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There are multiple existing methods for deviance mining. Many of these traditional deviance 

mining techniques have been used in the context of software processes. Software behavior is 

the way how the software executes. Just like in execution of business process mentioned above, 

in software systems some execution are desired, normal executions, and some executions are 

not desired and we call them failures. Some failures are easily recognized (Blue screen of death 

in Windows, exception thrown etc.) while some are not so easy to recognize, since they are 

missing this ñvisibleò effect. These failures can cause security risks and there should be special 

concerns made since they are not so easily identified.  

Aim of this thesis is to apply deviance mining in the BPM context. In particular we use the 

declarative business process modelling language Declare [2] [3] to explain deviance. In this 

way we use process models to explain deviances that give more abstract representations of the 

properties than sequences (form different logs and process models). Our proposed framework 

works in three steps process: In the first step we mine Declare constraints/patterns from the 

event log. In the second step the constraint filtering and selection is applied to the constraints. 

The selection is based on the discriminativeness of the constraint which is represented by 

Fisherôs score. In the last third step we build the classifier from these selected constraints. 

We implemented our algorithm as the Declare Deviance Miner plugin1 for ProM open-source 

tool. 

In [4] authors have done comparison of difference deviance mining tools (based on different 

deviance mining techniques), therefore our main research questions in this thesis are: 

1. Is it possible to provide business analyst with understandable feedback about business 

process deviances? 

2. Is the accuracy obtained by explaining deviances with Declare constraints comparable 

with the one achieved with the state of the art deviance mining techniques?  

In summary, our main contribution to answer these research questions is the following: 

¶ We proposes new approach for classifying event logs based on discriminative Declare 

patterns, which distinguish the deviant from normal traces in the event log. To identify 

highly discriminative Declare constraints, we proposes Declare constraints selection 

algorithms based on Fisher score. 

¶ We design a new algorithm for mining Declare constraints, using Declare templates 

which are then satisfied or not satisfied within the traces.  

¶ Throughout a set of experiments we evaluate accuracy of our proposed Declare mining 

algorithm and give comparable results with already existing deviance mining 

approaches. 

This thesis is structured as follows. Section 2 discusses already existing methods for deviance 

mining, Section 3 discuss prior information need to understand this thesis. Section 4 discusses 

our entire proposed approach, from the event log to the result, Section 5 discusses 

implementation of our approach as ProM plugin, section 6 discusses evaluation of our labelling 

accuracy and comparison with existing tools and the last section 7 represents conclusion of our 

work.  

  

                                                 

1 https://bitbucket.org/Duri_Boss/declaredevianceminerplugin 

https://bitbucket.org/Duri_Boss/declaredevianceminerplugin
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2 State of Art  

There are many papers describing process deviance mining and different process deviance 

mining techniques. One of the first techniques to mention is delta-analysis.  

In [5] delta analysis has been used in order to explain deviance in healthcare processes. In 

another paper [6] authors report on case about insurance company trying to describe why some 

claims took longer than normal. Analysts understand how different are ñsimple slow claimsò 

from ñsimple quick claimsò which took x more days to be handled. Delta-analysis used in this 

report consists of using automated process discovery, to specifically extract two process 

models, one for ñdeviantò and one for ñnormalò executions. Firstly the two logs were created 

from the main log, where one log consists only of ñsimple slow claimsò and second one of 

ñsimple quick claimsò. Then the Disco process discovery tool2 was used to extract two process 

models from these two logs. Then the manual comparison of these two models was done. After 

comparison authors found some visible differences between these models. Some sequences or 

paths of events were more frequent only in the first model and vice versa. Another heuristics, 

which authors came up with, which helped to discriminate between slow and fast claims, was 

comparing chosen event X occurrences numbers in the traces and comparing the percentage of 

traces where chosen event appears at least one time. In other words event X occurred in 

different amount of traces in these two models as well as the occurrences for particular traces 

were different. Delta analysis is a manual technique of deviance mining, in this thesis we focus 

just on automated techniques. Our contribution is similar to Delta analysis because we produce 

models but we do it automatically. 

In [7] the authors applied a discriminative pattern mining approach on a log of over 2600 defect 

reports of four big software projects to discriminate between normal correct resolutions and 

deviant ones leading to complaints. Using discriminative patter mining approach they 

identified discriminative patterns which are frequent in deviant cases and not frequent in 

normal cases and vice-versa. First number of features were just ñnumber of occurrences of 

particular activity X in the traceò and another features were ñnumber of occurrences of activity 

X after activity Yò. Since there is simple too many combinations of (X,Y), in order to avoid 

too big amount of discriminative features authors selected only some using mining techniques. 

Afterwards classifier ï decision tree was built based on these selected features.  

In [8] authors tried to discriminate between traces in the log leading to malfunctioning versus 

normal behaving of X-ray machines. In this paper authors were using frequent pattern mining, 

which belongs to the group of sequence mining techniques in order to find ñmaximal repeatsò, 

ñtandem repeatsò and ñalphabet repeatsò [9]. Maximal repeats represent repeated sequence of 

events which are nʦt included in lʦnger repeated sequence. In the process maximal repeats 

represent sub-process. Tandem repeats are sequences of events which represent loops in 

business processes. Alphabet repeats are intersections of sets of events which are found in 

different maximal or tandem repeats. In contrʦl-flʦw terms this represents parallelism. In this 

paper frequent patterns are extracted from all the traces together (normal and deviant cases) 

and afterwards those with highest support are selected and decision tree is built using these 

frequent patterns. 

In [10] the authors tried to use sequential pattern mining as well to discriminate between cases, 

which lead to positive or negative clinical outcome in the process for congestive heart failure 

treatment. Authors used sequence mining techniques combined with Delta analysis mentioned 

in [6]. Authors first used sequence mining techniques to extract frequent patterns of the form 

                                                 

2 http://www.fluxicon.com/ 



8 

 

ñactivity B occurs after activity A after some timeò from both negative and positive outcomes. 

After the extraction authors could determine which of these patterns are frequent in positive 

and which are frequent for negative cases. Authors then made additional comparison of process 

models which were extracted from positive and negative cases. Observations from this delta 

analysis were combined together with observations from frequent patterns mining and in the 

end authors got pathways characteristics of either negative or positive cases. 

Authors in [11] tried to understand the causes for deviations in procurement processes from 

normative pathways. This study was done in large European financial institution were the 

dataset consists of close to 30 000 cases. After using process discovery tool analysts found that 

approximately 29% of the cases were deviant. Authors applied association rule mining 

technique in order to extract frequent patterns for deviant and for normal cases separately. It 

was found that total of 10 patterns could characterise almost all deviant cases.  

In the above studies all discriminative mining techniques were using the process flow not data 

flow for deviance mining. In other words the inputs were some sequences of occurrences of 

activities without payload. Sometimes traces or events carry multiple information. For example  

traces hold some information or events consists of attributes like ñcustomer ageò or ñtypeò, 

which could be used for deviance mining as well. There were some studies, which tried to 

attempt to use this data for deviance mining [12] [13], in this paper we will focus on process 

flow, ignoring the data attributes so we make minimal assumptions on the log.  

Based on the papers mentioned in this section we came up with Figure 1 which represents the 

Taxonomy of Process Deviance Mining approaches excluding manual techniques like Delta 

analysis. This figure represents only automated techniques. These papers helped us to identify 

three categories of deviance mining techniques: (1) based on individual activities (2) based on 

set-based patterns (3) based on sequence patterns which can be divided into sequential patterns 

based and discriminative patterns based. 

 

 

Figure 1. Taxonomy of automated Deviance mining approaches 

As can been seen in the Figure 1, each technique has the event log on the input and build the 

classifier in the end, which in all papers was either Decision Tree or combination of these three 

classifiers: Decision Tree, Neural networks or k-NN. 

In this thesis we will use only discriminative patterns as the main approach for our deviance 

mining.  
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3 Background  

In this chapter, prior information needed to understand the thesis are described.  

3.1 Declare 

Pesic and van der Aalst introduced Declare in [2] [3] as declarative process modelling 

language. Even though Declare is declarative system, it can offer more than just declarative 

model development, but also automated model execution, model verification, changing model 

during run-time, decomposition of big processes and other features then traditional WFMSs 

have.  

Declare language uses constraint-based system as opposed to classical imperative approaches 

and using declarative language grounded in temporal logic. Declare constraints build 

declarative model. Declare constraints are based on Declare templates, which we will describe 

more in following subsections. 

In classical imperative model, there is need to specify control-flow by entering all the options 

how the process executes. Declare model defines control-flow unconditionally by specified list 

of constraints, which represents the rules. Declare language provides mʦre flexibility  than usual 

prʦcedural notations like BPMN, UML, Petri Nets, ADs and BPEL. This language, proposed 

for process modelling, is fulfilling two main criteria: It is understandable for end-users and it 

has formal semantics. 

Declare templates are notional objects which determine parameterised categories of prʦperties, 

and Declare constraints are their concrete instantiations. These templates have graphical 

representation, which is easily understandable and readable for the end-user and using LTL 

formulas the semantics of these templates are specified. Table 1 below, which shows LTL 

operators semantics. Template defines semantics and graphical representation of each 

constraint which is generated from this template. Because of these features Declare is easily 

understandable and it has formal semantics. 

 

Table 1. LTL operators semantics 

 

So as mentioned above Declare language is using the set of constraints, which must be satisfied 

during process executions rather than directly specifying the process flow. So with comparison 

with classical procedural approaches we can say that Declare defines flexibility. Classical 

procedural models produce ñclosedò process models. By ñclosedò model we mean, that if 

something in this model is not directly specified, then itôs forbidden. On the other hand Declare 

give us more options for executions, more flexibility. 

Let us focus on Declare templates now. The main goal of the templates is to highlight different 

attributes, which is worth to describe in process model as well as mainly characterise language. 

Declare templates are divided into four main groups: relation, negative relation, existence and 

choice. We give more details about specific group of templates and templates themselves in 

following subsections. 
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3.1.1 Existence Templates  

Figure 2 below represents so-called existence templates. There is only one event (unary 

relationship) involved in existence templates. Existence templates defines the position or 

cardinality of the event in the trace. 

 

Figure 2. Notation for existence templates 

The first templates existence(A), which has annotation ñ1..*ò above the event A (see Figure 2), 

represents that A is executed at least once in the trace (event A is present at least one time and 

more in the trace). So others like existence2, 3 and N, the number behind the templates name 

presents that A should occur at least that amount of times in the trace. Absence templates, 

which has annotations ñ0..Nò, on the other hand specifies that event A should be present in the 

trace N times at most. E.g. Absence3(A) represents that event A should occur 2 times in the 

trace at most. Templates ExactlyN(A) specify that event A should occur exactly N times in the 

trace and template Init(A) specify that that event A should be the very first event in the trace. 

 

Table 2. Existence Templates 
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Table 2 shows LTL semantics or (LTL formula) and graphical notations of existence templates. 

 

3.1.2 Relation Templates  

Relation templates describe dependency between two events A and B in the contrary to 

existence templates, which specified cardinality of one event only. These templates there for 

represent binary relationships. Table 3 represents LTL semantics and graphical notations of 

relationships templates. All relation templates have two events as parameters. As can be seen 

from the Table 3, the column on the right represents graphical notations, where the line between 

events A and B is unique for each template. 

The template responded existence (A, B) specifies that if event A is present in the trace, then 

also event B has to be present either after or before event A, so the event B can be executed at 

any time in the process. 

The template co-existence (A, B) specify if one of the event A or B is present in the trace, then 

also the second event has to be present (if A is present in the trace then also B has to be present, 

if B is present in the trace then also A has to be present). 

Templates responded existence and co-existence donôt consider the ordering of the event A and 

B, they can be present anywhere in the trace. On the other hand next templates we will describe, 

precedence, response and succession, they consider ordering of the events, therefore what are 

the locations of these events in the traces.  

The template response (A, B) specify that if the event A is present in the trace, then the event 

B has to be present after A. Event B doesnôt have to present right after event A, but it can be 

present in any time in the trace after, as well as there can be another event A present between 

first event A and event B. 

The template precedence (A, B) specify that if the event A is present, then the event B has to 

be present before event A. Just like in previous response template, we donôt care about location, 

therefor event B can be anywhere before A, as well as, there can be another A after B and first 

event A. 

The template succession (A, B) is combination or response and precedence, so we can say it 

specify bi-directional execution of two events. So this template specifies if the event A is 

present then the event B have to be present both before and after event A. 

Templates alternate precedence, alternate response and alternate succession strengthen three 

templates mentioned above in the way that events A and B have to alternate. In other words if 

we have for example alternate response (A,B) means that if event A occurs then the event B 

have to occur after (it doesnôt have to be right after), then another event A can occur, but only 

after activity B not before (between first event A and event B). 

Even more strict approach is when using chain precedence, chain response and chain 

succession. These templates specify that the two events A and B have to occur next to each 

other, e.g. chain response(A,B) represent that event A is followed immediately by event B. 

See Table 3 for graphical notations notation and LTL semantics. 
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Table 3. Relation templates 
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3.1.3 Negation Templates  

Negative Templates are negated versions of above mentioned relation templates. In Table 4 

below we show LTL semantics and graphical representation of one chosen negative template 

from each group of templates mentioned above: existence templates, classical relation 

templates and chain relation templates. Figure 3 shows notations - graphical representation, for 

all negations templates. 

 

Table 4. Semantics and graphical representation of some negative relation templates 

 

If we remember responded existence (A, B), we know that if event A occurs in the trace, event 

B has to occur too, after event B. Not responded existence (A,B) is then complete opposite. If 

event A occurs in the trace, event B can never occur. The not co-existence(A,B) specify that 

events A and B can never occur in the same trace. It is basically Not responded existence (A,B) 

and Not responded existence(B,A) applied together. Not response (A,B) specify that after event 

A event B cannot occur anymore. Not precedence (A,B) on the other hand specify that event A 

cannot occur before event B. Not succession (A,B) specify that B cannot be before and after 

any occurrence of A.  

Last three not mentioned templates from Figure 3 are negations of the templates Chain 

response (A, B) and Not chain precedence (A, B) and Not chain succession (A, B). Not chain 

response (A,B) templates specify that if event A occurs, then B should never follow A directly. 

Not chain precedence (A,B) specify that event A should never precede B directly and Not chain 

succession (A,B) is combination both of these templates. 

 

 

Figure 3. Notations for negation templates 
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3.1.4 Vacuity detection  

Vacuity detection is related to Declare constraints generated by Declare templates.  

As we already described in 3.1 Declare language is using the set of constraints, which must be 

satisfied during process executions. Kupferman and Vardi described and introduces in [14] 

general method for detecting vacuity. 

When Vacuity detection is enabled, then the constraint is satisfied only when it is activated. 

For example constraint Response (A, B) is satisfied only if both A and B events are present in 

the trace (constraint is not trivially satisfied). If A and B are not present in the trace we consider 

this constraint as not satisfied in this particular trace. 

On the other hand if Vacuity detection is not enabled, we consider constraint satisfied if itôs 

both activated or not activated, so both trivially and not-trivially satisfied. Let us say we have 

a trace without presence of A and B events, our Response (A, B) constraint would be trivially 

satisfied here but not activated. Considering Vacuity detection is not enabled constraint would 

be marked as satisfied in this case. 

3.2 Log representation  

In process mining the important information is present in the event logs. These logs store data 

from the business process executions [15].  Log consists of set of traces where each trace 

represent execution of one process. If the log consists of 10 traces, then we know that this log 

stores information about 10 executions of the business process. Trace consists of list of events. 

Event in the trace represent the action of the business process model e.g. ñSend invoiceò. Events 

are referred to as activities as well. Events and traces are the main structural element of the log 

and they both contain a set of defined attributes, when the standard are: 

¶ ID  ï unique identifier for the element 

¶ Timestamp ï time and date when the element occurred 

¶ Name ï this is not unique attribute, it represent the name of the element, which is easily 

understandable to the analyst, e.g. for the trace it could be the name of the process 

¶ Lifecycle transition ï this represent the stage of the eventôs lifecycle e.g.: start, 

suspend, schedule, resume etc. 

¶ Resource ï identifier of the resource, which started the event  

 

Events and traces can hold multiple attributes not just these standard ones mentioned above. 

Example attribute is cost, which can have another embedded sub-attributes like amount and 

currency. 
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Figure 4. Structural elements of process mining event logs [15]  

 

Traces in the log are usually not ordered, on the other hand the events in the trace are usually 

ordered, since they represent the process execution flow in time [15]. If there are two traces 

with the same order of the events in the log, they are identical. 

With BPM environment there are 2 usually used formats: MXML and XES standards. 

Al though there are another log formats defined by different vendors, in this thesis we use only 

MXML and XES logs as well as they are used in the process mining tools like ProM. 

 

 

Figure 5. MXML event log file format 

MXML  (Minig eXtensible Markup Language) is XML-based declarative markup language 

format used for storing business process event logs. This language appeared in 2003 for the 

first time and it was adopted by ProM tools, which represent process mining community, as 

standard format. Figure 5 shows MXML event log file format consisting of the main 

ñWorkFlowLogò root element, which is parent to all other elements like: Process, 

ProcessInstance, AuditTraitEntry etc.  

ProcessInstance represent one execution of the process, therefore it is one trace in the log. 

AuditTrailEntry represents one event or activity in the log, where we can find multiple another 
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stored parameters like Data, EventType, Timestamp etc.  Figure 6 represents small example of 

MXML log.  

 

Figure 6. Example of MXML log 

Another important log format is XES. XES stands for eXtensible Event Stream and it is 

successor of MXML format. It is an open XML-based standard format for managing and 

storing event logs [16].  

XES was designed for process mining as its main purpose, but authors also made it suitable for 

statistical analysis and data mining. In 2010, the XES was selected as a standard format for 

logging events by IEEE Task Force on Process Mining [17]. 

XES has its open-source reference implementation library called OpenXES [15].  

During development of XES format, there were couple of important goals fulfilled: 

¶ Simplicity  ï XES was designed to easily readable for humans as well as easily to be 

parsed. 

¶ Flexibility  ï XES standard should represent general standard for even log data, where 

we can capture logs from any background.  

¶ Extensibility  ï XES standard should be easily extended in the future. This extension 

should be as transparent as possible. 

¶ Expressivity ï XES format should allow to as little loss of information as possible., 

while allowing to attach human-interpretable semantics. 

Since XES strives to be generic log format, only common elements, which are identifiable 

by any setting are defined explicitly by the standard.  
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Figure 7. XES meta-model structure 

Structure of XES is similar to MXML, based on XML, only that the elements have completely 

different representation. Looking at the Figure 7, the root element is called ñLogò. Under this 

element we can find traces stored under element ñTraceò.  Event object represent event in the 

trace. These main three objects donôt hold any actual information, because all the actual 

information and detail about these objects is stored in Attributes. All of these objects can have 

multiple attributes.  

Figure 8 shows example of XES log. 
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Figure 8. XES log example 

 

Attributes represent key-value pairs, where the Key is unique identifier within the parent of the 

attribute. As can be seen on the Figure 7, commonly used attributes can be Lists, Constrainers, 

Strings, Date, Int values etc. On figure 8 we can see the attributes like ñlifecycle:transitationò 

with value ñCOMPLETEò.As mentioned above, one of the main goal of XES is high flexibility, 

which allow us to used also nested attributes for specific dimension or perspective e.g. Trace. 

 

3.3 Classification  

As mentioned in previous sections the deviance mining produces function, called the 

ñclassifierò, which can classify the trace and label it accordingly - normal or deviant as well 

we can use it for evaluation of the labelling accuracy of already labelled data.  

Classification technique is an approach of building classification models from training input 

dataset. There are multiple classifiers for solving classification problem like decision tree 

classifiers, support vector machines, k closest neighbour classifier, rule-based classifier, naïve 

Bayes classifiers etc. Each classification technique adopt learning algorithm in order to 

construct the model, which fits the best between a class label of the input data and between the 

attribute set. Main purpose of each classification technique is therefor build predictive model, 

which can predict accurately class labels for other test unknown records. 

In this subsection we will focus on chosen 3 classifiers, which we used in this thesis: decision 

tree classifier, k-NN classifier and Neural networks. 

 

3.3.1 Decision tree  

Decision tree classifier is a very simple and very widely used technique for classification. It 

tries to solve classification problem straightforward. Decisions tree learning is one of the 

methods most commonly used nowadays in the fields of data mining and machine learning and 

it is applied to broad range of tasks. Decision tree belongs to hierarchical supervised learning 

models. In machine learning, there are two types of decision trees: regression trees and 

classification trees. Regression tree analysis is when predict outcome represents real number, 
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where we are estimating or predicting responses e.g. temperature, price of the car, etc. 

Classification tree analysis is when predict outcome can be class where our data belongs, it 

means we identify group membership ï the class. For example it can help us to decide whether 

new observation belongs to class ôcarô or ôplaneô. In our case the main focus is on classification 

trees. 

Decisions trees can be used for multiclass classification. A decision tree is a flow-chart-like 

structure, where each non-leaf node indicate a test on an attribute, each branch represents the 

outcome of this test, and each leaf represents class label. The top-most node in the tree 

represents the root node. 

Given the following data: 

Day Outlook Temperature Humidity Wind Play Tennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

 

We can construct the following decision tree (see Figure 9). 
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Figure 9. Example of decision tree structure. 

Trees can be represent by if-then rules so they are easier to read for humans. The representation 

of the tree is following: 

¶ Each internal node tests an attribute (Outlook, Humidity, Wind) 

¶ Each branch represent the value of the attribute (High, Normal, Sunny, Rain, etc.) 

¶ Each leaf node represents the classification assignment (Play Tennis: Yes, No) 

Very simplistic description of classification by decision three be following steps: 

1) Pick the best attribute (splitting our data roughly in half - Outlook) 

2) Ask question (e.g. What Outlook?) 

3) Follow the answer path (Sunny or Rainy or Overcast) 

4) Go to 1 

We continue doing the steps 1 to 4 until we get to the answer, leaf node, in the Figure 9 either 

YES or NO. 

 

3.3.2 k-NN 

k-NN stands for the k-Nearest Neighbours algorithm, which is a non-parametric classification 

and regression method. Itôs one of the simplest of all machine learning algorithms.  

Since k-NN can be used for both classification and regression, our focus in this thesis is 

classification. k-NN has on the input instance of training samples and try to produce class label 

on the output for unlabelled data.   

k-NN is an non parametric lazy learning algorithm. Non parametric means that k-NN doesnôt 

make any assumption of the input data distribution. Lazy mean that that k-NN does not use the 

data in the input ï training data to do generalization. Differently said, there is very minimal 

training phase, which mean that this phase is very fast. 
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Figure 10. Example of k-NN classification 

 

The new object is classified by the vote of the k closest neighbours, which are present in feature 

space.  

The simplest scenario is when k = 1. We look at the closest neighbour to our new object and 

just assign the class of that single nearest neighbour. 

If we look at the Figure 10 then we can see the example of k-NN classification if new object if 

k=3 or k=5. If we have 2 classes only, then the k is odd number usually. We can see that if the 

k=3, 2 of the closest neighbour are from first class and 1 is from second class. Therefor we 

assign the first class to our object. On the other hand if k=5 we have 2 neighbours from first 

class and 3 from second class. Therefor we assign second class to our new object. 
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4 Proposed approach 

In this chapter, we specify and describe our proposed approach, how are instruments, which 

were mentioned in previous section connected together. 

 

Following figure represents flow chart of our proposed algorithm. 

 

Figure 11. Proposed approach flow chart 

 
























































