
UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Berker Demirer

Scaling Up a Frontend Monolith: Pipedrive Case
Study

Master’s Thesis (30 ECTS)

Supervisor(s):
Kadir Aktaş (MSc.)

Prof. Gholamreza Anbarjafari
Prof. Satish Srirama

Tartu 2020

2

Scaling Up a Frontend Monolith: Pipedrive Case Study

Abstract:

There have been considerable efforts on scaling up the backend monoliths and creating
microservices. Companies that run on monolithic services have started to experience the negative
impact of slower deployment cycles and service shortages as their customer base, and team
expands. To mitigate the problem, some of the companies have switched to a microservice
architecture, which provides better fault tolerance, faster deployment cycles and better software
development processes. However, most of these developments were focused on splitting the
backend part of the applications while leaving the frontend to stay as a monolith. Complex business
logic included in the frontend monolith introduced the bottleneck for agile development and raised
the necessity of having micro-frontends. This thesis focuses on the Pipedrive’s transition from
frontend monolith to frontend microservices by evaluating this process on architectural and
implementational level.

Keywords:
Agile, scaling, monolith, microservices, micro-frontends

CERCS:
P175 Informatics, systems theory

Frontend monoliidi skaleerimine: Pipedrive näitel

Lühikokkuvõte:

Monoliit-aplikatsioonide skaleerimiseks ja selle lõhkumiseks mikroteenusteks on tehtud palju
jõupingutusi. Firmad kes pakuvad teenuseid, mis jooksevad monoliitsel arhitektuuril, kogevad
tihtipeale aeglasemaid arendustsükleid ja teenuse ebastabiilsust kui nende kasutajaskond ja
arendusmeeskond suureneb. Et probleemi lahendada, on paljud firmanud pööranud pilgu just
mikroteenuste poole, mis pakuvad üldiselt suuremat stabiilsust, kiiremaid arendustsükleid ja
võimaldavad paremaid tarkvaraarenduse protsesse. Kuid palju neist arengutest on pühendatud just
backend-poole skaleerimisele ja frontend jäetakse tihti monoliitseks. Pipedrive keeruline
äriloogika frontend-monoliidis osutus pudelikaelaks, mis hakkas hälvama agiilseid
arendusmetoodikaid ja lahenduseks on frontendi mikroteenused. See lõputöö keskendubki
Pipedrive üleminekule frontend monoliidist mikroteenustele, hinnates protsessi arhitektuurlsel ja
rakenduslikul tasandil.

Võtmesõnad:
Agiilne, skaleerimine, monoliit, mikroteenused, mikro-frontendid

3

Table of Contents

List of acronyms .. 6

1 Introduction .. 7

1.1 Micro-Frontends .. 7

1.2 Monolithic Frontend .. 8

1.3 Scope & Objectives ... 8

1.4 Thesis Structure ... 9

2 Background .. 10

2.1 Micro-Frontend Principles ... 10

2.1.1 Modeled Around Business Domains ... 10

2.1.2 Automated CI/CD .. 10

2.1.3 Code Isolation & Team Prefixes ... 11

2.1.4 Decentralization ... 11

2.1.5 Independent Deployment Pipelines ... 11

2.1.6 Resilience .. 12

2.1.7 Observable & Monitorable .. 12

2.2 Micro-Frontend Services Decisions Framework ... 12

2.3 Micro-Frontend Services Composition ... 13

2.3.1 Client-Side Composition ... 14

2.3.2 Edge-Side Composition ... 15

2.3.3 Server-Side Composition ... 15

2.4 Routing Micro-Frontend Services ... 16

2.5 Communication Between Micro-Frontend Services ... 17

2.6 Challenges with UI Coherency .. 18

2.7 Micro-Frontend Services Applications in the Industry ... 19

3 Pipedrive Case Study ... 21

3.1 The Monolith (PHP-app) ... 21

3.2 The First JavaScript Frontend Application at Pipedrive (Webapp) 22

3.3 Components of Micro-Frontend Services Architecture .. 23

3.3.1 Service Discovery & Diplomat ... 23

4

3.3.2 Jura (Assets Router Service) ... 26

3.3.3 Micro-Frontend Services Components .. 31

3.3.4 ConventionUI .. 35

4 Author’s Contribution .. 36

5 Analysis .. 38

5.1 Latency .. 38

5.2 Deployment Stability and Time ... 39

5.3 Reliability .. 41

5.4 Resource Usage ... 42

6 Conclusion .. 43

6.1 Future Work ... 43

7 References .. 45

8 Appendix .. 47

5

Table of Figures

FIGURE 1. HORIZONTAL VS VERTICAL SPLIT [2] ... 12

FIGURE 2. MICRO-FRONTENDS COMPOSITION DIAGRAM [2] .. 14

FIGURE 3. MICRO-FRONTENDS ROUTING DIAGRAM [5] ... 17

FIGURE 4. EVENT BUS COMMUNICATION DIAGRAM [5] ... 18

FIGURE 5. CLIENT-SIDE DISCOVERY PATTERN [7] ... 24

FIGURE 6. SERVER-SIDE DISCOVERY PATTERN [7] .. 24

FIGURE 7. DIPLOMAT SERVICE DISCOVERY ... 25

FIGURE 8. SERVICES WITH ASSETS AND CDN ... 28

FIGURE 9. JURA WORKFLOW ... 31

FIGURE 10. DIPLOMAT COMPONENT REGISTRATION ... 32

FIGURE 11. EXAMPLE MICRO-FRONTEND COMPONENT ... 34

FIGURE 12. BILLING MICRO-FRONTEND COMMIT COUNTS ... 36

FIGURE 13. BILLING MICRO-FRONTEND SCREENSHOT ... 37

FIGURE 14. BILLING MICRO-FRONTEND STABILITY SCORE .. 39

FIGURE 15. WEBAPP STABILITY SCORE ... 39

FIGURE 16. BILLING MICRO-FRONTEND RELIABILITY SCORE ... 41

FIGURE 17. WEBAPP RELIABILITY SCORE .. 41

FIGURE 18. RESOURCE USAGE GRAPH ... 42

6

List of acronyms

CRM – Customer Relationship Management

API – Application Programming Interface

UI – User Interface

SPA – Single Page Application

CDN – Cloud Delivery Network

CI/CD – Continuous Integration and Continuous

DDD – Domain Driven Development

HTML – Hyper Text Markup Language

CSS – Cascading Style Sheet

BEM – Block Element Modifier

SCSS – Sassy CSS

DOM – Document Object Model

RPC – Remote Procedure Call

XSS – Cross Site Scripting

NCP – Nginx consul proxy

7

1 Introduction

Microservice architecture or microservices is a particular method of designing software

applications that aims on building single-function modules with well-defined interfaces and

components. They are modeled around a business domain as suites of independently deployable

services. The common characteristics of microservices include: independent and automated

deployability, easy to develop, and decentralized control of programming languages.

In recent years, microservices have enabled companies and organizations to develop scalable and

expandable applications. Many organizations use microservices to avoid running into the

limitations of monolithic frontend or backend. This architecture style enables them to use

structures that are necessary for developing any complex and modern web applications.

When implementing a microservice architecture, it is important to apply the architecture on both

backend and frontend. A common solution is to split the frontend application into micro-frontends

to avoid having one big monolithic frontend that cannot be decomposed. Particularly, there have

been emerging patterns e.g. “micro-frontends” that decompose a frontend monolith into

independent modules that are independently developed and deployed, while still serving as a single

cohesive product.

1.1 Micro-Frontends

A micro-frontend architecture is a design architecture in which a frontend application is

decomposed into individual, semi-independent micro applications that are loosely coupled [1]. The

term “micro-frontend” is inspired and named after microservices. In the simplest term, micro-

frontends is the concept of implementing microservices to frontend applications. The need for

micro-frontends derives from the current trend of development, which is to build an application

with single page frontend microservices architecture. This approach does not scale for frontend as

the application gets bigger and becomes hard to maintain. That is what we call a frontend monolith.

The idea behind micro-frontends is to create different teams and different deployment pipelines

for set of features that are used to form a web application [2].

8

1.2 Monolithic Frontend

For backend teams to deliver business value – especially in the CRM business - there needs to be

at least one frontend application for user interaction. In general, an API without a user interface

might not bring a competitive advantage over applications with UI [3]. If an organization embraces

the microservices pattern in the backend, it can be assumed that there are multiple backend teams,

business domains, faster deployments, and feature implementations [4]. However, if the frontend

is maintained as a monolith in the same organization, it puts pressure on the frontend application

and the team who maintains it. One solution to ease the workload would be to increase the size of

the frontend team or create multiple teams maintaining the application, but this is also not scalable

because the frontend needs to be deployed in one go. That means the teams are dependent on each

other; with a monolithic frontend it is not possible to get the flexibility to scale across the teams

as promised by microservices. Moreover, regarding the scalability issues, there is also the overhead

of having separate backend and frontend teams. Whenever a service’s API has to be changed, the

frontend must be updated, which means that both teams must work dependent on each other. If

frontend teams are busy with some other implementation, then the backend changes must wait for

the frontend team. Having a monolithic frontend means that the team or the teams are required to

work with the same technology stack no matter how different their tasks are. They cannot introduce

a new tech overhead to monolith because other teams will be affected by this change as well,

resulting in a non-modernized frontend application. Teams should be independent with their

technology stack to be able to deliver their tasks more effectively and efficiently. Finally, fault

tolerance is another challenge with monolithic frontends. If there is a bug in one component that

affects the production build of the application and prevents users from accessing the app, this

means other unaffected working components will be inaccessible as well. Therefore, all the teams

and customers must wait for this bug to be fixed and deployed to be able to work again.

Pipedrive recognized the scalability challenges of maintaining and implementing features into

PHP-app and put an effort into missions to cut off the legacy systems from the monolith and create

microservices for each.

1.3 Scope & Objectives

The objectives of this thesis are to provide information regarding micro-frontends and how

Pipedrive uses them in its software development ecosystem. Then evaluating micro-frontends

9

architecture’s impact on Pipedrive’s development processes. By doing so, this paper could be used

as a guide for those who would like to implement micro-frontends in the enterprise software

ecosystem. Thesis’s scope is limited to high-level design and implementation of the micro-

frontends architecture. This thesis will explain the components that form the micro-frontends

architecture in Pipedrive and then evaluate its impact.

1.4 Thesis Structure

This thesis is composed of three main chapters and supplementary chapters. The first chapter gives

an overview of questions to be answered in this paper. The second chapter gives a background

information for understanding micro-frontends and microservices in general. More on that, this

chapter also provides examples from the software industry to create better understanding how other

companies implement micro-frontends to their ecosystems and what kind of patterns they use. The

third chapter explains the Pipedrive’s transition from frontend monolith to micro-frontends by

examining the overall architecture and implementations. The fourth chapter analyses a micro-

frontend and a frontend monolith from different operational aspects such as latency, deployment

stability and resource usage. Fifth chapter provides insights for author’s contribution to the topic.

Sixth chapter summarizes the improvement areas and future works. Finally, the conclusion part

summarizes the main points. Supplementary chapters include a list of acronyms, conclusion,

references and appendix.

10

2 Background

The idea of micro-frontends is not new. It has many similarities with the self-contained systems

concept. This concept is an architectural pattern that focuses on a separation of functionalities into

many independent systems, making the complete logical system by composing smaller software

systems [6]. This eliminates the challenges of large monoliths that grow fast and eventually

become unmaintainable. When looked at from a more general perspective, micro-frontends

concepts are not any different than the microservices architecture in terms of core principles they

hold. The concept is getting popular among big companies like Netflix, Pipedrive, Spotify and

SoundCloud. Some of the companies created their own frontend microservice frameworks and

made them open source, such as Tailor.js from Zalando [7].

2.1 Micro-Frontend Principles

This section explains the core principles of micro-frontend implementations. Considering the

definition of micro-frontend, the following principles are the foundation of it.

2.1.1 Modeled Around Business Domains

While scaling the frontend monolith the first step should be to identify the micro-frontends in it.

To ease up this process, developers can use the domain-driven design principles to identify the

bounded context and business domains. Domain-driven design suggests that each piece of software

should be a representation of an organization's architecture, therefore, giving developers initiatives

to design the software architecture based on domains and subdomains shaped by domain-driven

design. This approach is also useful for frontend microservices and create end-to-end teams for

different subdomains of the application. This can be modeled by looking at the user’s behaviors

[8].

2.1.2 Automated CI/CD

If an organization uses microservices architecture, there must be a rich automation culture;

otherwise any kind of micro-frontends implementation approach will be hard to implement and

maintain in the long term. Since a micro-frontends project would contain many different parts in

it, there must be reliable continuous integration and continuous deployment pipelines with reliable

11

fast feedback loops. Therefore, having an automation culture set and ready for usage is crucial for

adopting micro-frontends [8].

2.1.3 Code Isolation & Team Prefixes

In theory, implementation details should not affect the way micro-frontends communicate among

one another. It is vital to come up with a contract among teams and other parties during the entire

development processes. In this way, independent teams will be able to change the implementations

without disturbing other teams unless there is an API contract change. This will ensure that each

team can work independently and without any external dependencies, hence increasing the

effectiveness of the integration [9].

2.1.4 Decentralization

Decentralization is an essential principle of micro-frontends and it is one of the core ideas behind

microservices architecture. The idea is to decentralize teams decision not to affect other teams way

of work. This ensures that the application will move away from one-size-fits-all approach and

becomes more flexible by being able to use the right approach and the tools for the job. It can also

be said that this principle helps to create experts in each business domain and decisions made by

teams for their domains are generally more accurate. However, this does not mean that there should

not be any conventions around the application, some guardrails should be provided by the

executives where the team can still work independently without waiting for a central decision [9].

2.1.5 Independent Deployment Pipelines

This principle can be related to the decentralization principle. As every team should be able to

make decisions on their own without disturbing the other teams, they should also be able to deploy

independent artifacts without waiting external dependencies to be resolved before deploying to

production. When we combine decision and deployment decentralization, it can be observed that

a team might be responsible for a business domain end-to-end and have the right to make technical

decisions based on the challenges faced in this specific domain [9].

12

2.1.6 Resilience

In case of any micro-frontends failures the application should continue business operations. Micro-

frontends bring more overhead to network operations and they need to be monitored correctly. In

case of a failure or shortage, there should be alternative ways to avoid impacting user experience

and limit the impact of the failure just for the specific service which failed [9].

2.1.7 Observable & Monitorable

Micro-frontends and microservices eliminate many problems for fast growing companies, but they

come with a cost. More microservices mean more network overhead. While communicating or

routing between micro-frontends some failures might occur. It is essential to be able to log and

observe the errors to understand where and why our micro-frontends fail. Tools like Sentry,

DataDog and Grafana increase developer’s situational awareness of their microservices [9].

2.2 Micro-Frontend Services Decisions Framework

From a technical point of view there are two possible options for defining micro-frontends; one is

horizontal split and the other one is vertical split. As depicted in Figure 1, horizontal split includes

multiple micro-frontends per page while vertical split aims to load one micro-frontends per page

[10]. When we think about horizontal split, teams should work closely and coordinate their work

as the general layout of a single view is a composite work of different teams. It is good to note that

these micro-frontends might be owned by the same team as well. It is dependent on the

organisational structure. Whereas, in the vertical split scenario each team is responsible for a

business domain and its implementation.

Figure 1. Horizontal vs Vertical Split [2]

13

As mentioned in the principles of micro-frontend services, business domains can be identified

using DDD principles. When using the DDD approach, the first step would be to identify the parts

of the application that represents a subdomain of the final application. It is possible to divide

subdomains into three categories such as core, supporting and generic subdomains. Core

subdomains define the focus of the application, for example, movie streaming for Netflix, music

streaming for Spotify. Supporting subdomains are in relation to core subdomains to support them

but they are not the key differentiators, they are not meant to deliver real value to users. Generic

subdomains needed for completing the platform and companies usually prefer to outsource the

applications required for these subdomains as they are not strictly related to core subdomains, it

might be payment management and authentication [3].

2.3 Micro-Frontend Services Composition

There are different micro-frontends design patterns and approaches for creating micro-frontends

applications which can be categorized as client-side composition, edge-side composition and

server-side composition.

On the left side of Figure 2, we can see the client-side composition. In this composition method

micro-frontends loaded by the application using CDN or from the origin if the micro-frontends

artifact is not cached at the CDN level. In the middle, by using edge-side composition, the final

view is composed at CDN level and the result is delivered to the client. In the last diagram, micro-

frontends composed at the origin level are converted into views, cached at CDN and served to

clients.

14

Figure 2. Micro-frontends composition diagram [2]

2.3.1 Client-Side Composition

Client-side composition can be done in several ways. First approach can be run-time integration

with iframes. The HTML <iframe> element is used to embed an HTML document inside another

HTML document. Iframes are useful when we need to create a standalone hosting environment

and run our frontend applications independently of each other [12]. With iframes, it is possible to

isolate different sub-applications from each other and render them on demand. The downside of

this approach is that it creates difficulties while building integrations with other sub-applications,

which means that routing, history, and deep linking become more complicated [13].

The main idea behind build-time integration of micro-frontends is publishing each micro-frontend

as packages and let the container application import it in its package.json file. This approach

produces a single JavaScript bundle for deployment which allows developers to eliminate

redundant dependencies from various sub-applications [13]. However, there is one setback in

applying this approach. If we want to introduce a change in one of the micro-frontends, we need

to re-compile and release every other micro-frontend. Since the main principle of having a

microservice is its ability to be developed and tested independently, it is not reasonable to introduce

coupling between services during the release stage. Build-time integration is useful if you do not

mind longer deployment processes and you require independent technologies and teams for

specific parts of the application.

15

To eliminate the lockstep release process defined in the build-time integration approach, it is a

good practice to integrate micro-frontends at run time. In this approach, micro-frontends are

embedded on the page as a script file and exposes a global function as their entry-points. After the

global functions are attached to the window object, the container application determines which

service to be mounted and calls the relevant function of the service [13]. Using this approach, we

can release and deploy each of the frontend microservice bundles independently.

To create a fully encapsulated and decentralized frontend architecture, it is possible to use the web-

components. Most of the frontend frameworks provide a component architecture which allows us

to create encapsulated, extendable, reusable and composable user interfaces. Components

eliminate the need for a global logic within the application by decomposing the logic into reusable

smaller pieces that can be composed in any order throughout the application depending on the

needs. Using framework components is convenient within its specific ecosystem, however, it is

not possible to use Angular components in a React application or the opposite [14]. If we want to

have components that are framework independent, we must implement web-components that are

genuinely built on web standards. This approach relies on defining custom HTML elements that

can be instantiated by a container application. In contrast to JavaScript integration, this approach

eliminates the need of defining global functions to be invoked by the container application [13].

2.3.2 Edge-Side Composition

In edge-side composition approach, the views are assembled at the CDN level. CDN providers like

Akamai and Oracle allow developers to use XML-based markup language called Edge Side

Include (ESI). ESI is used for edge level dynamic web content assembly and it aims to tackle web

infrastructure scaling problems by making use of a large number of edge nodes around the world

provided by a CDN network [16]. Assembly of the content can be easily scaled with this approach

when compared to traditional data center approach. One of the drawbacks of this implementation

is that different CDN providers implement ESI in a different way. Therefore, multi-CDN strategy

might require developers to implement specific logic to each CDN [8].

2.3.3 Server-Side Composition

Server-side composition can happen at runtime or at compile time. In this type of composition, the

origin server gathers up all the views from different micro-frontends and assembles the final page

16

at the backend [15]. If the page is cacheable, then it should be served by the CDN with a long time-

to-live policy to increase the performance and user experience. However, if caching is not an

option and the server is getting many requests from clients then the scalability must be taken into

consideration to avoid outages [8].

2.4 Routing Micro-Frontend Services

One of the important concepts with micro-frontends is how to manage routing between them. As

Figure 3 depicts, routing varies for each micro-frontend architecture or composition such as origin,

edge or client-side [4]. Following routing approaches are not mutually exclusive, one can combine

the approaches depending on the routing needs of the application. When we are using server-side

composition, we are forced to implement routing at the origin level if the page is not cached at

CDN level and this approach would result in whole page to refresh since a new GET request is

sent to server. Another point to be considered while using routing at origin approach is scalability.

If the server is getting burst traffic with too many requests per second, server needs to scale up

horizontally and keep up with the incoming traffic. Then each application server should compose

the micro-frontend services needed to compose the page request by the client. CDN providers

mitigate the scalability issues on the edge level by managing the load between different edge

networks and its completely handled by CDN provider. When it is decided to use edge-side

composition, the CDN serves the page by assembling the micro-frontends on the edge level.

Therefore, all the routing happens on the CDN level and developers might not have much freedom

to customize the routing.

17

Figure 3. Micro-frontends routing diagram [5]

Another approach is to use client-side routing. In this scenario routing is done based on the public

and private routes defined in the client application. This can be determined by the user roles or the

states. If there is an application shell to load the micro-frontends as a single page application, the

routing should be handled by the shell. At the initialization, the shell fetches the routing

configuration and then decides which micro-frontends to load. On the contrary, if there is a multi-

page application, micro-frontends might be loaded using client-side transclusion [8].

2.5 Communication Between Micro-Frontend Services

Based on the micro-frontend principles of decentralization and independent deployments, ideally,

there should not be a need for communicating between frontends. All the micro-frontends should

be self-sufficient, but reality is always different than the expected scenario and developers might

need to communicate between micro-frontends. When there are more than one micro-frontends in

the shell application, there is a challenge of creating consistent and coherent UI. This is also true

while communicating between micro-frontends especially if they are owned by different teams.

While considering the options for communications, it must be kept in mind that micro-frontends

should hide implementations between each other, therefore, each micro-frontend should be

unaware of each other on the same page.

After considering all the restrictions and the challenges, one solution to micro-frontends

communication might be using events and observer/subscriber patterns. To be able to implement

18

this, we use an event bus in each micro-frontend, let micro-frontend dispatch and listen to events

depending on the needs [17].

Figure 4. Event bus communication diagram [5]

Another solution is to use custom events. In this case, the events are dispatched via an object

available to all micro-frontends like the window object. However, if micro-frontends are

implemented using iframes then using event bus instead of sharing global window object to micro-

frontends would be less challenging since each iframe has its own window object. Last but not

least, one another option might be using the data query to pass data and retrieve the details to

display using API. However, this approach comes with a downside of exposing sensitive data to

intruders. Even though it is passed through HTTPS, it might be still possible to sniff the

information, therefore, decision must be thought carefully [4].

2.6 Challenges with UI Coherency

No matter which approach is used to implement frontend microservice, visual consistency across

the micro-frontends is very important. Styling is one of the first things that needs to be considered.

Currently, most of the web applications are styled using cascading style sheets (CSS). CSS is a

language that is inherently global and cascading, and it does not provide module system,

19

encapsulation or name spacing. These characteristics might create problems in a micro-frontends

architecture if independent teams do not agree on a standardized way of writing style classes. For

example, if one team implements a micro-frontend that has a stylesheet header font bold and the

other team has a different attribute for the same selector then one of the styles will override the

other one. One of the solutions for this problem is to use the BEM notation to make sure that the

selectors only apply where it is intended. However, this approach mostly relies on the developers.

People who do not want to rely on developers only use the sassy cascading style sheet (SASS)

preprocessor and use its selector nesting for names pacing purposes. Besides using the SASS

preprocessor one can use CSS modules to apply styles programmatically or use shadow document

object model (DOM) to isolate the style [13]. Another approach to maintain consistency between

the micro-frontends is to introduce shared component libraries. Shared component libraries can

reduce the number of duplicate codes inside the application by providing reusable components

across the microservices. However, introducing all the reusable components in the early stages of

development is not recommended. It is not possible to predict which components are going to be

needed before the actual use. One practice is to let each team develop the components that they

need while they are developing the application. Even though this sounds like this approach would

create lots of duplicate code, allowing the patterns to emerge helps developers to see which

component should be included in a shared library. The most suitable components for sharing are

the ones that we call visual primitives, such as icons, buttons, labels. One can also implement

components that have complex UI logic as shared components, such as dropdowns, tables,

autocompleting, etc. However, these complex components should only include UI logic, not

business logic. Having business logic inside the shared component libraries would create coupling

with other services and it would make it hard to change the components. Ownership and

governance of a shared component library is another thing to take into consideration. One of the

best practices for handling shared component libraries is letting developers create shared

components when it is needed if the quality is checked by some team who is responsible for

maintaining the library [13].

2.7 Micro-Frontend Services Applications in the Industry

This section will give an overview of some companies that use micro-frontends architecture in

their ecosystem. The first company to mention is Zalando, an e-commerce company. Zalando is

20

currently building up an open source micro-frontends framework called Mosaic. Zalando aimed to

improve scalability with smaller pieces, technology stack isolation and ease of deployments [18].

HelloFresh, the company that provides an online service for preparing and delivering ready-to-

cook food boxes, implemented micro-frontends architecture by using server-side rendering. Their

micro-frontends architecture includes Fragments, Particles and Tags. In simplest terms, they run

their Fragment services under entry server locations and serve small SPAs [19]. AllegroTech,

Polish e-retailer came up with a project called OpBox in 2016. The project allows non-technical

people to combine UI components with data sources inside the web page. The Box focuses on

sharing and reusing components [18].

Another approach to be mentioned is OpenTable’s Open Components project which is used by

Scanner and other large organizations. Open Components are using an approach in which a registry

gathers available components, encapsulates data and UI layers to expose a HTML fragment which

can be encapsulated in any other HTML template. This approach brings team independence,

eliminates component redundancy by allowing developers to reuse components built by other

teams and the option of rendering a component either on the server or on the client [8].

SAP is using iframes to build up their micro-frontends. As Zalando, SAP is also created a

framework called Luigi framework which is used to create enterprise applications. Luigi

framework supports popular JavaScript libraries like Angular, React and Vue [20]. For their

desktop application, Spotify implemented an iframe approach by assembling multiple components

into different iframes. Iframes communicating with low level implementation made with C++ the

“bridge”. In the early stages of the application, each SPA file of Spotify was composed of an

HTML file, multiple CSS files, manifest.json and a JavaScript bundle file. All of these are loaded

into an iframe to be assembled in the shell application. However, this approach abounded for the

web version of Spotify because of its poor performance and they decided to go with SPA

architecture like they have for TV applications [8]. Last but not least, live on-demand sports

streaming platform DAZN is using an agent called bootstrap which is a combination of SPAs and

components orchestrated by clients. They provide services and interfaces for smart TVs, consoles,

set-top boxes and web. They rely on run time rendering of different SPAs when there is a change

of business domain [8].

21

3 Pipedrive Case Study

Pipedrive is a cloud-based sales software with offices in Estonia, Latvia, USA, Portugal, UK, and

Czech Republic. It has more than 600 employees and its CRM is used by 100,000 customers

worldwide. Pipedrive aims to increase the efficiency and sales numbers of businesses through

easy-to-use web and mobile CRM application [6]. To be able to compete with other CRM tools on

the market, Pipedrive must be responsive to changes in an agile manner. From a technical

perspective, this means that the changes in business requirements must be developed, deployed

and maintained with ease. Moreover, there needs to be a scalable and flexible architecture to

comply with growing codebase.

Pipedrive was initially built upon a single codebase which uses PHP, however, soon after the

scalability issues, transition to microservices started. Pipedrive did not neglect the frontend

application and scaled it in parallel with backend services. At first, alongside the PHP-app,

Pipedrive built the first JavaScript frontend application that uses Backbone.js but this app is also

treated as monolith in the early stages and later on used as front-end-root for initializing other

frontend services. In the current state, PHP-app is mostly used as a presentation layer for legacy

features that Pipedrive still offers to its customers.

This chapter describes Pipedrive’s journey from monolithic PHP application to microservices and

micro-frontends. Additionally, it explains how Pipedrive’s micro-frontend architecture is

engineered and what is the impact of this architecture on Pipedrive.

3.1 The Monolith (PHP-app)

Pipedrive’s first application was built in 2010 using PHP as the primary programming language in

one codebase. In the early stages of the company, having one codebase helped Pipedrive to grow

since it is simple to test, develop, deploy, and scale horizontally [21]. The CodeIgniter framework

was modified and used to provide solutions for logging, error handling, routing, and database

communication purposes. Overall, it helped to keep the code clean and modular. However, as

Pipedrive grew, pressure on the teams maintaining the monolith increased. As a result, developer

headcount increased, different teams created for the various domain areas, and all teams started to

work autonomously on their fields. However, if the application is continuously growing, scaling

22

the monolith with team isolation based on domain areas is not feasible as testing, deployment, and

resiliency of the app become problematic.

To mitigate the problems caused by the monolithic application, Pipedrive started to shift to

microservices architecture. This shift helped Pipedrive to create more exact lines of business

boundaries, team responsibilities, and enabled it to increase the efficiency and effectiveness of

implementing new features. However, the monolith application did not disappear completely. It

still serves as the core API for microservices to fetch information from Pipedrive DB, such as

company data, user information, deals, contacts, etc. Moreover, Pipedrive offers a public API

through a monolith application for creating integrations between Pipedrive and other tools such as

Slack, Intercom, and PandaDoc.

A team is responsible for the maintenance and performance of the monolith – namely, the Core

tribe – and they do not implement new features to the monolith. The aim is to get rid of it and work

on a microservices architecture. To lay out the plans for the future of monolith, there is an initiative

called the PHP guild, which consists of developers who deal with a monolithic application and

plan out the roadmap for splitting remaining features from the monolith.

3.2 The First JavaScript Frontend Application at Pipedrive (Webapp)

Webapp, - the first JavaScript frontend application of Pipedrive – is one of the first cut-outs from

monolith application. It is built on Backbone.js, and the reason behind its creation was to separate

backend code from the frontend. Backbone.js is a frontend JavaScript framework that helps to

abstract the data into models and DOM manipulations into views and binding them together

through events. It is a cleaner approach when compared to tying the data to the DOM. If not paid

attention, JavaScript applications might turn into tangled piles of callbacks and jQuery selectors

to keep data in sync between the UI and JS logic [22]. With Backbone.js, data is represented as

Models, which can have several operations such as create, validate, destroy, and save to the server.

When a UI action triggers a change in one of the attributes of a model, the model initiates a

“change” event, and all the views that are tied to the model’s state respond accordingly and re-

render themselves with the new information. The aim of Backbone.js is to keep business logic

separated from the user interface of the application. When logic and UI loosely coupled with each

other, introducing changes on the UI becomes easier.

23

Pipedrive improved the Webapp as business requirements change, and more resilient frontend

architecture was needed. This need pushed Pipedrive to design and implement micro-frontend

architecture. The views, along with their business logic, gradually cut-out from Webapp and served

as micro-frontends. Meanwhile, the purpose and the philosophy of the Webapp changed from

being the frontend application of Pipedrive to be a platform that all micro-frontend teams use to

integrate their services with. In the current state of Webapp, it is used as a top-level initializer like

a front-end-root application. It shares common components, serves, and provides information for

micro-frontends. To maintain and make Webapp as a web services platform, the Core Front-End

(COFE) team has been established.

3.3 Components of Micro-Frontend Services Architecture

The frontend code of Pipedrive is separated into multiple repositories. Most repositories function

simply by providing static asset files that could be loaded and executed at will. Some repositories

also initialize an application by providing endpoint which responds with HTML . Frontend

monolith so called Webapp is one example to that. Pipedrive’s micro-frontends architecture

requires several mechanisms to work together. These mechanisms include service discovery, assets

services and assets router, frontend components to render and ConventionUI for design

consistency. This chapter explains these components in detail.

3.3.1 Service Discovery & Diplomat

As a result of embracing micro-frontends architecture, service discovery becomes a crucial part of

the application. In other words, service discovery is a process of acquiring the endpoint of

a running and healthy service instance [22].

As there can be more than one healthy and running service instance, service discovery is also

closely related to how to do load balancing. All services and service consumers need to use the

Diplomat library to carry out service discovery for both internal and external services. Diplomat

is an inhouse library that is used by service developers in order to communicate to Consul (central

services and configuration registry). Diplomat provides handy functions for service registration,

discovery, load balancing and configuration management.

For inhouse service-to-service calls, Pipedrive uses a client-side discovery pattern. As depicted in

Figure 5, in the client-side discovery pattern, the clients gather the service location by asking a

24

service registry that holds the location of all services [23]. From the end-user perspective, who has

loaded Pipedrive web application into the specific browser and is sending requests to Pipedrive

backend, server-side discovery pattern is used. As shown in Figure 6, in server-side discovery

pattern, client’s request goes through load balancer (router) then the load balancer queries the

service registry and forwards to available service instances [23]. In the latter case, the web

application that sends the requests to the backend does not have any information on which services

are going to fulfill these requests. The service discovery (URL-to-service-endpoint translation) is

made by Barista (the API gateway).

Figure 5. Client-side discovery pattern [7]

Figure 6. Server-side discovery pattern [7]

25

Let us presume, there is a service in “machine 1” that wants to call a target service, that runs on

“machine 2” in Figure 7. In order to complete the service call, one needs to obtain the reference to

the instance of the target service. One may ask Diplomat for the list of all the instances or just let

Diplomat randomly pick up one instance. In most cases, upon the request, Diplomat returns the

list of service instances from the local cache (Diplomat caches all the service references for 10

seconds). If it does not have them in the cache, it asks the local consul agent, which executes the

RPC call against the central Consul. Consul is a service mesh solution providing a full featured

control plane with service discovery, configuration, and segmentation functionality [23]. Local

consul agents are practically stateless, which means it does very little caching or no caching at all.

So, sending a query against the local consul agent is expensive because it almost always triggers a

network call to the consul server agent. That is why caching is introduced inside the Diplomat.

Usually, calling the function for getting service instances from Diplomat is fast as it hits the cache;

if more than half of cache expiry time (5 sec) has bypassed, it will return stale data, but executes

an asynchronous call that refreshes the data in the cache. Meaning that the first service discovery

call might be a bit expensive, but under average load, it is swift.

Figure 7. Diplomat service discovery

26

3.3.2 Jura (Assets Router Service)

In the very beginning of Pipedrive's microservices architecture, both assets and service loading

requests were going through one API gateway called Barista. Barista is Pipedrive's web traffic and

API gateway that implements service discovery, authentication, authorization, rate limiting, multi

data center routing, and monitoring of the incoming service calls. Most of the inbound traffic goes

through Barista. However, Barista was not scalable enough for both assets and all other service

domains as there were so many requests coming through. That is why Pipedrive decided to separate

them. The reasons behind this decision were mostly related to reducing Barista workload,

mitigating security risks, reducing requests size for assets, and allowing the use of CDN.

Barista was dealing with complex authentication issues and putting too much workload on it

created problems. By having the separation of asset service domains, one can route assets' requests

directly to the service and bypass Barista. Moreover, security risks are reduced by not exposing

unwanted endpoints to unauthorized requests or processing additional XSS vectors that may come

with assets requests. With different domains, cookies set on pipedrive.com will not be sent to

pipedriveassets.com. This means that Pipedrive saves up to 8kb of data transfer with each asset

request at a minimum. It may sound insignificant, but with all the applications to fetch assets, they

add up to a tremendous amount of overhead. Mostly, without the separate domain, the request for

a 1kb file would be larger than the returned data by 800%.

As stated above, using an assets router service allowed Pipedrive to implement CDN. A Content

Delivery Network, or Content Distribution Network, is a geographically distributed network of

proxy servers and their data centers [24]. CDN is a GeoIP based proxy network that finds the

closest proxy server to the end-user and proxy the requests to Pipedrive. When assets already exist

in the proxy cache, the proxy returns the data immediately and does not forward the request. When

an asset is missing, it fetches the asset from the origin which is Pipedrive’s asset container and

caches it based on the caching headers set by the asset service.

It is also worth mentioning that the CDN caches the full request and the full response. As a CDN

provider, Akamai CDN is being used at Pipedrive, it has the most significant amount of edge nodes

available around the world, so using this service made Pipedrive’s site and services much faster.

The first step to setting up the service with assets is to split the service into two, which means

having a service container and asset container in the same docker-compose file. If the service is

27

configured properly, one container serves the assets and the other the API. While it is possible to

separate repositories and Docker images for the two container types such as assets and API

container, it is easier to have just one repository that runs on different modes based on the

environment variables (serving the assets or the API). In order to standardize the service names, a

standardized convention is established. According to convention, service domain names created

as <service>.pipedrive.com OR <company-domain>.pipedrive.com/your/barista/url and assets

domain as <service>.pipedrive assets.com.

The main idea of having assets services and CDN is to make all the new assets available before

the requests are sent to the containers. This way, if an asset is missing from the CDN, it will turn

to assets-origin and fetch the new file. CDN itself should retain old caches for about a week, so if

there are mixed requests to old and new versions of the app, it does not cache old content to new

files accidentally. To differentiate versions, a specific versioning system is used, different build

will have different value for version parameter in the GET request and they are cached separately.

The Figure 8, describes the simplified request types from the browser (top-down) and the source

code to deploy mechanism (bottom-up). Both flows meet in the middle, in the running containers.

From the end-user perspective, it is possible to request two different domains, such as service and

assets. If the user makes a service request, the request goes through nginx-consul-proxy, which is

a set of NGINX server configurations that dynamically forwards specific domains to their service

cluster, goes to Barista if applicable, and then to the service container. On the other hand, if the

request is an asset request, it goes to CDN to nginx-consul-proxy and, finally, service assets

container. In this case, Barista should not be used and must be bypassed.

28

Figure 8. Services with assets and CDN

29

From the deployment and development perspective, the process starts with creating and

configuring a docker-compose.deploy.yml file, which will be used for starting the containers.

Inside the docker-compose.deploy.yml, there should be two services. The first one is the standard

service with service-specific scaling configuration and the second one is the service for assets.

Service assets can be deployed using the same image as the service itself. But the name must be

different in Consul, and this can be described with environment variables for the second service.

CDN optimized asset delivery systems works well, but the set-up complexity makes it harder for

developers to maintain the overall architecture. With Jura improvement, overall architecture stayed

the same, but the set-up for services themselves changed a little bit. On the server-side, the change

allowed the service to register its assets’ path via the Diplomat library. On the public side, Jura the

asset router configured to make two lookups from Consul. First, it compares request paths’ first

segment to match a healthy service, then retrieves the configured assets path for that service and

then assembles forward proxy URI. By addressing the complexity problem, Jura removed many

obstacles in the agile development flow:

• Increased overall project delivery speed as there needs to be no involvement from other

teams to set-up and configure anything.

• Reduced the workload for the infrastructure team as there is no need to re-configure

Akamai, DNS, or NCP for each asset’s domain.

• Streamlined overall architecture of the asset’s domains’ setup by providing single domain

for all the services and automatic mapping paths to the services.

The Jura workflow shown in Figure 9 consists of the following steps:

1. A request is made to CDN.

2. If the requested assets are not cached the request is done to service otherwise CDN makes

a request to Jura that looks like this:

 https://cdn-assets.useast1.pipedrive.com/filters-menu/app.js?v=86d7ec6fca_46

The request consists of the following parts:

• cdn-assets: Jura subdomain

• .us-east-1: region

30

• .pipedrive.com: Pipedrive domain

• /filters-menu: service name which is used to search the service instance in Consul

• /app.js: file name

• ?v=86d7ec6fca_46: asset version

3. Jura asks Consul for a healthy asset's instance based on the request path's first segment

(/filters-menu).

4. In case a healthy service instance is found, Jura assembles the forward proxy URL

http://${service.ip}:${service.port}/${originPath}/${assetPath}.

• originPath: The path to the assets in the service.

• registerServices: This is necessary because in case a service has both API and

assets, by moving the assets to a separate folder and providing the path to Jura, the

API is never exposed.

• assetPath: The path of the assets in the service found from parsing the request URL.

5. Requested service responds with assets file which is returned to Jura.

6. Jura cleans the headers and adds CORS and cache headers to the file and forwards it to

NCP. NCP forwards it to CDN and CDN forwards it to the browser and the file is served.

31

Figure 9. Jura workflow

3.3.3 Micro-Frontend Services Components

A component can be any JS code that can be exported in any service. In most cases, it is a micro-

frontend that allows us to render a part of our application independently. Each component exposed

has a unique name that others would know to load it by. Each frontend service usually presents at

least one element with the services name but can expose as many as it needs. The naming

convention is generally like this serviceName:componentName. Each service that provides a

component needs to register and serve the assets. For this, a service needs to call the

diplomat.registerAssets method to define which parts are available.

In Figure 10, diplomat.registerAssets method has two different components. One is called

default.js, and the other one is componentName.js.

32

Figure 10. Diplomat component registration

It is possible to export a function or an object or a HTML page as a component, but there is a case

where we define a component with loadWithComponentLoader: true. In that case, the component

is expected to be a function that accepts componentLoader itself as an argument. This way, we can

easily load other components within our components. The components that are exposed as

promises will be resolved automatically and loaded whenever the promise is resolved. Components

can be loaded using an instance of ComponentLoader. Those instances are usually accessible in

system such as Webapp. Components are loaded asynchronously and are cached throughout the

system.

Besides component exporting and loading, frontend applications must have a place to start from

that does all the important top-level initialization of global tools, rendering the menus, rendering

global messages and rendering micro-frontend components into the main area.

await diplomat.registerAssets({
 version: process.env.DOCKER_TAG,
 originPath: '/assets/',
 components: {
 '': {
 js: 'default.js',
 },
 'componentName': {
 js: 'componentName.js',
 css: 'componetName.css',
 loadWithComponentLoader: true,
 }
 }
})

export default {
 greeter: (person) => console.log(`Hello ${person}`);
}

export default async (componentLoader) => {
 const myDependency = componentLoader.load('serviceName:componentName');

 return myDependency.greeter('Martin');
}

33

We can categorize components into two categories: micro-frontend components and shared

components. The ones that render a page are called micro-frontend components and shared

components are the ones which are mostly used as utility components. In the case of micro-

frontends components, it is expected to return a component that returns an object. The object

should include mount, update and unmount functions in it.

This approach provides developers with great flexibility by allowing them to use their own React

version. Each of the functions receives an object as an argument. This object also shown in

Figure 11 contains:

• el: DOM node to render the micro-frontend into.

• props: Properties passed by the renderer to the micro-frontend. Always includes

the visible prop and it is not passed to the unmount.

• prevProps: Previous version of the props passed. Only used in the update function.

The mount and update functions are often similar, but the mount function will only be called once

and update function is called every time when parent component updates the child component.

Another thing to pay attention to in Figure 11 is visible property. The visible prop is used because,

in many cases, the micro-frontend component is not unmounted when it is not visible anymore. In

frontend-roots such as Webapp and Froot, we use a logic named view stack. View stack allows us

to keep a view rendered on the background when displaying another view. This way switching

back to the view that was already rendered before is lightning fast. When the view is not visible,

then it should simply keep at the state it was on before, and when it becomes visible again, one

should react to any change that may have happened in the meantime.

34

Figure 11. Example micro-frontend component

To render a micro-frontend component, one would need a special React component called

MicroFEComponent. This component is accessible via componentLoader in Webapp

as froot:MicroFEComponent.

froot:MicroFEComponent accepts the following props:

• componentName: Name of the component to be loaded with componentLoader.

• onLoad: Callback function what to do when the component is mounted.

• componentProps: Props passed to the component.

export default (componentLoader) => {
 mount: async ({ el, props }) => {
 const user = await componentLoader.load('myComponent'); //
Let's imagine myComponent exposes a user object

 if (visible) {
 document.title = 'My page';
 }

 el.innerHTML = `Hello ${user.name}`;
 },
 update: async ({ el, props }) => {
 const user = await componentLoader.load('myComponent'); //
Let's imagine myComponent exposes a user object

 if (visible) {
 document.title = 'My page';
 }

 el.innerHTML = `Hello ${user.name}`;
 },
 unmount: async ({ el }) => {
 el.innerHTML = '';
 }
};

35

3.3.4 ConventionUI

Pipedrive is operating in a competitive global market where user experience is a key differentiator.

We have a growing number of designers who produce digital or physical designs together with

PMs, developers, or external agencies. Most of them, distributed to separate locations and tribes

without the set-up of centralized design governance. Without design standards in place, every new

hire slows down the process, and inconsistencies grow throughout the channels, platforms, and

within the product itself. Throughout time, different teams have documented various design-

related resources, but today most of them have become obsolete and misleading. Currently, there

is no single easy-to-use destination for accessing current Pipedrive brand-aligned design systems

that would cover the needs of committed production teams and what would define our principles

for the excellent user experience. As for the development perspective of Pipedrive’s design

convention, it uses a set of components called ConventionUI. Elements of ConventionUI are

designed by product designers and developed by developers and added to the system. There are

certain sets of rules while developing a ConventionUI component to keep the library maintainable.

The process starts with the design team defining the specifications of a component. This definition

must contain pixel-perfect design delivered via Figma. It should also define the behavioral logic.

All the definitions must be done well enough to be understood in a single manner. When the design

has been properly defined, development for the component can start. ConventionUI includes UI

components such as buttons, dialogues, modals, text and color schemas, select items, panels and

spacing schemas. The library can be imported into JSX and postcss files and used when needed.

36

4 Author’s Contribution

Although micro-frontends concept is around since 2016, there are not many academic resources

on the topic. Many sources are consisting of blog posts and conference videos where companies

share their way of implementation of micro-frontends considering this fact, the author aimed to

provide an up-to-date source of information on implementing and designing micro-frontend

architecture. For that, related work from all around the world, and Pipedrive’s documentations

have been examined, filtered, and organized by the author. Moreover, analysis and outcomes of

Pipedrive’s implementation of micro-frontends are presented to provide insights for both

companies and the developers who wish to implement such architecture into their development

environment. The author also contributed to Pipedrive by providing extensive information on

micro-frontends which could be used by Pipedrive developers to get deep understanding of the

topic.

Since Pipedrive is a big company with nearly 300+ developers, most of the improvements and

developments are made with a teamwork. Different tribes and teams are involved in creating

micro-frontend architecture of Pipedrive. The author is part of Tartu tribe which is responsible for

security, billing, and authentication services. As stated in the thesis, the micro-frontends

architecture of Pipedrive consists of different components. Although the author did not contribute

to creation of each component directly, he delivered three projects and contributed heavily on

Pipedrive’s billing micro-frontend project. Figure 12 depicts the author’s contribution. Each

project and billing micro-frontend have direct connection with micro-frontend architecture.

Figure 12. Billing micro-frontend commit counts

37

Billing micro-frontend service registers itself as a micro-frontend through Diplomat and it is

discoverable by the other services. Settings page, which acts as a container service to load different

micro-frontends, embeds the billing micro-fronted to its viewport when it is requested by the client.

Billing micro-frontend is also working as a container application for another micro-frontend which

is used for churn management. Figure 13 depicts the settings wrapper and billing micro-frontend

entry component. Settings page wrapper is placed left side of the page and billing micro-frontend

is rendered on the center. It consists of different components and shows the billing related

information of the customer.

Figure 13. Billing micro-frontend screenshot

38

5 Analysis

This chapter evaluates Pipedrive’s micro-frontend implementation by comparing operational

metrics such as latency, deployment stability, reliability, and resource usage between micro-

frontend and monolith frontend applications. Billing frontend is selected as a micro-frontend as

the author has direct contribution to the repository. Historical data is gathered using Pipedrive’s

Grafana boards.

5.1 Latency

Figure 13 shows the latency data of two services where Webapp – monolith frontend and billing

micro-frontend – a micro-frontend in the last thirty days period. Average latency of the micro-

frontend is higher than the frontend monolith. While Webapp is able to respond a request in

average of 11ms, billing micro-frontend service takes 65ms to return a response. The reason behind

that billing micro-frontend is to make external calls to load necessary data such as billing

subscriptions, available plans, and promotions whereas in the frontend monolith calls are mostly

local. Although 65ms is within acceptable limits, the response time can be improved by reducing

call chain length and keeping data as local as possible.

Figure 12. Billing micro-frontend response time

Figure 13. Webapp response time

39

5.2 Deployment Stability and Time

Deployment stability is one of the most impactful issues of monolith applications. As it can be

seen from Figure 14, two monoliths of Pipedrive have the stability score of ~50%, which means

that half of the deployments failed during the deployment pipeline. The reason behind the failures

is mostly related to failing tests and timeouts. This creates a bottleneck in development as

developers need to wait for the changes to be deployed before they implement a new feature.

On the contrary, testing is much more easy with micro-frontends as there are less dependencies

compared to monoliths. Pipedrive should focus on getting rid of monolith repositories as there is

nothing much to do to mitigate the problems. It is unrealistic to put an effort to increase the

maintainability of the monolith applications as they have low priority on development projects.

However, bad testing and programming practices can also hinder the stability of the micro-

frontend. As it can be seen from the Figure 14, billing micro-frontend is slightly better than the

monoliths. The reason behind the low stability score is mainly due to end-to-end testing issues.

Figure 14. Billing micro-frontend stability score

Figure 15. Webapp stability score

40

Deployment time is also an important point to investigate. When we take a look at Webapp’s queue

and deployment durations it can be seen that monolith app takes longer to deploy a change to live

environment. Average deployment time of the Webapp is 21 minutes and queue time is 37 minutes.

When billing micro-frontend was analyzed, it can be seen that in terms of deployment time and

queue time it is much faster than the monolith. Average deployment time is 13 minutes. and queue

time is 2 minutes. This also proves that micro-frontends are faster to deploy.

Figure 16. Billing micro-frontend deployment and queue time

Figure 17. Webapp deployment and queue time

41

5.3 Reliability

Reliability is another metric to consider when evaluating the performance of the service. By their

nature, micro-frontends are expected to make more external calls than the monoliths because a

microservice might need to communicate with other microservices. When this is the case, a micro-

frontend’s reliability also depends on other services. Assume a micro-frontend calls another

service with a reliability of 99.9%. This means that out of thousand calls, one will fail and for a

call chain with depth of 10, we are down to 99% reliability. However, if services are configured

correctly, this error margin can be reduced. In Pipdrive’s case the differences vary between

services, and it is hard to conclude that Pipedrive’s frontend monolith is more reliable over the

micro-frontends. For example, according to logs, billing micro-frontend uptime is higher than

Webapp’s. While Webapp had 99.85% uptime, billing frontend had 100% uptime over the 30 days

period.

Figure 16. Billing micro-frontend reliability score

Figure 17. Webapp reliability score

42

5.4 Resource Usage

Resource usage is an important metric for a service. As the number of services increase or there is

a bad engineered architecture, infrastructure of the application might need to work under heavy

load, thus, using more resources and leading to costly operations. When we investigate the resource

usage between monoliths and micro-frontends, we discovered that monoliths might outperform

micro-frontends in edge cases like a network call that transfers a large data, but this case is not

likely to happen if the system is designed properly. In most cases, the resource usage is lower with

micro-frontend. With monolith, number of instances must be scaled even if one functionality is

under high load while the other functionality might perform well. On the other hand,

microservices are isolated to specific functionality and easier to scale. However, for micro-

frontends this might be not relevant, since they are just static servers.

Using Docker and virtual machines adds overhead to resource usage of the service but also help

to allocate resources in a smarter way. Moreover, log aggregation, monitoring, and image

orchestration also increase the resource usage.

Figure 18. Resource usage graph

As seen in Figure 16, when we ran the queries for Kubernetes cluster memory usages for Webapp

and billing micro-frontend, we discovered that Webapp’s CPU usage is higher than billing micro-

frontend. The values might differ for different clusters, but monolith consumes more CPU than the

micro-frontend in general.

43

6 Conclusion

As web browsers get increasingly powerful and new frontend frameworks emerge, frontend

applications have started to handle more business logic than ever. In this kind of situation, many

companies faced with scalability problems with their frontend applications as their frontend teams

and business requirements grew. Since maintaining the monolith application is a costly business,

developers started to search for different approaches to solve the bottleneck. Implementing the

microservices approach to frontend monoliths proved to be an effective method for many

companies. However, micro-frontend is not the “silver bullet” to any scalability issues. Small

companies might benefit more from monolith architecture than micro-frontend services.

The case study discussed how Pipedrive made its transition from having a frontend monolith to

micro-frontends architecture. The thesis also explained the key components and concepts that form

Pipedrive’s micro-frontends architecture such as Diplomat library, Jura, Micro-frontends

components and ConventionUI. This study provides insights for Pipedrive’s historical

improvements on the frontend application.

In conclusion, by providing quantitative metrics, the study helped to reveal Pipedrive’s

performance with micro-frontend services and monoliths. The study showed that micro-frontend

does better in terms of deployment stability, resource usage and reliability. On the other hand,

monoliths are better with latency. Last but not least, presence of the legacy code and architectural

limitations, which are still present in the ecosystem, Pipedrive’s switch to micro-frontend

architecture is not yet perfect. Challenges and improvement areas are still current for Pipedrive.

6.1 Future Work

As stated in the conclusion part, Pipedrive’s micro-frontend architecture has improvement areas

to be addressed. First of all, there are still some views working inside the monolith, and

maintaining those views requires an effort as they are legacy code. A small number of people are

familiar with it, and monolith deployments are far from being acceptable. Both for performance

and organizational concerns, Pipedrive should get rid of views in the monolith parts.

Creating a new micro-frontend service and connecting it to Pipedrive’s development and

deployment ecosystem takes too much time and requires lots of configurations. There are several

boilerplate codes for creating the service, but they are not unified, and this creates maintainability

44

and inconsistency problems across the frontend services. Setting up a new micro-frontend service

should be simplified and supported with up-to-date documentation.

The loading time of the services is not so fast because currently unchanged vendors, libraries, and

bundles are downloaded after each deploy since the version of the container changes, but not the

actual code. Moreover, there is no standardized optimization for the bundle size of the services.

Because of that, some services have a bigger bundle size than others, and it slows down the loading

time.

Asset registration is bound to the Diplomat library, which forces developers to upgrade all the

services if there is a bug fix or some other change in the library. This problem has already created

an incident; therefore, asset registration should be decoupled from the diplomat library.

45

7 References

[1] B. Myers, "The Strengths and Benefits of Micro Frontends," [Online]. Available:
https://www.toptal.com/front-end/micro-frontends-strengths-benefits. [Accessed 15 March
2020].

[2] L. Mezzalira, "Micro-frontends decisions framework," 22 December 2019. [Online].
Available: https://lucamezzalira.com/2019/12/22/micro-frontends-decisions-framework/.
[Accessed 20 May 2020].

[3] L. Mezzalira, "Identifying micro-frontends in our applications," 21 May 2019. [Online].
Available: https://medium.com/dazn-tech/identifying-micro-frontends-in-our-applications-
4b4995f39257. [Accessed 27 March 2020].

[4] L. Mezzalira, "Micro-frontends in context," 13 May 2020. [Online]. Available:
https://increment.com/frontend/micro-frontends-in-context/. [Accessed 28 July 2020].

[5] L. Mezzalira, Building Micro-Frontends, O'Reilly, 2020.

[6] Pipedrive, "Pipedrive rated #1 CRM in two leading industry quadrants," 11 May 2019.
[Online]. Available: https://www.pipedrive.com/en/newsroom/pipedrive-rated-1-crm-in-
two-leading-industry-quadrants. [Accessed 20 March 2020].

[7] M. Klusch, "Service Discovery," in Network Data Collected via Web, Springer, Editors: R.
Alhajj, J. Rokne, 2014.

[8] L. Mezzalira, S. Peltonen and D. Taibi, Motivations, Benefits, and Issues for Adopting
Micro-Frontends: A Multivocal Literature Review, 2020/07/01.

[9] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly Media,
1st edition, O’Reilly Media, 2015.

[10] S. Newman, The Principles of Microservices, O'Reilly Media, Inc, 2015.

[11] J. Bogard, "Composite UIs for Microservices: Vertical Slice APIs," 15 May 2019.
[Online]. Available: https://jimmybogard.com/composite-uis-for-microservices-vertical-
slice-apis/. [Accessed 09 June 2020].

[12] J. Colin, "Front-End Micro Services," 06 December 2018. [Online]. Available:
https://engineering.zalando.com/posts/2018/12/front-end-micro-services.html. [Accessed
10 July 2020].

[13] R. Gaur, "Breaking down the last Monolith-Micro Frontends," 24 August 2019. [Online].
Available: https://dev.to/aregee/breaking-down-the-last-monolith-micro-frontends-hd4.
[Accessed 12 April 2020].

[14] M. Geers, "Micro Frontends - extending the microservice idea to frontend development,"
2019. [Online]. Available: https://micro-frontends.org/. [Accessed 20 May 2020].

[15] P. Huang, "Micro-Frontend Architecture in Action with Six Ways," The DEV Community,
2019 June 2019. [Online]. Available: https://dev.to/phodal/micro-frontend-architecture-in-
action-4n60. [Accessed 10 June 2020].

46

[16] C. Jackson, "Micro Frontends," 2019. [Online]. Available:
https://martinfowler.com/articles/micro-frontends.html. [Accessed 20 May 2020].

[17] Luigi, "A better answer to distributed UI development - secure and infinitely scalable.,"
SAP, [Online]. Available: https://luigi-project.io/about. [Accessed 21 July 2020].

[18] L. Revill, "Why Web Components Are so Important," Medium, 10 June 2016. [Online].
Available: https://blog.revillweb.com/why-web-components-are-so-important-
66ad0bd4807a. [Accessed 21 March 2020].

[19] P. Senders, "Front-end Microservices at HelloFresh," 15 August 2017. [Online]. Available:
Front-end Microservices at HelloFresh. [Accessed 20 July 2020].

[20] Z. Tech, "Project Mosaic | Microservices for the Frontend," Zalando, 2016. [Online].
Available: https://www.mosaic9.org/. [Accessed 15 March 2020].

[21] ThoughtWorks, "Micro Frontends," 2016. [Online]. Available:
https://www.thoughtworks.com/radar/techniques/micro-frontends. [Accessed 20 March
2020].

[22] M. Tsimelzon, B. Bill Weihl, J. Chung, D. Frantz, J. Basso, C. Newton, M. Hale, L. Jacobs
and C. O'Connell, "ESI Language Specification 1.0," 04 August 2001. [Online]. Available:
https://www.w3.org/TR/esi-lang/. [Accessed 12 March 2020].

[23] C. Jaspan, M. Jorde, A. Knight, C. Sadowski, E. K. Smith, C. Winter and E. Murphy-Hill,
"Advantages and Disadvantages of a Monolithic Repository," in 2018 ACM/IEEE 40th
International Conference on Software Engineering: Software Engineering in Practice,
2018.

[24] A. Messina, R. Rizzo, P. Storniolo and A. Urso, "A Simplified Database Pattern for the," in
The Eighth International Conference on Advances in Databases, Knowledge, and Data
Applications, 2016.

[25] S. Munira, A. Y. Nageye and A. F. Haque, "Content Delivery Network Architecture and
Load," in ICERIE 2017, Bangladesh, 2017.

[26] "Getting Started," [Online]. Available: https://backbonejs.org/. [Accessed 25 July 2020].

[27] "Introduction to Consul," [Online]. Available: https://www.consul.io/intro. [Accessed 25
July 2020].

47

8 Appendix

Non-exclusive licence to reproduce thesis and make thesis public

I, Berker Demirer,
 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives
until the expiry of the term of copyright,

Scaling Up a Frontend Monolith: Pipedrive Case Study,
(title of thesis)

supervised by Kadir Aktaş, Prof. Gholamreza Anbarjafari, Prof. Satish Srirama
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital
archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving
appropriate credit to the author, to reproduce, distribute the work and communicate it to the
public, and prohibits the creation of derivative works and any commercial use of the work until
the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual
property rights or rights arising from the personal data protection legislation.

Berker Demirer
10/08/2020

