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Adapting an Alarm Repositioning Algorithm to Data Races

Abstract:

This master’s thesis addresses the challenge of enhancing the usability of sound static
analyzers, specifically focusing on the state-of-the-art data race verifier Goblint. The
aim is to soundly post-process the warnings generated by Goblint to make them more
understandable for developers, thereby increasing the adoption of sound analyzers in
practice. The thesis adapts and extends the warning repositioning algorithm of Muske et
al. for data race warnings in multi-threaded C programs. Contributions include identi-
fying and implementing a potential solution within the Goblint analyzer, extending the
method for data races, and evaluating and analyzing the adapted algorithm in terms of
the reduced distance between possible causes and warnings, as well as the impact on the
quality of data race warnings.
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Hoiatuste ümberpaigutamise algoritmi kohandamine andmejooksu-
dele

Lühikokkuvõte:
See magistritöö käsitleb staatiliste analüsaatorite kasutajasõbralikuks muutmise väljakut-
set, keskendudes paralleelprogrammides andmejooksude tuvastamise tööriistale Goblint.
Eesmärk on Goblinti loodud hoiatusi usaldusväärselt järeltöödelda, et hoiatused arendaja-
tele arusaadavamaks muuta ning seeläbi tarkvara verifitseerijate praktikas kasutuselevõttu
suurendada. Töös kohandatakse ning täiustatakse Muske jt. poolt välja töötatud hoiatuste
ümberpaigutamise algoritmi nii, et see töötaks ka mitmelõimelistes programmides lei-
tud võimalike andmejooksude hoiatuste peal. Töö panusteks on potentsiaalse algoritmi
tuvastamine, selle täiustamine ning teostamine Goblinti tööriistas. Saadud algoritmi
praktilisust hinnatakse ja analüüsitakse hoiatuse ning hoiatuse võimaliku põhjuse vahel
vähenenud koodiridade arvu järgi. Lisaks hinnatakse algoritmi mõju andmejooksude
hoiatuste kvaliteedile.

Võtmesõnad:
staatiline analüüs, staatilise analüüsi hoiatused, andmevooanalüüs, hoiatuste ümberpaigu-
tamine, Goblint
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1 Introduction
Program correctness is a vital aspect of software development, and static analysis tools
can effectively detect bugs in code early on, reducing the negative impact of program-
ming errors [21, 24]. Sound analyzers, in particular, can provide strong guarantees
of correctness, which is essential for safety-critical and security-sensitive applications
where vulnerabilities can be exploited [6].

Although having great potential to help verify programs automatically, sound analyzers
are often more challenging to use and produce many false alarms. The significant amount
of false alarms [3, 8, 9, 19] and the complexity of the warning messages [32] are some
of the main reasons why many static analyzers have not been adapted in practice. The
proportion of false alarms produced by static analyzers is reported to range as high as
91%, and moreover, combined with warnings that are difficult to understand, create
overhead of alarm inspection and limit their adoption in the industry [18].

Given that verification is undecidable in general, improving analysis precision is a
complex and potentially infinite task. If an analyzer fails to verify, it is difficult to know
whether there is an actual bug in the code or if the analysis is not precise enough to prove
its absence. Therefore, it is crucial to not only improve the precision of sound analyzers
but also enhance their usability without sacrificing soundness.

This thesis focuses on the challenge of enhancing the usability of sound analyzers while
maintaining soundness. More specifically, the goal is to soundly post-process the warn-
ings of the state-of-the-art data race verifier Goblint [16], a sound static analyzer for
multi-threaded C programs that determines the absence of faults using abstract interpre-
tation [11]. Despite being the most successful verifier in the SV-COMP race detection
category [4, 5], it generates many false alarms on real-world programs. However by the
information in the warnings alone, it is difficult to distinguish if the warning is a true or a
false positive.

Multi-threaded programs are notoriously difficult to reason about, as program behaviour
depends on thread interactions. Making data race warnings more understandable is
an open problem, so in order to lay the groundwork for this challenge, this thesis will
explore if state-of-the-art techniques for single-threaded programs can be adapted to
the multi-threaded case. After exploring various methods, the warning repositioning
algorithm of Muske et al. [26] was chosen for its potential to address both soundness and
usability concerns. The original algorithm was proposed for array-out-of-bounds and
zero division alarms, but the goal is to analyse if this algorithm could also be used on the
data race warnings.

Analyzer warnings are normally generated at the program point where a failure in the
program functions, i.e. a run-time error or a data race, would happen. However, this is

4



generally not the place in the code where the fault causing that failure is. Post-processing
warnings can help better understand their causes, as the warnings of the possible failures
can be repositioned to and complemented with information about the program points
where the possible faults in the code can be. Moreover, in case of a false alarm, adding
information about where things could go wrong according to the analyzer can help save
time by reducing code traversals during alarm inspection. Overall, the thesis makes the
following contributions:

• Identifying a potential solution. With the open-ended goal of improving the
quality of data race warnings, a method for repositioning analysis warnings is
identified and adapted for implementation within the Goblint analyzer.

• Extending the method for data races. The repositioning algorithm, which
originally handles single-threaded data-flow properties, is extended to reposition
data race warnings in multi-threaded programs.

• Evaluation and analysis. The adapted algorithm is evaluated in terms of reduced
distance between cause and warnings. The impact of the algorithm on the quality
of data race warnings is manually analyzed on select benchmarks, yielding insight
for future work on producing understandable warnings.

The thesis is structured as follows: Section 2 provides an overview of the Goblint
analyzer, its goals, and where this thesis fits in. Section 3 surveys the relevant literature
and identifies a potential solution, which is formalized in Section 4. Section 5 is dedicated
to formalizing the extension of the chosen method for data races. The implementation of
the analyses formalized in Sections 4 and 5 is described in Section 6 and the data race
warning repositioning is evaluated in Section 7. The results are discussed in Section 8,
and the thesis concludes with Section 9.
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2 Background
Several static analysis tools have found their way into developers’ workflow, but the
analyses that have been integrated are relatively simple [32]. The complex analyses have
yet to find a way to achieve widespread usage in the development processes.

Goblint [16] is a sound static analyzer for multi-threaded C programs that determines the
absence of faults using abstract interpretation [11]. In addition, it is the best data race
verifier, according to the results of the Competition on Software Verification (SV-COMP)
2023 [4, 5], which represent the state-of-the-art in software verification.

For Goblint, the focus is set on truthfulness, with an aim to derive and communicate truth-
ful explanations that developers can comprehend. To achieve that, all of the following
must be addressed [35]:

1. Theoretical Soundness. By proving the correctness of the analysis on paper, a
sound analysis is obtained. This relies on the mathematical theory of abstract
interpretation [11].

2. Transparent Evaluation. The sound analysis specification then needs to be
translated into a trustworthy analyzer that works on real-world programs. The
analysis will be implemented and evaluated with complete transparency to ensure
applicability. Machine-checkable witnesses are generated to enable assessment
and confirmation by other analyzers to establish trust in the implementation.

3. Tangible Explainability. While witnesses allow other analyzers to validate the
results, they are not suitable for human inspection. Therefore, work on usability and
interactivity with the goal of providing accessible, human-readable explanations of
analysis results must be done.

The research behind Goblint so far has mainly focused on the first two: proving the
correctness of the analyses [36] and transparently implementing and evaluating the
analyses [5, 30]. This thesis aims to tackle the third point as the first step in the direction
of discovering how to improve the usability and interactivity of Goblint in the sense of
warning reduction and explainability.

A high-level illustration of Goblint’s architecture is given on Fig. 1. Goblint takes a C
program as input and compiles it into a simplified subset of C using CIL (C Intermediate
Language) [10]. Then, a control-flow graph (CFG) is constructed from CIL and used
for the analysis. The analyzer consists of two main parts: analyses and the framework.
Different analyses are implemented in Goblint, some of many being value, mutex, and
thread ID analysis. These analyses use different domains ranging from simpler boolean,
set, and interval domains to more specific such as congruence domains. The combined
analyses and the control-flow graphs of the functions yield a constraint system [2], which
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is solved using a local generic solver [31, 33].

The recent efforts to analyze larger programs [14] have led to the discovery of Goblint
producing many similar warnings, out of which numerous can possibly be false alarms.
Therefore, a warning post-processing algorithm is sought to help reduce the number
of warnings. Currently, the only post-processing method implemented is to produce
correctness witnesses [29] for the validators to verify the proofs. Still, these are not
meant to be human-readable, and are only produced for the verified programs. For the
programs that were not verified and thus produced warnings, there are no post-processing
methods yet applied in Goblint. The following section will give an overview of the
related work on false positive reduction with a focus on post-processing methods. To
satisfy the requirement of truthfulness, the post-processing method must be sound to
preserve the soundness of the analysis.

bar.h

bar.c

foo.h

foo.c

C code

CIL

Analyzer

Analyses
Master analysis

MutexBase . . .

Domains

Framework
CFG

Control Solvers

Post processing
This workWitnesses . . .

Figure 1. Goblint high level architecture.
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3 Literature review
This section aims to give a brief overview of the different methods used to reduce false
alarms in sound static analyses, and the methods for post-processing static analysis alarms
with the goal of improving their usability, as well as how the method for post-processing
warnings in Goblint was chosen based on our goal and the methods available.

3.1 False positives reduction in sound static analysis
The most evident way to reduce false alarms is to improve the precision of the analyzer.
One such approach has been to design increasingly case-specific analyses and abstract
domains for each programming feature or idiom. But for the vastly case-specific analyses,
the balance between the cost of one analysis design, and the number of false alarms it
reduces, is unreasonable.

Instead, one may prefer having an abstract domain that is sufficiently expressive to reason
about all programs. However, such domains are naturally computationally expensive
and will require precision to be adjusted. As the domains are made less expressive and
less precise to overcome the performance issues, several manual and automatic precision
refinement methods have been proposed to again overcome the imprecision problems.

An example of an automatic precision refinement method is demand-driven value re-
finement [34], which uses relational information to soundly and independently regain
precision in critical locations during the data-flow analysis. The manual approaches, on
the contrary, let the user help guide the analysis with their external knowledge, using code
annotations and tool’s configuration parameters. Such user-guided analysis approach is
used by Astrée [12] and Frama-C [7], but also supported by Goblint [15, 31].

The Astrée approach is of interest because, similarly to Goblint, Astrée is an abstract
interpretation-based static analyzer for C, and AstréeA [23], an extension of Astrée, can
also analyze concurrent C programs. The tool’s parameters can be tuned to use specific
analyses in specific program parts. For example, it can be configured to run separate
analyses for separate values of a variable instead of one for all its values, improving the
precision so that a false alarm caused by this imprecision is not raised [12].

Using parameters and annotations gives the user more control over the analyses, leading
them to the desired results – a verified program with zero false alarms. However, the
usage of directives and parameters expects manual and time-consuming configurations
by an expert on the particular analysis, making such approaches unavailable for most
software engineers. Although Astrée has shown great success in reducing the false alarms
to zero [23], it only performs on specific programs and is not scalable on other software.

As verification problems are undecidable, improving the precision of the analyzers is
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possibly an infinite process that will, in general, not result in getting rid of all the false
alarms. Furthermore, even for the precision refinement, it would help if the warnings
assist the user in understanding why the analysis failed. Therefore, hand-in-hand with
improving precision, the presentation of false alarms must be improved to make it as
easy as possible for the developers to distinguish between true and false alarms.

3.2 Approaches for post-processing static analysis alarms
Several methods have been developed for post-processing static analysis alarms to
sort, prioritize and cluster the warnings to make them more understandable for the
analysis users. Muske and Serebrenik [25] have studied the different approaches for post-
processing static analysis alarms and have come up with the following categorisation:

1. Clustering. Alarms are clustered into several groups based on similarity or
correlations among them.

2. Ranking. Alarms are ranked using various characteristics of the alarms, the source
code, history of bug/alarm fixes, code-commit history, and so on.

3. Pruning. Alarms are classified into two classes, actionable and non-actionable,
and the non-actionable alarms are pruned.

4. Automated false positives elimination (AFPE). Alarms are processed further
using more precise techniques like model checking and symbolic execution to
identify and eliminate false positives from the alarms automatically.

5. Combination of static and dynamic analyses. Alarms are processed using
dynamic analysis to generate test cases that validate true errors.

6. Simplification of manual inspection. Manual inspection of alarms is simplified
by enriching alarms with additional information, providing tool support, etc.

The techniques to implement these post-processing methods differ greatly and do not
always match those used in the static analysis tools for generating the alarms. Our goal is
to remain sound even after post-processing the alarms, and for an analyzer to stay sound,
the warnings cannot be removed using just any heuristics as removing an alarm in the
absence of the proof might lead to stating that an incorrect program is actually correct.
Therefore, only those post-processing methods that preserve the soundness of the tool
can be considered.
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3.3 Sound alarms post-processing
The guidelines proposed by Muske and Serebrenik [25] state that if the objective of the
analysis is to verify, then the alarms can be subjected to post-processing techniques such
as sound clustering, ranking, and simplification of manual inspection because using other
approaches can result in false negatives.

We have excluded any ranking methods, which mostly rank the alarms based on some
heuristics or rules. That is because statistical methods usually do not guarantee soundness
and we do not want to misjudge any of the produced alarms. Furthermore, for the main
focus of this thesis, the race alarms, there is already a sound ranking method in place in
Goblint [36].

Automated false positives elimination methods largely fall into the same category as
the Astrée approach, as they use precision refinement, which requires expert knowledge
from the user of the analyzer and thus does not fulfil the goal of this thesis. For the
same reason, we have also excluded combining the static analysis with dynamic analyses
because the goal is not to validate true errors but to find a more general method to better
explain warnings produced by the analyzer, both true and false positives.

The approaches that best fit the goal of this thesis are clustering and simplification of
manual inspection. There exist both sound and unsound clustering methods, out of
which we will consider only sound ones. Sound clustering techniques can be useful for
reducing the number of alarms reported by static analysis tools and is appropriate for
both code-proving and bug-finding tools [25], and thus, satisfy our goal.

Out of the seven proposed sound clustering methods, we have chosen the repositioning
algorithm proposed by Muske and Tukram [26], as they have taken into account the
limitations of several of the other six methods and improved upon them. The algorithm
promises to help reduce the number of warnings as well as report the alarms closer to
their causes, the latter making it also fall under the simplification of manual inspection
category.
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4 Repositioning of alarms
To cluster the warnings generated by Goblint, the technique introduced by Muske and
Tukram [26] was used. The method’s goal is to soundly reduce the number of warnings
while moving the alarms closer to their cause. Although Muske et al. have evaluated [27]
that the method has limitations for reducing the number of false alarms, it has the
potential to help reduce the number of repetitive warnings, which is one of the usability
issues of Goblint. In addition, the repositioning of warnings is the first step in the effort
to locate and reposition the warnings to their possible causes and thus also improve the
explainability of the warnings.

The method is a two-step algorithm consisting of intermediate repositioning and reposi-
tioning refinement. On a very high level, the alarms are first hoisted up in the program to
find the possible cause of the alarm and then sank back down to find alarms that could
be merged to reduce the number of warnings. The algorithm uses an analysis similar
to anticipable expressions analysis (also known as very busy expressions analysis) [20]
as backward analysis and an analysis similar to available expressions analysis [20] for
forward analysis. But instead of expressions, the property tracked in this data-flow analy-
sis is conditions that produce the alarms. Let us denote a warning message generated in
program point o as mo and define anticipable and available alarm conditions.

Definition 4.1 (Anticipable alarm conditions). A condition c is anticipable at a program
point p if every path from p to the exit of the program contains the warning message mo

caused by condition c, and the program point o is not preceded by any assignments to
any operand in c on any path from p to o.

Definition 4.2 (Available alarm conditions). A condition c is available at a program point
p if every path from the program entry to p contains the warning message mo caused by
condition c, the program point o is not followed by any assignments to any operand in c
on any path from o to p.

The alarms in the original article are referred to as warnings in Goblint terminology.
Therefore, alarm and warning (message) in this context are used interchangably.

Intermediate Repositioning. During the first step, backward data-flow analysis is used
to hoist the original warnings to the highest program point where an alarm condition is
anticipable, but the same condition is no longer anticipable at any program point just
before. Meaning that alarms are moved up in the program until an assignment to an
operand in c is found, or the analysis reaches the program start. Hoisting the alarms
moves the warning closer to its cause, but this step alone can increase the number of
warnings, as there might be several branches in the program where the condition is met.
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Repositioning Refinement. The second step refines the alarms hoisted at the first step
by sinking the alarms to determine if they can be merged. During the forward data-flow
analysis, the available conditions are computed. This analysis also identifies the highest
program points where moving the warnings further down would not yield any more
merges before reaching the lowest program points where condition c is still available.
These highest program points are computed by finding the lowest meet-program points of
the available conditions. Finding these ensures that for each alarm condition c available
in a program point p, there is only one warning with the same alarm condition on all
of the paths from program entry to program point p. This step reduces the number of
warnings but moves the warnings further away from the causes.

The data-flow analyses traverse a control-flow graph, defined as follows:

Definition 4.3 (Control-flow graph). “A control-flow graph (CFG) [1] of a program is a
directed graph ⟨N,E⟩, where N is a set of nodes representing the program statements
(like assignments and controlling conditions); and E is a set of edges where an edge
(n1, n2) ∈ E represents a possible flow of program control from n1 ∈ N to n2 ∈ N
without any intervening node” [26].

In [26], the states right before and after executing a statement correspond to the entry
and exit of each node, respectively. These states are denoted as in and out and placed
right before and after each node. It is assumed that an exit from a node does not directly
correspond to an entry of another node and vice versa, although in some cases, they
might represent the state of the exact same program point.

The repositioning analysis by Muske and Tukram was proposed to be general. The
concrete examples discussed and the evaluation of relocating alarms was done on two
commonly checked runtime error categories: array index out of bounds (AIOB) and
division by zero [26]. In this work, the methodology is extended to work with data race
warnings which is the main focus of Goblint.

The analyses are described in detail in Sections 4.1 and 4.2. Both analyses are formalized
without the weakest precondition and strongest postconditions calculations and at an
intraprocedural level. The extension of the algorithm to data race warnings is described
in Section 5.
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4.1 Backward data-flow analysis for hoisting alarm conditions
The original warnings to be repositioned are generated by an analysis which checks
whether some condition holds in a program point. If the condition does not hold, the
analysis outputs a warning message. Using the original warning messages and the CFG,
the backward data-flow analysis computes the highest program points where the warning
message is anticipable.

Let us denote the set of conditions as C and the set of warning messages as M . The
backward data-flow analysis computes subsets of condition and message pairs S ⊆ Lb =
C ×M in each program point p ∈ P . The lattice of those subsets is given as ⟨B,⊓B⟩,
where B is the powerset of Lb. For the subsets, the following functions are defined:

conds(S) =
{
c
∣∣∣ ⟨c,m⟩ ∈ S

}
(1)

filter(c, S) =
{
⟨c′,m⟩

∣∣∣ ⟨c′,m⟩ ∈ S ∧ c = c′
}

(2)

Equation (1) computes the set of conditions from a set of condition and message pairs
and Eq. (2) the set that contains only those condition and message pairs that match the
condition given as the function argument. The meet ⊓B of the lattice can then be defined
so that given X, Y ∈ B

X ⊓B Y =
⋃

c ∈ (conds(X) ∩ conds(Y ))

filter(c,X) ∪ filter(c, Y ) (3)

The result of the meet is a set of those conditions and message pairs for which the
condition is present in both of the given sets. Let there be n, s ∈ N ; c ∈ C;m ∈ M ;X ∈
B, then the data-flow equations of the backward analysis are:

Antoutn =

 ∅ n is End node
d

B
s∈succ(n)

Antins otherwise (4)

Antinn = Genn ∪(Antoutn \Killn(Ant
out
n )) (5)

Genn =
{
⟨c,m⟩

∣∣∣m was generated in n by c
}

(6)

Killn(X) =
{
⟨c,m⟩ ∈ X

∣∣∣ n has an assignment
to a variable in c

}
(7)

Equations (4) and (5) define the subsets of condition and message pairs computed in
each program point. Genn (Eq. (6)) contains a set of upwards exposed warning messages
generated in node n, and Killn (Eq. (7)) contains a set of those condition and message
pairs where a variable in the condition is changed in node n.
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Finally, the program points where the warnings are hoisted are calculated. In each path
reaching the original warning location, the warning is hoisted to the highest hoisting
point. The highest hoisting point is the highest program point where the conditions
are anticipable, i.e. where in any program point before n, the condition is no longer
anticipable. There are two cases for finding the highest hoisting points, formalized by
the following equations:

Hoistinn =

{
c

∣∣∣∣∣ c ∈ (conds(Antinn ) \
⋂

p∈pred(n)
conds(Antoutp ))

∧ alwaysTruein(c, inn) ̸= true

}
(8)

Hoistoutn =

{
c

∣∣∣∣∣ c ∈ conds(Killn(Ant
out
n ))

∧ alwaysTrueout(c, outn) ̸= true

}
(9)

alwaysTruein(c, p) =

{
true if condition c always holds at p
false otherwise

(10)

alwaysTrueout(c, p) =

 true
if after evaluating the transfer function
from p the condition c always holds

false otherwise
(11)

First, a condition c is anticipable at outn and not anticipable at inn, when the anticipability
is killed because the value of a variable in c is changed by a transfer function from node
n. These highest hoisting points are identified by Eq. (9). The second case occurs when
c is anticipable through some of the branches coming out of a branching node p, but not
anticipable in another branch coming from the same node. Therefore, if condition c is
anticipable at inn at the beginning of a branch but not anticipable at some predecessor
outp, the highest hoisting point in that path is at inn. The highest hoisting points for such
paths are identified by Eq. (8).

Some highest hoisting points can be redundant. An example of redundancy can be seen
in Fig. 2 where the cause of the warning message is in one branch, but in the other
branch, the condition would always hold. Meaning that if there is no fault in a branch
and on any of the paths reaching that branch, then the warning can safely be removed.
Such redundant highest hoisting points are discarded by the helper functions in Eqs. (10)
and (11). After all the highest hoisting points are located, the hoisted warnings will be
complemented with the related program point location as the possible cause.

14



1 void foo() {
2 int arr[3]={1,2,3}, x=0, r1=rand(), r2=rand();
3 int i = 1;
4

5 if(r1) {
6 i = r2; // highest hoisting point
7 } else {
8 x = 1; // highest hoisting point (discarded by alwaysTrue)
9 }

10

11 arr[i] = 1; // original warning
12 }

Figure 2. An example of a redundant highest hoisting point that can be discarded.

1 void bar() {
2 int arr[3]={1,2,3}, i=0, r1=rand(), r2=rand(), r3=rand();
3

4 if(r1) {
5 i = r2; // highest hoisting point
6 } else {
7 i = r3; // highest hoisting point
8 }
9

10 arr[i] = 1; // original warning
11 }

Figure 3. Simple code example where hoisting warnings increases the number of
warnings.

In some cases, such as a similar simple branching, the hoisting can also increase the
number of warnings. Let us look at the example in Fig. 3. There is an access to an array
index with a variable whose value is unknown on line 10, originally generating only
one warning. But there are assignments to that variable in both of the branches of an if
statement (lines 5 and 7). While hoisting the original warning up, the anticipability is
killed by the assignment in both of the branches and as by Eq. (9), the program points on
lines 5 and 7 are identified as the highest hoisting points.

Although successfully locating the two actual causes for the generated warning, in this
case, the overall number of warnings increased. Therefore Muske and Tukram [26]
have proposed that after hoisting the warnings up, they be sunk down for the purpose of
merging.
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4.2 Forward data-flow analysis for merging alarm conditions
The hoisted warning messages will be sunk down in order to merge those that were
originally the same but have gone up on different paths to different highest hoisting
points. The forward data-flow analysis computes program points where the conditions
are available and in every program point p where the available alarm conditions meet, the
warning messages that have the same condition are merged. Let there be n, p ∈ N ; c ∈
C;m ∈ M ;X ∈ B, the data-flow equations of the forward analysis are based on the
equations for computing available alarm conditions with related original alarms [26] and
are defined as follows:

Avinn =

 ∅ n is Start node
d

B
p∈pred(n)

Avoutp otherwise (12)

Avoutn = Genout
n ∪(Avin′

n \(Killn(Av
in′

n ))) (13)

Avin
′

n = Avinn ∪Genin
n (14)

Genout
n =

{
⟨c,m⟩ ∈ filter(c,Antoutn )

∣∣∣ c ∈ Hoistoutn

}
(15)

Genin
n =

{
⟨c,m⟩ ∈ filter(c,Antinn )

∣∣∣ c ∈ Hoistinn

}
(16)

Killn(X) =
{
⟨c,m⟩ ∈ X

∣∣∣ n has an assignment
to a variable in c

}
(17)

Equations (15) and (16) give a set of downward exposed warning messages that have
been hoisted to node n, and for which the available alarm conditions are calculated. Equa-
tions (12) to (14) define the subsets of available alarm condition and message pairs
computed by the forward data-flow analysis in each program point. The final reposition-
ing with traceability links to the highest hoisting points is acquired with the following
equations:

Sinkinn = conds(Killn(Av
in′

n )) (18)

Sinkoutn = conds(Avoutn ) \
⋂

s∈succ(n)

conds(Avins ) (19)

The algorithm makes use of each condition from the entry of the End node for reposi-
tioning as a unique circumstance because some conditions may reach the program end
without being processed by any of the Eqs. (18) and (19) for any program point [26]:

SinkinEnd = conds(Avin
′

End) (20)
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5 Repositioning data race warnings
Unlike AIOB analysis, where it is sufficient to check whether the value of the expression
used to access the array is within the bounds of the array’s length, the condition for de-
tecting whether a data race occurs is not as clear. This is because, unlike the bugs that can
be detected using assertions, detecting data races requires a more complicated analysis,
such as analyzing information about threading, synchronization events like locking or
happens-before, or even making the analysis memory-model–sensitive. Furthermore,
data race warnings come in pairs, as a data race can only happen between two or more
accesses. Therefore it must be ensured that the repositioning preserves the pairs.

One possible condition for data race warnings repositioning is a pair c = (a,A), where a
is an access, and A is the set of accesses that could race with the access a. During the
backward analysis, the warning corresponding to access a is moved upwards in the CFG.
The Kill operation is defined as follows:

mayRace(a′, n) =

 false if an access in n could not race with a′

based on the abstract state in n
true otherwise

(21)

Killn(X) =

⟨(a,A),m⟩ ∈ X

∣∣∣∣∣∣∣
∀a′ ∈ A, a′ :

mayRace(a′, n) = false
∨ a lock is acquired in n
∨ a lock is released in n

 (22)

At each node, it is checked if some access a′ ∈ A that could have raced with a in the
original location can still race with a in the current program point based on its abstract
state. The abstract state, calculated during Goblint’s analysis, can include information
about threading and locksets, based on which mayRace calculates its result. If, according
to mayRace, a′ cannot race with a in node n, hoisting the access a is killed. Otherwise,
if a′ can race with a, it is still killed if a synchronization event happens in that node.

Instead of having a rather specific condition for the data race warnings, such as a set of
held locks, the condition holds the racy accesses themselves. Then, mayRace can query
if, for those accesses, there is any protection used in that program point, which can take
into account more information than just the set of held locks, such as any symbolic locks
as well. Thus the condition never changes and, unlike the original algorithm, no weakest
precondition calculations are needed.

Function mayRace kills those warnings that are hoisted into a correct path, and removes
the redundant hoisting points, thus performing like alwaysTrue as well. Otherwise, if
there is a data race warning that is not killed by mayRace in some program point, the
warning will either reach just the beginning of branching or the thread creation itself,
which is not as helpful.
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5.1 Examples
In order to illustrate how this approach works, we consider a few positive examples from
the Goblint benchmark suite where this approach improves warning positioning.

SMTP Relay Checker. Consider a data race warning from the SMTP Relay Checker1,
a network open mail relay checker, simplified on Fig. 4. The original warning is shown
on the access of cur_threads on line 29. The actual mistake is that the lock is released
in the loop but not acquired back at the end of the loop. During the first iteration of
the loop, no data race is possible due to the lock acquired on line 27, but in the next
iterations, there might be a data race because of the unlock on line 31. Therefore, the
loop iteration path will be incorrect, mayRace will not kill the hoisting, and the warning
will be hoisted to the beginning of the loop on line 30.

To stop hoisting in the incorrect path, an analogue to how variable assignment kills in the
AIOB analysis must be implemented for the data race analysis. Such an analogue for
data race warnings would be a synchronization event. Then the warning will be hoisted
to the highest point where the access would still race but not higher than the closest
synchronization event. That is in accordance with the anticipability requirement so that
from every highest hoisting point, every path will lead to the warning.

The synchronization events, whenever a lock is acquired or released, consider that if both
threads acquire the same lock whenever they may access the same memory location as
another thread, there are no data races between those threads. If a lock is acquired and a
race is still possible, it is most likely that a wrong lock is acquired, which might be the
cause of the data race warning.

Conditional locking. Consider the C code on Fig. 5. The main program creates a
thread with a function t_fun. In that thread, mutex1 is acquired before reading from and
writing to global variables myglobal1 and myglobal2, after which mutex1 is released.
In the main function, depending on the branch, either mutex2 or mutex1 is acquired
before reading from and writing to the same global variables. Therefore, when the
else-branch is selected based on some random value, there is no data race because both
reads and writes to both global variables are protected by the same mutex1. However,
when the if-branch is selected, there might be a data race, as the reads and writes to the
global variables are not protected by the same locks.

The analyzer would originally show data race warnings for the accesses on lines 10, 11,
24 and 25 as seen on Fig. 6. But the actual cause of those warnings is not the accesses
themselves, but the wrong lock taken on line 20. The original data race warnings are

1https://sourceforge.net/projects/smtprc/files/smtprc/smtprc-2.0.3/
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1 #include <pthread.h>
2 #include <stdio.h>
3

4 pthread_mutex_t main_thread_count_mutex;
5 int cur_threads = 10;
6 int number_of_threads;
7

8 int st(void) {
9 int cond;

10

11 while(cond) {
12 pthread_mutex_lock(&main_thread_count_mutex);
13 cur_threads--; // Original warning
14 pthread_mutex_unlock(&main_thread_count_mutex);
15 }
16 }
17

18 void main(void) {
19 struct timespec tv;
20 pthread_t c_tid;
21 tv.tv_sec = 0;
22 tv.tv_nsec = 500000000;
23

24 pthread_mutex_init(&main_thread_count_mutex, NULL);
25 pthread_create(&c_tid, NULL, (void *)st, NULL);
26

27 pthread_mutex_lock(&main_thread_count_mutex);
28

29 while (cur_threads>=number_of_threads) { // Original warning
30 // ...
31 pthread_mutex_unlock(&main_thread_count_mutex); // Repositioned warning
32 nanosleep(&tv, NULL);
33 // missing lock
34 }
35

36 pthread_mutex_unlock(&main_thread_count_mutex);
37 }

Figure 4. A simplified data race example from SMTP Relay Checker v2.0.3.
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1 #include <pthread.h>
2 #include <stdio.h>
3

4 int myglobal1, myglobal2;
5 pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
6 pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
7

8 void *t_fun(void *arg) {
9 pthread_mutex_lock(&mutex1); // Repositioned warning

10 myglobal1=myglobal1+1; // Original warning
11 myglobal2=myglobal2+2; // Original warning
12 pthread_mutex_unlock(&mutex1);
13 return 0;
14 }
15

16 int main(void) {
17 pthread_t id;
18 pthread_create(&id, NULL, t_fun, NULL);
19 if (...) {
20 pthread_mutex_lock(&mutex2); // Repositioned warning
21 } else {
22 pthread_mutex_lock(&mutex1);
23 }
24 myglobal1=myglobal1+1; // Original warning
25 myglobal2=myglobal2+1; // Original warning
26 if (...) {
27 pthread_mutex_unlock(&mutex2);
28 } else {
29 pthread_mutex_unlock(&mutex1);
30 }
31

32 pthread_join(id, NULL);
33 return 0;
34 }

Figure 5. A code example of data races.

1 [Warning][Race] Memory location myglobal1@4:5-4:14 (race with conf. 110):
2 write with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (10:3-10:24)
3 write with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (24:3-24:24)
4 read with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (10:3-10:24)
5 read with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (24:3-24:24)
6 [Warning][Race] Memory location myglobal2@4:16-4:25 (race with conf. 110):
7 write with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (11:3-11:24)
8 write with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (25:3-25:24)
9 read with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (11:3-11:24)

10 read with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (25:3-25:24)

Figure 6. Goblint’s original warnings for the program on Fig. 5
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grouped by the access variables so that for the program on Fig. 5, the accesses on lines
10 and 24, 11 and 25, respectively, are grouped together.

The repositioning algorithm will first decouple the accesses from the groups and then
proceed to hoist them on lines 9, 20 and 22. On lines 9 and 20, the warnings’ hoistings
are killed because a lock is acquired, but on line 22, they are killed because none of the
accesses could race due to both threads having the same locks. Therefore, mayRace
will remove all the warnings on line 22, and we are left with the warnings of possibly
racy accesses on lines 9 and 20. Then, the accesses are regrouped according to the
original grouping, and we have successfully repositioned the data race warnings on their
actual cause statements. The repositioned warning messages can be seen on Fig. 7. The
aforementioned heuristics of killing whenever a lock is acquired or released, however,
only work when at least one of the accesses is protected by some mutex.

1 [Warning][Race] Memory location myglobal1@4:5-4:14 (race with conf. 110): (9:3-9:30)
2 Possible cause (9:3-9:30)
3 Possible cause (20:5-20:32)
4 write with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (10:3-10:24)
5 write with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (24:3-24:24)
6 read with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (10:3-10:24)
7 read with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (24:3-24:24)
8 [Warning][Race] Memory location myglobal2@4:16-4:25 (race with conf. 110): (9:3-9:30)
9 Possible cause (9:3-9:30)

10 Possible cause (20:5-20:32)
11 write with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (11:3-11:24)
12 write with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (25:3-25:24)
13 read with [mhp:{tid=[main, t_fun@18:3-18:40]}, lock:{mutex1}, thread:[main, t_fun@18:3-18:40]] (11:3-11:24)
14 read with [mhp:{tid=[main]; created={[main, t_fun@18:3-18:40]}}, lock:{mutex2}, thread:[main]] (25:3-25:24)

Figure 7. Repositioned Goblint’s warnings for the program on Fig. 5
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6 Implementation
The hoisting (Section 4.1) and sinking (Section 4.2) algorithms were implemented in
Goblint with the modifications described in Sections 6.1 and 6.2. In Goblint terminology
(see Fig. 1) these are not normal analyses, which form a product of forward data-flow
analyses as the main constraint system, but are defined as standalone constraint systems,
which are solved separately. This allows the backward analysis as defined by Eqs. (4)
and (5) to be implemented in Goblint which normally only supports forward analyses.
Goblint’s default solver TD3 [33] is also used to solve the added constraint systems.

The implementation performs repositioning for array index out-of-bounds and data race
warnings as described in Section 5, and is easily extendable to be used for other analyses
warnings. To utilize the algorithm for repositioning warnings of another analysis, the
condition, killing conditions and a function for discarding redundant hoisting points,
like alwaysTrue, have to be defined. The functions alwaysTrue (Eqs. (10) and (11))
and mayRace (Eq. (21)) are defined by querying the context-insensitive results (i.e.
constraint system solution) of the main analysis. The implementation of repositioning
AIOB warnings performed exactly as described in the article by Tukram and Muske [26].

6.1 Adapting the control-flow graph
The proposed two-step alarm repositioning technique [26] works on a control-flow
graph (CFG), in which each node denotes a statement in the program, and each edge a
possible flow of the program from one node to another. Each such CFG, corresponding
to one function, has a Start and an End node, and all other nodes have a one-to-one
correspondence with the statements of the function. An example of such CFG for
a simple program with one function (Fig. 8a) is given on Fig. 8b. In Goblint, the
CFG representation is different, with the nodes denoting program points and the edges
representing statements, illustrated on Fig. 8c.

The main difference between these two CFGs is that the states in their corresponding
nodes differ. That is because in one (Fig. 8b), the node holds the state after executing
the corresponding statement, but in the other (Fig. 8c), the corresponding node holds the
state before executing the corresponding statement – the one on the outgoing edge.

As mentioned in Section 4, the states right before and after executing a statement cor-
respond to the entry and exit of each node, respectively. These states are denoted as in
and out, and placed right before and after each node as seen in the CFG on Fig. 9a. To
replicate such node splitting in the CFG representation used in Goblint, the differences
must be taken into account. The concept of an entry of a node is the same as in [26],
denoted by in, which represents the state right before executing a statement. However,
to get the corresponding out, the transfer function on the outgoing edge must be eval-
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1 int main() {
2 int r = rand();
3 if(r) {
4 return 1;
5 } else {
6 return 0;
7 }
8 }

(a) A simple program

Start

int r;

if(r)

return 1; return 0;

End

yes no

(b) CFG in the algorithm

main

1

2 3

return of main()

(body)

Neg(r) Pos(r)

return 0 return 1

(c) CFG in Goblint

Figure 8. An example of the differences between control flow graphs.
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int r;
out
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out
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return 1;
out

in

return 0;
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in

End

out

yes no

(a) CFG in the algorithm

in

main

out

in

1

out

in

2

out

in

3

out

in

return of main()

(body)

Neg(r) Pos(r)

return 0 return 1

(b) CFG in Goblint

Figure 9. An example of the differences between control flow graphs with added in and
out states.
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uated as an extra step for out to represent the state right after executing the statement.
The described modifications, compared to an example of a CFG corresponding to the
description in [26] (Fig. 9a), are illustrated on Fig. 9b, which is the representation used
for the implementation. This concerns the equations in the analysis that involve using
the state for its calculations.

6.2 Other modifications to the original algorithm
The equations of the algorithm in the Tukram and Muske article [26] assume the existence
of functions for calculating the weakest precondition and strongest postcondition. In
Goblint, there are no such functions and implementing them is out of the scope of this
thesis. This also ensures that the conditions do not change during hoisting or sinking.

Similarly to the unique circumstance described in the end of Section 4.2, where each
condition that reaches the program end will be considered for repositioning in the forward
analysis, the same unique case can happen during the backward analysis. Therefore,
every condition from the exit of the Start node will be used for repositioning during the
hoisting to preserve the soundness of the forward analysis:

HoistoutStart = conds(AntoutStart) (23)

As a design choice from the results of implementation and Goblint’s specifics on showing
the warnings, the warnings that reach the program start are relocated to their original
location, discarding the repositioning.

For the final repositioning in the original algorithm, the sunk alarms will be shown in
the sunk position, where the corresponding alarms have been merged. In our algorithm,
we will use the sinking for merging, but instead of repositioning the merged alarms
in the sunk position, we will reposition them back to the hoisting points. Therefore,
the final merged warning messages will be repositioned to the highest hoisting point
of all the merged warning messages. Although only one hoisting point out of several
different hoisting points is selected, the warning will have traceability links to all the
other hoisting points, thus not increasing the overall number of warnings. With this
approach, the warnings will be shown closer to their possible causes rather than in a
somewhat random position, where the two faulty paths merge.
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7 Evaluation
An empirical comparison of the SV-COMP data race benchmark suite assesses the
effectiveness and practicality of the implemented data race warning repositioning analysis
in Goblint. The evaluation addresses the following quantitative and qualitative research
questions:

• RQ1. How much does the adapted warning repositioning technique reduce the
code traversal between the cause and location of data race warning?

• RQ2. How well do the repositioned warnings assist in identifying the cause of the
alarm?

The SV-COMP NoDataRace benchmark suite consists of 783 files. Goblint is able to
verify 652 of these programs to have no data races and produces data race warnings for
128 programs. In the remaining 3, Goblint either threw an exception or did not complete
the analysis within the given time constraint of 60 seconds. With the post-processing
algorithm enabled, Goblint was unable to complete the analysis for an additional 15 files
within the time constraint of 60 seconds.

The post-processing algorithm for data races is quite expensive, as different from the
AIOB warnings post-processing, where the results of the main analysis are queried only
when there is an assignment to a variable in condition c, the mayRace query is run in
every program point for several access pairs. Therefore, for files with a higher number of
warnings, the algorithm is unable to complete the calculation within a minute, leaving us
with 113 programs with repositioned data race warnings.

Answer to RQ1. As seen on Fig. 10, for more than half (98) of the total number (175)
of data race warnings, the implemented repositioning algorithm was unable to move
the warnings from their original location. This is expected, as due to the design choice
described in Section 6.2, the algorithm positions the warnings back to their original
locations if they reach the function start during hoisting. That is because the algorithm is
intraprocedural, and reaching function start means that the possible cause is outside the
current function.

The warning was moved up in 77 cases. The answer to RQ1, based on the results
on Fig. 10, is that the warning repositioning reduced the code traversals needed to reach
the cause of alarm by an average of 1 line, including the cases where the warning did not
move, and by an average of 2 lines if the cases where the warning did not move are not
included.

Instead of moving warnings back to their original locations when hoisting reaches the
function start, informing the developer of the possible cause being outside the function
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Figure 10. Number of lines between original warning location and repositioned warning
location with positioning the warnings back to their original locations in case they reach
the function start during hoisting.

Figure 11. Number of lines between original warning location and repositioned warning
location without positioning the warnings back to their original locations in case they
reach the function start during hoisting.
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where the original warning is shown yielded the results in Fig. 11. The analysis was
not completed within 60 seconds for another two files, producing warnings for 111 files.
The number of warnings not moved from the original location is now reduced to 46,
indicating that in 52 cases, the warning reaches the function start. This suggests that
an interprocedural analysis instead of an intraprocedural could possibly produce better
results. In the remaining cases with the number of lines being 0, manual inspection
revealed that most cases where the warning was not relocated were due to if-statements
or different loops, meaning that the warning reposition was killed by branching.

The number of lines required to reach the cause of the alarm was reduced by a maxi-
mum of 29 lines and, on average, two (including 0) and three lines (not including 0),
respectively, which is slightly better than the design choice used in the evaluation run
summarized on Fig. 10. However, due to the algorithm being intraprocedural, the number
of lines is dependent on the function lengths, and the warnings that moved give a good
indication that in the case of longer functions and files, the code traversals could indeed
be reduced.

This concludes that the answer to RQ1 (How much does the adapted warning repo-
sitioning technique reduce the code traversal between the cause and location of data
race warning?) is 1 to 3 lines on average. The limitations with the biggest impact on
the number of lines reduced are the algorithm being intraprocedural and the way the
algorithm handles branching.

Answer to RQ2. We looked into the files where the number of lines between the
original warning location and its repositioned location was highest, seen in Table 1. In
the Linux drivers, in all cases, the warnings were repositioned to the beginning of if
branches, not reaching any actual possible causes. However, even if the warnings had

Table 1. Files with the largest number of lines between the original warning location and
its repositioned location from Fig. 10.

Warning location (line)

File Original Repositioned Difference

linux-3.14–drivers–media–platform–
marvell-ccic–cafe_ccic.ko.cil-1.i

5706 5694 12
5717 5714 3

linux-3.14–drivers–media–platform–
marvell-ccic–cafe_ccic.ko.cil-2.i

5706 5694 12
5717 5714 3
6160 6157 3

time_var_mutex.i 701 698 3
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been hoisted upwards from the if conditions, they would have reached the function start,
as the causes were not in those functions.

In time_var_mutex.c2, seen on Fig. 12, the warnings in one function were hoisted to
the beginning of the if branch; and in the other function, the hoisting was killed by an
unlocking statement (Eq. (21)) in one branch, and by the branches joining (Eq. (8)), in
the other branch. The highest hoisting point on line 13 indeed gives some insight into
what might be the cause. However, the locking event on line 23 would be better for
understanding the cause because removing or relocating the unlocking statement from
line 13 would not fix the race, but the write and read on lines 16 and 17, respectively,
must be protected by the same lock that is taken on line 23. Yet, that is not reached as
the highest hoisting point again due to the join on the if statement (Eq. (8)) on line 24
killing the hoisting.

While in the code examples on Figs. 4 and 5, the repositioned warnings indeed assisted
in identifying the cause of the alarm, we were unable to find any good examples from the
SV-COMP benchmark suite. With that, the answer to RQ2 (How well do the repositioned
warnings assist in identifying the cause of the alarm?) is that the repositioned warnings
assist in identifying the cause of the alarm only in simple, specific cases, given as
examples in Section 5.1, whereas, for the cases in the SV-COMP benchmark suite, the
resulting warning position was not helpful for understanding the warnings.

The evaluation of the method on the SV-COMP benchmark suite confirmed the doubts
that arose while formalizing the analyses. The details of the limitation of how the
algorithm handles branching and the possible improvements to overcome the issue are
discussed in the following section.

2The code of time_var_mutex.i before C preprocessing.
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1 ...
2 int block;
3 int busy; // flag indicating whether the block has been allocated to an inode
4 int inode;
5 pthread_mutex_t m_inode; // protects the inode
6 pthread_mutex_t m_busy; // protects the busy flag
7

8 void *allocator(void *_){
9 pthread_mutex_lock(&m_inode);

10 if(inode == 0){
11 pthread_mutex_lock(&m_busy);
12 busy = 1;
13 pthread_mutex_unlock(&m_busy); // Highest hoisting point
14 inode = 1;
15 }
16 block = 1; // Original warning (write) and highest hoisting point
17 assert(block == 1); // Original warning (read)
18 pthread_mutex_unlock(&m_inode);
19 return NULL;
20 }
21

22 void *de_allocator(void *_){
23 pthread_mutex_lock(&m_busy);
24 if(busy == 0){
25 block = 0; // Original warning (write) and highest hoisting point
26 assert(block == 0); // Original warning (read)
27 }
28 pthread_mutex_unlock(&m_busy);
29 return ((void *)0);
30 }
31

32 int main() {
33 // ...
34 pthread_create(&t1, 0, allocator, 0);
35 pthread_create(&t2, 0, de_allocator, 0);
36 // ...
37 }

Figure 12. time_var_mutex.c from the SV-COMP benchmark suite.
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8 Discussion
This section gives a thorough review of the benefits and limitations of the proposed
method, as well as proposals for future work.

8.1 Identified benefits
It was shown that post-processing methods for single-threaded flow properties could
be adapted in multi-threaded programs. More specifically, the anticipable and avail-
able alarm condition analyses can be adapted to accommodate repositioning data race
warnings.

As the algorithm is proposed to be general, it was possible to make the implementation so
that the repositioning algorithm can be easily extended to work with warnings produced
by other analyses. This reduces the implementation effort significantly, as for the many
different analyses implemented in Goblint, extending them with this post-processing
method only requires some parts of the repositioning analysis to be implemented instead
of a separate new analysis for each.

The original article does not specify explicitly where the states in the Control Flow Graph
(CFG) come from. However, in Goblint, the pre-existing query system proved extremely
useful for obtaining results that the post-processing analysis can utilize. This approach
offers an advantage over methods that only have limited information about warnings,
such as an analysis that only has information from the warnings themselves, “namely
their type (e.g., NULL dereference) and their location in the program’s source code” [22].

We have identified the main weaknesses of the chosen method and gained a deeper
understanding of the domain of post-processing methods overall. The thesis gives way
for future work in the domain, with some directions proposed later in this section.

8.2 Identifying all possible causes
As mentioned in Section 4.1, the number of warnings can increase when hoisting the
warnings. Another example is given on Fig. 13. In addition to illustrating how the
algorithm increases the number of warnings, it shows how a fault can remain undetected
because of the anticipability restriction.

In this example, the original warning is hoisted to program points F and C. There is
a fault in program point F, where the anticipability is killed, and the highest hoisting
point is identified by Eq. (9). However, there is no fault in the program point C, where
the other hoisting will get stuck according to Eq. (8). But there is another fault in the
program that reaches both of the highest hoisting points along paths A → B → C and
A → B → E → F accordingly.
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...

A fault 1

...

B

C

...

D

E

...

F fault 2

...

G original warning

Figure 13. Example of an undetected possible cause due to the anticipability restriction.

To overcome this limitation, one could complement the algorithm such that the back-
ward data-flow analysis is used to hoist the original warnings to the highest program
point where the condition causing the alarm evaluates to true, in addition to where the
conditions are anticipable.

In a subsequent paper, Muske et al. [27] propose a refined method based on whether
alarm conditions are live rather than anticipable. They propose hoisting warnings to the
highest point where the condition is live, i.e., there exists a non-killing path to a warning.
This could be a solution for the proposed algorithm not finding every possible cause for
the warning.

They also make clear what sound warning repositioning means: a repositioned alarm
is a false positive if and only iff all its original alarms are false positives. This is why
they insisted on the anticipable alarm condition because it is conservative w.r.t. control
dependence between the if statement and an error. For this example, if B prevents
C → D (whenever the error condition holds), moving G to A would turn a false positive
into a definite error. It’s more obvious for examples like:

A: x = 0;
B: if (x != 0)
F: 1/x;

So if the analysis does not understand the condition and the algorithm repositions the
warning out of the if-statement, then the false positive has been turned into a definite
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warning.

In this case, displaying the warning in program point A would only escalate the false
positive. But by displaying the warning with traceability links from the anticipability
analysis, giving the developer the full information, it can be more easily determined that
the warning was indeed a false alarm. However, a thorough analysis, implementation
and evaluation of the fit for using live alarm condition analysis and its combination
with anticipable alarm condition analysis for improving the explainability of data race
warnings are out of the scope of this thesis and left for future work.

8.3 Causality analysis vs warning reduction
For repositioning data race warnings, the algorithm turned out to be more suited for
detecting the cause of the data race rather than reducing the number of alarms. The
data race warnings in Goblint are grouped by the variable with possibly racing accesses.
Therefore, we have leveraged the algorithm to move the already grouped data race
warnings up in the CFG to their possible causes, for which we found and proposed a
method. Furthermore, it would be interesting to compare this method with other causality
analysis methods, which is another large domain [17] of methods that could be used to
improve the explainability of warnings.

Using the repositioning algorithm, an additional level of grouping could have been
proposed to further group the warnings by other metrics, such as held locks or threading
information. This is another possible direction for future work on the topic.

8.4 Trace-based analysis for explaining data race warnings
It is not clear if the data-flow analysis is the best approach for finding explanations for
data race warnings, or if some trace analysis could be a better fit for solving this problem.
There are several sound trace analyses proposed for finding the causes of warnings to
understand where the warning comes from [13, 22, 28] and it is worth investigating how
would these work for explaining data race warning causes compared to the data-flow
analysis approach. This thesis can be used for comparisons in future works.

8.5 Context-sensitivity
The aforementioned backward and forward data-flow analyses in Goblint are imple-
mented context-insensitively, meaning that the transfer functions are evaluated on joined
contexts. However, joining different contexts reasonably is not always possible, for
example, in cases of a function that is called both in single-threaded and multi-threaded
contexts. Therefore, to achieve the truthfulness of the method, the analyses must be
reimplemented to also consider the contexts of the warning messages.
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9 Conclusion
Program verification is vital for reducing the negative impact of software failures, and
static analysis tools help detect programming errors in code early in the development
process. Although the developers already use several static analyzers, the complex
analyses have yet to find a way to be integrated into the development workflow. The
main obstacles preventing the use of sound analyzers in the development processes
are the significant amount of false alarms and the complexity of the produced warning
messages. Since verification problems are undecidable, it is necessary to complement
the exploration of new analyses and domains with other methods, such as warning post-
processing. Therefore a method was sought for post-processing the warnings of Goblint,
a static analyzer for multi-threaded C programs, that is the state-of-the-art data-race
freedom verifier for C.

To achieve this, we first conducted a literature review of methods for reducing false
alarms in sound static analyses in general, with a focus on post-processing methods.
Based on the review and the thesis goals, an alarm repositioning method was chosen.
Several modifications were necessary to adapt the algorithm for the implementation
within the Goblint analyzer. Taking into account the differences between the CFG
proposed in the article and the CFG structure in Goblint, the data-flow equations for both
backward and forward analyses were formalized, and the required modifications were
described. The analyses were implemented in the Goblint analyzer.

The core contribution of this thesis was extending the method for repositioning, originally
designed for single-threaded data-flow properties, to work with data race warnings in
multi-threaded programs. This was a challenging task since the conditions for detecting
data race freedom are not as clear as they are for assertion-based analyses. Additionally,
data race warnings come in pairs, and it was necessary to ensure that the access pairs were
preserved even after repositioning both warnings. The study showed that post-processing
methods for single-threaded flow properties could be adapted in multi-threaded programs.

The study evaluates the effectiveness and practicality of the implemented data race
warnings repositioning analysis in Goblint in addressing two research questions, namely,
the reduction of code traversals and the identification of the cause of the alarm in data
race warnings. The SV-COMP NoDataRace benchmark suite was used to assess the
performance of the method. The study found that the warning repositioning technique
reduced the code traversals; however, the number of lines the warnings moved was,
on average, one to three lines. Additionally, the repositioned warnings only assisted
in identifying the cause of the alarm in simple, specific cases, whereas for the studied
examples in the benchmark suite, the resulting warning position was not helpful for
understanding the warnings. The study highlights the limitations of the algorithm in
handling branching and suggests possible improvements to overcome the issue.
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The proposed method for data race warning repositioning was thoroughly reviewed,
highlighting its benefits and limitations. The limitations having the biggest impact on the
results were the algorithm being intraprocedural and the restrictions the anticipability
requirement imposes on how the algorithm handles branching. The thesis gives way for
future work in the domains of causality analysis and warning reduction, with proposals
to improve the presented method, as well as investigating other techniques in comparison
to this work.
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Appendix

I Goblint implementation
The OCaml implementatation of the repositoning algorithm in Goblint can be found
from the following Goblint fork repository on GitHub, under the tag “msc-thesis”:
https://github.com/karoliineh/goblint/releases/tag/msc-thesis.

For the usage of Goblint, please refer to Goblint documentation: https://goblint.
readthedocs.io/en/latest/. The reposition analysis can be turned on with the con-
figuration option --enable ana.warn-postprocess.enabled.

II Evaluation files and script
The SV-COMP benchmark suite results for the evaluation and the evaluation script are
included in a zip file. There are two folders, evaluation1 and evaluation2, with the
warnings produced by Goblint from the two SV-COMP benchmark runs. In both folders,
there is one JSON file with the results for each analyzed file and a Jupyter Notebook
script for extracting the results from the JSON files.
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