
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Kristjan Vedel

Eclipse-based IDE for the Agda
Programming Language

Bachelor’s Thesis (6 EAP)

Supervisor: Aivar Annamaa
Co-Supervisor: Sven Laur

Author: .. “.....” mai 2012

Supervisor: ... “.....” mai 2012

Co-Supervisor: ... “.....” mai 2012

Allowed to defend
Professor: ... “.....” mai 2012

TARTU 2012

Contents

Introduction 6

1 Background in Type Theory 8
1.1 Types and Type Systems . 8
1.2 Dependent Types . 8
1.3 Intuitionistic Type Theory . 9

2 Agda 11
2.1 Overview of Agda . 11

2.1.1 Code Examples . 12
2.2 Emacs Mode . 13

2.2.1 Overview . 13
2.2.2 Alternative to Agda Emacs Mode 13

3 Eclipse 15
3.1 Overview of Eclipse . 15
3.2 Eclipse Plug-in Development 16
3.3 Eclipse-based IDE Development 17

4 Implementation 19
4.1 Supporting Tools For Eclipse-based IDE Development 19
4.2 Integration with DLTK . 20
4.3 Overview of the Architecture 21

4.3.1 Implemented Eclipse Plug-ins 22
4.3.2 Implemented Haskell Modules 23
4.3.3 Communication with Agda 24

4.4 Features . 25
4.4.1 Agda Interaction . 26
4.4.2 Perspective . 27
4.4.3 Parsing . 28
4.4.4 Problem Marking . 29

3

4.4.5 Syntax Highlighting . 29
4.4.6 Content Assist . 30
4.4.7 Navigation . 30
4.4.8 Configuration . 32

4.5 Current Status . 33

Conclusion 34

Resümee (eesti keeles) 36

Bibliography 37

A User Guide 40

B Source Code Repositories 42

C Source Code on a CD 43

4

5

Introduction

Agda is an young functional programming language with support for

many innovative features like dependent types and interactive type-directed

development. Currently the only choice for the interactive development of

Agda programs is to use the Emacs-based development environment provided

with Agda, which constrains the users interested in Agda to an editor many

are not familiar with. Also Emacs, being an relatively old editor, does not

provide many of the features supported by more recent integrated develop-

ment environments.

The goal of this thesis is to design and implement an integrated develop-

ment environment (IDE) for Agda on top of the Eclipse Platform. Given the

unconventional nature of Agda and the complexity of developing a modern

IDE, the resulting development environment is intended more as a starting

point than a full-featured IDE in itself. Nevertheless it is a working software

and demonstrates the areas where it can complement the existing IDE while

also showing to be capable of supporting the main features from the existing

tools like the interactive development of Agda programs.

Eclipse plug-ins developed in this work were written in Java and the

components used for integration with Agda were written in Haskell. The

source code for all implemented programs is made available for downloading

under an open source license.

The work is divided into four chapters. The first chapter gives a brief

introduction to dependent types and intuitionistic type theory, necessary for

understanding the principles of Agda. Second chapter introduces Agda pro-

gramming language and Agda Emacs mode, which is the existing IDE for

Agda. Third chapter is about the Eclipse Platform, the creation of plug-ins

for Eclipse and the core concepts of an Eclipse-based IDE. Fourth chapter is

the main chapter of this thesis, describing the implementation of the IDE.

First two sections of the fourth chapter examine the supportive tooling avail-

6

able for developing an Eclipse-based IDE and the DLTK framework chosen

for current implementation. Third section describes the architecture of the

solution, while the fourth section gives an overview of the supported features.

User guide and access to the source code in repositories and on a CD are

provided as appendices.

7

Chapter 1

Background in Type Theory

1.1 Types and Type Systems

Most high-level programming languages use data types for classifying

data and type systems that associate types with values to ensure some ac-

ceptable level of type safety. Type system can be either static, meaning type

checking is done during compile time or dynamic, if typechecking happens at

runtime. Type systems are usually either first-order (for common procedural

languages) or second order (when extended with constructs as type parame-

ters or type abstractions) and subtyping is also a frequently supported feature

(almost universally for object-oriented languages) [1]. Still, in all those lan-

guages there is a clean separation between types and values: all types are

either atomic or constructed from simpler types. Such type systems help to

prevent a wide range of programming errors, but there are still cases that

could be found with more powerful type systems.

1.2 Dependent Types

Let’s consider a list of elements of some arbitrary type A and a function

head that should return the first element from of a list of elements. This list

would then have type List A and function head would have type List A→ A.

What should function head return when it is applied to an empty list? It’s

not possible to forbid this case by a type system where types can only talk

about types. In case of Haskell, if the function head from module Prelude

is applied to an empty list, an error is raised at runtime, which is rarely the

8

desired behavior. What we would want instead is to define function head

in such a way that type system could enforce that it can be applied only to

non-empty lists. This means that the type for list has to contain information

about the length of the list or in other words it has to depend on a value that

is the length of the list. Types that depend on value are called dependent

types [2].

Having dependent types it is possible to define a type for a list of elements

that depends on (is indexed by) the length of the list by List A n. Given the

previous example of function head, we can now define it as only applicable for

arguments of type List A n, where n > 0, so the type system can forbid the

application of this function to an empty list. For a more extensive overview

on the practical value of dependent types see Why dependent types matter

by Altenkirch, McBride and McKinna [3].

1.3 Intuitionistic Type Theory

Dependent types play a major role in intuitionistic type theory, which is

a logical framework for constructive mathematics developed by Martin-Löf

[4]. As in constructive mathematics the law of excluded middle is omitted,

it’s necessary to actually construct the object to prove its existence. This

bears some fundamental similarity with how computer programs are writ-

ten. In programming, the type declaration x:Int states that there exists a

value with the type Int and the value assigned to x serves as a proof for

it. Similarly a declaration f:Int → Int, stating that there exists a function

taking an integer and returning an integer, can be proved by writing any of

such functions. Also no programs can be written for the declaration of empty

type x:⊥. This exemplifies the central idea behind intuitionistic type theory,

namely, a correspondence or isomorphism between proof systems and models

of computation. By this relation, usually called the Curry-Howard correspon-

dence, propositions correspond to types and proofs correspond to programs.

From the perspective of proof theory this means that verifying proofs reduces

to type checking and for program construction this gives the benefits of being

able to express both specifications and programs with the same formalism,

use the proof rules to derive correct program from specification or verify the

properties of a program [5].

For an example of this correspondence, consider a program e1 with type

t1 and another program e2 with type t2. We can think of e1 to be the proof of

9

some logical formula t1 and e2 to be proof of t2. For the proof of formula t1∧t2
proofs for both t1 and t2 would be needed and we can write this as a pair of

proofs (e1, e2). This, in turn, results in a program with type t1 × t2, so the

product type corresponds to conjunction. Similarly disjunction corresponds

to disjoint union type, implication to function type etc.

Dependent types allow to encode properties of values as types whose

elements are proofs that given property is true. For example ∀a, b : N.a+b =

b + a is a type for a function that assigns for any pair of natural numbers a

proof for commutativity of addition and by writing a program for this type

we have a proof that addition is commutative for all natural numbers.

In order for the intuitionistic type theory to be consistent, all functions

must be total. This also means that they are not allowed to allowed to crash

or be nonterminating.

10

Chapter 2

Agda

2.1 Overview of Agda

Agda is a dependently typed functional programming language, based on

the intensional variant of Martin-Löf’s intuitionistic type theory [6]. Features

of Agda include wide range of inductive data types, coinduction, dependent

pattern matching, termination checking, mixfix operators, a module system.

Agda also has a full support for unicode identifiers and keywords and an

interactive type-directed development environment. The concrete syntax is

strongly inspired by Haskell.

By the Curry-Howard isomorphism Agda is also a theorem prover: a

proposition can be proved by writing a program for corresponding type. It

has many similarities with other proof assistants with dependent types, like

Coq, Epigram, Matita and NuPRL. However, unlike Coq and some other

proof-assistants, Agda does not have a separate tactic language and proofs

need to be written by hand, through interactive manipulation of the proof.

Agda does include a proof-search tool called Agsy[7], which can construct

some simple proofs automatically and recently there has been some work to

integrate automated theorem proving into Agda[8][9].

Agda has a standard library, offering a range of facilities for algebra,

category theory, data types, functions, IO and more. There are also other

libraries and developments listed on the Agda wiki [10].

11

2.1.1 Code Examples

Every Agda file must contain a single top-level module declaration whose

name has to match with the name of the file.

module List where

Rest of the program goes inside that module.

data Nat : Set where

zero : Nat

suc : Nat → Nat

Here we defined a top level module List and an inductive datatype Nat

for natural numbers with constructors zero and suc. The type of Nat is a

predefined type Set, which itself is of type Set1, which is of type Set2 etc.

Next we show an example of a list with a dependent type with constructors

[] for empty list and :: as an infix constructor for appending an element

to a list.

data List (A : Set) : Nat → Set where

[] : List A zero

:: : {n : Nat} → A → List A n → List A (suc n)

Note that the type of a List A is Nat → Set. This means that this

is a family of types indexed by natural numbers. List A n is a type for

each natural number n. Underscores in constructor or function definitions

mark a place for arguments, so :: takes two arguments, an element and

a list. Using such constructions allows us to define also mixfix operators,

with arbitrary argument placements, like if then else for the standard

conditional expression. Curly braces in the type of :: denote implicit

arguments. Using implicit arguments we do not need to provide the type

when applying the function or constructor, as long as type checker can infer

it. Here the type checker can infer it from the type of the third argument.

Now we can define a function head for a non-empty list, using pattern

matching.

head : {A : Set}{n : Nat} -> List A (suc n) -> A

-- head [] = ? -- Commented out, type checked would not allow this case

head (x :: xs) = x

12

We give the case for a non-empty list and not for empty list. This still

satisfies the requirement that all functions must be total, because the case

for constructing empty list would not be type correct as the argument list

with type List A (suc n) cannot have a length of zero.

2.2 Emacs Mode

2.2.1 Overview

Agda programs are commonly edited using text editor Emacs customized

with Agda Emacs mode. Agda Emacs mode is a major mode for Emacs,

that allows programs to be developed interactively and in a type-directed

way. [11] This means that it is possible to typecheck incomplete code, leav-

ing a placeholders called holes or goals than can be filled later. It is also

possible to do various things in the context of goal like get the context of the

goal, infer the type, give or refine the type, evaluate a term and more. Com-

munication between editor and Agda proof engine is currently done through

an interactive GHCi session, which is initiated using a similar Emacs mode

for Haskell. Work usually begins with loading the file that is being edited

into the Agda proof engine. In response a temporary file is created with a list

of tokens with both syntactic and some semantic information. This is used

to provide semantic highlighting and a simple reference-based navigation.

Agda Emacs mode is being actively developed and currently it’s the only

IDE supporting interactive development of Agda programs. A screenshot of

Agda Emacs mode with descriptions of various buffers used can be seen on

Figure 2.1 .

2.2.2 Alternative to Agda Emacs Mode

Emacs is relatively popular as an IDE, but having only Emacs based

development environment has also some drawbacks. Emacs UI and controls

are historically evolved and differ from the guidelines for modern desktop

environments, so new users often have to learn Emacs in addition Agda.

Emacs is extended in Emacs Lisp dialect of Lisp programming language,

which is not widely used, so developers are harder to find and the quantity

of extensions tends to grow more slowly than, for example, for a Java-based

Eclipse. While Emacs has a good support for editing code, it’s not as capable

13

Figure 2.1: Agda Emacs mode

when browsing code or managing larger projects. Also with single front-end

the components tend to get more tightly coupled so an alternative front-end

would hopefully help to refine the API Agda provides for IDEs.

To complement the choices for development environments, the platform

for this alternative IDE would need to address the listed shortcomings, while

retaining the advantages. The most suitable option for this seems to be

Eclipse, which is the dominant Java IDE and a popular platform for IDE

development. There are also examples of creating an Eclipse based IDE for

tools with existing Emacs interface, for both functional languages like Haskell

[12] and interactive theorem proving tools like Proof General [13].

14

Chapter 3

Eclipse

3.1 Overview of Eclipse

The Eclipse Project is a Java-based open source project, developed by the

Eclipse Community [14]. It is composed of multiple subprojects and built on

a system of modules called plug-ins. While widely known as a powerful and

popular IDE for programming language Java, it was designed as an “IDE

for anything, and for nothing in particular” [15], that is to provide a com-

mon platform for diverse IDE-based software and aid with their integration.

Main part of Eclipse Project is the Eclipse SDK which is a complete develop-

ment environment for developing Eclipse based tools and also for developing

Eclipse itself. Eclipse SDK is composed of:

• The Eclipse Platform, providing the core framework and services for

all plug-ins as well as the runtime in which they are loaded, integrated

and executed.

• Java Development Tools (JDT) , that provides the plug-ins composing

the Java IDE.

• Plug-in Development Environment (PDE), wchich provides a number

of plug-ins to facilitate building plug-ins for Eclipse.

The Eclipse Platform consists of three layers:

• Platform Runtime is core component of Eclipse, used for discovering,

integrating and running plug-ins. It is based on an implementation

of the OSGi core framework specification[16] and is the only part of

Eclipse that is not itself implemented as a plug-in.

15

• Rich Client Platform (RCP) is a set of tools for building and deploying

rich client applications.

• Workbench IDE UI is a set of plug-ins providing user interface func-

tionality for integrated development environments. It is built on top of

Eclipse RCP.

Figure 3.1 shows a more detailed architecture diagram of Eclipse.

Figure 3.1: Overview of Eclipse Architecture [17]

3.2 Eclipse Plug-in Development

Eclipse plug-in is the smallest software component providing a service in

the context of Eclipse Platform. At its core the plug-in is a module for OSGi

framework, called bundle in the OSGi terminology. A simple Eclipse plug-in

consists of a set of Java class files and a manifest file named MANIFEST.MF

describing the bundle and its dependencies. In addition to the the OSGi

framework, there is also an extension management system called Extension

Registry, where extensions points, defining a contract for extension for other

16

plug-ins, are matched up with extensions, which implement these contracts.

Extensions to an extension points are defined in the plug-ins via the file

plugin.xml using XML. These tools provide great amount of flexibility in

defining and managing services and allow development of loosely coupled,

but well integrated software systems on top of Eclipse Platform.

Plug-in Development Environment includes a comprehensive tooling for

developing plug-ins. It includes wizards for creating plug-in projects, spe-

cialized editors for plug-in configuration files and supports running a second

instance with plug-ins being developed.

3.3 Eclipse-based IDE Development

Most Eclipse-based development environments have similar architecture

where the IDE is divided into multiple major components and each of the

components is packaged into a plug-in. A general rule in developing Eclipse

plug-ins is to separate core functionality from user interface. The minimal

set of plug-ins for an Eclipse-based IDE consists of at least Core and UI

components. Support for debugging, if provided, is usually also separated

into its own component.

Core plug-in provides the non-UI related infrastructure for the IDE. A

typical Core plug-in for an Eclipse-based IDE consists of at least a project

nature for associating projects with tools and plug-ins, an in-memory model

of source code, usually derived from the corresponding abstract syntax tree

(AST) and a source code parser, responsible for creating the AST. For more

complex IDEs the Core component contains also many additional features

based on traversing and manipulating the language model and AST, like

indexing, searching, navigation, refactoring and code formatting. Compilers

and parsers are usually integrated into Eclipse using builders. Builders are

components responsible for incremental manipulation of project’s resources.

They work on resource deltas, which reflect all resource changes since the

last invocation of the builder. Such incremental builder can become quite

complex, so they are often packaged in a separate plug-in.

UI implements the user interface for IDE. The central component of an

integrated development environment is usually the editor. The editor can

be either structured or a text editor and is customized for working with the

source code of IDE’s target language. Two of the more important compo-

nents of an Eclipse editor are the source viewer and the document compo-

17

nents. The document holds the actual content for editor while the source

viewer responsible for displaying the document. Source viewer configuration

is an extendable point of configuration for source viewer, allowing to plug

in customizable UI behavior, like syntax highlighting or text hover. Typical

features provided by UI also include views for outline of current module,

type hierarchy and wizards for creating new projects and source files. Dif-

ferent actions and commands that allow user interaction with the IDE are

also defined in the UI component. The visibility of components and actions

and the overall layout of the user interface are managed by a feature called

perspective. UI usually includes also the preference pages to configure the

provided features.

18

Chapter 4

Implementation

4.1 Supporting Tools For Eclipse-based IDE

Development

The Eclipse Platform offers just the APIs for implementing development

environments but resulting IDEs usually share a lot of common features

including syntax highlighting, parsing with error annotations and problem

markers, abstract syntax tree based navigation and content assist [18]. Mul-

tiple projects have been created to facilitate IDE development with Eclipse,

from which the following were evaluated:

• Xtext [19]

• The IDE Meta-Tooling Platform (IMP) [20]

• Dynamic Languages Toolkit (DLTK) [21]

Xtext is designed for implementing domain-specific languages and pro-

gramming languages and offering the complete language infrastructure to

support it. It’s tightly integrated with the Eclipse Modeling Framework

(EMF) and it’s functionality is based on using a parser generator on a lan-

guage grammar to create a parser and metamodel to work with. Is not

designed with the purpose of integrating with existing tools and thus is not

suitable for integration with existing tools for Agda.

IMP is a framework similar to Xtext. It includes a parser generator,

but supports also other parser generators as well as hand-rolled parsers. It

19

takes more work to create an IDE with IMP than with Xtext, but it’s more

customizable and allows better integration with existing tools.

DLTK is set of extensible frameworks designed in the spirit of JDT to

reduce the complexity of building full-featured development environments for

dynamic languages. While DLTK has a lot of overlap with IMP, it does not

include the meta-tooling support and a favors more direct approach instead.

DLTK is designed for interacting with external language tools like external

interpreters or debuggers.

Wider scope and meta-tooling features might make IMP suitable for in-

tegration with the Agda IDE in the future, but for this project DLTK was

chosen in favor of IMP for its better support for language interoperability

and great exemplary implementations.

4.2 Integration with DLTK

Eclipse plug-ins developed in current work are to a great extent based

on the DLTK. DLTK provides exemplary development environments for Tcl,

Ruby, Python and Javascript, which serve as documentation for this project

in addition to a few available tutorials [22] [23]. There are also DLTK-based

IDEs for many other languages, including a debugging-centric plug-in for

functional programming language Scheme [24] and a development environ-

ment for a static and natively compiled language D [25].

DLTK provides a language model, similar to that of the JDT, to represent

the workspace structure from the project level to the internals of source

files. It also includes a generic but easily extensible implementation of an

AST and a lot of extensible features, common to most IDEs that work on

the language model or AST. Unfortunately the language model of DLTK is

directed towards the object oriented languages and does not fit well with with

unconvetional functional languages like Agda. The difficulties that arose in

integrating Haskell with Eclipse [26] are also relevant in achieving a good

integration between the semantic structure of Agda programs and Eclipse-

based IDE tools. Considering the scope of this project, the choice was to use

the model provided by DLTK and extend it where necessary, to match the

more important programming constructs of Agda.

20

4.3 Overview of the Architecture

In the course of this work, an Eclipse-based IDE for Agda was developed,

hereafter referred to as AgdaEclipse. It is composed of two major compo-

nents: a set of Eclipse plug-ins comprising the IDE and a library written in

Haskell to act as a proxy between Eclipse plug-ins and Agda proof engine. A

TCP connection is established between the two components when the plug-

ins are loaded in Eclipse. As plug-ins are initialized lazily, the connection is

only established after Agda perspective has been opened. In spite of using

a network protocol, both Eclipse and Agda installations currently have to

be deployed on the same host, as some of the communication uses references

to a local filesystem. Would this be replaced with streaming file contents

over TCP, then the IDE and Agda backend could be installed on separate

machines. One possible use case for this would be to let some more powerful

computer handle the expensive type-level computations (e.g. proof verifica-

tions), while the development can be done on a laptop or other less powerful

machine.

Figure 4.1 shows a high-level overview of the architecture of AgdaEclipse

IDE.

Figure 4.1: Overview of AgdaEclipse Architecture

21

4.3.1 Implemented Eclipse Plug-ins

The set of Eclipse plug-ins developed for AgdaEclipse with their corre-

sponding identifiers are listed in Table 4.1.

Plug-in Plug-in ID in Eclipse

Core org.bitbucket.agdaeclipse.core

UI org.bitbucket.agdaeclipse.ui

Core.Interaction org.bitbucket.agdaeclipse.core.interaction

UI.Interaction org.bitbucket.agdaeclipse.ui.interaction

Launching org.bitbucket.agdaeclipse.launching

Table 4.1: AgdaEclipse Eclipse plug-ins

In general the Core and UI plug-ins contain the traditional IDE features

mentioned in Section 3.3. Launching is used for executing Haskell programs

and Core.Interaction and UI.Interaction are the core and user interface com-

ponents for interacting with the Agda proof engine. The contents of imple-

mented plug-ins can be summarized by following:

• Core

The Core plug-in defines Agda nature and includes simple implemen-

tations of source parser, completion engine and selection engine by

extending the base functionality provided by DLTK.

• UI

UI plug-in is the standard user interface plug-in for an Eclipse based

IDE. It is by far the largest plug-in developed in this project, but

most of its features are supported by the underlying DLTK frame-

work. Most important components included are the Agda perspective,

providing the overall layout, and editor with the related source viewer

configuration and token scanners providing the syntax highlighting and

other customizations. Other components of UI plug-in are a completion

processor, templates and template completion processor for code com-

pletion, a customized search page for Agda language elements, various

preference pages for configuring the IDE and wizards for new projects

and files.

• Launching

Launching plug-in is more related to Haskell than Agda as it defines

22

the Haskell interpreters and the launching of Haskell programs. It is

used for running the Haskell program that initiates the TCP client.

• Core.Interaction

This is the core part of interacting with Agda proof engine. Some of the

most important components in Core.Interaction plug-in are the inter-

action facade, which handles the requests to Agda proof engine and a

parser that relies on the interaction facade for parsing. Core.Interaction

also contains the Haskell script for launching the TCP client and an

implementation of DLTK’s script interpreter, which serves as a backend

for TCP-based consoles. Rest of the components in Core.Interaction

plug-in serve the interaction facade and parser.

• UI.Interaction

UI.Interaction extends the Agda perspective with views for Agda con-

sole and goals. It also contains the actions for executing commands

provided by the interaction facade.

Implemented Eclipse plug-ins are packaged into a single feature (with id

org.bitbucket.agdaeclipse.feature) and the feature is contained in an

update site.

4.3.2 Implemented Haskell Modules

In addition to the Eclipse plug-in a Haskell library was developed to

provide a TCP client for the plug-ins and a proxy for Agda proof engine. It

consists of the following two modules:

• Agda.Interaction.EclipseInteractionTop is a Haskell module re-

sponsible for managing the state for the Agda file that is active in the

editor and also for communicating with the Agda proof engine.

• Agda.ConsoleProxy is a simple TCP client, that is launched with

the description of the server it should connect to. When the connection

is established it waits for the input from the server and forwards the

requests to Agda.Interaction.EclipseInteractionTop module. After re-

ceiving the response it wraps it in XML and sends it back to the server.

Synchronous request-response message exchange pattern is used here

for simplicity reasons.

23

Haskell modules are packaged using the building and packaging system for

Haskell libraries called Cabal[27]. They have external dependencies on the

following Haskell modules: base, network, Agda, mtl, directory, split, xml,

bytestring, utf8-string. All these dependencies should be resolved automati-

cally when Cabal is used for installation.

4.3.3 Communication with Agda

The communication between the implemented Eclipse plug-ins and Agda

is built on top of the DLTK’s interpreter and console functionality. The

console system of DLTK is a client-server solution designed for communi-

cating with an external language interpreter over TCP. The console-based

approach was preferred over interacting directly with the operating system

process for it’s design principles that promote better separation between the

environments of interpreter and IDE and built-in support for handling an

interactive console in Eclipse.

For AgdaEclipse, this process starts by opening of the Agda perspective,

which opens the Agda console and by that triggers the connection initializa-

tion process. During the initialization a component called console server is

started. Console server is a component from DLTK that communicates the

information between the interpreter and console view. Then a Haskell pro-

gram consoleproxy.hs, included with Eclipse plug-ins, is executed and it

initiates the TCP client defined in Agda.ConsoleProxy. Started client then

opens TCP connection to the script console server running in Eclipse and

starts waiting for incoming requests. By that the connection to the Agda

console is established.

All supported requests, except for closing the connection, are forwarded

to Agda.Interaction.EclipseInteractionTop. The request itself is a simple

comma-separated list of strings while the response is a set of commands in

the form of XML, wrapped inside a response tag and with the length of the

response as a prefix. Figure 4.2 shows an example of querying the type of

the first goal for active file.

On the Eclipse side, components interested in communicating with Agda

proof engine do not access the console directly, but instead use a service

facade called AgdaInteractionFacade, which provides a simplified Java in-

terface to all the supported services of the proof engine. A response from

Agda to a single request can include a variety of commands and often they

24

Request

goalType,/home/kristjan/workspace/test.agda,False,0

Response

0000000403<response>

<command type="Resp_Status">("")</command>

<command type="Resp_DisplayInfo" subtype="Info_CurrentGoal">

Set

</command>

<command type="Resp_InteractionPoints">

<interactionids>

<interactionid>0</interactionid>

</interactionids>

</command>

</response>

Figure 4.2: Example of the communication protocol

are not directly related to the request itself, so returning the XML re-

sponse to the caller to handle would not be the best solution. Instead

AgdaInteractionFacade provides a way to register and unregister listen-

ers for various responses. This allows actions like displaying responses in the

console to be handled centrally and is closer to the asynchronous communi-

cation behavior introduced recently in the Agda Emacs mode.

4.4 Features

Most of the features provided by AgdaEclipse are in general very similar

to those of any other Eclipse-based development environment. The layout,

visible in Figure 4.3, and the overall perception of the IDE is probably fa-

miliar to those who have used JDT or other similar tools. In the core of

the AgdaEclipse IDE is the Agda editor which is in essence just a stan-

dard Eclipse-based text editor, exhibiting behavior similar to that of modern

graphical text editors. Functionality for specializing the editor for developing

Agda programs is added through sub-components plugged into the editor.

The type system of Agda is powerful enough to represent very complex

propositions and writing programs for such types and even the types them-

selves can be quite a challenge. This means that an important feature for

25

any Agda IDE would be to support the interaction with the type system. A

subset of the features for the interactive development provided by the Agda

Emacs mode were also implemented in AgdaEclipse to assist the development

of more complex programs and proofs.

The customizations of the editor and also other more important features,

most notable being the interaction with Agda proof engine, are described in

the following subsections.

Figure 4.3: Working with AgdaEclipse

4.4.1 Agda Interaction

A significant part of developing more complex Agda programs consists of

communication between the developer and the type system using placehold-

ers for code to be filled later called holes or goals. Interactive development

in AgdaEclipse currently relies on using a separate view to show the list of

26

Figure 4.4: Interaction with Agda. Executing the command for getting the

goal type, context and inferred type for x.

goals for the active file. Information about goals is cached on the Eclipse

side behind the interaction facade and updated when Agda sends a response

containing a new list of goals for given file.

Supported commands for Agda interaction include the informative actions

in the context of the goal like getting the goal’s type or context and inferring

the type. Figure 4.4 shows an example of interacting with the Agda proof

engine.

A command for reloading a file is also implemented and added to the

menu bar of goals view. This is necessary as currently only one file at a

time can be active on the Agda side, while Eclipse caches the information

for all the workspace files. The support for keeping the whole workspace

synchronized with the state in Agda would be a major improvement in the

usability of the IDE.

4.4.2 Perspective

Agda Perspective includes following Views:

27

• Project Explorer – A standard Eclipse view for displaying projects and

their contents in active workspace

• Outline – Displays the structure of the currently active Agda file

• Problems – Shows a list of problem markers denoting various unresolved

problems for projects in active workspace, including problems reported

by Agda

• Tasks – Displays a list of task markers found in the source code of

projects in active workspace, includes tasks in Agda files.

• History – A standard view that shows combined history from version

control system repositories with content in the local Eclipse history.

• Console – Displays a variety of consoles, including information console

and proof engine communication console for Agda

• Goals – Lists the goals for currently active Agda file.

The standard layout of Agda perspective can be seen in Figure 4.3.

4.4.3 Parsing

Parsing is the most complex feature relying on the interaction with Agda.

Core plug-in includes a simple parser class named AgdaSourceParser that

extends the corresponding extension point from DLTK. When the connection

to Agda proof engine is established, then AgdaSourceParser delegates the

actual parsing to another parser located in Core.Interaction plug-in called

AgdaParser. From AgdaParser a request is sent over the TCP connection

to the Agda proof engine, which handles the actual parsing, creates a tem-

porary file containing a list of resulting tokens and responds with the path

to the temporary file. AgdaParser then parses the contents of this file into

a simplified AST, containing declarations for functions, data types, records

and fields and returns it to the AgdaSourceParser which in turn returns it

to the caller. All information about references and other types of expres-

sions is currently ignored, this is definitely one of the areas that should be

improved as many other features like navigation, content assist and semantic

highlighting would also benefit from this.

28

Figure 4.5: Problem markers.

4.4.4 Problem Marking

Parsing will not always succeed and it’s important to mark the failures

as close to the source as possible. Eclipse uses resource markers to add prob-

lems and other similar notes to the files. Markers supported in AgdaEclipse

include error level problem markers for different building and parsing prob-

lems, while warning level problem markers are used to mark termination

problems. Task markers are also supported and are used to insert tasks as

comments in the source files. A screenshot with different markers can be

seen on Figure 4.5.

4.4.5 Syntax Highlighting

Syntax highlighting is based on the standard rule-based reconciling pro-

vided by the Eclipse Platform. Two scanners, AgdaPartitionScanner and

AgdaCodeScanner, responsible for tokenizing the document, are added to

29

the editor through AgdaSourceViewerConfiguration. Resulting tokens are

highlighted according to the colors assigned to them in the preferences. Ap-

plying the tokenization rules is generally fast so highlighting can be updated

immediately on text changes. Conversely, this means that the reconciling

process is unaware of the semantic structure of the document, so it’s not

possible to distinguish between function and constructor references for ex-

ample. Agda Emacs mode relies on interaction with Agda proof engine, and

the syntax tree stored there, to provide semantic highlighting features. Same

could be done for the AgdaEclipse by extending DLTK’s API for seman-

tic, AST-based highlighting, though this would need better support for the

AST of Agda on the Eclipse side. Preferences for customizing the syntax

highlighting can be seen on Figure 4.8

4.4.6 Content Assist

The Eclipse’s standard “Ctrl+Space” combination is supported for con-

tent assist. Suggestions for auto-completion include the names of various

user-defined declarations from the active file, templates defined for Agda

and also Agda keywords. Some templates have been predefined and new

templates can be added and existing ones changed in the Agda template

preferences page. Figure 4.6 shows an example of using the content assist

feature. Also a simple element comment header feature can be seen on the

same screenshot.

4.4.7 Navigation

Outline view allows navigation to function, data type or record declara-

tions in the context of an active file. Also items Open Agda Type. . . and

Open Agda Function. . . were added to the navigation menu for searching

type and function declarations over all the files in the workspace. Screenshot

of using the Open Agda Function. . . feature can be seen on Figure 4.7. Sup-

port for navigating to the declaration by following the reference in the file is

also included, but for this to be usable again the AST must be improved to

properly include references.

30

Figure 4.6: Content assist with a comment header

Figure 4.7: Open Agda function dialog

31

4.4.8 Configuration

A separate menu item, named Agda is created in the Eclipse Preferences

dialog, allowing for the configuration of different features that are related

to Agda. Most important of the preferences are the Interpreters and Stan-

dard library menu items, as these denote the platform-dependent preferences

essential for using the IDE. Interpreters page shows a list of suitable inter-

preters for running Haskell programs and standard library should point at

the Agda standard library location. The implementation of preference pages

is mostly based on the corresponding preference page components provided

by DLTK. Agda preferences and the preference page for syntax highlighting

in particular can be seen on Figure 4.8.

Figure 4.8: Agda Preferences. Customization of syntax coloring.

32

4.5 Current Status

The project is currently still in it’s early stages and while it seems rela-

tively stable and is usable for less complex tasks it is not mature enough for

everyday work. Some of the features are included more as a proof-of-concept

than as a fully developed implementation and in its current state the project

might be more interesting for IDE developers or Agda developers rather than

the actual Agda users.

There are also some known issues with the application. Only informative

actions, that do not change the active file, are supported in interacting with

Agda proof engine. This excludes auto and refine for example. This also

means that changing the document requires full reload on the Agda side,

which can be very slow. Another issue in the parsing phase is that parsing

the temporary file for the semantic information can fail in some of the cases,

as the file still uses the Emacs Lisp format from Agda Emacs mode interaction

and the current solution for parsing a list of Emacs Lisp tokens in Java is

rather poorly done.

A notable obstacle in improving the integration between Agda and Eclipse

is that the Agda libraries are currently evolving very rapidly. In the presently

unreleased development version of Agda, the changes to Agda Emacs mode

include the removal of dependency to Haskell’s Emacs mode and the replace-

ment of highlighting based on temporary files with that of directly streaming

highlighting information. While the changes themselves are also useful for

integration with Eclipse, the API is currently not stable enough to imple-

ment some more complex solutions. On the other hand this makes it more

likely to have support for features that would benefit an Eclipse-based IDE

like having an implementation-independent API for IDEs, replacing all of the

filesystem-based IO with streaming of file contents and support for working

with many files in parallel.

Latest developments to this project are available from the repositories

listed in Appendix B.

33

Conclusion

The goal of this thesis was to design and implement an Eclipse-based

IDE for the dependently typed programming language Agda. Agda, Eclipse

Platform and tools supporting the creation of Eclipse-based IDE were studied

as a part of the thesis and based on the results an IDE was developed,

comprising of a set of Eclipse plug-in supported by the Dynamic Languages

Toolkit framework and a Haskell-based library to mediate the communication

between Eclipse plug-ins and the Agda proof engine.

The resulting IDE supports creating of Agda project and files, has an

Agda-specific perspective, syntax highlighting, support different queries in

the context of the goal, simple navigation to declarations, searching, content

assist features and problem marking.

Future work

Implemented solution, at it’s current state, presents only a small subset

of a full-featured development environment and in addition to stabilizing the

existing implementation, some major improvements can be done both to the

Haskell libraries and Eclipse plug-ins.

Developments that would benefit this IDE and could be implemented to

the Haskell-based APIs for Agda include:

• a generic API for IDEs

• using some universal serialization format like xml or json,

• support for streaming the contents of the file instead of using the file

system,

• support for working with multiple files in parallel.

34

Some of the areas of the implemented Eclipse plug-ins that should be

improved include:

• improvements to the interaction plug-ins to cover the same set of ac-

tions as Emacs mode for Agda, including also actions that change the

document, working inline in the editor instead of using the goals view

and support of keyboard bindings,

• improvements to the AST and language model, possibly use some

parser generator or methods for interacting with the existing Haskell-

based AST

• support for unicode input.

35

Eclipse’i põhine integreeritud

arenduskeskkond

programmeerimiskeelele Agda

Bakalaureusetöö (6 EAP)

Kristjan Vedel

Resümee

Antud töö eesmärk oli kavandada ja implementeerida Eclipse’i põhine

integreeritud arenduskeskkond (IDE) sõltuvate tüüpidega funktsionaalsele

programmeerimiskeelele Agda. Töös vaadati lähemalt Agdat, Eclipse Plat-

formi ja Eclipse’i põhiste arenduskeskkondade loomise raamistikke ning selle

põhjal implementeeriti viis DLTK (Dynamic Languages Toolkit) raamistikule

tuginevat Eclipse’i pistikprogrammi ning Haskelli teek, mis vahendab suhtlust

Eclipse’i pistikprogrammide ja Agda vahel.

Implementeeritud IDE toetab Agda projektide ja failide loomist Eclipse’is,

sisaldab Agda-spetsiifilist perspektiivi (perspective), süntaksi esiletõstmist,

toetab erinevaid päringuid eesmärgi (goal) kontekstis, navigeerimist deklarat-

sioonide juurde, otsingut, sisu assisteerimist (content assist) ja probleemide

markeerimist.

36

Bibliography

[1] L.Cardelli Type Systems, In The Computer Science and Engineering

Handbook, A.B.Tucker, Jr., Ed. CRC Press, 1997.

[2] M.Hofmann Syntax and semantics of dependent types, In A.M.Pitts and

P.Dybjer, editors, Semantics and Logics of Computation, Publications of

the Newton Institute, pp. 79–130. Cambridge University Press, 1997.

[3] T.Altenkirch, C.McBride, J.McKinna Why dependent types matter,

Manuscript, 2005.

[4] P.Martin-Löf Intuitionistic Type Theory, Bibliopolis, Napoli, 1984.

[5] B.Nordström, K.Petersson, J.Smith Programming in Martin-Löf ’s type

theory: an introduction, Oxford University Press, 1990.

[6] U.Norell Towards a practical programming language based on dependent

type theory, PhD thesis, Chalmers University of Technology, 2007.

[7] F.Lindblad, M.Benke, A Tool for Automated Theorem Proving in Agda,

2006, Lecture Notes in Computer Science 3839/2006, pp. 154–169.

[8] S.Foster, G.Struth Integrating an Automated Theorem Prover into Agda

In: M.Bobaru, K.Havelund, G.Holzmann, R.Joshi, editors, NASA Formal

Methods, 2011. LNCS, vol. 6617, pp. 116–130. Springer (2011)

[9] K.Kanso, A.Setzer A Light-Weight Integration of Automated and Interac-

tive Theorem Proving, 2011, Under consideration for publication in Math.

Struct. in Comp. Science

[10] The Agda Wiki, wiki.portal.chalmers.se/agda/ (2012)

[11] C.Coquand, D.Synek, M.Takeyama An Emacs interface for type directed

support constructing proofs and programs, ENTCS 2006.

37

wiki.portal.chalmers.se/agda/

[12] EclipseFP, http://eclipsefp.sourceforge.net/.

[13] D.Winterstein, D.Aspinall, C.Lüth, Proof General/Eclipse: A generic

interface for interactive proof. In: International Workshop on User Inter-

faces for Theorem Provers, ENTCS, 2005.

[14] Eclipse, http://www.eclipse.org/ (2012)

[15] Eclipse Platform: Technical Overview, 2003, http://www.eclipse.

org/whitepapers/eclipse-overview.pdf (2012)

[16] OSGi Alliance. OSGi Service Platform core specification, release 4, Au-

gust 2005.

[17] http://www.jdg2e.com/ch08.architecture/doc/index.html (re-

trieved 23.04.2012)

[18] P.Charles, R.M.Fuhrer,S.M.Sutton Jr., E.Duesterwald, J.J.Vinju, Accel-

erating the creation of customized, language-Specific IDEs in Eclipse, In:

S.Arora, G.T.Leavens, editors, Proceedings OOPSLA 2009, pp. 191–206.

ACM, New York (2009)

[19] Xtext, http://www.eclipse.org/Xtext/ (2012)

[20] IMP: The IDE Meta-Tooling Platform, http://www.eclipse.org/imp/

(2012)

[21] Dynamic Languages Toolkit (DLTK), http://www.eclipse.org/dltk/

(2012)

[22] A guide to building a DLTK-based language IDE, http://wiki.

eclipse.org/A_guide_to_building_a_DLTK-based_language_IDE

(2012)

[23] M.Scarpino, N.A.Good Build an Eclipse development environment

for Perl, Python, and PHP, http://www.ibm.com/developerworks/

opensource/tutorials/os-eclipse-octave/ (2012)

[24] Schemeide, http://schemeide.sourceforge.net/ (2012)

[25] B.D.O.Medeiros Creation of an Eclipse-based IDE for the D program-

ming language, 2007 https://dspace.ist.utl.pt/bitstream/2295/

149465/1/thesisdoc (2012)

38

http://eclipsefp.sourceforge.net/
http://www.eclipse.org/
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.jdg2e.com/ch08.architecture/doc/index.html
http://www.eclipse.org/Xtext/
http://www.eclipse.org/imp/
http://www.eclipse.org/dltk/
http://wiki.eclipse.org/A_guide_to_building_a_DLTK-based_language_IDE
http://wiki.eclipse.org/A_guide_to_building_a_DLTK-based_language_IDE
http://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-octave/
http://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-octave/
http://schemeide.sourceforge.net/
https://dspace.ist.utl.pt/bitstream/2295/149465/1/thesisdoc
https://dspace.ist.utl.pt/bitstream/2295/149465/1/thesisdoc

[26] L.Frenzel Experience report: building an eclipse-based IDE for Haskell,

ACM SIGPLAN Notices, Vol. 42, No. 9. (2007), 222

[27] The Haskell Cabal, http://www.haskell.org/cabal/ (2012)

39

http://www.haskell.org/cabal/

Appendix A

User Guide

Installation

Installation consists of two separate procedures as the cabal package and

Eclipse plug-ins have to be installed separately.

Prerequisites

• The Haskell Platform (or at least Haskell and Cabal):

http://hackage.haskell.org/platform/

• Agda:

Currently a snapshot of a development version of Agda is required for

the AgdaConsoleProxy cabal package. This snapshot is available from:

https://bitbucket.org/kvedel/agda2.3.1snapshot

After the release of Agda 2.3.2, AgdaConsoleProxy will depend on the

last official release, available at:

http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Download

• Eclipse, with version ≥ 3.7: http://www.eclipse.org/downloads/

Installing AgdaConsoleProxy cabal package

• Check-out or download AgdaConsoleProxy:

https://bitbucket.org/kvedel/agdaconsoleproxy

• Navigate into agdaconsoleproxy directory and run cabal install

40

http://hackage.haskell.org/platform/
https://bitbucket.org/kvedel/agda2.3.1snapshot
http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Download
http://www.eclipse.org/downloads/
https://bitbucket.org/kvedel/agdaconsoleproxy

Installing AgdaEclipse Eclipse plug-ins

• Open Eclipse

• In Eclipse choose Help → Install new software . . .→ Add . . .

• Add the update site: https://bitbucket.org/kvedel/org.bitbucket.

agdaeclipse.updatesite/src/tip/

• Select the update site and install AgdaEclipse.

• Open Window → Preferences → Agda

– Select Interpreters and choose either Add. . . or Search. . . to

add a Haskell interpreter like runhaskell.

– Select Standard library and set the path to Agda standard li-

brary. Default path is /usr/share/agda-stdlib.

Getting Started

Next steps, after AgdaEclipse has been successfully installed, is to open

Agda Perspective in Eclipse, create a new Agda project and an Agda file.

• Open Agda perspective:

– Select Window → Open Perspective → Other. . . → Agda.

• Create a new Agda project:

– Open dialog for creating a new Agda project by selecting File →
New → Project → Agda → Agda Project

– Enter a name for the project and select Finish.

• Create a new Agda file:

– Open dialog for creating a new Agda file by selecting File→New

→ Other. . . → Agda → Agda File

– Enter a name for the file and select Finish.

Module declaration is created automatically based on the name of the file

and file is also loaded into Agda proof engine, so development of this new

program can begin.

41

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.updatesite/src/tip/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.updatesite/src/tip/

Appendix B

Source Code Repositories

The complete source code for the latest development versions of all com-

ponents can be found from the following repositories:

• Core

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.core/

• UI

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.ui/

• Core.Interaction

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.core.

interaction/

• UI.Interaction

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.ui.interaction/

• Launching

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.launching/

• Feature

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.feature/

• Update Site

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.updatesite/

• Implemented Haskell modules

https://bitbucket.org/kvedel/agdaconsoleproxy/

The source code for all the components is available under the Eclipse

Public License http://www.eclipse.org/legal/epl-v10.html.

42

https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.core/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.ui/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.core.interaction/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.core.interaction/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.ui.interaction/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.launching/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.feature/
https://bitbucket.org/kvedel/org.bitbucket.agdaeclipse.updatesite/
https://bitbucket.org/kvedel/agdaconsoleproxy/
http://www.eclipse.org/legal/epl-v10.html

Appendix C

Source Code on a CD

Attached to this thesis is the CD containing the source code for the im-

plemented IDE and a digital copy of this thesis.

43

	Introduction
	Background in Type Theory
	Types and Type Systems
	Dependent Types
	Intuitionistic Type Theory

	Agda
	Overview of Agda
	Code Examples

	Emacs Mode
	Overview
	Alternative to Agda Emacs Mode

	Eclipse
	Overview of Eclipse
	Eclipse Plug-in Development
	Eclipse-based IDE Development

	Implementation
	Supporting Tools For Eclipse-based IDE Development
	Integration with DLTK
	Overview of the Architecture
	Implemented Eclipse Plug-ins
	Implemented Haskell Modules
	Communication with Agda

	Features
	Agda Interaction
	Perspective
	Parsing
	Problem Marking
	Syntax Highlighting
	Content Assist
	Navigation
	Configuration

	Current Status

	Conclusion
	Resümee (eesti keeles)
	Bibliography
	User Guide
	Source Code Repositories
	Source Code on a CD

