, we will focus only on a subset of the entire
problem. For the implementation of the proof-of-concept in Chapter 5, it is assumed
that the processes of zone discovery and zone affinity management have already been
accomplished, and the nodes have agreed to form a zone. The steps that follow the goal
of achieving relative Proof-of-Location are also left for future work.

4.2 Dynamic and Non-Hierarchic Mesh Networks
Dynamic and non-hierarchic mesh networks are a type of network architecture that
allows for the creation of ad hoc networks in which nodes can communicate with
each other without the need for a central coordinating device. This type of network is
characterized by its ability to self-organize and dynamically adapt to both changes in
the environment and in the overall topology. As presented in Section 2.2, one of the

29

key features that materializes the concept of dynamic and non-hierarchic mesh networks
is the existence and implementation of lower-layer routing protocols to facilitate the
peer-to-peer communication between the nodes.

Mobile 

device Laptop

Router

Laptop

IoT 

device

Bluetooth

Wi-Fi

Ethernet

Ethernet

Wi-Fi

Bluetooth

Figure 10. The heterogeneity of a mesh network and the diversity of its physical
topology — the devices, their connections, and their physical arrangements.

Mesh networks, as expected, rely first on the physical layer, according to the standards
of computer networking, which is responsible for transmitting raw bit stream data over
the physical medium, copper wire, optical fibre, or wireless frequencies, for example.
This layer defines the physical characteristics of the data transmission, such as voltage
levels, data rates, and the physical connectors and media used for communication. Its
main function is to provide a reliable and efficient transmission of bits between devices,
without any regard made to the higher-layer protocols and their associated data. The
physical layer is responsible for encoding and decoding data into a format that can
be transmitted over the network, while also detecting and correcting errors that occur
during transmission [41]. It also defines the physical topology of the network, which
describes the arrangement of the physical components such as devices, cables, and other
network equipment7, as depicted in Figure 10. To then enable efficient and coordinated
communication, there is a need for routing protocols that determine the best path for data
packets to travel through.

7The description of the physical layer is a combined effort of the author and ChatGPT (OpenAI,
11.04.2023), which helped to highlight and summarize the role of this layer, during data transmission.

30

These routing protocols are expected to operate, not at the network layer, but instead
at the data link layer, which is responsible for handling the transmission of data frames
over the physical layer. Their main goal is to determine the best path for data frames to
travel, based on metrics gathered from lower-level physical information, as, for instance,
signal strength and link stability metrics [42]. These protocols can support neighbour-
hood discovery and the ranking of neighbours [43], as illustrated in Figure 11, and
thus, potentially enable the processes of zone discovery and zone affinity management.
Neighbourhood discovery is the process of physically discovering neighbouring nodes
within the mesh network [14]. Neighbour ranking is the process of determining the
quality and reliability of each neighbouring link [13]. By measuring, understanding, and
ranking the quality and reliability of the data links, and by instructing nodes to indepen-
dently calculate their best next-hops, a routing protocol can establish neighbourhoods
and determine the affinity of nodes within these coverage localities. This information
can be primarily used to optimize communication paths, reduce congestion, and increase
the overall efficiency of the network.

..:fe:03..:ac:01

..:2b:12

..:ed:01

..:bc:02

57 kbits/s

68 kbits/s

98 kbits/s

71 kbits/s

86 kbits/s
93 kbits/s

Figure 11. The routing protocol’s neighbourhood discovery and ranking processes, using
the MAC sublayer and link quality metrics.

The second usage of such accomplishment is to finally enable the targeted discovery
of zones within the mesh network. Zones can be viewed as strongly connected sets of
neighbours, that, in consequence, are one-hop away from each other. The process of

31

zone establishment is facilitated by the routing protocol, but not strictly enforced, since
the protocol solely enables the discovery of potential neighbours and the ranking of
their links. The final decision of which nodes are to be grouped together into a zone
is left to the nodes themselves, which can then use this information to establish their
own zone affinity. This encompasses the process of determining the likelihood of nodes
communicating and establishing zones with other nodes. The motivation may also be
extrinsic to the process of zone discovery or establishment. An identity management
protocol, for instance, can be used to determine the zone affinity of nodes, based on
their identity and their individual wishes to communicate with other nodes. Incentives of
higher degree can be used to motivate nodes to communicate, to establish zones with
other, relatively specific, sets of nodes, and hence, to collaborate in the next step of
providing zone-relative location services. In the second scenario provided in Figure 2,
customers may be incentivized to form a zone, in order to attest the ISP’s connectivity
provision in their neighbourhood, with the identities of all the involved parties being
known to the government regulators. The customers, who happen to be neighbours
of each other, have the common wish of being provided connectivity, or seeing the
ISP’s service level agreements enforced in their neighbourhood. Hence, they proceed
to coordinate their efforts and synchronously connect their devices, forming a zone
and providing Proof-of-Location services to the ISP. The ISP, in turn, is incentivized
to meet the demand in this particular neighbourhood and, at the same time, prove to
the regulators and all the other parties that the agreements are being met. The FOAM
protocol, on this matter, envisions the reliance on token-curated registries to provide
decentralized identity management. It may also rely on crypto-economic incentives to
motivate nodes to collaborate and, together, establish and maintain coverage zones, for
the higher purpose of providing Proof-of-Location capabilities [40]. This thesis’ main
focus, with regard to the proof-of-concept implementation, is abstracted from the whole
process of zone discovery and zone affinity management, and assumes that a zone has
been already agreed to be established by some out-of-band process. Nonetheless, these
aspects are still to be targeted for future work, as they are essential for the overall success
of the protocol.

After the establishment of operational zones and the affinity filtering potentially
happening at the data link layer, the typical Internet Protocol or TCP/IP suite can be
used to enable end-to-end data communication for application-specific purposes. The
TCP/IP suite consists of a set of protocols that operate at the network and transport layers,
providing end-to-end communication services for applications running on different
nodes [41]. At the network layer, the Internet Protocol (IP) is used to route data packets
within and between the zones, based on their IP addresses. IP is a connectionless protocol
that operates independently of the underlying physical and data link layers, allowing
it to be used with a variety of network technologies. At the transport layer, protocols
such as TCP and UDP can be used to enable end-to-end data communication between

32

application instances. TCP is a reliable and connection-oriented protocol that provides
features such as flow control, error detection, and congestion avoidance to ensure that
data is transmitted reliably and efficiently between applications. UDP, on the other
hand, is a connectionless protocol that provides a lightweight alternative to TCP, suitable
for applications that require low-latency communication, or do not require reliability
guarantees at the transport layer [41]. The choice between the two may be based on
the application requirements, the network topology, and the available resources, but the
overall conclusion is that, after enabling network layer capabilities, any typical Internet
service can be provided to the end-users, sustained by the underlying mesh network8.
Additionally, as pictured in Figure 12, by subnetting and assigning a unique range of IP
addresses to each zone, nodes can communicate with each other, in the same zone, and
with nodes in other zones using IP-based protocols. Subnetting can also provide a range
of benefits, such as improved security, better network management, and more efficient
address assignment and usage [41].

192.168.0.1/24

10.0.1.0/24

172.16.0.0/24

198.51.100.0/24

192.168.0.1/24
10.0.1.3/24

192.168.0.2/24
172.16.0.5/24

192.168.0.3/24
198.51.100.18/24

Figure 12. Subnetting and IP-based communication between nodes, within and between
zones, after the establishment of their respective zone affinities.

The following section presents the next step towards guaranteeing the infrastructural
basis of the proposed Proof-of-Location protocol, detailing not only the need for zone-

8The TCP/IP stack description is a combined effort of the author and ChatGPT (OpenAI, 13.04.2023).
The tool helped to summarize and clarify the characteristics of the transport layer protocols.

33

relative clock synchronization, but also the steps taken to eventually achieve spatio-
temporal soundness. It ultimately assumes that the physical, data link, network, and
transport layer capabilities have been already established, and that the nodes are able
to communicate with each other using the TCP/IP suite and related protocols, on top
of the underlying mesh network infrastructure. The verification or enforcement of the
usage of short range communication means is still to be researched, as a key aspect to
the protocol’s foundational security and soundness guarantees.

4.3 Turing-Complete Clock Synchronization
Section 3.3 has already outlined the invariable need for clock synchronization, when it
comes to reach progressively more accurate, correct, sound, and tamper-proof means of
location attestation. What has not been discussed yet is the bridge between the clock
synchronization problem and the consensus problem, in the specific context of distributed
systems.

This section will briefly discuss how these two fundamental problems are, in fact,
intertwined. In simple terms, synchronizing clocks is nothing more profound than
reaching agreement about the current time of the internal clocks of a distributed setting
of machines. The indiscriminate case of clock synchronization can be stretched to a
continued act of counting time at the same pace, as the indiscriminate case of reaching
agreement about the current time of the internal clocks can be extended to a continued act
of reaching agreement about the current state of the system. The latter is the consensus
problem, and the former is a special case of it, the case of time synchronization. As
argued in Section 2.3, craving to achieve time synchronization, in not just a distributed
setting, but in a fully trustless environment, can be transposed to the problem of achieving
permissionless consensus, fulfilling the need for ordering and synchronizing events, at
the same pace, in an environment where individual participants are not necessarily trusted.
The first example depicted in Figure 2 makes it clear that the eyewitnesses can only
attest to the reporter’s presence at the accident site if they had been there at the same
time and witnessed the same event. However, these entities are not necessarily known
to each other and to anyone else around, nor are they necessarily trusted. This implies
not trusting that the clocks of the witnesses are correctly adjusted, as well. Therefore,
the witnesses need to reach agreement about the current time, in order to be able to
collectively and correctly attest to the reporter’s presence at the accident site, in a given
moment, otherwise they would all have conflicting or different reports. Additional to that,
they may also attest to the reporter’s course of action, by the means of taking pictures or
recording videos, which are also events that may be ordered and synchronized, achieving,
thus, permissionless consensus.

In consequence and specifically regarding the Proof-of-Location problem, the need
for clock synchronization is not only a matter of achieving more accurate positioning
measures, as typically done in GPS-related trilateration systems, but a fundamental

34

matter of achieving complete and sound consensus between the witnesses that are set to
attest to one’s location. Fundamentally, as defined in Section 2.1, a Proof-of-Location
is complete if the attestation is done at location l and time t, by a set of witnesses
w ∈ W . To cope, as well, with the proposed property of spatio-temporal soundness,
these witnesses should invariably reach consensus. They should not just agree to exist
at around the same location l, relative to the precision, reliability, and coverage of their
physical communication means, but should also agree on the time t, relative to the
precision of their internal clocks. The latter is exactly the clock synchronization problem,
folded into the greater and abstract need for consensus. The FOAM protocol proposes
the achievement of such a time agreement with the employment of a self-stabilizing
hybrid fault-tolerant clock synchronization protocol [40, 44]. The authors justify the
choice highlighting the formal verification methods employed in Malekpour’s work. This
distributed algorithm is expected to formally work to the extent of the presence of a one
third minority of Byzantine nodes [16]. This fact validates the theoretical need for a
composition of at least four witnesses for the most basic configuration of a zone, in the
FOAM protocol.

This thesis proposes, instead, the empirical experimentation with a permissionless
consensus mechanism, in the lines of the ones introduced in Section 2.3. The goal, as
illustrated in Figure 13, is equivalent to establishing zone-relative time consciousness, but
with the added benefit of providing strongly consistent serialization of transactions and to-

Node A

Node B

t0 t1 t2 t3 t4 t5

Node C

Node A

Node B

b0 b1 b2 b3 b4 b5

Node C

Figure 13. The goal of establishing zone-relative time consciousness, on the left, by the
employment of a clock synchronization protocol, and on the right, by the employment
of a consensus mechanism. Relative to the precision of both frequencies, the two
mechanisms should achieve the same result, with the latter allowing for a strongly
consistent serialization of transactions and total order of multidimensional information.

35

tal order of multidimensional events, instead of simply counting time in a unidimensional
manner. The technicalities of modern systems that tackle the permissionless consensus
problem allow, as well, for stronger guarantees in terms of security, tamper-proof and
censorship resistance, as discussed in Section 3.3. The fault-tolerance guarantees of
a typical deterministic-finality Byzantine fault-tolerant algorithm are shifted back to a
probabilistic finality fault-tolerance threshold, where the probability of a transaction
being finalized is directly proportional to the number of nodes that have approved it [23].
This is, arguably, a more desirable property for the considerations of a decentralized
Proof-of-Location protocol, where the finality of a location certificate is directly pro-
portional to the number of witnesses that have seen the prover, and thus, the number
of witnesses that have agreed on the time of the attestation, in the context of trustless
environments. The methodical work of formally verifying, measuring, and comparing
the two approaches, in the specific context of Proof-of-Location protocols, is also left
for future work. This thesis will plainly focus on the experimentation with a consensus
mechanism that not only allows for the logical synchronization of clocks, via the regu-
lation of the block interval, an inherent property of such mechanisms, but also for the
achievement of a distributed and time-conscious Turing Complete environment, where
the execution of more sophisticated logic is structurally enabled, in a decentralized setting.
Another point worth mentioning is the extensibility of the proposed way of achieving
clock synchronization, which should also be researched further, to assess the need and

Prover

Prover

Prover

Figure 14. The dense latticework of time-conscious witnessing zones, providing location
services. Such a structure would allow for more accurate and verifiable location attesta-
tions, for example, regarding moving provers that constantly change their locations.

36

evaluate the possibility for independently calculating the geometry of the zone, and the
practicability of trilateration mechanisms to more accurately determine the prover’s exact
location [40]. Nevertheless, the approach aligns itself with the idea of a dense web of
clocks, as depicted in Figure 14. The end goal for the coverage expansion of such a
Proof-of-Location protocol is to achieve a global latticework of witnessing zones that
provide location services. This resonates with the faraway goal of achieving a secure,
verifiable, decentralized, global, and consensus-driven map of the world [39, 40].

The potential Turing Completeness property of the envisioned consensus system
fundamentally allows for a network of nodes to perform arbitrary computations in a
decentralized and fault-tolerant manner. At its core and in more tangible terms, such a
system allows for the creation of smart contracts, as self-executing code agreements that
are dictated by the terms of the direct consensus between the entities that are involved in
the Proof-of-Location protocol. By using a distributed Turing-Complete system, these
smart contracts can be deployed across the network, and their execution can be verified
by all entities, ensuring that the terms of the contract are met [19]. This allows for the
simple transactional case of registering a valid Proof-of-Location claim by the prover,
which will be covered in this thesis, and also for progressively more complex location
claims. Pictured in Figure 15, a Turing Complete system could, for example, attest to the
simultaneous existence of a group of provers, or enforce a set of arbitrary terms dictated
by the verifier, the witnesses, or by zone-specific requirements, among all other endless
computable possibilities that one may envision.

Witness B

Witness C

Prover A

Prover B

Prover C

Witness A

Witness B

Witness C

Prover

Verifier

Witness A

{b = b5}

b5 b5

b5

b5

Figure 15. Some more sophisticated use cases of a Turing Complete Proof-of-Location
protocol, where the execution of zone-relative smart contracts is enabled. On the left,
a multi-prover configuration, and on the right, the case where a verifier enforces the
attestation of the prover’s location at a specific block or time.

37

With all the above considerations in mind, this thesis is set to demonstrate the simplest
case of the application of a consensus mechanism to achieve time synchronization. The
goal is to experimentally prove that the block interval of a consensus mechanism can be
used to synchronize the clocks of a network of nodes, and thus, achieve zone-relative
time consciousness. All the other considerations, like the extensibility of the proposed
approach, the possibility of achieving a more accurate location attestation, or making
use of the Turing Completeness of the system for more complex logic, are left for future
work. The next section will cover the proof generation process to finally produce a
Proof-of-Location claim.

4.4 Relative Proof-of-Location
With the witnesses agreeing on a location, short-range communication, and internal clock
synchronization, the infrastructure is ready to generate a verifiable Proof-of-Location
certificate. This section will provide a description of the certificate generation process,
its requirements, and a possible verification procedure that is derived from the protocol’s
design.

Building upon the steps achieved in the previous sections, it is assumed that a zone
has been established, and that the zone members are able to achieve time-conscious
consensus. Concretely, we assume that both the prover and the witnesses restrict their
communications to the zone’s physical boundaries, dictated by the coverage of their
short-ranged communication means, and we also assume that the zone members are able
to achieve zone-relative time synchronization, and so, pace the events of the protocol’s
execution at the same rate. The next step is to establish the proof generation process,
which is based on the zone’s relative space and time. The main goal is to assert that the
prover is at a specific location, at a specific time, relative to the witnesses. This means,
in practical terms, that the prover is able to communicate, via the same short-ranged
communication means, with all the witnesses, and is able to demonstrate that it is, as well,
synchronized with their internal clocks. However, before asserting such propositions,
we also assume that every entity i has a unique key pair, composed of a public key Kpu

i

and a private key Kpr
i . The public key represents the identity of an entity, and is used

to verify the signature of the messages produced. The private key, on the other hand, is
used to sign the messages. The public key of a zone member is known to all the other
members, meanwhile, the private keys shall be kept secret.

Given that the witnesses w ∈ W are pacing the zone events, i.e., generating new
blocks, in average, at every T units of time, and the last block was generated at the
zone-relative time tx, with a block hash hx, the proof generation process is as follows:

1. The prover ρ synchronizes itself at the zone-relative time tx and learns the hash hx

of the last block Bx.

2. The prover ρ assembles a transaction Txρ containing the input hx.

38

3. The prover ρ signs the transaction Txρ with its private key Kpr
ρ .

4. The prover ρ broadcasts the transaction Txρ to the witnesses w ∈ W .

5. The witnesses w ∈ W verify the transaction Txρ.

6. The witnesses w ∈ W assemble a block Bx+1 with hash hx+1, at time tx+1,
containing the transaction Txρ.

7. The witnesses w ∈ W sign the new block Bx+1 with their private key Kpr
w .

8. The witnesses w ∈ W broadcast the block Bx+1 to the entire network.

9. The prover ρ verifies the hash hx+1, the parent hash hx, and the signatures of the
block Bx+1, and the inclusion of its transaction Txρ, with the matching input hx.

10. The prover ρ, finally, assembles the Proof-of-Location certificate, containing the
signed block Bx+1, by the witnesses w ∈ W , and the signed transaction Txρ, by
the prover ρ itself.

Having obtained a valid Proof-of-Location certificate, as the prover ρ was spatially
synchronized with the witnesses w ∈ W around the zone-relative time tx+1, the next step
would be to submit the certificate to a verification process. Without any verifier-specific
information, the verification process would be identical to step 9 of the above procedure.
Assuming that the verifier knows the identities of all the entities involved in the proof
generation process, the verification process would go around verifying the signatures of
both the block Bx+1 and the transaction Txρ, by the witnesses and the prover, respectively,
and verifying, as well, that the transaction input matches the parent hash hx of the block.
This last verification step ensures that the prover was spatially synchronized with the
witnesses around the zone-relative time tx+1. A more well-founded analysis of the
robustness, security, privacy, and, eventually, the correctness of this Proof-of-Location
protocol, inspired by the works presented in Chapter 3, is left for future work. This
would, as well, include a more detailed analysis of the security against the most common
attacks and collusion scenarios, like proxy attacks or witness collusions. Bridging with
the examples presented in Figure 2, in the first use case, the prover is represented by
the reporter, and the witnesses are the bystanders that are passing by the accident site.
The goal of the reporter is to prove that he was physically present at the location of the
accident, factually covering the event. The proof, possibly containing a piece of media
content, is attested by the onlookers and verified by a journalist when producing a news
piece. In the second case, the ISP assumes the prover role and tries to gather a proof
of the service provision within the customers’ neighbourhood. Ultimately, the proof
can be verified by regulators that are responsible for the enforcement of service level
agreements.

39

Prover

 Fetch last block Bx

 Return Bx with hash hx

 Assemble 
transaction Tx

 Sign Tx

 Send Tx

 Verify Tx

 Return Tx receipt

Witnesses Verifier

 Verify Bx+1

 Assemble 
PoL certificate

 Submit PoL certificate

 Verify 
PoL certificate

 Assemble  
block Bx+1

B
lock interval T

 Sign Bx+1

 Broadcast 
Bx+1

 Broadcast Bx+1

Bx

Bx+1

Figure 16. Sequence diagram overview of the proof generation process.

Up to this point, the protocol has been described in a relative manner, i.e., the prover is
able to prove its location relative to the witnesses. The underlying mesh network enabled
the short-ranged communication, while a permissionless consensus mechanism allowed
for the time synchronization and generation of a verifiable certificate. The next section
will provide a rough outline of how this protocol can be extended to achieve Absolute
Proof-of-Location, involving the introduction of verified space and time references.

40

4.5 Absolute Proof-of-Location
Having established a means for Relative Proof-of-Location, ensuring space and time
synchronization within a zone, the next step would be to extend the protocol to finally
achieve Absolute Proof-of-Location. A possible path consists in combining the procedure
with a Global Time Synchronization Protocol and a Global Positioning System, as
illustrated in Figure 17.

Global Time  
Synchronizer

Witness B

Witness C

Prover

Verifier

Witness A

Public 
Location

Figure 17. Achieving Absolute Proof-of-Location by combining Relative Proof-of-
Location with a Global Time Synchronization Protocol and a Global Positioning System.

The goal is to produce a Proof-of-Location certificate that is spatio-temporally sound,
relative to the zone, but which can, as well, be spatially and temporally acknowledged
by any other node outside the zone. This effort may require, for instance, a global time-
stamping server, or protocol that can assert a certain level of globally secure timestamp
accuracy in a tamper-proof manner. In a decentralized fashion, one example of such a
system is a public Blockchain network, such as Bitcoin [18], or Ethereum [19]. The
same applies to the Global Positioning System (GPS). A standard system of geographic
coordinates could be validated and embedded into the Proof-of-Location certificate, to
globally assert the location of the whole zone [2, 38]. It is worth noting that the Relative
Proof-of-Location protocol is flexible enough to accommodate any kind of higher level
protocol, including more complex certificate formats, tighter trust levels, and composite
information to be signed. This and further extensions are left for future work.

41

This chapter has laid the path towards a decentralized Proof-of-Location protocol.
We have started by proposing a mesh network topology to provide a decentralized and
self-organizing network infrastructure. This underlying arrangement of nodes enables
peer-to-peer and short-range communication, which is essential for the soundness of
the protocol. Next, we have proposed a new way of synchronizing the internal clocks
of trustless witnesses. This approach takes advantage of permissionless consensus
mechanisms to establish zone-relative time consciousness and simultaneously enable
the serialization of events in a tamper-proof manner. We have also considered the
choice of a Turing-complete consensus system to allow for the decentralized execution
of computations and deployment of zone-relative location services. Finally, we have
proposed a Proof-of-Location protocol that can produce a verifiable and spatio-temporally
sound location certificate, relative to a zone. From Relative Proof-of-Location, we are
concluding the chapter with some thoughts on extending the protocol to achieve Absolute
Proof-of-Location.

42

5 Proof-of-Concept
This chapter details the steps taken to develop and evaluate the proof-of-concept imple-
mentation. Section 5.1 provides an overview of the infrastructure, while Section 5.2
describes the implementation of the Proof-of-Location protocol, after the establishment
of the baseline network architecture. Finally, Section 5.3 presents some measurements of
the proof-of-concept evaluation. All the software developed, along with complementing
documentation, is available at the repository referenced in Appendix I.

5.1 Infrastructure
Aiming at meeting the requirements established in Chapter 4, the system design process
and infrastructure choices for accomplishing the establishment of a mesh network were
crucial in ensuring its operability. The following sections describe the design of the
system and the testbed setup, as well as the challenges faced during the establishment of
the network infrastructure.

5.1.1 System Design

One of the critical decisions was the selection of an appropriate operating system (OS)
for configuring and enabling an ad hoc and dynamic mesh network. Multiple Linux
distributions were initially explored, including OpenWrt, Raspbian, and Ubuntu. After
careful consideration and a handful of failed attempts, OpenWrt led the track to host the
protocol implementation. Its automated build tools and configurable packages, including
the straightforward B.A.T.M.A.N. kernel module integration, load, and setup, made it
a suitable choice for the flexible customization of the mesh network. The OS’s active
development community and extensive documentation further supported its use. As
mentioned in Section 2.2, OpenWrt is a lightweight solution for embedded devices,
supporting a considerable set of platforms and toolchains for targeted integration of
embedded software. Its choice turned out to be strategic regarding as well the role played
in the spawning of decentralized and community-driven computer networks, that actively
contribute to and are powered by such open source projects, all around the world9.

The OpenWrt image building process took advantage of the official Image Builder
pre-compiled environment in order to create a custom image, skipping the need for
source compilation10. The process was automated with the help of a Dockerfile, not only
to allow for an easy integration and further testing of the mesh network pre-compiled
packages, but also to enable the experimentation with different network settings and
the quick embedding and deployment of the Proof-of-Location protocol software. The
Image Builder setup is located under the "proof-of-concept/openwrt-builder" directory of

9https://en.wikipedia.org/w/index.php?title=Freifunk
10https://openwrt.org/docs/guide-user/additional-software/imagebuilder

43

https://en.wikipedia.org/w/index.php?title=Freifunk
https://openwrt.org/docs/guide-user/additional-software/imagebuilder

the thesis repository. The packages were chosen to provide deployment and debugging
support for mesh networking using batman-adv, wireless security using WPA/WPA2,
working with the ext4 file system, and interacting with an Ethereum network via the
official geth client. The images were experimentally compiled for x86-64, bcm2708, and
bcm2709 targets, being the last two ideal for the Raspberry Pi Zero and Raspberry Pi
2/3/4 models, respectively11.

5.1.2 Testbed Setup

The next step was to set up a testing environment for the deployment and running
of the Proof-of-Location protocol. Up to the delivery of this thesis, efforts are being
made to port the generated OpenWrt image and compiled protocol modules to physical
Raspberry Pis. However, the deployment on physical devices and the configuration of
wireless interfaces is proving to be a challenge on multiple levels. The current drawbacks
we are facing relate to the automated enabling of the batman-adv network interface,
in order to allow for the autonomous start of a dynamic and ad hoc mesh network.
Nevertheless, even when manually configuring the interfaces, the protocol process of
dynamic neighbourhood discovery is also failing, as the wireless interfaces are not
able to easily detect each other, or establish a stable connection. We have been further
investigating these issues to identify the root cause of these problems, and to finally
uncover the solution for the deployment on physical devices. These attempts and the
physical demonstration of the Proof-of-Location protocol are set for future work.

Meanwhile, to ease such development and testing hustle and to allow for a more
flexible and faster deployment of the protocol, we have set up a virtualized environment,
using QEMU (see Section 2.2). The environment was configured to emulate a set of
x86-64 target devices, and to run the OpenWrt image with the embedded and target-
compiled Proof-of-Location software. The testbed setup followed the guidelines of
the official batman-adv documentation12, and the source code is available under the
"proof-of-concept/qemu" directory. To reduce manual input, an automated script was
programmed, expecting the previously built OpenWrt image, and defining variables
for the instance type, either “witness” or “prover”, the instance number, and a GDB
port, for kernel debugging. The script creates a shared bridge for the cluster and a
unique tap interface for each virtual machine, assigning to them an individual MAC
address. Finally, the script launches QEMU by creating a new virtual disk image, as a
copy-on-write snapshot of OpenWrt, and by setting up each virtual machine with 1 GB
of memory, 2 virtual CPUs, and a virtual SCSI disk. It assigns, as well, internal network
interfaces to the instances. One uses the previously created tap interface to flush the
mesh network traffic, and a second one is a virtual NIC to allow for the usual internet

11https://firmware-selector.openwrt.org/
12https://www.open-mesh.org/doc/devtools/Emulation_Environment.html

44

https://firmware-selector.openwrt.org/
https://www.open-mesh.org/doc/devtools/Emulation_Environment.html

connection13. KVM is also enabled, in order to speed up the emulation, as well as a
virtual RNG (Random Number Generator) and a virtual serial port. Up and running, with
three witnesses and a prover instance, the testbed looks as depicted in Figure 18.

Witness A

tap-01-01

Witness B

tap-01-02

Witness C

tap-01-03

Prover

tap-02-01

Host

bridge-qemu

Shared Path

Internet

Figure 18. Testbed setup for the Proof-of-Location protocol.

5.1.3 Network Architecture

After the establishment of the testbed, the physical networking layer is emulated by the
bridge interface, which is set to pool all the mesh traffic that flows into and from the tap
interfaces. The step that follows is the configuration of the batman-adv kernel module,
responsible for the dynamic and ad hoc mesh network creation. This step was automated
at the OpenWrt image building process, with the inclusion of custom instructions in
the image startup scripts. These instructions set the routing algorithm and enable the
virtual Ethernet interface eth0, linking the tap interface created before to the batman-adv
interface bat0. The interval time between the broadcasting of neighbourhood discovery
messages is set to 5 seconds, which determines how often a node should broadcast its
presence in the network. The bridge loop avoidance mechanism is activated, penalizing
the routing of traffic through routes with more hops. This last step is important to avoid
the creation of loops in the network and to ensure the traffic is always routed through
the shortest path, forcing the nodes to communicate directly with each other, within the

13https://www.open-mesh.org/doc/devtools/OpenWrt_in_QEMU.html

45

https://www.open-mesh.org/doc/devtools/OpenWrt_in_QEMU.html

testbed. Finally, the script disables the firewall to avoid any interference with batman-adv,
and flushes the IP addresses of both the eth0 and bat0 interfaces.

Subnetting is then done via the assignment of an IP address to the bat0 interface. The
IP address of each instance is generated based on the MAC address of eth0, establishing a
non-conflicting address in the 192.168.0.x/24 subnet. After this step, the network is ready
to use the TCP/IP stack, and the Proof-of-Location protocol can be deployed, configured,
and run. The final network topology is depicted in Figure 19.

Witness B

Witness C

Witness A
MAC: 02:ba:de:af:01:01 
IP: 192.168.0.1/24

MAC: 02:ba:de:af:01:02 
IP: 192.168.0.2/24

MAC: 02:ba:de:af:01:03 
IP: 192.168.0.3/24

bat0

OpenWRT

x86-64

OpenWRT

x86-64

OpenWRT

x86-64bat0

Prover

MAC: 02:ba:de:af:02:01 
IP: 192.168.0.101/24

bat0

OpenWRT

x86-64

bat0

Figure 19. Network topology of the system under test, after configuring the batman-adv
interface and assigning IP addresses to the instances.

5.2 Protocol Implementation
The steps above ensured the establishment of the physical, data link, network, and
transport layers, drawing up the foundation for the application layer, featuring the
actual implementation of the Proof-of-Location protocol. In this section, we provide a
description of the protocol setup, including the reasoning and choice for the Blockchain
framework to use. The processes of proof generation and verification are also detailed.

46

5.2.1 Practical Permissionless Consensus

The outline provided in Section 4.3 identified the need for a clock synchronization
mechanism that would finally enable spatio-temporal soundness. Space synchrony is
achieved with the assumptions around the short-ranged communication means. Time
synchrony, on the other hand, is achieved with a clock synchronization mechanism.
The hypothesis involved the employment of a permissionless consensus protocol to
establish zone-relative time consciousness, but with the added benefit of providing
strongly consistent serialization of transactions and total order of multidimensional
events, instead of simply counting time in a unidimensional manner, via a plain clock
synchronization protocol. The practicalities of employing a permissionless consensus
mechanism involved the experimentation with a blockchain framework, the deployment
of an interacting client, and the setup of the network.

The beginning of the exploration process included the prototyping of an ad hoc
Proof-of-Work based consensus protocol, to assess the feasibility of the hypothesis. This
work was part of the 2022 Fall Semester’s edition of the Distributed Systems seminar,
where an analytical approach was taken to survey multiple permissionless consensus
mechanisms, pointing out the challenges of porting such protocols to resource constrained
environments14. The results of the experiment were sufficiently encouraging to warrant
the development or choice of a more robust and scalable implementation. Multiple
open source projects were considered, and the ultimate decision relied on Ethereum and
its flexible tooling for creating private networks15. Initially, the successful attempts at
interacting with Ethereum concealed a handful of problems that would be later exposed.
The smart contracts’ functionality, for instance, was presenting issues at the execution
and output conversion. The problems were ultimately traced back to the use of a different
version of the contract’s compiler, which was not compatible with the version of the
client used. Some of the issues persisted, which led us to ask for help from the Ethereum
community, in GitHub16, StackExchange, and other forums. We have eventually solved
the problem, with a custom compilation of the software, and have successfully blended
its official client implementation, geth, into the OpenWrt image.

The prerequisites for the establishment of an ad hoc Ethereum network expect first
the configuration of a Genesis file and a local data directory, to set the initial state of
the network and progressively save the history, as the blocks get mined. Configuring
the genesis block resorts, as well, to the choice of a consensus protocol. The geth client
supports two main consensus protocols, a Proof-of-Work (PoW) and a Proof-of-Authority
(PoA) based mechanism. Both protocols were tried out, but PoA was ultimately chosen
for carrying out the remaining tests, since it offered a more controlled environment for the
flexible adjustment of multiple parameters, like the block time. A more thorough analysis

14https://github.com/edurbrito/dist-sys-seminar
15https://geth.ethereum.org/docs/fundamentals/private-network
16https://github.com/ethereum/go-ethereum/issues/27009

47

https://github.com/edurbrito/dist-sys-seminar
https://geth.ethereum.org/docs/fundamentals/private-network
https://github.com/ethereum/go-ethereum/issues/27009

of the PoW and PoA protocols, as well as trade-offs and performance comparisons, are
left for future work. The PoA protocol relies on a list of authorized signers, which are
allowed to mine blocks [45]. The signers’ list is defined in the genesis block, and the
private key of each signer is used to sign the blocks. We have automated the key pair
generation at startup and developed multiple utility programs to facilitate the deployment
of the nodes and the execution of the protocol. These custom tools were written in
Golang and compiled for the target platform, to be used as part of the OpenWrt image,
serving also as demonstration of the feasibility of the process of embedding custom
software into the system. These command-line programs can be found under the "proof-
of-concept/src/geth-utils" directory. Among other tasks, they automate the initialization
of the blockchain nodes, via the genesis file, and the establishment of the network, via the
discovery of bootnodes and connection of new peers. Each node exposes the necessary
API endpoints to allow for the interaction with the rest of the protocol participants.
Network rules were also configured to restrict the communication to the zone subnet, as
well as a caching policy to avoid unnecessary resource consumption. Everything was
accomplished with the help of the Ethereum geth client, and the final blockchain network
arrangement is illustrated in Figure 20.

Witness A
Public Address:

0xf0988f...41cc66 
Bootnode: 

enode://4464...43de@ 
192.168.0.1:30301 

JSON-RPC: 
http://192.168.0.1:8545

Public Address:

0x2b6a91...510b57 
JSON-RPC: 
http://192.168.0.2:8545

Genesis:

{

 "config": {

 "chainId": 11,

 ...,

 "clique": {

 "period": 10,

 "epoch": 30000

 }

 }, 
 "extradata": "signers”,

 ...

}

Witness B

b0 b1 b2 b3 b4 b5

Witness C

Public Address:

0x2b6a91...510b57 
JSON-RPC: 
http://192.168.0.3:8545

Figure 20. The Ethereum blockchain network setup, featuring a Proof-of-Authority
consensus protocol with a block time of 10 seconds.

48

5.2.2 Proof Generation and Verification

Guaranteed the establishment of a permissionless consensus mechanism, the witnesses
are synchronized in time. The prover can now take advantage of this synchrony to request
the generation of a Proof-of-Location certificate. To accomplish such task, the prover
instance, which is also part of the mesh network communication channel and has been
assigned an IP address in the same subnet, needs to interact with the running blockchain
and follow the protocol specified in Section 4.4.

The automation of the prover process was also achieved with the help of a Golang
utility program, found under the "proof-of-concept/src/geth-utils" directory. The prover
chooses first a random witness and inquires it about the most recent block. After that, the
prover assembles, signs, and submits a transaction. All the requests are accomplished via
the JSON-RPC API exposed by the geth client running in the witnesses’ machines. The
transaction is then broadcasted to the network and the prover waits for it to be included in
a block. Once the transaction is confirmed, the prover can verify its validity. If valid, it can
finally request the block signatures from the witnesses. The transaction validation process
may be automated via the deployment of a smart contract in the network, decentralizing
and automating the procedure. We have also developed and successfully deployed an
example of a smart contract, located in the "proof-of-concept/src/block-verifier" directory.
The contract was written in Solidity17, compiled to the Ethereum Virtual Machine (EVM)
bytecode, and included in the genesis file. It compares the input hash, submitted by the
prover, with the hash of the last block in the network. The contract is invoked via a typical
blockchain transaction, and returns a boolean value, indicating whether the transaction
is valid or not, automating the validation process that would otherwise be performed
manually, by either the prover or the verifier. This approach serves as demonstration
of the feasibility of the deployment of smart contracts in the zone’s blockchain. More
sophisticated contracts can be developed and deployed according to application needs,
expanding the possibilities of the protocol and its use cases for providing decentralized
and zone-relative location services (see Section 4.3). Furthermore, the success of the
proof generation process is dependent on the adjustment of the block time, which is
a parameter that can be configured in the chosen PoA protocol, via the genesis file.
During the implementation, we have set the block time T to 10 seconds. Similar to the
time-limited approach presented by Nosouhi et al. [38], the block interval serves the
purpose of preventing proxy or wormhole attacks, as depicted in Figure 21, shortening
the chances for an adversary that is synchronized with the witnesses to interact with a
remote prover and still be able to generate a spatio-temporally sound Proof-of-Location
certificate. This time interval should be planned and adjusted according to the application
needs and the desired levels of security. The next section discusses the effects of the
adjustment of the block time on the protocol performance, security, and success rates.

17https://docs.soliditylang.org/en/v0.8.19/

49

https://docs.soliditylang.org/en/v0.8.19/

Witness B

Witness C

Adversary

t1
t3

t2
Remote 
Prover

Witness A

Figure 21. A possible attack scenario, where a malicious prover is able to generate a
Proof-of-Location certificate without being nearby the witnesses. If t1 + t2 + t3 ≤ T ,
the adversary is able to act on behalf of the prover, synchronizing with the zone, asking
the remote prover for a transaction signature, and generating a valid certificate [38].

The process of verifying the certificate validity was demonstrated along with the
generation process, for testing purposes. However, the verification process can be
independently automated as well, for instance, by making use of smart contracts. We
have also developed an example of a smart contract, under the "proof-of-concept/src/pol-
verifier" directory, that verifies the witnesses and prover signatures. Such contracts can
be deployed in any private or public blockchain network, acting as decentralized verifiers
and record keepers of Proof-of-Location certificates. Nevertheless, it is important to
note that the verification procedure is not limited to the use of smart contracts. The
process can be performed by any verifier that has access to the entities’ public keys
and the Proof-of-Location certificate, just like any typical digital signature verification,
integrated with digital applications of all kinds.

5.3 Measurements
Along with the implementation of the proof-of-concept, we have conducted multiple
experiments to evaluate the networking and computational performance of the proposed

50

approach. The testbed was empirically hosted on a laptop with an AMD Ryzen 7 4700U
CPU and 16 GB of RAM, running an x86-64 Linux 6.1.24-1-lts system. Every instance
got assigned 1 GB of RAM and 2 virtual CPUs.

The bridge interface, pooling all the mesh traffic exchanged between the tap interfaces,
was the starting point for the networking measurements. All these interfaces had a
maximum virtual bandwidth of 10 Mbit per second, assigned by the hosting system.
The traffic was monitored using Wireshark18, and the metrics were collected throughout
the various stages of the experiment, by listening to packets of different kinds, flowing
through the bridge interface. Establishing the mesh network connectivity, the Ethernet
frames belonging to the batman-adv protocol sized an average of 74 bytes, and the
IPv4 related packets averaged at 278 bytes, presenting both protocols a seemingly linear
throughput increase with the increase in the number of instances, as shown in Figure 22.

4 5 6 7 8 9 10

2

4

6

8

10

12

instances (witnesses + prover)

th
ro

ug
hp

ut
(K

bi
ts

/s
)

(a) Batman-adv traffic throughput.

4 5 6 7 8 9 10
2
4
6
8
10
12
14
16
18
20
22

instances (witnesses + prover)

(b) IPv4 traffic throughput.

Figure 22. Average protocol throughput, measured in the bridge interface.

The Blockchain activity was also monitored, in order to observe the protocol be-
haviour, regarding the block generation and proposal phases. Figure 23 captures the
number of messages exchanged between the instances, during a time frame of typical
protocol activity. The interval time between blocks, set to 10 seconds, corresponds to
the higher peaks of TCP traffic, while the UDP traffic is more evenly distributed. This
behaviour gets more pronounced as the number of instances increases, but the overall
traffic is still proportionally low, with no significant impact on the network performance.

Both CPU and RAM usages were also continuously measured across the whole
experiment. The two virtual cores of each instance saw the CPU usage averaging at
2%, peaking at 20% when the prover would interact with a witness, or vice versa, in

18https://www.wireshark.org/

51

https://www.wireshark.org/

order to produce a Proof-of-Location certificate. The overall RAM usage did not go
beyond 200 MB. These numbers are in line with the expected behaviour of the protocol,
running the PoA consensus algorithm, as a lightweight mechanism that may not require
much computational power, suitable and adaptable to resource-constrained environments.
The PoW consensus algorithm, on the other hand, would require a much higher and
variable computational power, that would be difficult to predict and control, since it is not
only manually configured, but dependent, as well, on the dynamic difficulty adjustment
mechanism, in order to meet a fixed block time. Nevertheless, both protocols should
present similar network traffic patterns. In terms of storage, the disk space used did not
exceed 65 MB, for the entire file system.

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

time (s)

m
es

sa
ge

s

TCP
UDP

Batman-adv-orig

(a) 4 instances.

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

time (s)

m
es

sa
ge

s

TCP
UDP

Batman-adv-orig

(b) 8 instances.

Figure 23. The network activity, with a block time of 10 seconds.

52

The proof generation process did not possess enough relevancy for time measurement
purposes. Its execution speed, during the transaction creation, signing, and broadcasting
phases is highly dependent on the running environment, and not limited to the showcased
implementation. It can be effectively optimized in multiple ways, using different libraries,
programming languages, or parallelization techniques. Moreover, the total execution time
is ultimately bounded to the block time, since the prover needs to wait a maximum of T
units of time for the generation of the new block that may contain its transaction. The
proof generation process is also not a bottleneck in the protocol, as it is not a part of the
consensus mechanism, and may be executed in parallel with the other protocol activities.
The certificate assembly and verification processes can, as well, be performed later and
asynchronously. Nonetheless, the success rate of the generation of Proof-of-Location
certificates may still be assessed. For such experiment, we adjusted the interval time
between blocks and measured the number of valid Proof-of-Location certificates. A
similar test was conducted by Nosouhi et al. [38], targeting the effectiveness of their
protocol against prover-prover collusions, or proxy and wormhole attacks. The test is
still dependent on the characteristics of the running environment, but the results sustain
the conclusion that the block time is a crucial parameter in the protocol. Figure 24
shows a direct relation between the block time and the success rate in generating valid
certificates. The higher the block time, the lower the failures. The consequences of such
relation are twofold. A more permissive block time allows for a lower number of invalid
certificates, but also for a higher probability of witnessing malicious activity, such as
collusions between adversaries and remote provers, as explained in Figure 21. The block
time is, therefore, a trade-off between the two, and should be carefully adjusted to the
running environment. Further reasoning is still needed, to deeper assess the impact of
this heuristic, or to propose a more robust solution.

0 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

block time (s)

su
cc

es
s

ra
te

(%
)

Figure 24. The success rate of the generation of Proof-of-Location certificates.

53

In retrospective, the main goal of achieving a fully functional proof-of-concept for
the Proof-of-Location protocol was, indeed, reached. We have fulfilled the requirements
proposed in Chapter 4 and made a demonstration possible. The protocol was implemented
in a distributed setting, with a modular network architecture, and a clear separation of
concerns between the different stages. We have also engineered the solution with enough
flexibility, allowing for an easy integration of new components, or the replacement or
tuning of the existing ones, in order to adapt to different environments, or to improve the
overall performance. Further measurement considerations, along with the demonstration
in a physical environment, are already in our horizon.

The thesis work extended over several months, spanning multiple semesters and
encompassing several distinct stages and significant milestones. The first semester was
primarily dedicated to researching and reviewing permissionless consensus mechanisms,
which led to prototyping and demonstrating an ad-hoc consensus protocol. This work
accounted for approximately 250 hours of effort. In the second semester, the focus
was on researching the Proof-of-Location paradigm and the protocol’s design. The
theoretical work of reviewing existing solutions, dissecting the paradigm, and proposing
a new protocol, took approximately 350 hours of effort. This work was interleaved
with the implementation of the proof-of-concept. Multiple weeks were spent on trials
with the image building, the network setup, the deployment in physical devices, and the
configuration of the consensus protocol. The practical work accounted for approximately
400 hours of total effort, including, as well, the successes reported. The thesis writing
took place in both semesters and is included in the estimations. The work is still ongoing,
and the next chapter will address the overall conclusions and future work that is to be
conducted to improve and expand this Proof-of-Location protocol.

54

6 Conclusion
The Proof-of-Location problem was the main target of this thesis. Through theoretical
and practical contributions, we attempted at dissecting its roots. The work started with
the identification of the underlying concepts, hypotheses, and real-world applications,
and was followed by a review of the state of the art, encompassing a wide range of trust
levels and infrastructural scenarios.

Inspired by previous work, this thesis delivered a novel approach to the problem.
The proposed solution involved the specification of a decentralized Proof-of-Location
protocol and the implementation of a proof-of-concept. The final work mixes routing
algorithms for mobile ad hoc mesh networks and permissionless consensus mechanisms,
in order to finally achieve collective agreement on one’s location at a certain point in
time. We demonstrated the protocol using a network architecture that is both distributed
and modular, where each stage has its own distinct set of responsibilities, covering
the entire networking spectrum. It started in the physical and data link layers, taking
advantage of mesh topologies. Next was the establishment of spatially synchronized
zones. To accomplish it, we exploited the flexibility of a routing protocol to further enable
network and transport layer capabilities. Reaching the application layer, a permissionless
consensus mechanism was used to achieve time synchronization, finally allowing location
attestations to be generated and verified. The enabling of Turing-complete smart contracts
allowed us to showcase the protocol’s extensibility and the possibility of implementing
more complex logic, for the provision of decentralized location services. An attack vector
was also identified, and a mitigation strategy was discussed, with remote provers posing
a threat to the soundness of the protocol, if the block time is not carefully adjusted. The
chosen technologies for both the routing algorithm and the blockchain framework showed
optimistic results that make the work suitable and adaptable to resource-constrained
environments. We believe the proposed protocol is a promising step towards achieving
Proof-of-Location, in a decentralized and trustless manner.

The groundwork for the implementation of a novel Proof-of-Location protocol has
been established, but further investigation is still needed. For instance, we are looking for-
ward to identifying the most effective identity management systems and crypto-economic
incentives to motivate nodes to collaborate and establish and maintain coverage zones,
with the research on the processes of zone discovery and zone affinity management
revealing to be essential for the overall success of the protocol. Another aspect that de-
serves further investigation is the shift from deterministic-finality Byzantine fault-tolerant
algorithms to probabilistic finality consensus mechanisms. Formal verifications, mea-
surements, and comparisons between the two approaches are necessary to determine the
best candidates for decentralized Proof-of-Location. Furthermore, we have demonstrated
the simplest case of applying a consensus mechanism to achieve time synchronization.
Extending the approach to reach more accurate location attestations, making full use of
the system’s Turing completeness for more complex logic, and ensuring the extensibility

55

of the approach are all areas for future work. A thorough analysis of the robustness,
security, privacy, and correctness of the baseline solution is also to be presented. We point
our interests as well towards the integration of privacy preserving mechanisms, such as
zero-knowledge proofs. Lastly, the live deployment of the solution and the evaluation of
the performance in real-world scenarios, contributing to the production of more secure
and tamper-proof location data, is the ultimate step we are aiming for.

Acknowledgments
I would like to express gratitude towards my supervisor, Ulrich Norbisrath, for all the
guidance, feedback, and support provided throughout the development of this thesis.
Eero Vainikko and my classmates of the Distributed Systems seminar, my friends, family,
and all the other people that have contributed to the reasoning and validation of the work
are also acknowledged. Special thanks go to Konstantin Tenman and Emma Mand for
their help with the translation of the abstract to Estonian.

Words of appreciation should go, as well, to the multiple tools that aided the writing
and development of this thesis. ChatGPT, Grammarly, Code Spell Checker, LTeX, and
GitHub Copilot provided invaluable support throughout the working process, without
discrediting all the other tools, extensions, and development environments that, directly
or indirectly, with or without AI features, contributed to the efficiency of the work.
Appendix III provides a detailed description of the writing workflow and the tools used
to produce this thesis.

Finally, I would like to thank the University of Tartu for providing multiple opportu-
nities and access to resources and funding, supporting the development of this work. In
particular, I would like to mention the IT Academy, the XRP Ledger Foundation, and
Cybernetica AS, for the scholarship support provided.

56

References
[1] W. Luo and U. Hengartner, “Veriplace: a privacy-aware location proof architecture,”

in Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 23–32, 2010.

[2] M. Amoretti, G. Brambilla, F. Medioli, and F. Zanichelli, “Blockchain-based proof
of location,” in 2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pp. 146–153, IEEE, 2018.

[3] B. Nasrulin, M. Muzammal, and Q. Qu, “A robust spatio-temporal verification
protocol for blockchain,” in Web Information Systems Engineering–WISE 2018:
19th International Conference, Dubai, United Arab Emirates, November 12-15,
2018, Proceedings, Part I 19, pp. 52–67, Springer International Publishing, 2018.

[4] W. Li, H. Guo, M. Nejad, and C.-C. Shen, “Privacy-preserving traffic management:
A blockchain and zero-knowledge proof inspired approach,” IEEE access, vol. 8,
pp. 181733–181743, 2020.

[5] A. Dupin, J.-M. Robert, and C. Bidan, “Location-proof system based on secure
multi-party computations,” in Provable Security: 12th International Conference,
ProvSec 2018, Jeju, South Korea, October 25-28, 2018, Proceedings, pp. 22–39,
Springer, 2018.

[6] S. Saroiu and A. Wolman, “Enabling new mobile applications with location proofs,”
in Proceedings of the 10th workshop on Mobile Computing Systems and Applica-
tions, pp. 1–6, 2009.

[7] E. Pournaras, “Proof of witness presence: Blockchain consensus for augmented
democracy in smart cities,” Journal of Parallel and Distributed Computing, vol. 145,
pp. 160–175, 2020.

[8] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Com-
puter networks, vol. 47, no. 4, pp. 445–487, 2005.

[9] A. Cilfone, L. Davoli, L. Belli, and G. Ferrari, “Wireless mesh networking: An
iot-oriented perspective survey on relevant technologies,” Future Internet, vol. 11,
no. 4, p. 99, 2019.

[10] M. L. Sichitiu, “Wireless mesh networks: opportunities and challenges,” in Pro-
ceedings of World Wireless Congress, vol. 2, p. 21, 2005.

[11] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and
B. Walke, “Ieee 802.11 s: the wlan mesh standard,” IEEE Wireless Communications,
vol. 17, no. 1, pp. 104–111, 2010.

57

[12] S. Bari, F. Anwar, and M. Masud, “Performance study of hybrid wireless mesh
protocol (hwmp) for ieee 802.11 s wlan mesh networks,” in 2012 international
conference on computer and communication engineering (ICCCE), pp. 712–716,
IEEE, 2012.

[13] D. Seither, A. König, and M. Hollick, “Routing performance of wireless mesh net-
works: A practical evaluation of batman advanced,” in 2011 IEEE 36th Conference
on Local Computer Networks, pp. 897–904, IEEE, 2011.

[14] “Open-mesh. originator message version 2 (ogmv2).” https://www.open-mesh.
org/projects/batman-adv/wiki/OGMv2. Accessed: 2023-02-16.

[15] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of
faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

[16] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” in
Concurrency: the works of leslie lamport, pp. 203–226, Springer, 2019.

[17] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in OsDI, pp. 173–
186, 1999.

[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized
Business Review, p. 21260, 2008.

[19] V. Buterin et al., “A next-generation smart contract and decentralized application
platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.

[20] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft
protocols,” in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pp. 31–42, 2016.

[21] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong consistency,” in
Proceedings of the 17th International Conference on Distributed Computing and
Networking, pp. 1–10, 2016.

[22] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and D. I.
Kim, “A survey on consensus mechanisms and mining strategy management in
blockchain networks,” IEEE Access, vol. 7, pp. 22328–22370, 2019.

[23] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed consensus
protocols for blockchain networks,” IEEE Communications Surveys and Tutorials,
vol. 22, no. 2, pp. 1432–1465, 2020.

[24] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Distributed consensus protocols
and algorithms,” Blockchain for Distributed Systems Security, vol. 25, p. 40, 2019.

58

https://www.open-mesh.org/projects/batman-adv/wiki/OGMv2
https://www.open-mesh.org/projects/batman-adv/wiki/OGMv2

[25] S. Bouraga, “A taxonomy of blockchain consensus protocols: A survey and clas-
sification framework,” Expert Systems with Applications, vol. 168, p. 114384,
2021.

[26] B. Lashkari and P. Musilek, “A comprehensive review of blockchain consensus
mechanisms,” IEEE Access, vol. 9, pp. 43620–43652, 2021.

[27] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-Verissimo, “Deconstructing blockchains:
A comprehensive survey on consensus, membership and structure,” arXiv preprint
arXiv:1908.08316, 2019.

[28] B. Waters and E. Felten, “Secure, private proofs of location,” Department of
Computer Science, Princeton University, Tech. Rep. TR-667-03, 2003.

[29] M. Graham and D. Gray, “Protecting privacy and securing the gathering of location
proofs-the secure location verification proof gathering protocol.,” in MobiSec,
pp. 160–171, Springer, 2009.

[30] C. Javali, G. Revadigar, K. B. Rasmussen, W. Hu, and S. Jha, “I am alice, i was in
wonderland: secure location proof generation and verification protocol,” in 2016
IEEE 41st conference on local computer networks (LCN), pp. 477–485, IEEE,
2016.

[31] M. R. Akand, R. Safavi-Naini, M. Kneppers, M. Giraud, and P. Lafourcade,
“Privacy-preserving proof-of-location with security against geo-tampering,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[32] Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof updating system
for location-based services,” in 2011 Proceedings IEEE INFOCOM, pp. 1889–1897,
IEEE, 2011.

[33] X. Wang, A. Pande, J. Zhu, and P. Mohapatra, “Stamp: Enabling privacy-preserving
location proofs for mobile users,” IEEE/ACM transactions on networking, vol. 24,
no. 6, pp. 3276–3289, 2016.

[34] S. Gambs, M.-O. Killijian, M. Roy, and M. Traoré, “Props: A privacy-preserving
location proof system,” in 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems, pp. 1–10, IEEE, 2014.

[35] M. R. Nosouhi, S. Yu, M. Grobler, Y. Xiang, and Z. Zhu, “Sparse: privacy-aware
and collusion resistant location proof generation and verification,” in 2018 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2018.

59

[36] Z. Yang, C. Jin, J. Ning, Z. Li, A. Dinh, and J. Zhou, “Group time-based one-time
passwords and its application to efficient privacy-preserving proof of location,” in
Annual Computer Security Applications Conference, pp. 497–512, 2021.

[37] W. Wu, E. Liu, X. Gong, and R. Wang, “Blockchain based zero-knowledge proof
of location in iot,” in ICC 2020-2020 IEEE International Conference on Communi-
cations (ICC), pp. 1–7, IEEE, 2020.

[38] M. R. Nosouhi, S. Yu, W. Zhou, M. Grobler, and H. Keshtiar, “Blockchain for secure
location verification,” Journal of Parallel and Distributed Computing, vol. 136,
pp. 40–51, 2020.

[39] R. J. King, “Foam: The importance of time synchronization.”
https://blog.foam.space/foam-the-importance-of-time-synchronization-
3934755ccc4e, Feb 2020. Accessed: 2023-03-10.

[40] F. Corp, “Foam whitepaper.” https://foam.space/publicAssets/FOAM_
Whitepaper.pdf. Accessed: 2023-03-10.

[41] L. L. Peterson and B. S. Davie, Computer networks: a systems approach. Elsevier,
2007.

[42] S. Misra, S. C. Misra, and I. Woungang, Guide to wireless mesh networks, vol. 9.
Springer, 2009.

[43] “B.a.t.m.a.n. v.” https://www.open-mesh.org/projects/batman-adv/wiki/
BATMAN_V. Accessed: 2023-02-16.

[44] M. R. Malekpour, “A self-stabilizing hybrid fault-tolerant synchronization protocol,”
in 2015 IEEE Aerospace Conference, pp. 1–11, IEEE, 2015.

[45] E. I. Proposals, “Eip-225: Clique proof-of-authority consensus protocol.” https:
//eips.ethereum.org/EIPS/eip-225, 2017. Accessed: 2023-04-17.

60

https://foam.space/publicAssets/FOAM_Whitepaper.pdf
https://foam.space/publicAssets/FOAM_Whitepaper.pdf
https://www.open-mesh.org/projects/batman-adv/wiki/BATMAN_V
https://www.open-mesh.org/projects/batman-adv/wiki/BATMAN_V
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225

Appendix

I. Repository
The source code, documentation, and other materials produced for this thesis are available
in the following repository: https://github.com/edurbrito/master-thesis-ut.

II. Licence
Non-exclusive licence to reproduce thesis and make thesis public

I, Eduardo Ribas Brito,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to
reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Towards Decentralized Proof-of-Location,

supervised by Ulrich Norbisrath.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Eduardo Ribas Brito
09/05/2023

III. Writing Workflow
The writing and development process of this work was supported and enhanced by
multiple tools, extensions, and development environments. This section details the
workflow and tools used to produce this thesis.

61

https://github.com/edurbrito/master-thesis-ut

The writing environment was based on LATEX, a document preparation system that
allows writers to focus on the content, rather than the formatting. Visual Studio Code was
the development environment chosen to write the LaTeX code and the thesis content. This
lightweight and extensible code editor, combined with the LaTeX Workshop extension,
provided a rich set of functionalities, such as syntax highlighting, code completion,
source compilation, and live preview. Overleaf was the alternative considered, but it was
discarded due to the less flexible and more limited development environment. The LaTeX
source code was versioned using Git, and hosted on GitHub, a web-based version control
hosting service. The repository also contains the source code of the proof-of-concept,
as well as the supplementing documentation (see Appendix I). Within Visual Studio
Code, the extensions Code Spell Checker and LTeX LanguageTool were also used to
dynamically check the spelling and grammar of the text. Additionally, GitHub Copilot
was enabled to provide code completion and debugging support, during the proof-of-
concept programming. Several other extensions were also used to enhance the coding
experience, with rich language-specific support.

Outside the development and writing environment, ChatGPT helped with summa-
rizing, rephrasing, contextualizing, correcting, and paraphrasing indiscriminate sections
of the writing content. This AI tool helped, as well, with the generation of code snippets
and the explanation of multiple command-line interfaces. Grammarly was occasionally
used to check the grammar and spelling of the text. Figma and Diagrams.net were used
to create the diagrams and figures of this thesis, which contain several images and icons
from Flaticon and Freepik catalogues.

62

	Introduction
	Background
	Proof-of-Location
	Parties Involved
	Common Threat Models
	Application Scenarios

	Mesh Networks
	B.A.T.M.A.N. Routing Protocol
	OpenWrt, QEMU, and Raspberry Pis

	Permissionless Consensus
	Proof-of-X
	Proof-of-Work and Proof-of-Stake

	Related Work
	Trusted and Centralized Architectures
	Progressively Distributed and Decentralized Protocols
	Fully Trustless Environments

	Protocol Fundamentals
	Overview
	Dynamic and Non-Hierarchic Mesh Networks
	Turing-Complete Clock Synchronization
	Relative Proof-of-Location
	Absolute Proof-of-Location

	Proof-of-Concept
	Infrastructure
	System Design
	Testbed Setup
	Network Architecture

	Protocol Implementation
	Practical Permissionless Consensus
	Proof Generation and Verification

	Measurements

	Conclusion
	References
	Appendix
	I. Repository
	II. Licence
	III. Writing Workflow

