

There are multiple existing methods for deviance mining. Many of these traditional deviance
mining techniques have been used in the context of softwacegsesSoftware behavior is

the way how the software executes. Just like in execution of business process mentioned above,

in software systemsome execution are desired, normal executions, ame £xecutions are

not desirechnd we call them failuresofe failures are easily recognized (Blue screen of death

in Windows, exception thrown etc.) while some are not so easy to recognize, since they are

mi ssing this Avisibleo effect. These failure
concerngnade since they are not so easily identified.

Aim of this thesisis to apply deviance mining in the BPM contelkt.particular we use the
declarative business process modelling language D@Rf8] to explain deviancen this

way we use process models to explewiances that give more abstract representations of the
properties than sequences (form different logs and process m@iaigroposed framework
works in three steps press: In theifst step we mine Bclare constraints/patterns from the
event log. Inthesecond step the constraint filtering and selecisoapplied to the constraints

The selection is based on the discriminativeness of the constraint which is represented by
F i s hseoreinghe last third step we build the classifier from these selected constraints.

We implemented our algorithm as theclare Deviance Mineplugin' for ProM opersource
tool.

In [4] authorshave doneomparison ofiifference deviance mining toolgbased on different
deviance mining techniquesherefoe our main research questisim this thesis are

1. Isit possible to provide business analy#h understandable feedbackaut business
process deviances?

2. Is the accuracy dhinedby explaining deviances with Declare constraints comparable
with the one achieved with tstate of the art deviance mining technicies

In summary, our main contributido answer these research questisrisefollowing:

1 We proposesew approactiior classifying event logs based discriminative clare
patternswhich distinguish the deviant from normal traces in the evenillodgdentify
highly discriminativeDeclareconstraints we proposg Declareconstraintsselection
algorithms based on Fier score.

1 We designa new algorithm for mining Bclareconstraints using Declare templates
which arethensatisfied omot satisfiedvithin the traces.

1 Throughout a set of experiments evaluate accuracy of our poged 2clare mining
algorithm and gie comparable results with already existing deviance mining
approaches.

Thisthesisis structured as follows. Section 2 dis@assready existing methods for deviance
mining, Section 3 discuss prior information need to understanth#ss Section 4 disusses

our entire proposed approachorfr the event log to the result, Section 5 discusses
implementation of our approach as Pr@Migin, section 6 discusses evaluation of our labelling
accuracy and comparison with existing tools and the last sectionegeafs conclusion of our
work.

1 https://bitbucket.org/Duri_Boss/declaredevianceminerplugin

https://bitbucket.org/Duri_Boss/declaredevianceminerplugin

2 State of Art

There are many papedescribing process deviance mining and different process deviance
mining techniquesOne of the first techniques to mentiordedta-analysis

In [5] delta aalysishasbeen used in order to explain deviance in healthcare procésses.
another papg6] authors report on case about insurance company trying to describe why some
claims took longerthan normalAnalystsunderstand how i f f er ent ar e Asi mpl
from Asimple quick cl ai mso WWdtaandlysitusedkthis mor e
report consists of using automated process discovery, to specifically extract two process
model s, o ne ndooeforifindoervmaal ndt e xaecuti ons. Firstly
from the main | og, where one | og consists o
fisi mpl e qui ck Discb processdiscovely hdelas ugedte extract two process
modelsfrom thesdwo logs.Then the manual comparison of these two modaklsdoneAfter

comparison authors found some visibiéelences between these modelsnt® sequences or

paths of events were more frequent onlyhia first model and vice versAnother heuristics

which authors came up with, which helped to discriminate between slow and fast claims, was
comparing chosen event X occurrences numbers in the traces and comparing the percentage of
traces where chosen event appears at least one time. In other wordX edxeaurred in

different amount of traces in these two models as well as the occurrences for particular traces
were differentDelta analysis ia manual technique of deviance mining, in tiiesiswe focus

juston automated tniquesOur contributioris similar to Delta analysis because we produce

models but we do it automatically.

In [7] the authors applieddiscriminative patten mining approach on a log ofer 2600 defect

reports of four big software projedis discrimirate between normal correct resolutions and

deviant ones leading to complaints. Using discriminative patter mining approach they
identified discriminative patterns which are frequent in deviant cases anttegptent in

normal cases and we/ersa.Firstnunber of features were just i
particular activity X in the traceo and anot
X after activity Yo. Since there is simple f
too big amounof discriminative features authors selected only some using mining techniques
Afterwards classifief decision treavasbuilt basel on theseselected features

In [8] authors tried to discriminate between traces in thedadihg to malfunctioning versus
normalbehaving of Xray machinesin this paper atmors wereusingfrequent pattern mining

which belongs to the group séquence mining techniguesn or der t o fi nd A ma
Atandem r2alphabeél[8 Mbéemlaepeats represent repeasequence of

events which arets included in tgerrepeatedsequenceln the process maximal repeats
represent subrocess. Tandem repeats are sequences of events which represeni loops
business processes. Alphabet repaagsintesections of sets of events which are found in
different maximal or tandem repeats.clontitd-fl tsv termsthis represents parallelism. In this
paperfrequentpattems are extracted from all the traces togetfreormal and deviantase}

and afterwards those with highest support are selected and decision tree is built using these
frequent patterns.

In [10] theauthors trid to use sequential pattern mining as well to discriminatg&den cases,

which lead to positive or negative clinical outcome in the process for congestive heart failure
treatment. Authors used sequence mining techniques combined with Delta analysis mentioned
in [6]. Authors first used sgience mining techniques to extract frequent patterns of the form

2 http://www.fluxicon.com/

Afactivity B occurs after activity A after so
After the extraction authors could determine which of these patterns are frequent in positive

and which are frequent for negative cagagthors then made additional comparison of process

models which were extracted from positive and negative cases. Observations from this delta
analysis were combined together with observations from frequent patterimg and in the

end authors got pathways characteristics of either negative or positive cases.

Authors in[11] tried to understand the causes for deviationgrocurement processes from
normative pathways. This study was dan largeEuropean financial institution were the
dataset consists of close to 30 000 cases. After using process discovery tool analysts found that
approximately 29% of the cases were deviant. Authors applied association rule mining
technique in order textract frequent patterns for deviant and for normal cases separately. It
was found that total of 10 patterns could characterise almost all deviant cases.

In the above studies all discriminative mining techniques were using the process flow not data

flow for deviance mining. In other words the inputs were some sequences of occurrences of
activities without payload. Sometimes traces or events carry multiple information. For example
traces hold some information orr ewemt sorc ofintsy
which could be used for deviance mining as well. There were some studies, which tried to
attempt to use this data for deviance minit®] [13], in this paper we will focus on pree

flow, ignoring the data attributes so we make minimal assumptions on the log.

Based on the papers mentionedhis section we came up with Figure 1 which represents the
Taxonomy of Process Deviance Mining approaches excluding manual techniquesltigke De
analysis.Thisfigure represents only automated techniqiiéese papers helped us to identify
three categories of deviance mining techniques: (1) based on individual activities (2) based on
setbased patterns (3) based on sequence patterns which dasided into sequential patterns
based and discriminative patterns based.

Association-Based
Patters

Individual

Activities

Association-Based

Set-Based Patters

Sequential
Patterns

Sequence-
Based

Discriminative
Patterns

Figure 1. Taxonomy of automated Deviance miningrapches

As can been sean the Figure leach technique has the event log on the inputbaiid the
classifier in the end, which in all papers was either Decision Tree or combinatiesehree
classifiers Decision Tree, Neural networks oiN{.

In this thesiswe will useonly discriminative patterns as the main approactofordeviance
mining.

3 Background

In this chapterprior informationneeded to understand the thesisdescribed.

3.1 Declare

Pesic and an der AalstintroducedDeclarein [2] [3] as declarative process modelling
languageEven though [Bclareis declarative system, it can offer more than just declarative
model development, but also automated model execution, model verification, changing model
during runtime, decomposition of big processes artherfeatures then traditionAVFMSs

have.

Declarelanguage uses constrailmisedsystem as opposed to classical imperative approaches
and using declarative language grounded in temporal .|dd&clare constraints build
declarative modeDeclare constraintare based on Declare temglswhich we will describe
more in following subsections.

In classical imperative model, there is need to specify cefitnolby entering all the options
how the process executes. Declare model defines cdlanolunconditionallyby specified list

of constraints, which represents the rul@sclare languagerovides niyeflexibility than usual
pricedural notations like BPMN, UML, Petri Nets, ADs and BPEL. This language, proposed
for process modelling, is fulfilling two main criteria: It is understandable foruseds and it

has formal semantics.

Declaretemplatesarenotional objects which determine parameterised categormtgudrties

and Declare constraints are theiconcrete instantiadins. These templates have graphical
representation, which is easily understandable and readable for Husesnaind using LTL
formulas the semantics of these templates are specified. Table 1 below,shbigs LTL
operators semantics. Template defines semantics and graphical representation of each
constraint which is generated from this template. Because of these features Beeteity i
understandable and it has formal semantics.

Tablel. LTL operators semantics

operator | semantics

O @ has fo hold in the next position of a path.

U @ has to hold always in the subsequent positions of a path.

O @ has to hold eventually (somewhere) in the subsequent positions of a path.
w has to hold in a path at least until 1> holds. 1» must hold in the current or
in a future position.

w Ui

So as mentioned above Declare language is using the set of constraints, which must be satisfied
during process executions rather than direxlgcifying the process flow. So with comparison

with classical procedural approaches we can say teataizdefines flexibility. Classical
procedur al model s produce fAclosedd process
something in this model is ndirectlys peci fi ed, then it dsecfarer bi dde
give us more options faxecutions, more flexibility.

Let us focus on Bclaretemplates nowThe main goal of the templates is to highligtiterent
attributes, which is worth to desceiln process model as well as mainly characterise language.
Declare templates are divided into four main grougstion, negative relation, existence and
choice We give more details about specific group of templates and templates thenrselves
following subsections.

3.1.1 Existence Templates

Figure 2 below represents-salled existence templates. There is only one event (unary
relationship) involved in existence templates. Existence templates defines the position or
cardinality of the event in the trace.

R 1)
existence(A) A o) exactly1(A) | A

=] absence2(A) | A Tz | [V
existence2(A) | A [N=] oz o exactly2(A) | p | >~ A

== | A absence3(A) | A | | A i
existence3(A) | A o] exactlyn(A) | A

] absencey,:(A) | A i <
existencen(A) | A - init(A) A

1/
Figure2. Notation for existence templates

The first templatesxistence(Awhi ch has annotation Al..*0 abo

represents that A is executed at least once in the trace (event A is ptdsast ae timeand
more in the trace). So others liggistence2, 3 and,he nunter behind the templates name
presents that A should occur at least that amount of times in the Atasence templates,
whi ch has an,omtheathdr lmandsspedifies thatwta& should be present in the
trace N times at most. E.§bsence3(Ajepresents that event A should occur 2 times in the
trace at mosfTemplate€ExactlyN(A)specify that event A should occur exactly N times in the
trace and templatiait(A) specify thathat event A should be the very first event in the trace.

Table2. Existence Templates

name of template LTL semantics graphical representation
existence(1, A) QA m
existence(2, A) O(A N Olexistence(l, A))) -
existence(n, A) O(A N O(existence(n — 1, A)))
absence(A) —existence(1, A) .
absence(2, A) —existence(2, A)
absence(3, A) —existence(3, A)
absence(n + 1, A) —eristence(n + 1, A)
exactly(1, A) existence(1, A) A absence(2, A) n
exactly(2, A) existence(2, A) A absence(3, A)
exactly(n, A) existence(n, A) A absence(n + 1, A) e
init(A) A .

10

Table 2 shows LTL semantios (LTL formula)and graphical notations of existence templates.

3.1.2 Relation Templates

Relation templates describeegbendency between two evemt and B in the contrary to
existence templates, which specified cardinality of one event ©hise templates there for
represent binary relationships. TalBleepresents LTL semantics and graphical notations of
relationshipgemplatesAll relation templates have two events as parameters. As can be seen
from the Table 3, the column on the right represents graphical notations, where the line between
events A and B is unique for each template.

The templateesponded existend@d, B) specifies that if event A is present in the trace, then
also event B has to be present either after or before event A, so the event B can be executed at
any time in the process.

The templateo-existence (A, Bypecifyif one of the event A or B is psent in the trace, then
also the second event has to be present (if A is present in the trace then also B has to be present,
if B is present in the trace then also A has to be present).

Templatesesponded existenemdco-existencel o n 6t ¢ o neximgafehe evenhleand r d
B, they can be present anywhere in the trace. On the other hand next templates we will describe,
precedenceresponseandsuccessionthey consider ordering of the events, thefanat are

the locations of these events in thegas

The templategesponse (A, B3pecify that if the event A is present in the trace, then the event

B has to be present after A. Event B doesnot
present in any time in the trace after, as well as ttemebe another event A present between

first event A and event B.

The templatgrecedence (A, Bypecify that if the event A is present, then the event B has to

be present before event A. Just | ike inn prev
therefor event B can be anywhere before A, as well as, there can be another A after B and first
event A.

The templatesuccession (A, By combination or response and precedence, so we can say it
specify bidirectional execution of two events. So thesnplate specifies if the event A is
present then the event B have to be present both before and after event A.

Templatesalternateprecedencealternate responsandalternate successiastrengthen three

templates mentioned above in the way thaints A ad B have to alternate. In other words if

we have for examplalternate response (A,Byeans that if event A occurs then the event B
have to occur after (it doesnbét have to be r
after activity B not befee (between first event A and event B).

Even more strict approach is when usidgain precedengechain responseand chain
successionThese templates specify that the two events A and B have to occur next to each
other, e.gchain respong@\,B) repreentthat event A is followed imedately by event B

See Bble3 for graphical notationaotation and_-TL semantics.

11

name of template

Table3. Relation templates

LTL semantics

graphical representation

R

responded existence(A, B) O0A = OB
co-existence(A, B) O0A < OB E—E
response(A, B) O(A = {B) ﬂ—']

precedence(A, B)

(=B UA) v O(=B)

N

succession(A, B)

response(A, B) A
precedence(A, B)

alternate response(A, B)

O(A = O(-A UB))

alternate precedence(A, B)

precedence(A, B) A
(B = O(precedence(A, B)))

alternate succession(A, B)

alternate response(A, B) A
alternate precedence(A, B)

chain response(A, B) 0(A = OB) W
chain precedence(A, B) OOB=A) E
chain succession(A, B) 0(A < OB) w

12

3.1.3 Negation Templates

Negative Templates are negated versions of above mentioned rédatiplatesin Table 4
belowwe showLTL semantics and graphical representation of one chosgative template

from each group of templates mentioned above: existence templates, classical relation
templates and chain relation templatégure 3 shows nations- graphical representation, for

all negations templates.

Table4. Semantics and graphical representation of some negative relation templates

name of template LTL semantics graphical representation
not co-existence(A, B) -(CANOB) A |l—{+—¢ o
t succession(A, B (A= =(0B A A
not succession() ((OB)) |.—H—H
not chain succession(A, B) O(A = O(—B)) —%

If we rememberesponded existence (A,,Bje know that if event A occurs in thace, event

B has to occur too, after eventBot responded existen¢a,B)is then complete opposite. If
event A occurs in the trace, event B can never odhe.not ceexistence(A,B) specify that
events A and B can never occur in the same tracebdisisallyNot responded existence (A,B)
andNot responded existence(B#jplied togethemot response (A,Bpecify that after event
A event B cannot occur anymoigot precedence (A,Bh the other hand specify that event A
cannot occur before event RBot succession (A,Bpecify that B cannot be before and after
any occurrence of A.

Last three not mentioned templates from Figure 3 are negations of the ten@iaias
response (A, BandNot chain precedence (A, BpdNot chain succession (A, .Byot chain
response (A,Blemplates specify that if event A occurs, then B should never follow A directly.
Not chain precedence (A,Bpecify that event A should never precede B directlyNwotcchain
succession (A,B% combination both of these templates.

not responded existence(A, B)
8|
, not chain response(A, B
not co-existence(A, B) P (. B)

not response(A, B) E not chain precedence(A, B)
not precedence(A, B) H not chain succession(A, B)
not succession(A, B) H

Figure 3. Notations for negation templates

13

3.1.4 Vacuity detection
Vacuity detection is related to Declare constraints generated by Declare templates.

As we already described in keclare language is using the set of constraintghwhust be
satisfied during process executiokapferman and Varddescribed andnhtroduces in[14]
general method for detecting vacuity.

When Vacuity detectionis enabled then the constraint is satisfied only when it isvatéed.

For example constraifesponse (M) is satisfied only if both A and B events are present in
the trace (constraint is not trivially satisfied). If A and B are not present in the trace we consider
this constraint as not satisfied in this partictitace.

On the other hand Wacuity detections not enabled we consi der constr ai
both activated or not activated, so both trivialhdanottrivially satisfied. Let g say we have

a trace without presence of A and B events,Respnse (A, Bronstraint would be trivially

satisfied here but not activated. ConsideMaguity detectioms not enableatonstraint would

be marked as satisfied in this case.

3.2 Log representation

In process mining the important informatiorpresenin theevent logsThese logs stordata

from the businesprocessexecutiong15]. Log consists of set dfaceswhere each trace

represent execution of one process. If the log consists of 10 traces, then we know that this log
stares information about 10 executions of the business process. Trace consists of list of events.
Event in the trace represent the actEventsn of t
are referred to as activities as well. Events and traceseanedim structural element of the log

and they both contain a set of defined attributes, when the standard are:

1 ID 7 unigue identifier for the element

1 Timestampi time and date when the element occurred

1 Namei this is not unique attribute, it represent tiaene of the element, which is easily
understandable to the analyst, e.g. for the trace it could be the name of the process

9 Lifecycle transiton i1t hi s represent the stage of t h
suspend, schedule, resume etc.

1 Resourcei identifier of the resource, which started the event

Events and traces can hold multiple attré@suhot just these standard ones mentioned above.
Example attribute igost, which can have another embeddedaitributes like amount and
currency.

14

XAtrributable

XElement

{ XEvent H XTrace —0{ XLog ’ XAtrributable \

Figure 4. Structural elements of process mining event [6§%

Traces in the log are usually not ordered, on the other hand the events in the trace are usually
ordered, since they represent the process execflbw in time[15]. If there ae two traces
with the same order of the events in the log, they are identical.

With BPM environment there are 2 usually used foan8XML and XES standards.
Although there are another log fats defined by different vendors, in this thesis we use only
MXML and XES logsas well as they are used in the process mining tools like ProM.

WorkflowLog [1.0
=+, Data
;
1 -, Data
- S,
B :
1.0 . |
- J:’Pr ocessinstance Q—Ej}-i
_________________________________ Ees ' :
0.0 i
]

ol

¥
Lad
I

.- -:&Drigimtol

Figure 5. MXML even log file format

MXML (Minig eXtensible Markup Language) is XMhased declarative markup language

format used for storing business process event logs. This language appeared in 2003 for the
first time and it was adopted by ProM tools, which represent process mining community, as
standard formatFigure 5 shows MXML evdnlog file format consisting of the main

AWor KkFIl owLog?©o root el ement , whi ch i s par er
Processinstance, AuditTraitEntry etc.

Processinstae represent one execution of the process, therdfts one trace in the log.
AuditTrailEntry represents one event or activity in the log, where we can find multiple another

15

stored parameters like Data, EventType, TimestampFreguire 6 represents small example of
MXML log.

<? version="1.8" encoding="UTF-8" ?>

am="XES MXML serialization" openxes.version="
Anonymous log imported from BPI_Challenge 20812.xes (filtered on simple heuristics)™
simple heuristics)"»

name="concept : name">Anonymous log imported from BPI_Challenge 2812.xes (filte
id="173688" description="instance with id 173688">

MOUNT REQ">20800</
oncept:name">173688</ >
EG_DATE">2011-10-01T01:38:44.546+03:00</

name="org: resource">112</ >
"time:timestamp”>2011-10-01T01:38:44.546+83:00</

name="1ifecycle:transition">COMPLETE</ >

name="concept:name">A_SUBMITTED</ >

>A_SUBMITTED</
>complete</
>112</ >
»2011-16-81T761:38:44_.546+83:08</

Figure 6. Example of MXML log

Another important log format is XES. XES stands for eXtensible Event Stream and it is
successor of MXML formatlt is an open XMLbased standard form&r managing and
storing event loggl6].

XES was desigedfor process minings its main purpose, but authors also made it suitable for
statistical analysis and data minirg.2010, the XES waselectedas astandard famat for
logging eventdy IEEE Task Force on Process Migifi7].

XES has its opesource reference implementation library calaenXES15].
During development of XES format, there were couple of important goals fulfilled:

91 Simplicity T XES was designed to easily readable for humans as well as edsdy to
parsed.

1 Flexibility 7 XES standard should represent general standard for even log data, where
we can capture logs from any background.

1 Extensibility i XES standard should be easily extended in the future. This extension
should be as transparent as [luss

1 Expressivity i XES format should allow to as little loss of information as possible.,
while allowing to attach humainterpretable semantics.

Since XES strives to be generic log format, only common elements, which are identifiable
by any setting ardefined explicitly by the standard.

16

<declares>

<defines> — <defines>
Classifier

<defines>
<trace-global>
<event-global> ,LI- —ada,
: :
s Attribute :‘—@
<contains> P H ;
: ‘. AN <orders>

<contains>

<contains>

Figure 7. XES metanodel structure

Structure of XES is similar to MXMLhased on XMLpnly thatthe elemerghave completely
differentrepresentatiarnLooking at the Figure 7he root element s c¢ a | | Wnderthid o g 0

el ement we can find tr acHkventobjectoegpesentevantdiethe el e n
trace. These main three objects donot hol d
information and detail about these objaststored in Attributes. All of these objecan have

multiple attributes.

Figure 8 shows example of XES log.

17

ey="AMOUNT_REQ" wvalue="18
concept:name” value="17
lEG_DATE" value="20811-108-¢ B:45:37.274+03

/="org:resource" value="112"/>
="time:timestamp" wvalue="2811-16-01T108:45:37.274+€
"lifecycle:transition" value="COMPLETE"/>
"concept:name" wvalue="A SUBMITTED"/>

value=" 111"f>

Figure 8. XES log example

Attributes represent keyalue pairs, where the Key is unique identifier within the paretite
attribute. As can be seen on the Figure 7, commonly used attributes can be Lists, Constrainers,

Strings, Date, Intvaluese®©®.n f i gur e 8 we c a tifecgcle:randitdii@d at t r i

wi t h CGMPLE&D A& mentioned above, one of thmain goal of XES is high flexibility,
which allow us to used also nested attributes for specific dimension or perspectivaeeg.

3.3 Classification

As mentioned in previous sectiortie deviance mining produces function, called the
icl assi f ireclassify the thacecahd labed it accordinglyormal or devianas well
we can use ifor evaluation of the labellingccuracyof already labelled data

Classification technique is an approach of building classification models from training input
dataseé There are multiple classifiers for solving classification problem like decision tree
classifiers, support vector machines, k closest neighbour classifiebasael classifier, naive
Bayes classifiers etdach classification technique addpiarning #gorithm in order to
construct the modglvhich fits the best between a class label of the input data and between the
attribute set. Main purpose of each classification technique is therefor build predictive model,
which can predict accurately class laldelsother test unknown records.

In this subsection we will focus on chosen 3 classifiers, which we used in this thesis: decision
tree classifier, NN classifier and Neural networks.

3.3.1 Decision tree

Decision tree classifier is a very simple and very widelgd technique for classification. It

tries to solve classification problem straightforwabiecisions tree learning is one of the
methods most commonly used nowadayhéfields of data mining and machine learning and

it is applied to broad range ofks. Decision tree belongs to hierarchical supervised learning
models. In machine learning, there are two types of decision trees: regression trees and
classification trees. Regression tree analysis is when predict outcome represents real number,

18

where weare estimating or predicting responses e.g. temperature, price of the car, etc.
Classification tree analysis is when predict outcome can be class where our data belongs, it
means we identify group membershithe class. For example it can help us to dewaitiether

on bel olnaguscase the ntalin Bocusis o classifiGation r

new
trees.

observati

Decisions trees can be used for multiclass classificafiatecision tree is a flovehartlike

structure, where each ndeaf node indicata test on an attribute, each branch represents the
outcome of this test, and each leaf represents class label. Hngosbmode in the tree
represents the root node.

Given the following data:

Day Outlook Temperature Humidity Wind Play Tennis
D1 | Sunny Hot High Weak No
D2 | Sunny Hot High Strong No
D3 | Overcast Hot High Weak Yes
D4 | Rain Mild High Weak Yes
D5 | Rain Cool Normal Weak Yes
D6 | Rain Cool Normal Strong No
D7 | Overcast Cool Normal Strong Yes
D8 | Sunny Mild High Weak No
D9 | Sunny Cool Normal Weak Yes
D10 | Rain Mild Normal Weak Yes
D11 | Sunny Mild Normal Strong Yes
D12 | Overcast Mild High Strong Yes
D13 | Overcast Hot Normal Weak Yes
D14 | Rain Mild High Strong No

We can constrct the following decision tree (see Figure 9).

19

op

Outlook

sunny Rain
Overcast
Humidity Yes wind
High
E Normal
Strong Wealk
Ho Ves Mo Yes

Figure 9. Example of decision tree structure.

Trees can be represent bythen rules so they are easier to read for humans. The representation
of the tree is following:

1 Each internal node tests an attribute (Outlook, Humidity, Wind)
1 Each branch represetie value of the attribute (High, Normal, Sunny, Rain, etc.)
1 Each leaf node represents the classification assignment (Play Tennis: Yes, No)

Very simplistic description oflassification by decision thrdm following steps:

1) Pick the best attribute (sglitg our data roughly in halfOutlooK)
2) Ask question (e.g/Vhat Outlook?

3) Follow the answer pattSunnyor Rainy or Overcajt

4) Gotol

We continuedoing the steps 1 tounhtil we get to the answer, leaf nodethe Figured either
YES or NQ

3.3.2 k-NN
k-NN stands for the #Nearest Neighbours algorithm, which is a fgarametric classification
and regressiomethodl t 6s one of the simplest of all/l ma

Since kNN can be used for both classification and regression, our focus in this ihes
classificationk-NN has on the inpuhstance of training samples and try to produce class label
on the output for unlabelled data.

k-NN is an non parametric lazy learning algorithm. Non parametric meanshthdtk d o e s n 6 t
make any assumption ofdlinput data distributior,azy mean that thatKIN does not use the

data in the input training data to do generalization. Differently said, there is very minimal
training phase, which mean that this phase is very fast.

20

Figure 10. Example of NN classification

The new obiject is classified by the vote of kinbosest neighbours, which are present in feature
space.

The simplest scenario is wh&n= 1. We look at the closest neighbour to our new object and
just assign the classd that single nearest neighbour.

If we look at tha~igure10 then we can see the example-dk classification if new object if

k=3 or k=5. If we have 2 classes only, then the k is odd number usually. We can see that if the
k=3, 2 of the closest neighboare from first class and 1 is from second class. Therefor we
assign the first class to our object. On the other hand if k=5 we have 2 neighbours from first
class and 3 from second class. Therefor we assign second class to our new object.

21

4 Proposed approach

In this chapterwe specify and describe our proposed approach, how are instruments, which
were mentioned in previous section connected together.

Following figure represents flow chart of our proposed algorithm.

Figure 11. Proposed approach flow chart

22

