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Content based analysis of compositionality in Vision Transformers

Abstract:
Neural Network models have achieved state of the art results in various tasks related to
vision and language, there are still questions regarding their logical reasoning capabilities.
In particular, its not clear whether these models can reason beyond using analogy. For
example, in an image captioning model, the model can either learn to correlate a scene
representation to a caption i.e. text space, or the model could learn to bind objects
explicitly and the utilise the explicit composition of individual representations. The
inability of models to perform the later has been related to their failures to generalise
on wider scenarios in various tasks. Transformer based models have achieved high
performance in various language and vision tasks. Their success has been accredited to
their ability to model long range relations between sequences. But in vision transformers
there has been a discussion that the use of patches as tokens and the interaction between
them, gives them an ability to flexibly bind and model compositional relations between
various objects at different distances. Hence, showing aspects on explicit compositional
abilities. In this thesis, we perform experiments on the Transformer (VIT) based vision
encoder of an image captioning model. In particular we probe the internal representation
of the encoder at various layers to examine if a single token captures the representation of
1) an object 2) related objects in scene 3) composition of two objects in the scene. In our
results we find some evidence to hint binding of object properties into a single token as
the image is processed by the transformer. Further, this work provides a list of methods
to create and setup a dataset to study internal compositionality in Vision Transformers
models and suggests future lines of study to expand this analysis.

Keywords:
Transformers, Vision transformer, compositionality, computer vision, neural networks,
image captioning models

CERCS: P176 - Artificial Intelligence

Sisupõhine analüüs Vision Transformerite kompositsioonilisusest
Lühikokkuvõte:

Närvivõrgu (Neural Network) mudelid on saavutanud tipptasemel tulemusi mitmesu-
gustes ülesannetes seoses nägemise ja keelealase tööga, kuid nende loogilise mõtlemise
võime kohta on endiselt rida küsimusi. Pole selge, kas need mudelid suudavad analoogia
kasutamisest kaugemale mõelda. Näiteks, kas pildi pealkirjastamise mudelis suudab
mudel õppida korreleerima stseeni esitust pealkirjaga, st tekstiruumiga, või suudab mudel
õppida objekte siduma selgesõnaliselt ja kasutama individuaalsete esituste selget kompo-
sitsiooni. Mudelite suutmatus viimast teostada on seostatud nende ülesannete laiemate
stsenaariumide generaliseerumise ebaõnnestumisega. Transformer-põhised mudelid on
saavutanud kõrge jõudluse erinevates keele- ja nägemisega seotud ülesannetes. Nende
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edu on omistatud nende võimele modelleerida pikamaa suhteid jadade vahel. Kuid Vision
Transformer käsitlevas arutelus on öeldud, et paikade (patches) kasutamine märkidena
(token) ja nende vaheline koostoime annab neile võime paindlikult siduda ja modelleerida
kompositsioonilisi suhteid erinevate objekide vahel erinevatel kaugustel. Seetõttu näita-
vad need mudelid selget kompositisoonivõimet. Käesolevas lõputöös viime läbi katseid
pildi pealkirjastamise mudeli Transformer (VIT) põhise nägemise kodeerija peal. Eelkõi-
ge uurime sisemist esitust kodeerija eri kihtidel, et uurida, kas üks märk kajastab esituse
1) objekti 2) stseenis seotud objekte 3) kahte stseenis oleva objekti kompositsiooni. Meie
tulemuste põhjal leiame mõningaid tõendeid, mis viitavad, et transformaatorit töödeldes
seotakse objekti omadused ühe märgiga (token). Lisaks pakub see töö meetodite loetelu
andmestiku loomiseks ja seadistamiseks, et uurida Vision Transformer mudelite sisemist
kompositsioonilisust ning soovitab selle analüüsi laiendamiseks tulevasi uuringusuundi.

Võtmesõnad:
Transformerid, Vision transformer, kompositsioonilisus, arvutinägemine, närvivõrgud,
pildi pealkirjade mudelid

CERCS: P176 - Tehisintellekt
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1 Introduction
Compositionality is a fundamental aspect in human intelligence that allows us to under-
stand sentences from a set of words and the material world from a set of objects. Humans
are capable of learning complex concepts by combining known basic ones both in the
language and vision domain. The sentence “Two boys in the rain with the youngest
holding a large umbrella” contains not only a description of objects portrayed in the
scene(nouns) but the attributes which describe them (adjectives) and the relation between
the parts (a verb in this case - boys holding a large umbrella). The composition of these
parts represent the whole scene and can be easily interpreted by humans both through
reading the description or by looking at the image. Computers, however, may or may not
perceive this scene the same way.

Recent developments in Computer Vision (CV) and Natural Language Processing
(NLP) are based on neural networks with less inductive bias along with self-supervised
learning and massive datasets[SVB+21, CSDS21, TSF+16]. Transformers[VSP+17] are
capable of learning relationships between data to perform several tasks such as image
classification and machine translation at high level and quickly became the state-of-the-art
architecture for both CV and NLP.

Despite its success, little is known about what such models learn and what type of
basic knowledge is built internally in order to execute a complex task such as image
captioning. While popular benchmarks for computer vision tasks[RDS+15] are the
standard method for testing the algorithm’s performance, they do not encompass compo-
sitional understanding. For example, is a captioning model capable of distinguishing the
sentences “the horse is eating the grass” and “the grass is eating the horse”? By doing
that, does it encode compositional representation of the concepts internally?

Based on the literature about compositionality in neural networks, we explore the
internal representation of concepts in a multi-modal network that combines visual and
text information to perform image captioning. Specifically, we test whether tokens in the
Vision transformer[DBK+20] encoder acquire representations combining the information
from two or more objects. Next, we devise a few experiments containing the following
relationships:

• Person has/used Accessory

• Kitchenware on Dining table

• Person eats/holds Food table and Food on Dining table

Lastly, we probe image captioning models based on transformers to understand if they
are able to encode two concepts internally in order to derive complex answers.

Our analysis may provide clues on what vision models learn about visual perception
helping us understand why models succeed or fail.

Our main contributions are:
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• Pixel-wise (or token-wise) compositionality analysis of Transformers-based cap-
tion models;

• Evaluation of different methods to extract COCO[LMB+14] subsets for analysing
compositionality, in particular, interaction between the objects in an image.

In section 2 we explore the literature regarding Transformers, image captioning and
decoding. In section 3 we briefly describe other related works on compositionality in
transformers. Section 4 shows the setup of our experiments in regards to the network
used, dataset, internal representation and probing. Then on section 5 we share our results
and in section 6 we share our main ideas about this work and how we can improve it.
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2 Background
In this section we will cover the core concepts used in our work, how they connect to
each other in the image captioning task, and how we plan to test compositionality in the
Vision Transformer-based captioning model.

2.1 Neural networks
Neural networks are a type of machine learning algorithm loosely based on the structure
and function of the human brain. It consists of interconnected nodes (neurons) organized
in layers that process information and can learn how to represent complex functions. A
feed forward neural network (FFNN) processes information in only one direction, from
input layer through one or several hidden layers to the output layer, without feedback
loops. In supervised learning we use the backpropagation algorithm to calculate the
gradient of the error with respect to each node, and then use an optimization algorithm,
such as gradient descent, to update the original weights of each node to minimize the
error. This process of learning how to produce better outputs is referred to as the training
process of a neural network. Different neural network architectures are used today in a
variety of tasks, such as image classification and natural language processing (NLP).

2.2 Transformers neural networks
Transformers[VSP+17] were a major breakthrough in NLP tasks such as language
translation. It employs self-attention to capture long range dependencies between words,
calculating the importance of the elements in the sentence with respect to each other. In
language translation tasks, the embedding of each word (token) has a score calculated
through query (q), key (k) and value (v) vectors, where the result is the product of the
query vector (a token in a certain position) with the key vector of the word we are
scoring. The score allows the network to understand how much focus other parts of
the input sequence need in reference to a word in a certain position. The scores are
passed through a softmax function to obtain weights on the values. This operation can be
done by packing the queries into a matrix Q, and key and values into matrices K and V ,
respectively. The attention is calculated as in equation 1:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Where
√
dk is the dimension of the key vector k and query vector q.

The result of the attention function is multiplied with the value vector, effectively
removing focus of irrelevant words based on self-attention. Lastly they are summed up to
produce the output of the self-attention layer. In a vanilla Transformers Encoder (Figure
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1) block there is a self-attention layer followed by a Feed Forward Neural Network,
with the addition of skip connection and normalization to improve performance. In the
original implementation of Transformers used for machine translation, there is a decoder
which consists of a stack of layers performing self-attention with an additional block that
performs attention calculation over the output of the encoder block.

Figure 1. The transformer model architecture originally proposed for machine translation.

2.3 Vision Transformers
Vision Transformers[DBK+20], ViT, apply the same core concepts of self-attention in
the image domain, by splitting the image into several fixed-size tokens and computing
the importance of them with respect to each other. These tokens are flattened, becoming
a series of 1D vectors, and then a special token called CLS is inserted in the beginning of
the sequence of patches. This sequence of vectors is linearly projected and enriched with
positional embeddings, and then fed into a series of stacked Transformer Encoders.

The vanilla Transformer Encoder employs several self-attention layers in parallel,
called multi-head attention, that allows the model to attend to information from different
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representation sub-spaces at different positions. The output of each block is called a
hidden state and it has the same dimensionality as the input sequence. The input is
processed by each Transformer block, sequentially, until it reaches the last one. In
the original ViT used for image classification (Figure 2), an extra FFNN is added to
process the CLS token and output class scores. This token can be seen as a learnable
representation of the entire image, and its position at the beginning of the sequence
ensures it receives special attention from the transformer during processing. The original
ViT has several configurations with 12, 24 and 32 stacked Transformers blocks, called
ViT-Base, ViT-Large and ViT-Huge, respectively.

Figure 2. Vision Transformer (ViT) proposed for image classification.

2.4 Image captioning
Image captioning task is an intersection of NLP and computer vision, where the model
has to describe the input image in natural language. In computer vision, CNNs[KSH17,
SZ14] are a type of neural network that uses specialized layers that perform convolutions.
They became popular and fomented the development of vision based models to human
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level in many tasks. CNNs are able to identify features and patterns in images and are
used to output a fixed length vector that can be used for other downstream tasks such
as object classification and detection. Some works[VTBE15] took advantage of CNNs
to embed images into a feature vector, and then use a language model on top of that
to predict captions. In [VTBE15], an encoder decoder approach is used with CNN as
encoder followed by a recurrent neural network (RNN) decoder that generates sentences.
Later, [XBK+15] added an attention mechanism to the RNN decoder and improved the
original work.

Current state of the art image captioning models, such as [LXT+22] and OFA[WYM+22],
use an encoder-decoder architecture with different implementations of Transformers.
In a simplified architecture, the encoder model encodes the image into a sequence of
embeddings, while the decoder generates the caption. Cross-attention is frequently used
to combine the cross-modal (image, text) embeddings and its calculations are the same
as self-attention, but with two inputs.

In our work we use an encoder-decoder transformers-based captioning model[Kum22]
with a pre-trained ViT-Base as the Encoder and a pre-trained GPT-2[RWC+19] decoder.
A cross-attention module is added to calculate the importance of the output of the Trans-
former encoder (ViT) in regards to the text processed by the decoder. Figure 3 shows
the architecture of the model and in section 4.1 we explore how we chose this network.
The whole model is then fine tuned using the COCO dataset[LMB+14] including images
and captions. This architecture is simple but robust, since it employs two components
which achieve near state-of-the-art results in their vision and language tasks separately.
Other vision and language transformers that can be used for image captioning, such
as VisualBERT[LYY+19], ViLBERT[LBPL19], use region features extracted from in-
termediate layers of a Faster R-CNN[RHGS15] to select image regions and feed into
BERT[DCLT18].

2.5 Decoding and probing methods
Decoding, in general terms, is the process of translating information from one format
into another that is more useful or readable. In our daily lives it happens when a
compressed video plays on our computer or a compressed audio file is uncompressed
to be audible. Brain neural activity decoding uses machine learning to recognize brain
activities via Electroencephalogram (EEG) or functional magnetic resonance imaging
(fMRI)[DCDN22], for example. A variety of deep neural networks have been used to
decode brain activity, such as decoding natural images from fMRI data. Along the same
lines, our work tries to decode visual compositionality from internal representations of
Transformers.

In neural networks, probing has been used to better understand the internal dynamics
of different architectures [AB16, HL19] and can be a powerful tool to infer whether a
certain property was encoded in the representation. For that, a separate supervised model
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is trained to predict, or decode, properties from internal representations. it is assumed
a high evaluation accuracy will imply the probe has evidence the property was indeed
encoded internally. Language models have been explored[BDD+17] to assess the quality
of its internal representations for decoding part-of-speech, semantic and morphological
tagging tasks. In these tasks the aim is to understand whether the neural network, often
seen as a black box, is encoding concepts from language that humans know of and
are useful for language understanding. Insights obtained from probing may help us
understand the reason models succeed or fail and what they learned.

Based on the concepts presented above, our work uses probes to test whether a
vision transformer-based image captioning model is capable of representing internally
compositionality, that is the meaning of the whole is a function of the meanings of its
parts. We devise three tasks and analyze the evaluation accuracy of our probes under
different settings to validate our hypothesis. In the next section we explore the literature
related to compositionality in vision and language models.
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3 Related work
Recently the interest in understanding general properties of vision transformers has
grown and several works explore whether these models are capable of learning complex
relations from data. Humans are able to interpret a natural scene as a function of its
parts: we parse an image to understand the single objects present in the scene, what
attributes they have, how they interact with each other and in which order they interact.
In language, we are also capable of interpreting individual parts of text and composing
complex representations from it. As an example, we naturally understand both from
vision and text that the sentence “there is a book on the table” contains an object (book)
on top (relation) of another object (table). This simple example can be challenging for
computers to understand, despite the high accuracy deep learning models can achieve in
tasks such as image classification, object detection and image captioning. We theorize
models combining two streams of information, image and text, trained for tasks such
as Visual Question Answering (VQA) and image captioning, should understand basic
concepts and relationships in order to perform their tasks competently.

In this section we briefly explore a few popular datasets used in vision and language
models, compositionality in neural networks and additional work related to reasoning.

3.1 Datasets for vision and language models
Vision and Language models (VLMs) have made incredible progress in recent years
boosted by the usage of massive datasets used in self-supervised learning. These datasets
all have millions of images sourced mainly from the web. CC-12M[CSDS21]: The
Conceptual Captions 12M dataset is a large-scale database of image captions, consisting
of over 12 million images and their captions. The images in the dataset are sourced from
the web and cover a wide range of concepts and topics. Each annotated image provides a
rich source of training data for image captioning and other vision and language tasks.
YFCC100M[TSF+16]: The Yahoo Flickr Creative Commons 100 Million dataset is
a massive collection of images and videos, consisting of over 100 million items. The
dataset was created by collecting publicly available content from Flickr and other sources.
The dataset has been used for training and evaluating vision and language models. Laion-
400m[SVB+21]: A collection of images and corresponding text descriptions, consisting
of over 400 million examples. The dataset was also created by mining images and text
from the web and other sources, but then filtered using CLIP[RKH+21].

3.2 Benchmarks for compositionality in neural networks
Along with the development of VLMs came the interest in understanding what these
high-performance neural networks learn about vision. Deep learning is by no means
easy to interpret, and such complex models accentuate the problem of understanding
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the decisions made by machine learning algorithms. Insights on this area may help us
comprehend why models succeed or fail and what they learned. Currently there is no
standard benchmark for testing compositionality in neural networks. However, recent
works propose different datasets for testing several properties related to compositionality
and reasoning in vision and language models.

3.2.1 Winoground

Winoground[TJB+22] proposes a benchmark to evaluate visio-linguistic compositional
reasoning, where two captions containing the same set of words describe two different
scenes. It measures how well models can distinguish between the sentences such as,
"It’s a fire truck" and "it’s a truck fire", when two images depicting the exact scene are
presented. In order to have a good performance in the benchmark models must be able to
acquire knowledge from text and images and encode compositional structure internally.
Their work defines a combined metric considering:

• Text score: Measures whether a model can identify the correct caption;

• Image score: Measures whether the model can select the correct image given a
caption.

They find that all vision and language models perform barely better than chance, with
the highest scores being ∼50% and ∼70% worse than humans perform in text score and
image score respectively. The hand-curated dataset proposed by their work might serve
as a useful evaluation dataset for compositional reasoning, however it is limited in size
with only 400 examples.

3.2.2 CREPE

CREPE[MHG+22] (Compositional REPresentation Evaluation) introduces a composi-
tionality evaluation benchmark based on two fundamental aspects of compositionality:
systematicity and productivity. Systematicity evaluates how a model is able to recombine
atoms (objects, relationships and attributes) and their composition (compounds). For
example, a set of atoms in a scene can be palm, three, with, flowers and a compound
derived from these atoms would be palm trees with flowers. Productivity measures how
well a model can match a given image with the corresponding caption regardless of
the complexity (number of atoms in the scene). In their work they use popular training
sets CC-12M[CSDS21], YFCC-15M[TSF+16], and LAION-400M[SVB+21] to identify
atoms and compounds as well as split image-text pairs in nine levels of complexity ac-
cording to the number of atoms present in the caption. Tests with different models, such
as FLAVA[SHG+22] and CLIP[RKH+21], demonstrate results in both aspects decrease
along with input complexity.
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3.2.3 Attribution, Relation and Order (ARO) benchmark

VLMs demonstrated high performance on important benchmarks however this does not
indicate the model has understanding of compositional features in text or images. The
work described in [YBK+22] is highly pertinent to the field of visual representation
learning, their work has effectively identified failure modes in most vision-language
models and suggested a reasonable benchmark for evaluating Attribution, Relation and
Order (ARO). Humans naturally scan a scene and perceive relation between objects but
it is not clear whether ML algorithms can understand at the same level. They test order
understanding, such as "dog is behind the three" versus "three is behind the dog" and
“the horse is eating the grass” versus “the grass is eating the horse”.

The same study also tests attribution of properties to objects, such as "the crouched
cat and the open door" and "the open cat and the crouched door". Lastly, they test order
sensitivity to evaluate whether the model chooses the correct ordering of words within
a caption, as in “remarkable scene with a blue ball behind a blue scene” and “green
ball with a remarkable chair behind a blue scene”. They conclude VLMs show poor
compositional and order understanding despite the high accuracy in text-image retrieval
evaluation on large scale datasets. One of their proposals to improve compositionality
is to fine-tune VLMs with sampled strong alternative images and also targeted negative
captions (swapping nouns or verbs, such as “The horse is eating the grass and the zebra
is drinking the water” becomes “The zebra is eating the grass and the horse is drinking
the water”). Their experiments with CLIP lead to better results on their proposed ARO
benchmark without hurting the performance of the model.

3.2.4 Visual genome

Visual genome is an effort to combine COCO[LMB+14] and YFCC100M[TSF+16]
datasets to create a dense set of descriptions of the scene and present it in a structured
representation, denoted as a scene graph representation. The visual genome dataset
is able to describe different regions of the image as subgraphs, connecting them to its
corresponding region description (bounding boxes) and text description (captions). Their
work provides structured data to understand interactions between objects in an image.

3.3 Additional work on reasoning and compositionality
Pre-trained vision and language models are regarded as capable of solving complex
tasks, however [PGFC20] suggests that understanding their reasoning and grounding
capabilities requires more target investigation on specific phenomena. In their work, they
investigate whether VLMs can detect and categorize instances of objects by testing the
capability of counting entities in an image in different pre-trained vision and language
models. They report sub-optimal performance in all models investigated, even after fine
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tuning on counting data.
In [LYMP22] it is created a synthetic dataset containing simple objects, such as 3D

geometric shapes with different colors, and investigates whether CLIP can bind adjectives
to correct objects as opposed to representing the scene as a collection of concepts. They
test it with a single composition (“red cube”), multiple (“red cube and blue sphere”)
composition, and relational composition (“cube behind sphere”). Results demonstrate
CLIP performs well on single adjective-noun compositions but it does not achieve good
results in the multiple adjective and relational composition tasks.

Our work takes inspiration from the literature reviewed on compositionality and
investigates how a Vision Transformers encodes relationships between two objects in an
image. Our hypothesis is that there are specific internal parts of the Transformer Encoder
that are combining information of multiple objects to represent the composition. We try
to use a linear probing method to find such representation where you can decode the
composite class of two objects. In the next section we detail the experiments we devised
to test our hypothesis and what results we expect from it.
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4 Experiments
For the purpose of validating that Vision Transformers indeed encode compositional
features we analyze ViT based models that perform different tasks related to images.
We review a few neural network architectures applied to different computer vision tasks
that require the network to learn the representation of objects. Next, we create a dataset
containing images that can represent scenes, such as “[noun] [verb] [noun]” (e.g.: “a
woman holding a yellow umbrella”), that can be used for analyzing the internal represen-
tation of the transformer encoder. Then we present different methods for selecting the
token that might hold information about compositionality, and design a probe to test our
hypothesis.

4.1 Network selection
We start by analyzing different architectures that employ Vision Transformer for image
encoding that can be suitable for analysis. Works such as [NRK+21] and [MBZ+22]
analyze the internal properties of vision transformers with respect to image classification
task and shed some light on how patches interact with each other, and also shows
how a few tokens are able to be more discriminative than others with regular self-
attention[MBZ+22]. [NRK+21] shows ViT can encode information about shape for
image classification. We understand a base ViT encoder trained for image classification
might not have the capability of identifying multiple objects and, and consequently its
relations, therefore we focus on Transformers-based segmentation models.

4.1.1 Instance and semantic segmentation models

Instance segmentation requires predicting pixel-wise class and instance information
across an image, making a task where the network has to learn how to encode character-
istics of objects with regards to their location, shape, color. Segmention Objects with
TRansformers (SOTR)[GNQL21] is a transformer-based instance segmentation model
that uses a Feature Pyramid Network (FPN) to extract low-level feature representation
and Transformers for capturing long-range dependencies between objects. SEgmentation
TRansformer (SETR)[ZLZ+21] on the other hand, relies solely on a pure transformer
for encoding the image in a sequence-to-sequence model, achieving state-of-the-art
results in semantic segmentation. In general, segmentation models do not expand their
capabilities of reasoning too far since the data used to train is composed of images
with their locations, plus a limited number of classes in which the model will predict a
score. Next, we proceed to multi-modal networks which combine information from two
different modalities (e.g.: image-text) to perform tasks such as image captioning and
visual question answering.
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4.1.2 Image captioning models

Image captioning models, as described in the section 2, combine image and text to learn
meaningful representations which can be used to generate a description (caption) that
describes the visual content in an image. A ViT-based encoder splits the input image
in patches of size 16x16, resulting in 196 tokens, and applies multi-headed attention,
so it can learn global contextual information with respect to each patch of the image.
This allows us to directly analyze which parts of the image were attended to in the
transformer encoder. In some works the image transformer encoder takes as input visual
representations of objects produced by a pre-trained object detection model, such as
faster R-CNN[RHGS15], therefore the self-attention mechanism does not attend to all
regions of the image directly.

That being said, we leverage the fact that a multi-modal network has to represent
complex relationships learned from language, so it can output meaningful and readable
sentences, with the addition of learning which regions of the image are connected to each
part of the text. In our work we use an encoder-decoder transformers-based captioning
model with a pre-trained ViT-Base as the Encoder and a pre-trained GPT2[RWC+19]
decoder (Fig: 3). A cross-attention module is added to calculate the importance of
the output of the Transformer encoder (ViT) in regards to the text processed by the
decoder. This setup provides a clean testbed for experimentation and allows us to
further investigate the internal representation of the Image encoder (ViT) and hypothesise
whether it learns composition to produce its outputs. The model[Kum22] was fine tuned
on COCO captions, and its performance scores will be shared in https://github.com/
bodias/vision-transformers-analysis. Samples of images and predictions done
by the model are shared in 17.

Figure 3. Vision transformers-based image captioning model.
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4.2 Dataset
Experimental evaluations are conducted on the COCO dataset[LMB+14] (Common
Objects in Context), a large-scale image recognition, segmentation, and captioning
dataset. It contains approximately 130,000 images, each annotated with a set of object
categories, object segmentation, and captions. Images in the COCO dataset portraits a
wide range of common objects and scenes in their natural contexts, and were collected
from a variety of sources including Flickr and other public image collections. The
dataset is then analyzed using image segmentation annotation with the main goal of
understanding which object categories interact with each other (pairs) and how many
images are available in the dataset for each pair. Initially, the only restriction applied
to the data is a minimum presence of two distinct objects, discarding approximately 24
thousand images in this process. From this analysis of object pairs we come up with two
different variations of datasets derived from COCO:

• Single main and multiple secondary objects, such as “Person and Accessories”,
portraying relations in the form of “Person [verb] object”, “Person’s [object]”
or any other relation that involves a “person” with objects in the super category
“accessory”. We refer to this dataset as Single object dataset in our work;

• Multiple main objects interacting with multiple secondary objects, such as
“Person and Food” and “Dining table and Food”, where food is a set of more than
one object. We refer to this dataset as Multiple objects dataset.

In the following session we describe in detail each dataset and how we plan to use it
for testing compositionality in vision transformers.

4.2.1 Single object dataset

The first attempt was to capture the relationship of person and different objects commonly
seen with people in images. The majority of the object pairs analyzed contain a person
with another object, and several contain at least 1000 images per pair. In the COCO
dataset there are supercategories and one of them, named accessory, contains only objects
regularly associated with people: backpack, handbag, tie, umbrella. We then form 4
different compositions in the form of “person [interacts with] {backpack, handbag, tie,
umbrella}. The main idea is to capture a person plus an object interacting with it. We
refer to this subset of data as Person-Accessory.

Next, we locate another pair of objects in the main COCO dataset that contains at
least 1000 images per pair, excluding images with “person” on it. We observe the object
“Dining table” appears frequently with a group of “Kitchenware”, such as {bottle, bowl,
fork, knife}. We exclude images containing people in order to have a complete disjoint
dataset to test and compare with the first one. We form 4 different compositions in the
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form of “dining table [interacts with] {bottle, bowl, fork, knife}". The main idea is to
capture a dining table with an object interacting with it. We refer to this subset of data as
Dining table-Kitchenware.

In both datasets, we are interested in finding a single token that represents the
concepts mapped. Since we have two disjoint sets, Person-Accessory and Dining table-
Kitchenware, we are probing them separately. Figure 4 shows examples of images and
captions for both datasets generated with only one main object.

Figure 4. Samples of images filtered from COCO dataset to portray the relation Person-
Accessories (upper) and Dining table-Kitchenware (bottom). Caption shown is one of
the 5 captions available in the annotations. In bold, the objects we are interested in the
image.

4.2.2 Multiple objects dataset

The second dataset should portrait a more complex scenario containing two main objects
interacting with two secondary objects. From the pairs in the COCO dataset, a few could
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represent a meaningful relationship such as “knife and dining table” and “fork and dining
table”, however, they are not frequent in the dataset. Another limitation was the fact
images should be used only once to represent a relationship. In an image containing
“person, backpack and umbrella”, the token selected to represent the pair “person and
backpack” cannot be used to represent “person and umbrella”, otherwise the same input
will have two different labels in the probe training data. This poses another limitation to
the data available to use, leaving a few pairs to be used for testing the cross relation of
objects.

After filtering the data to account the issues highlighted before, “person” and “dining
table” object classes appear along with “cake” and “pizza” more than 1000 times, leading
to 4 different compositions: “dining table and cake”, “dining table and pizza”, “person
and pizza”, “person and cake”. We refer to this subset of the data as Dining table/Person-
Food for simplicity. This setting allows us to choose different tokens from each object
knowing there is more than one combination for it to occur. In other words, previous
compositions may lead to the conclusion the token from the second object (accessory
and kitchen appliances) is only encoding information from itself. We depict the relation
of the objects under the settings above in Figure 5.

4.2.3 Caption based dataset filtering

Initially, we filtered images from COCO taking into consideration only the category_id
from object segmentation annotations without using captions provided in the dataset.
For example, we assign as Person-Umbrella images where both objects are shown in
the image. Captions in COCO dataset are short texts that describe the image, and often
would mention objects that are relevant to the scene portrayed in it. Since the model we
are investigating was fine tuned on COCO data, we assume samples where the caption
mentions a word that describes the object might lead to a better internal representation.
The filter also helps remove images where objects are very small, partially occluded, or
in the background.

With that in mind, a simple NLP pipeline is devised to extract nouns from captions
and check which objects are present in the text. The pipeline consists of tokenization,
followed by part-of-speech tagging and lemmatization, extracting only the tokens tagged
as nouns. This results in a list of nouns per image, which we can use to detect different
words that have the same meaning. For instance, person could be mentioned in the caption
as [’man’, ’woman’, ’person’, ’girl’, ’boy’, ’couple’]. More sophisticated approaches
could have been applied, such as similarity metric in an embedding space using pre-
trained embeddings, instead of manually inspecting the occurrence of nouns per pair of
objects.

We match the processed object names with the object category name from COCO to
obtain a filtered version of our datasets. We later report in our results the effect of this
filter in the decoding accuracy. The difference of both filtered and non-filtered datasets is
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Figure 5. Multiple objects setting poses a more complex scenario where the same image
might contain the encoded representation of multiple pairs of objects. For example, the
image on the top-right (b) contains a person next to a cake, but also a dining table with a
cake. In our results we analyze if one of the concepts is indeed encoded internally in the
vision transformer. Underlined portions of the captions denote the relation the image is
assigned to. We collect data from Person-Food and Dining-Table food in a manner the
same image is not used in both sets at the same time.

exemplified in Figure 6.

4.3 Feature selection
Once datasets have been defined, we proceed selecting features which will represent the
composition of two objects, and use them to train a simple neural network to act as a
probe. From COCO annotations we have the ground truth segmentation which represents
exactly where the object is located in the image. We use them to identify which image
patches fed into the encoder overlaps with the location of the object being analyzed, and
later use attention maps to define which tokens can be used to represent each object.

In Vision Transformers, attention maps refer to the weights applied to the different
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Figure 6. Different subsets of data. From the COCO dataset we subset images containing
objects belonging to specific classes using category_id (i.e.: id of the object segmentation
annotation). Then, we process the caption and filter images where the category name of
objects match to the caption. Zoomed in on the right side are samples from the subset
Person-Accessory, more precisely Person-Handbag. On the top (in green) is an example
of an image filtered by caption. On the bottom an image where the caption does not
mention handbag (or any variation, such as “bag”). We experiment with different datasets
to understand their effect in our results.

patches of an input image (token) by the self-attention mechanism of the transformer,
as described in section 2. During the self-attention process, the transformer calculates
a set of attention weights for each patch in the input image, indicating how important
each one is for generating the output features of the transformer. These attention weights
can be visualized as a heatmap over the input image, highlighting the regions that are
most relevant for the task the model was trained for. Attention maps are important in
Vision Transformers because they enable us to interpret the internals of the transformer
and provide insight into how it processes visual information.

Our work analyzes attention maps of the Vision transformed-based encoder used in
the caption model to extract relevant information that later can be used for probing. We
call feature extraction pipeline the sequence of the following steps:

Object instance selection: Ensure we are choosing a relevant instance of the object in
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the scene, in case there are many. Relevant token selection and extraction: In the subset
of tokens belonging to the objects analyzed, choose a few of them to be used to represent
the composition.

We used a computer with a 3.6GHz processor and 32GB of RAM, paired with a
Nvidia RTX 3070 with 8GB of VRAM to run parts of the code on GPU, mainly the
captioning model inference. Running all combinations takes approximately 4:45 hours
with the aforementioned hardware, with one of the limiting factors being the size of the
dataset has to fit into the 32GB of RAM available. Next we detail all the parts of the
feature extraction pipeline.

4.3.1 Object instance selection

A common characteristic of the COCO dataset is that images might contain several
instances from the same object (i.e.: several people in the image), leading to problems
when selecting exactly which object should be used for feature extraction. Figure 7
exemplify this issue. Next we define three methods to select the correct object instance.

• Largest object: Considers the area of the object and chooses the largest one.
Simple images with few objects tend to have the object focus of the scene as
the largest. However, complex images with several objects might get confused
between background and relevant objects. This approach takes advantage of how
captions describe objects in the COCO dataset, where they tend to highlight a
few salient objects and omit other parts. The impact of this fact in the analysis is
explored in the discussion section;

• Closest : A variation of the previous one, choosing the second object from the
composition (i.e.: umbrella, for the pair “person and umbrella”) based on euclidean
distance from the centroid of the largest object. Considering the object pairs we
chose, the second object should, in most of the cases, be closer to the main object
to portrait the compositions we are looking for;

• Attention based: Selects the instance which received maximum attention in layer
n, with n = [1, ..12], among all the occurrences of the object. Transformer-based
encoders contain several layers, where the input flows from layer 1 to layer 12
(ViT-B). Since we probe in each layer individually, the instance of the objects
which gets maximum attention in that layer represents the most important based
on self-attention.

In our experiments we combine method 1 and 2 and denote it non-attentive. We
choose the largest main object (person and dining table in our datasets) and its closest
second object. Figure 7 shows the main difference in these object selection approaches
in complex images.
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4.3.2 Relevant token selection and extraction

Given an input image, we are presented with several objects and we know their exact
location from the segmentation annotation. In the previous step, we choose two objects
portrayed in the image that represent a composition. Next, we feed the image into
the captioning model to extract its attention matrices and hidden states per layer. The
standard ViT-Base (ViT-B) encoder used contains 12 layers and 12 attention heads,
hidden dimension size is 768. The attention matrices have size 197x197 (196 images
tokens plus CLS token) containing the calculated attention for the given input, in each
layer and each head, resulting in a tensor size (12, 12, 197, 197). We average the attention
matrices across all heads[DBK+20] since we are not interested in the particular behaviour
of different heads. We analyze the attention the CLS token received with respect to all
patches in the image. In the end we have attention maps which will highlight which
tokens are receiving more attention.

We initiate the process of selecting the internal representation we are probing by
using the location of the objects to produce a boolean mask that will highlight only the
objects being analyzed. This mask is applied on top of the attention matrices to ensure
we analyze only the attention received by tokens from the objects in the composition. In
this step objects that are close to each other might share the same token when analyzing
the original area of the objects. Because of this, we order the objects by size and tokens
assigned to the main object won’t be used in the second. We then have the attention
each object received, in each layer of the encoder, where we can use it to extract the
corresponding internal hidden state. The hidden state at token i represents a state where
the input was processed by a Transformer block, at the selected token. This is the internal
representation we probe to test compositionality.

For training the supervised learning model we use as a probe, different tokens from
the object are selected to compare their performance:

• Minimum attention the object received based on CLS token, referred as Min. object
for simplicity;

• maximum attention the object received based on CLS token, referred as Max.
object for simplicity;

• Random token selected from the object, referred as Random object for simplicity;

• Token which received maximum attention in the whole image (based on CLS),
referred as Max. image for simplicity.

Each one of these tokens is extracted from different layers and later used in the decoding
task.

We extract features vector from images using three different datasets (as defined
in 4.1.1 and 4.1.2), with and without caption filter, for each one we selected an object
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from the composition pair (main, secondary), applied different object instance selection
techniques (Non-attentive, Attention based) and four different methods to select the
internal representation of the transformer encoder (hidden state) that will be used to
represent the compositionality. We visually represent the steps in Figure 7. We run it for
all layers in the encoder to test whether the compositionality emerges from different layers.
This generated 3x2x2x2x4x12=1152 combinations to be tested, each one producing one
representation (feature vector) that we will probe. We train 1152 neural networks to
decode the compositions of objects from extracted feature vectors.

4.4 Decoding ANN/Probes
To test whether tokens from objects bind concepts, we use both single and multiple
objects datasets explained in section 4.1. The single main object with multiple second
objects is a simpler task where tokens from the main object will be used to decode the
second object, i.e the token from person can be used to decode the accessories it relates
to. In the multiple main objects and multiple second objects the setup is more complex,
now pairing two objects, Person and Dining table, with other two objects, cake and
pizza. The hypothesis is that there is one token binding Person plus Accessory, or Person
and Pizza, representing the transformer encoder has learned the composition between
these two objects. The images we analyze contain the representation of a scene, for
example, “A woman eats pizza in a restaurant” (Person eats Pizza), “A man with an
umbrella is walking in the street” (Person with Umbrella) and we hypothesise whether
the transformer encoder is learning the composition of these two nouns internally.

Inspired by [HL19] we try to validate our hypothesis by training supervised models
to predict a property (like compositionality) from the internal representations, a method
called probing. Our neural network is trained with an internal representation of the
objects (feature vectors extracted from tokens) and a label depicting the relation of the
main and secondary object (i.e.: Person-Pizza)). As described earlier in section 4.2, we
run the feature extraction pipeline on the COCO dataset to extract internal representations
of each object pair tested, with different configurations. We later use them as training
data for our decoding neural network.

The architecture used for probing is a Feed-Forward Neural Network with one
hidden layer with 256 neurons followed by a dropout layer with p = 0.5. A shallow
FFNN is used to ensure that the desciminative power of the probe originated from the
token’s representation. A shallow network cannot model complex relationships between
the token and class while training the probe. All models are trained using SGD with
Nesterov momentum, with learningrate = 0.0001, momentum = 0.9 and categorical
crossentropy loss. The network takes as input a feature vector with D = 768, a token
from the encoder hidden states at layerN , and outputs the object pair using softmax
activation. All models trained are a 4-class classifier, since all tasks, Person-Accessory,
Dining table-Kitchenware and Person/Dining table-Food contain four different object
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Figure 7. Feature extraction pipeline for an image containing the composition (per-
son, umbrella), using different methods for object instance selection (Non-Attentive,
Attention-based). The box in red highlights the object selected in the background. On
the last column, signs denote maximum image attention (+, orange), maximum object
attention (+, red), minimum attention ( − , white) and random object token (∗, green).
Better visualized with color. 1Attention map of layer 12 of the encoder. 2Object attention
is normalized and colors won’t match column 3.

pairs. We trained all models for 200 epochs with early stopping, allowing the training
process to halt if the validation loss has not improved after 20 consecutive epochs.

Data to train the supervised models to act as probes are sourced from COCO dataset,
and split into three subsets: Person-Accessory, Dining table-Kitchenware and Person-
/Dining table-Food. Each subset also contains a variant where we filter images where

27



caption and segmented objects match, as described in section 4.1.3. We use all these
datasets to train separate decoding neural networks and report results obtained in section
5.

Train and test split are based on COCO’s train and validation data, where the train
split from COCO is used for train and validation (10%), and the whole original validation
split from COCO is used as test split. We test different settings to find evidence there
is one single token (token from object with maximum, minimum attention, random
token from object and maximum attention token from the entire image) that encodes
the relation of two objects. More details about all different configurations tested is
described in sections 4.2.1 and 4.2.2. The result is 1152 neural networks for each one of
the configurations we tested. Next, we analyze the accuracy of all probes and report the
differences seen in all tested configurations.
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5 Results
This section explores the result of the analysis on the vision Transformer-based captioning
model and provides more details about the series of probes used to verify if they can
encode compositionality internally. We first report results for each subset of the COCO
dataset used (section 4.1), since they depict different objects and compositions. Then
we show the impact of different feature selection strategies: non-attentive and attention-
based object selection (section 4.2.1) and different tokens (section 4.2.2). We also report
the impact of the caption based dataset filter (section 4.1.3) in the results.

5.1 Single object datasets
In this setting two objects are paired together and the main goal is to decode the pair
(main object, secondary object) from different tokens obtained from objects through
the Transformer encoder. As described in section 4.1, after obtaining the subset of data
portraying different compositions, two different datasets are created:

• Person-Accessory: Can we decode the compositions formed by Person and Ac-
cessory with a single token extracted from the Transformer encoder? Where
Accessory = {backpack, handbag, tie, umbrella} and Person = {person}.
Images in this subset portray scenes that can be described as “Person [action]
object”, “Person’s [object]” or any other relation that involves a “person” with
objects in the super category “accessory”. For example, the following description
(caption) would be part of the dataset: “a little girl holds an umbrella”.

• Dinner table-Kitchenware: Can we decode the compositions formed by Dining
table and Kitchenware with a single token extracted from the Transformer en-
coder? Where Kitchenware = {bottle, bowl, cup, knife} and Diningtable =
{diningtable}. Images in this subset portray scenes that can be described as
“object [on] Dinner table” or any other relation that involves a “Dinner table”
with objects in the subset “Kitchenware”. For example, the following description
(caption) would be part of the dataset: “a birthday cake in the shape of a car on top
of a table”.

Since there is only one main object per dataset, decoding the secondary object using
information from the main one could potentially show signs of compositionality. Table 1
presents the best results achieved by probes in both datasets, grouped by token selection
strategy and the object source of the token. With tokens extracted from the main object
(Person or Dining table), we can decode the pairs in Person-Accessory with 60.6%,
66.1% and 62.1% accuracy using, respectively, minimum attention, maximum attention
and random token. With the objects pair Dining table-Kitchenware the accuracy dropped
to 39%, 46.9% and 42.8% under the same settings.
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The decoding FFNN in both datasets performed a 4-class classification problem,
therefore the random guess would yield 25% accuracy. Despite results being above the
random guess baseline, it shows almost 20% in decoding accuracy between both Single
object datasets. In section 6 we discuss the main differences observed and highlight
potential reasons for this disagreement between results in these datasets. Figure 8
highlights average decoding accuracy for all three datasets, in regards to the object source
(main or secondary object), hidden layer and token selected for representation. Individual
scores for each probe are reported in the appendix Figures 19 and 18. In general, accuracy
increases using representations from higher layers of the Vision Transformer encoder,
and all best results reported in Table 1 are obtained from Encoder layers 9 to 11.

Results from decoding the composition from the secondary object might represent
the decoding of the object only, since the information is taken from one of the four
objects depicted in the 4 classes. If we were to set up a decoding task of the objects in
dataset Person-Accessory ({backpack, handbag, tie, umbrella}) it would yield the same
results. In the next section we present the results of the Multiple objects dataset that
should present a more complex scenario for the decoding task.

Table 1. Best decoding accuracy by dataset and token used for representation. Number
in parenthesis denotes the layer where the best score was found.

Dataset Max. image Max. object Min. object Random obj.
Person-Acc.-main 0.512 (11) 0.606 (11) 0.661 (11) 0.621 (11)
Person-Acc.-second 0.507 (11) 0.693 (10) 0.698 (9) 0.725 (10)
Person-Acc. (mean) 0.51 0.65 0.679 0.673
D. table-Kitchen-main 0.352 (11) 0.39 (11) 0.469 (11) 0.428 (11)
D. table-Kitchen-second 0.352 (11) 0.585 (10) 0.601 (9) 0.67 (10)
D. table-Kitchen (mean) 0.352 0.487 0.535 0.549
Person/table-Food-main 0.523 (11) 0.594 (11) 0.822 (11) 0.803 (11)
Person/table-Food-second 0.485 (11) 0.67 (9) 0.707 (11) 0.697 (11)
Person/table-Food (mean) 0.504 0.632 0.765 0.75

5.2 Multiple objects dataset
In the Single objects dataset we present one main object interacting with four secondary
objects, and we decode different tokens to test compositionality. The two datasets used,
Person-Accessory and Dining table-Kitchenware represent two disjoint sets of data,
therefore results are shown separately in the previous section. In the Multiple objects
dataset we arrange two main objects interacting with two secondary objects, as depicted
in Figure 5(Section 4.1.2). In this configuration, the result from decoding the main object
from the second, and vice versa, is more meaningful since objects “Person” and “Dining
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table” appear with the same objects “Cake” and “Pizza”. The dataset Person/Dining
table-Food represents the following compositions:

• Person-Pizza, Person-Cake, Dining table-Pizza, Dining table-Cake: Can we
decode the compositions from a single token extracted from the Transformer
encoder? In this dataset we have examples of the same secondary object (i.e.:
pizza, cake) appearing with “person” and “dining table”.

Results obtained by decoding the compositions using the token from the main object
(Person/Dining table) are higher than the second object, however the difference between
best scores is close to 10%. Table 1 reports best decoding accuracies achieved at
81.7% and 69.7%, for the main object (Person/Dining table) and secondary (Pizza/Cake)
respectively. Figure 8 highlights average decoding accuracy for this dataset, in regards
to the object source (main or secondary object), hidden layer and token selected for
representation. Individual scores for each probe are reported in the appendix in Figures
19 and 18. It is possible to see the influence of different layers, where deeper layers
lead to better decoding accuracy. The performance of the probes in the Multiple objects
dataset is significantly higher than the random guess baseline (25%).

We can make the assumption that by achieving high evaluation accuracy in predicting
the composition (e.g.: “Person with backpack”) from the representation (i.e.: token
from the captioning model) implies the composition was encoded in the representation,
and the probe found it. In both types of compositionality we tested, with single and
multiple objects, it is noticeable that deeper layers are reporting better decoding accuracy.
This is consistent with the findings in the original ViT work[DBK+20] that says deeper
layers attend to most of the image and might contain more information than lower
layers. In this study all tokens we used to test compositionality constantly report better
decoding accuracy as we go deeper in the layers of the Transformer encoder. The effect of
using different layers for selecting different outputs of Transformers block (i.e.: internal
representation) can be seen in Figure 9. In Figure 10 we see the individual decoding
accuracy of all 1152 Neural Networks is spread over a wide range of values. In the next
section we explain the impact of different features used for probing.

5.3 Impact of object selection strategy and caption filter
Images in the COCO dataset will often have several occurrences of the same object and
one of our premises is to use a single token to represent the combination of objects. In
section 4.2.1 we explain the different object selection strategies implemented in this
work to choose the most likely one the captioning model used to generate the image
description. We also have alternative datasets filtered by caption to test whether this filter
results in images that better represent the composition.
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Figure 8. Mean decoding accuracy scores for all datasets, grouped by main and secondary
object, transfomer hidden state layer and token selection strategy.
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Figure 9. Mean decoding accuracy per layer across all experiments.

5.3.1 Caption filtered datasets

In section 4.1 we explain how the subset of COCO was created by selecting images with
pairs of objects based on their category_id. This method ensures both objects in the
pair are present in the image, however it does not guarantee they are relevant for image
captioning, as they might be small, partially ocluded, or totally irrelevant for describing
the image. We apply the caption filter in each one of the three datasets we use and test
whether it impacts the results. Section 4.1.3 and Figure 6 explains in more detail how
the caption filter was developed and applied. In Table 2 we show the number of images
sourced from the COCO dataset and how many can be filtered by caption.

In Figure 11 we observe that employing the caption filter in the dataset leads to
better decoding accuracy in the majority of the datasets on average. This might indicate
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Figure 10. Decoding accuracy per layer, only object tokens.

the quality of the dataset influenced the probe’s results. We present the data split by
object selection strategy to observe whether it impacts the results differently. We discuss
different aspects of the data in section 6.

5.3.2 Object selection strategy

In Figure 12 we see the decoding accuracy difference between the attention-based and
non-attentive object selection methods. A positive difference means the attention-based
selection led to higher decoding accuracy in the probe. The median differences are
close to 0 in all tests. In fact, most of the values in the interquartile range are negative,
indicating using the non-attentive selection is better in these settings. We present results
split by dataset and caption filter (with or without filter) to investigate whether the quality
of the data may impact the results.

5.4 Additional Results
In this section we report additional findings related to our analysis, but are not fundamen-
tal.
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Table 2. Number of images available for each dataset and the share of images where
caption matches objects in the scene

Dataset Total images in the subset Images filtered by caption
Person-Acessory 14829 4492 (30%)
Dining table-Kitchenware 7933 2252 (28%)
Person/Dining table-Food 4490 3131 (69%)

Figure 11. Accuracy difference using caption filter in the dataset

5.4.1 Decoding Network learning curves

Learning curves from a neural network can offer valuable insights into the performance
and behavior of the network during training. One of the insights we can obtain is how
quickly the network is able to learn patterns in the data. A fast convergence rate indicates
that the network is able to learn quickly and the data contain useful features, while a slow
convergence rate may imply the model is not expressive enough or that the data contains
noise or irrelevant features to describe data.

Our work tested a total of 1152 neural networks to decode compositionality from
selected parts of the hidden state of a transformer encoder. All these models, trained
with settings as described in section 4.3, produced different learning curves yet they are
similar in their shape if we aggregate the information by token strategy ([max image, max
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Figure 12. Accuracy difference using different strategies for object instance selection

object, min object, random object]) and encoder layer used. The internal representation
extracted from the token which received maximum attention in the whole image shows
a steep loss curve in most of the layers, and validation accuracy over the epochs varies
significantly, resulting in a noisy chart (Figure 13). Layers 7 to 11, using the same token
selection strategy, also report similar behaviour. However, training stops after 20-50
epochs due to the early stopping used to halt the training if no improvement in loss is
achieved after 20 epochs. For feature vectors extracted from object regions the behavior
of loss curves are similar to an exponential distribution curve, which is expected from
the training regime applied. This resonates with accuracies reported in Figure 8 where
darker regions are seen in maximum image token from layers 7 to 11.

5.4.2 Datasets filtered by caption

As previously mentioned in section 4.1, the captioning model has been fine tuned on
COCO captions dataset and we expect it to be grounded, attending to the right objects to
generate the caption words. Later, in section 6, we discuss the effect of it considering the
fact captions in the COCO dataset are highlighting a few salient objects when describing
the scene, therefore having a pair Person-object in the image does not necessarily mean
these two objects received high attention. In Figure 15 and 14 we show the differences in
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Figure 13. Learning curves for selected layers and token selection strategy. We see the
network is not able to learn from "max_image" token.

attention of a standard ViT encoder, and the ViT encoder finetunned in the captioning
model, where can see table is a large object, however the normalized attention it gets from
the captioning model is low (0.03) compared to the attention received in the standard
ViT (0.73). Ground truth captions from COCO mentions only “kitchen”, “man” and
“baby”. The caption filtering process described in 4.1.3 tries to clean the dataset and
prevent images where the selected pair of objects does not contribute to the scene to be
used in the probe.

The object instance selection based on the largest object yield decent results compared
to the attention based selection due to the same fact that often the largest object in the
image is the one mentioned in the caption, and therefore more likely the same object has
received high attention.
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Figure 14. Image highlighting different attention patterns using different encoders. On
the standard ViT the attention is more evenly distributed among objects, such as fridge,
table, sink (intensity of red denotes more attention). In the captioning model the attention
goes mainly to the objects mentioned in the caption (person).

6 Discussion
One of our main hypotheses was whether the Vision encoder unsupervisedly developed a
notion of compositionality and encoded this notion in its internal representations in order
to perform the task it was trained on. Our work explores how Transformers-based vision
and language models, particularly a captioning model, represents concepts internally and
tries to answer whether it is possible to decode compositionality of two objects from a
single token. Results presented in section 5 show decoding accuracy is better than chance,
hinting that it is possible to weakly decode a composition of visual features extracted
from the Transformer encoder. One important factor is that the process we devise to
select images to train the decoding neural network might produce noisy data, where the
pair of objects is not visible, or not relevant. This can be seen in our results as different
datasets report different numbers. Our results expose a series of different factors that can
influence our probe, such as dataset, object instance selection, and choice of token to
represent the composition. This analysis shows there are signs of compositionality, but it
does not confirm the hypothesis we can use a single token to decode it; it merely reopens
the question.

In our experiments, feature vectors extracted from deeper layers of the encoder can
be used to decode pairs of objects better than random guess, at higher than 70% accuracy

38



Figure 15. Attention maps (layer 12) comparing a standard ViT without fine tuning and
the ViT encoder trained on image captioning task. The attention is based on the same
image as in 14

in a few probes in Person-Accessory dataset and the multi pairing of Person/Dining
table-food. However, the setup with a Single object performed worse when compared to
the Multiple objects dataset. In theory, the Single one is a simpler task where we decode a
series of 4 different objects connected with the same main object. For example, decoding
the class person-umbrella from a token selected from the object person should indicate
some information is being aggregated outside of the object umbrella to represent both.
Our results show better decoding accuracy when using datasets with Multiple objects
correlated. We achieve 80% average accuracy when decoding Person-Food and Dining
table-food from the main object (Person or Dining table), However, these two results are
not comparable and only help us understand that under different circumstances we are
still able to partially decode information. We further discuss the decoding capabilities
and limitations in section 6.1.

It also appears decoding accuracy improves progressively as the information reaches
deeper layers, indicating information from two objects is binding in latter stages of
Transformers (Figure 9). We also find that multiple tokens from the transformer encoder
are reporting similar decoding accuracies. In our experiments, a token randomly sampled
from the object region performs similarly to the token which received maximum attention
as we can see in Figure 8. However, it is not possible to accurately state such networks
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are capable of binding concepts under the setting used alone. Further investigation
including larger models, such as [RKH+21], might enrich the analysis conducted in
our work and provide significant evidence Vision Transformers can represent complex
concepts internally.

Our work differs from other related analysis reported in section 3 by looking deeper
at internal representation of Vision transformers, layer by layer, under different settings.
Nonetheless, our work shed some light on the understanding of compositionality from a
limited and controlled scope, and might be useful for developing new experiments in this
area.

6.1 Limitations and future work
In the next section we analyze limitations in our work in regards to the data used, the
network architecture chosen and the effect of confounders in the probes.

6.1.1 Datasets for compositionality

One of the limitations of our work was accurate data portraying complex scenes with
segmentation annotation and captions. In the COCO dataset annotated captions tend to
focus on a few salient parts of the image, ignoring other regions and small objects. In
Figure 16 we see a few examples where the image is rich in terms of number of objects,
however their captions limit its description to salient parts of the image. As a result of
the model being fine tuned on this data, we expect the model to pay less attention to
objects not mentioned in the caption. This makes the object selection more relevant for
our task since we prioritize selecting objects with higher attention for feature extraction.
If the self-attention mechanism considered an object important, probably the same object
will contain more information to be decoded.

Initially our work filtered images from COCO dataset using segmentation annotations,
however they might include composition of two objects which are irrelevant to the scene,
since they might be too small, partially ocluded, or just irrelevant compared to other
objects. By applying a filter by caption, as described in section 4.2.3, we try to capture
contextual information of the scene portrayed in the image and select images where the
objects in the composition are also mentioned in the caption. This process aligns with the
expectation of the model to be grounded and pay more attention to objects mentioned in
the caption, therefore the data resulting from it should be more suitable for our analysis.
[CBC22] explore transformer-based image captioning models and devise metrics to test
if they are grounded while similarly, [ID21], analyzes attention links between words in
the caption and objects. In both works results show transformers-based image captioning
models are grounded to some extent.

The Natural Language Processing pipeline developed to identify whether the objects’
names being tested are present in the caption might not find all words that can be used to
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denote the object. We used lemmatization and an analysis of the most frequent nouns
in the text to manually identify synonyms. In our results, the caption filter improves
decoding accuracy on average, and the composition (person, accessory) shows 5%
improvement in decoding accuracy. The reason for higher impact in only one of the tasks
is unknown, however the filtering process and the usage of different words might have
affected datasets unevenly.

The use of a pre-trained word embeddings from common models used for NLP tasks,
such as BERT[DCLT18], might improve dataset filtering. In addition to NLP, [SKC+15]
proposes a graph-based semantic representation of images based on textual descriptions
that can be used to filter the relation between objects. Visual genome[KZG+17] tries to
address the relationship of objects in a scene by adding different region descriptors in
the image, focusing on small and large details of each object. In their work, objects and
groups of objects are annotated with rectangular bounding boxes, making it unsuitable
for pixel-wise understanding of the scene as our work proposes. In future works we can
explore further COCO dataset to devise better ways to improve data selection to test
compositionality. To this date, datasets used for this task, such as Winoground, CREPE
and visual genome lack segmentation annotations.

For the most part, the data available on COCO and the filtering process limited the
scope of the analysis. The object pairs tested for compositionality were selected among
a few others with a number of images higher than 1000. However, when filtering the
data by caption, this number was significantly reduced making it difficult to compare
two different decoding tasks with datasets heavily unbalanced. Future experiments using
different datasets might provide cleaner data and shed more light on the methodology we
used to test compositionality.

6.1.2 Network architecture

The neural network architecture we chose, as described in section 4.1, directly maps the
relation of patches in the input image with internal layers of the encoder. In the future
we can include the analysis of the decoder’s attention to understand which words are
aligned to the visual concepts represented by the ViT encoder. Furthermore, repeating
our work on different captioning models would contribute to a better understanding of
compositionality in different architectures.

We also notice from our results that the random token extracted from the object pair
consistently reports similar decoding accuracy as the token which received maximum
attention. This suggests the information might be equally distributed among more than
one token within the object, therefore combining different feature vectors might provide
better representation of the scene. In our results we also validate that it is not any token
that can contain information about objects in the image. When we utilize the “max
image” token (Table 1, Figure 8), a token with high attention but not from the object
tested, the decoding accuracy decreases significantly and also the training process (Figure
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Figure 16. Limitations of COCO dataset for detailing relationships between objects:
Images from COCO dataset where all possible captions focus on describing only a part
of the image, leaving all the surrounding objects in pink out of the text. To name a few
objects from each image: In (a) there is a bowl on top of a table; in (b) there are plants
next to each other and in (c) there is a person behind a table.

13) shows the decoding neural network cannot learn from this token alone.

6.1.3 Probing methods

The setup we created for probing represents a limited scope of compositionality in the
dataset. We were able to label a few composite classes of two objects, based on the data
we used. A more conclusive study may include more classes to decode and a large scale
dataset. However, different from probing properties like part-of-speech in NLP[HL19]
there is a large number of combinations that can be formed when parsing the visual scene
for objects and relations.
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7 Conclusion
This work reviews the literature on compositionality in neural networks and perform
analysis on a particular type of architecture, Vision transformer. We try to answer whether
a image captioning model, that learns from text and images, is capable of encoding
relations of two objects internally. We devise a method to create a dataset for the study
of compositionality and explore different forms of probes to validate our hypothesis. Our
work expands the reseach on this area by desinging a series of experiments to validate
whether the network is able to learn and represent complex concepts. The evidences we
found are not conclusive to prove they are indeed learning such concepts, but provide
intuition for further research on the matter.
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Appendix

Figure 17. Sample images with Ground truth (GT) from COCO and predictions by the
ViT-based image captioning model.
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Figure 18. All experiment results
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Figure 19. All experiment results
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